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Abstract

For two given graphs G and H, the Ramsey number R(G, H) is the smallest positive
integer p such that for every graph F' on p vertices the following holds: either F
contains G as a subgraph or the complement of F' contains H as a subgraph. In this
paper, we study the Ramsey numbers R(P,, F,,,), where P, is a path on n vertices
and F), is the graph obtained from m disjoint triangles by identifying precisely
one vertex of every triangle (F, is the join of K; and mK5). We determine exact
values for R(P,, F,,) for the following values of n and m: n = 1,2 or 3 and m > 2;
n>4and 2 <m < (n+1)/2;n>T7and m =n—1o0orm = n;n > 8 and
(k-n—2k+1)/2<m<(k-n—k+2)/2with3 <k <n-5n=4,5o0r6 and
m>n—1;n>7and m > (n —3)2/2.
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1 Introduction

Throughout this paper, all graphs are finite and simple. Let G be such a
graph. The graph G is the complement of G, i.e., the graph obtained from
the complete graph on |V(G)| vertices by deleting the edges of G. A fan F,,
is a graph on 2m + 1 vertices obtained from m disjoint triangles (K3s) by
identifying precisely one vertex of every triangle (F,, is the join of K; and
mK5). The vertex corresponding to K is called the hub of the fan. Given
two graphs G and H, the Ramsey number R(G, H) is defined as the smallest
positive integer p such that every graph F' on p vertices satisfies the following
condition: F' contains G as a subgraph or F' contains H as a subgraph.
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In 1967, Geréncser and Gyérfas [3] determined all Ramsey numbers for paths
versus paths. After that, Ramsey numbers R(P,, H) for paths versus other
graphs H have been investigated in several papers, for example in [5], [1], [6],
[4], [2], [7] and [8]. We study Ramsey numbers for paths versus fans.

2 Main results

We determine the Ramsey numbers R(P,, F},,) for the following values of n
and m:n=12or3andm>2;n>4and 2<m < (n+1)/2;n>7and
m=n—lorm=mn;n>8and (k-n—-2k+1)/2<m< (k-n—k+2)/2
with3<k<n-5n=450or6and m>n—1;n>7and m> (n—3)?/2.

1 for n =1
Proposition 1 Let m > 2. Then R(P,, Fy,) =
2m+ 1 for n =2 or 3.

We skip the easy proof of Proposition 1. The next lemma plays a key role in
the proofs for the remaining cases.

Lemma 2 Suppose G is a graph on n > 4 vertices containing no P,. Let the
paths P', P2, P3,..., P* in G be chosen in the following way: Ule V(P7) =
V(G), P' is a longest path in G, and, if k > 1, P*' is a longest path in
G — U§:1 V(P?) for 1 <i<k—1. Let z be an end vertex of P*. Then:

(i) V(P = V(P > ... > [V(P¥)];

(ii) If [V(P*)| > [n/2], then [N(2)| < [V(PP)] - 1;

(iii) If [V (P*)| < [n/2], then |N(2)| < [n/2] — 1.

Proof. (i) is obvious.

(ii) follows from the choice of the paths and the observation that all neighbors
of z are on P*.

(iii) Now assume |V (P¥)| < |n/2]. If 2 has no neighbors in V(G) \ V (P*), we
are done. If 2z has some neighbors in V(G)\ V (P*¥), simple counting arguments
yield the result: Denote by /4,...,¢; the numbers of vertices on the paths in
P!, ..., P* that contain a neighbor of z, chosen in such a way that ¢, > ... >
(1, and denote by dy, . .., d; the numbers of neighbors of z on the corresponding
paths. Then, ¢; = |V(P¥)| > d; + 1 and ¢, > 2¢; + 2d; — 1. Observing that
z connects any two of the considered paths, and using elementary counting
techniques, we get (if ¢ > 3) ¢; > 2(4’7171 +2)+2d; —1=1"{;_1 +2d; + 2 for
3 < j < t. This implies (for ¢t > 2) that ¢, > 2(d; +... +d;) +2(t —2) + 1 >
|IN(2)| + 1. Since ¢, < n —1 and |N(z)| in an integer, this yields the desired
result. O



Theorem 3 Letn >4 and2<m < (n+1)/2. Then R(P,, F,) =2n — 1.

Proof. The graph 2K,,_; shows that R(P,, F,,) > 2n — 2. Let G be a graph
on 2n — 1 vertices and assume G contains no P,. We are going to show that G
contains an F},,. Choose the paths P',..., P¥ and the vertex z as in Lemma
2. Lemma 2 implies |[N(z)| < (2n — 1)/3 — 1. Hence, 2 is not a neighbor of at
least 2m vertices. It is not hard to show by case distinction that there is an
F,, in G with hub z. We leave the details to the reader. O

The following lemma provides upper bounds that yield several exact Ramsey
numbers in the sequel.

Lemma 4 Ifn >4 and m >n—1, then

2m+n—1 for 2m =1 mod(n — 1
R(P,, Fy) < § ( )

2m + n — 2 for other values of m.

Proof. Let G be a graph that contains no P, and has order

2m+n — 1 for 2m =1 mod(n — 1)
V(&) = (1)

2m + n — 2 for other values of m.

Choose the paths P',..., P*¥ and the vertex z in G as in Lemma 2. Because
of (1), not all P can have n — 1 vertices, so |V (P*)] < n — 2. By Lemma 2,
|N(2)| < n—3. Hence, z is not a neighbor of (at least) (2m+n—2)—1—(n—3) =
2m vertices. We will use the following result that has been proved in [1]:
R(P,,Cs) = s+ [t/2] — 1 for s > [(3t+ 1)/2]. We distinguish the following
cases.

Case 1 |N(z)| < [n/2] —2ornisodd and |N(z)| = [n/2] — 1.
Since |[V(G)\ N [z]| > 2m+ |n/2]| —1, we find that G — N [2] contains a Cy,.
So, there is an F}, in G with z as a hub.

Case 2 niseven and |N(z)| = |n/2] — 1.

Since |[V(G)\N [z] | = 2m+n—2)—n/2 = 2m+n/2—2, we find that G — N [2]
contains a Cs,_1; denote its vertices by wvq,va,v3,...,Vsy,_1 in the order of
appearance on the cycle with a fixed orientation. There are n/2 — 1 vertices
in U = V(G) \ (V(Com-1) U N [2]), say ui,ug, ..., Uy 1. If some vertex v
(i =1,...,2m—1) is no neighbor of some vertex u; (j = 1,...,n/2—1), w.Lo.g.
assume v, 1u; ¢ E(G). Then G contains an F,,, with hub z and additional



edges vy, U3y, . . ., Vom_3VUam_2, Uoym—_1U1. S0 each of the v; is adjacent to all
u; in G. For every choice of a subset of n/2 + 1 vertices from V(Cap—1),
there is a path on n — 1 vertices in G alternating between the vertices of this
subset and the vertices of U, starting and terminating in two arbitrary vertices
from the subset. Since G' contains no P,, there are no edges v;v; € E(G)
(i,7 € {1,...,2m — 1}). This implies that V (Cypn_1) U {z} induces a Ky, in
G. Since G contains no Py, no v; is adjacent to a vertex of N(z). This implies
that G contains a Ky, — e for some edge 2w with w € N(z), and hence G
contains an Fj, with one of the v; as a hub.

Case 3 Suppose that there is no choice for P* and z such that one of the
former cases applies. Then |N(w)| > |n/2] for any end vertex w of a path on
|V(P*)| vertices in G — U=} V/(P7). This implies all neighbors of such w are
in V(P*) and |V (P*)| > Ln/QJ + 1. So for the two end vertices z; and z, of P*
we have that |N(z;) NV (P*)| > [n/2] > |[V(P*)]/2. By standard arguments
in hamiltonian graph theory we obtain a cycle on |V (P*)| vertices in G. This
implies that any vertex of V(P*) could serve as w. By the assumption of this
last case, we conclude that there are no edges in G between V(P¥) and the
other vertices. This also implies that all vertices of P* have degree at least 2m
in G.

Similar arguments for P*=' ... P! can be used to show that all vertices of G
have degree at least 2m — 1 in G. We omit the details. Now let [V (P¥)] = .
Then in the graph H = G —V (P¥) all vertices have degree at least 2m—1—¢ >
m—1—(+n—-1=32m—-4+2n—-20)>12m—4+2n—(— (n—2)) =
1@m+n—0-2)> (|V( )] —1). This implies there exists a Hamilton path

=32
in H. Since |V(H)| > 2m and z is a neighbor of all vertices in H, it is clear
that G contains an F),, with 2 as a hub. This completes the proof of Lemma
4. O

The next corollaries can be obtained by indicating suitable graphs for pro-
viding sharp lower bounds, and combining them with the upper bounds from
Lemma 4. We omit the details.

Corollary 5 Ifn > 7 and m =n—1 orm = n, then R(P,, F,,,)) = 2m+n—2.

Corollary 6 Ifn > 8 and (k-n—2k+1)/2<m < (k-n—k+2)/2 for
2m +n —1 for 2m =1 mod(n — 1)
3<k<n-=25, then R(P,, Fy,) =
2m +n — 2 for other values of m.

Corollary 7 If either n = 4,5 or 6 and m > n—1 orn > 7 and m >



(n

— 3)?/2, then R(P,, F,,) =

2m +n—1 for 2m =1 mod(n — 1)

2m +n — 2 for other values of m.
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