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Abstract

We show that random 3-SAT formulas with poly(log n) · n3/2 =
n3/2+o(1) clauses can be efficiently certified as unsatisfiable. This im-
proves a previous bound of n3/2+ε clauses. There ε > 0 is a constant.

1 Introduction

The efficient certification of the unsatisfiability of random k-SAT instances
beyond the satisfiability threshold is a topic of some recent interest, see
[GoKr 01], [FrGo 01], [Fe 2002], [FeOf 03] for example. We refer to these
papers for a discussion of the nature of efficient certification and its motiva-
tion.

From [FrGo 01] it is known that random 3-SAT instances with n3/2+ε

clauses can be efficiently certified as unsatisfiable. If k is even, it is known
from [Coja et al] that k-SAT instances with C · nk/2 clauses, k even, can
be efficiently certified as unsatisfiable. [FeOf 03] gives another proof of this
result, but does not treat the case of odd k. At this point the natural
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conjecture is that 3-SAT instances with C · n3/2 clauses can be efficiently
certified as unsatisfiable. The present paper is motivated by this conjecture
and obtains the result mentioned above.

Some remark on the approach used seem appropriate. All certification
algorithms presented by now rely on the observation that the satisfiability of
a propositional formula F implies the existence of a linear size independent
set in a graph associated to F . For F random with sufficiently many clauses
the graph is sufficiently random and dense such that it has no independent
set as required. The absence of a large independent set in random graphs G
can be efficiently shown by looking at the Eigenvalues of matrices associated
to G or computing the Lovasz number of G, as in [Coja et al].

For even k a k-SAT instance F induces such a graph with nk/2 vertices.
Moreover, if F is random G is a classical random graph Gv,p, v = nk/2. On
such graphs Eigenvalues can be used as long as we have C ·nk/2 edges, C suffi-
ciently large but constant. This is the reason for the C ·nk/2 clauses required
as each clause induces one edge. The method to calculate the Eigenvalues in
this case goes back to [FeKaSz 89] and it is used in [FeOf 03]. The method
requires the property that the edges are well distributed over the graph. This
property is easily shown by counting arguments for classical random graphs.

In case of a 3-SAT formula F we also get a graph from F which has
n2 vertices. But now the graph has some dependencies between its edges.
These dependencies make it difficult to show by a simple counting argument
that the edges are well distributed over the graph. Therefore the method of
[FeKaSz 89] is not easily applicable.

In case of n3/2+ε many random 3-clauses the trace method, a method
different from [FeKaSz 89] is used in [FrGo 01] to determine the Eigenvalues.
It is not obvious if a direct extension of the method from [FrGo 01] yields
the bound of poly(log n) · n3/2 many clauses. In fact in [FrGo 01] the trace
method is used with closed walks of bounded length. If ε = o(1) we need
walks of unbounded length we consider. In [FuKo 80] the trace method for
walks of unbounded length is considered. Our technique is in some respects
inspired by this paper. The dependencies between edges, characteristic for
our situation, is an aspect not occurring in [FuKo 80] and thus may be of
independent interest.
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2 Efficient certification of unsatisfiability

Given a set of n propositional variables Varn = {v1, . . . , vn} a positive literal
over Varn simply is a variable vi and a negative literal is a negated variable
¬vi. Moreover, we let ¬¬vi = vi. A 3-clause or simply a clause is an ordered
3-tuple l1 ∨ l2 ∨ l3 of (positive or negative) literals. Thus altogether we have
(2n)3 clauses. A 3-SAT instance or 3-SAT formula is a set of 3-clauses. We
think of a 3-SAT instance as C1 ∧ . . . ∧ Cm where each Ci is a 3-clause.
Given a truth assignment α of Varn, that is a mapping assigning true (= 1)
or false (= 0) to each variable, we can assign true or false to a 3-SAT
formula as usual. A 3-SAT instance is satisfiable if there exists a truth value
assignment α such that this instance evaluates to true under α. Otherwise
the instance is unsatisfiable.

The probability space Formn,3,p = Formn,p is the probability space of 3-
SAT formulas obtained by picking each of the (2n)3 3-clauses with probability
p independently. There are slightly different ways to define probability spaces
of 3-SAT instances. For example with m ≈ p · (2n)3 we might consider the
uniform distribution of all 3-SAT instances with exactly m different clauses.
Note that m is about the expected number of clauses of a random formula
from Formn,p. One might also define clauses as sets of literals or one might
forbid tautological clauses... In line with common usage we assume that it
is only a technical matter to transfer our results to any of these possibilities
to define random 3-SAT instances, but do not check the details.

Given a 3-SAT instance F over Varn we assign two multigraphs GF =
(V, EF ) and G′

F = (V,E ′
F ) to F . V = Varn × Varn is the same in both

cases, loops and multiedges are allowed. Given (a1, b1), (a2, b2) ∈ V we have
(a1, b1) − (a2, b2) ∈ EF iff there is a z ∈ Varn, such that (a1 ∨ a2 ∨ z) ∈ F
and (b1 ∨ b2 ∨¬z) ∈ F or (a2 ∨ a1 ∨ z) ∈ F and (b2 ∨ b1 ∨¬z) ∈ F . We have
(a1, b1)− (a2, b2) ∈ E ′

F iff there is a z ∈ Varn, such that (¬a1 ∨ ¬a2 ∨ z) ∈ F
and (¬b1 ∨¬b2 ∨¬z) ∈ F or (¬a2 ∨¬a1 ∨ z) ∈ F and (¬b2 ∨¬b1 ∨¬z) ∈ F .

Note the following points: The bi come from the clause with the ¬z and
are in the second position of the vertices connected.

Given a graph G = (V,E), an independent set of G is a subset S ⊆ V
such that we have no edge {v, w} ∈ E with both v, w ∈ S. The independence
number of G, i(G), is the maximal size an independent set of G can have.
Of course, computing i(G) is NP-hard.
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Lemma 2.1 If the 3-SAT formula F over Varn is satisfiable, then

i(GF ) ≥ n2/4 or i(G′
F ) ≥ n2/4 .

Proof: Let α be a satisfying assignment of F and assume that α sets at least
n/2 variables to true. We show that the set

S = {(a, b) |α(a) = α(b) = true}
is an independent set of G′

F and as |S| ≥ n2/4 the claim holds. Let
(a1, b1)− (a2, b2) ∈ E ′

F then we have a variable z such that (¬a1 ∨ ¬a2 ∨ z),
(¬b1 ∨ ¬b2 ∨ ¬z) ∈ F or (¬a2 ∨ ¬a1 ∨ z), (¬b2 ∨ ¬b1 ∨ ¬z) ∈ F . As α is a
satisfying assignment, in each case both clauses are true under α. If α(z) = 1
then α(¬z) = 0 and α(b1) = 0 or α(b2) = 0. This means that (a1, b1) 6∈ S or
(a2, b2) 6∈ S. If α(z) = 0 we have the same argument. Finally, if α sets at
least n/2 variables to false we argue analogously with GF . ¤

Let F be a 3-SAT formula over Varn and let a, b, z ∈ Varn. We let

Ba,b,z = Ba,b,z,p(F ) =

{ −1 if a ∨ b ∨ z ∈ F
p

1−p
if a ∨ b ∨ z 6∈ F .

and

Ca,b,z = Ca,b,z,p(F ) =

{
1 if a ∨ b ∨ ¬z ∈ F

− p
1−p

if a ∨ b ∨ ¬z 6∈ F .

For F ∈ Formn,p the probability Ba,b,z = −1 is equal to p and the
probability of Ba,b,z = p

1−p
is equal to 1 − p. So of Ba,b,z has an expectation

of
E[Ba,b,z] = −1 · p +

p

1− p
· (1− p) = −p + p = 0 .

Equally the expectation of Ca,b,z is 0.
For V = Varn × Varn and (a1, b1), (a2, b2) ∈ V we define

aa1,b1; a2,b2(F ) =
∑

z∈Varn

Ba1,a2,z · Cb1,b2,z +
∑

z∈Varn

Ba2,a1,z · Cb2,b1,z (1)

Now the V × V -matrix A = Ap(F ) is given by the entries aa1,b1; a2,b2 . Note
that A corresponds to the adjacency matrix of the graph GF = (V,EF ) in
that the non-existence of an edge (a1, b1) − (a2, b2) is reflected by the fact
that the sum for aa1,b1 ;a2,b2 consists only of terms p/(1− p) or −(p/(1− p))2.
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In case of an edge we have at least once the term -1. Concerning the graph
G′

F = (V,E ′
F ) we introduce the analogous matrix A′ = A′

p(F ) based on B′
a,b,z

and C ′
a,b,z with their obvious definition.

As A and A′ are real-valued and symmetric, as can be easily seen from
the definition, they have n2 real-valued Eigenvalues λ1,A, λ2,A, . . . , λn2,A and
λ1,A′ , λ2,A′ . . . , λn2,A′ , which we consider as ordered by their size

λ1,A ≥ . . . ≥ λn2,A and λ1,A′ ≥ . . . ≥ λn2,A′ .

Let
λ = λA = max{|λ1,A|, . . . , |λn2,A|} = max{|λ1,A|, |λn2,A|}

and analogously for λ′ = λA′ . We state our theorems only for A and λ. They
always apply to A′ and λ′, too.

For the whole rest of this paper we let

p = p(n) =
ln6 n

n3/2
and f = f(n) = ln6 n

Theorem 2.2 For F ∈ Formn,p we have with high probability that

λ ≤ ln5 n · f
We prove this theorem in section 2.

In an asymptotic context, as ours is, we say that F is of low discrepancy
with respect to

S = {a ∨ b ∨ z ∈ F | a, b, z ∈ Varn}
iff (a) and (b) hold.

(a) |S| = f · n3/2 · (1 + o(1)).

(b) For each ε > 0 constant, all sufficiently large n and sets X,Y ⊆ Varn

with |X| = |Y | = α · n and ε ≤ α ≤ 1− ε we have

|E(X)| = α2·f ·n3/2·(1+o(1)) and |E(X,Y )| = 2α2·f ·n3/2·(1+o(1)) ,

where
E(X) = {{a, b}a∨b∨z | a, b ∈ X, z ∈ V }

and

E(X, Y ) = {(a, b)a∨b∨z | a ∈ X, b ∈ Y, z ∈ V } .
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For sets like S = {a ∨ b ∨ ¬z ∈ F | a, b, z ∈ Varn} or S = {¬a ∨ ¬b ∨
¬z ∈ F | a, b, z ∈ Varn} the analogous notation is used. We say F is of low
discrepancy iff F is of low discrepancy with respect to all 8 possible sets S
as above.

Theorem 2.3 If F is of low discrepancy, then i(GF ) = Ω(n2) implies

λ = Ω(f 2)

.

An analogous statement applies to G′
F and λ′.

We prove this theorem in section 3. Now we can state our algorithm to
certify unsatisfiability of 3-SAT formulas.

Algorithm 2.4 certifies unsatisfiability of a given 3-SAT instance F over
Varn.

1. Certify low discrepancy of F using Algorithm 5.2.

2. Construct A = Ap(F ) and A′ = A′
p(F ).

3. Determine λ and λ′.

4. If λ = o(f 2) and λ′ = o(f 2) then certify F as unsatisfiable. Give an
inconclusive answer otherwise.

If F is satisfiable we have i(GF ) ≥ (n/2)2 of i(G′
F ) ≥ (n/2)2. If in

addition F is not of low discrepancy, we get an inconclusive answer in Step
1. If however F is of low discrepancy we get an inconclusive answer in Step
4. because of Theorem 2.3. Thus the algorithm is correct in that it gives
no false answers. If F ∈ Formn,p is a random formula then Algorithm 5.2
certifies low discrepancy with high probability and Theorem 2.2 ensures that
the algorithm certifies unsatisfiability. Numerical approximation algorithms
allow the approximation of λ and λ′ in polynomial time and the algorithm
is efficient.

6



3 Proof of Theorem 2.2

As λ = λAp(F ), λ is a random variable defined on Formn,p, Theorem 2.2 will
follow from

Theorem 3.1
E[λk] ≤ (

ln4 n · f)k

provided k is the smallest even integer greater than ln n.

Proof of Theorem 2.2: Using the Markov inequality we get

Pr[λ ≥ ln5 n · f ] = Pr[λk ≥ ln5k n · fk] ≤ E[λk]

ln5k n · fk

≤
(

ln4 n · f
ln5 n · f

)k

≤
(

1

ln n

)k

≤ (ln n)− ln n

= o(1)

and the assertion follows. ¤

In the rest of this section we prove Theorem 3.1. The proof uses the
trace method inspired by the techniques of Füredi et al. [FuKo 80]. In our
case we have dependencies between different entries in A = Ap(F ) which
causes additional complications. We simplify Varn = {1, . . . , n} = [n] and A
becomes an ([n] × [n]) × ([n] × [n])-matrix. Given F and an integer k ≥ 1,
the k’th power of A is denoted by Ak = (ak

b,c; b′,c′)1≤b,c,b′,c′≤n where

ak
b,c; b′,c′ =

n∑

b1=1

n∑
c1=1

· . . . ·
n∑

bk−1=1

n∑
ck−1=1

ab,c; b1,c1 · ab1,c1; b2,c2 · . . .

· abk−2,ck−2; bk−1,ck−1
· abk−1,ck−1; b′,c′ . (2)

The trace of the matrix Ak is the sum of the entries on the main diagonal
of Ak and we have

Trace[Ak] =
n∑

b=1

n∑
c=1

ak
b,c; b,c =

n2∑
i=1

λk
i,A .
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From now on we assume that k is even and we have

λk ≤
n2∑
i=1

λk
i,A = Trace[Ak].

We bound Trace[Ak].

Trace[Ak]

=
n∑

b1=1

n∑
c1=1

· . . . ·
n∑

bk=1

n∑
ck=1

ab1,c1; b2,c2 · ab2,c2; b3,c3 · . . . · abk,ck; b1,c1

=
∑

b1,c1,...,bk,ck

(
n∑

z1=1

(Bb1,b2,z1 · Cc1,c2,z1 + Bb2,b1,z1 · Cc2,c1,z1)

)
· . . .

·
(

n∑
zk=1

(Bbk,b1,zk
· Cck,c1,zk

+ Bb1,bk,zk
· Cc1,ck,zk

)

)

=
∑

b1,...,bk

∑
c1,...,ck

∑
z1,...,zk

(Bb1,b2,z1 · Cc1,c2,z1 + Bb2,b1,z1 · Cc2,c1,z1) · . . .

· (Bbk,b1,zk
· Cck,c1,zk

+ Bb1,bk,zk
· Cc1,ck,zk

)

We abbreviate B = (b1, . . . , bk), C = (c1, . . . , ck), Z = (z1, . . . , zk) and let

P(B, C, Z) = (Bb1,b2,z1 · Cc1,c2,z1 + Bb2,b1,z1 · Cc2,c1,z1) · . . .
· (Bbk,b1,zk

· Cck,c1,zk
+ Bb1,bk,zk

· Cc1,ck,zk
) .

Given B = (b1, . . . , bk) we let |B| = |{b1, . . . , bk}| be the number of differ-
ent members of B, and analogously for C and Z. Clearly 1 ≤ |B|, |C|, |Z| ≤ k
and we can rewrite

Trace[Ak] =
k∑

b=1

k∑
c=1

k∑
z=1

∑
B

|B|=b

∑
C

|C|=c

∑
Z

|Z|=z

P(B,C,Z) (3)

The preceding considerations apply to any F and concerning the expec-
tation we get

E[λk] ≤ E[Trace[Ak]] =
k∑

b=1

k∑
c=1

k∑
z=1

∑

B,|B|=b

∑

C,|C|=c

∑

Z,|Z|=z

E[P(B,C, Z)]. (4)

Computing the expectation E[P(B, C, Z)] we can restrict |B|, |C| and |Z|.
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Lemma 3.2 If |B| ≥ k/2 + 2, |C| ≥ k/2 + 2 or |Z| ≥ k/2 + 1 then

E[P(B,C,Z)] = 0.

Proof: First we consider Z = (z1, . . . , zk). If |Z| ≥ k/2 + 1 there is a zm,
1 ≤ m ≤ k, which occurs only once among the zi of Z. In P(B,C,Z) the
factor corresponding to zm is Bbm,bm+1,zm ·Ccm,cm+1,zm +Bbm+1,bm,zm ·Ccm+1,cm,zm

if m < k, and 1 instead of m + 1 if m = k. The expectation of this factor
is 0 as E[Bβ] = E[Cγ] = 0 and Bβ and Cγ are stochastically independent for
any possible sequence of indices for β and γ. Now, as zm occurs only once
the factor corresponding to zm is independent of the rest of P(B, C, Z) and
E[P(B,C,Z)] = 0.

Next we consider B = (b1, . . . , bk), where we denote b = |B|. Let C =
(c1, . . . , ck) and Z = (z1, . . . , zk) be fixed but otherwise arbitrary.

P(B, C, Z) = (Bb1,b2,z1 · Cc1,c2,z1 + Bb2,b1,z1 · Cc2,c1,z1) · . . .
· (Bbk,b1,zk

· Cck,c1,zk
+ Bb1,bk,zk

· Cc1,ck,zk
)

can be naturally be represented as a sum of 2k terms. Let

X = Bβ1 · Cγ1 · Bβ2 · Cγ2 · . . . ·Bβk
· Cγk

be such a term. That means βi = (bi, bi+1, zi) and γi = (ci, ci+1, zi) or βi =
(bi+1, bi, zi) and γi = (ci+1, ci, zi) for 1 ≤ i < k and analogously for βk and γk

with 1 instead of k + 1.
We claim that X must have at least b− 1 different B-factors. To see this

we go from left to right over the B-factors. The first B-factor needs at most
2 of the b different bi’s which do not occur before. Each of the remaining
B-factors can have at most one bi which has not already occurred. As the
B-factors with different indices are distinct, we have at least b − 1 different
B-factors.

Now, if b ≥ k/2+2 we have that b−1 ≥ k/2+1 and at least one B-factor
occurs only once in X, By independence E[X] = 0. As the same argument
applies to all 2k terms of P(B,C,Z), the claim of the lemma holds. For
C = (c1, . . . , ck) we can argue in the same manner. ¤

It is easy to construct an example sich that the claim does not hold for
|B| = k/2 + 1. For example k = 4 and consider Bb1,b2,−, Bb2,b3,−, Bb2,b3,−,
Bb1,b2,− which can occur together.
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Lemma 3.3 Let B, C, Z be k-tuples of variables and let b = |B|, c = |C|
and z = |Z|. Then we have that

E[P(B,C,Z)] ≤ 2k · (2p)m1+m2

where m1 = max(b− 1, z) and m2 = max(c− 1, z).

Proof: Let B = (b1, . . . , bk), C = (c1, . . . , ck) and Z = (z1, . . . , zk). The
random variable

P(B, C, Z) = (Bb1,b2,z1 · Cc1,c2,z1 + Bb2,b1,z1 · Cc2,c1,z1) · . . .
· (Bbk,b1,zk

· Cck,c1,zk
+ Bb1,bk,zk

· Cc1,ck,zk
)

can be naturally written as a sum with 2k terms. Let again

X = Bβ1 · Cγ1 · Bβ2 · Cγ2 · . . . ·Bβk
· Cγk

be such a term. To calculate the expectation E[X] observe that the factors
are independent unless they are equal. For β = βi for 1 ≤ i ≤ k and r ≥ 1
we have

E[Br
β] = p · (−1)r + (1− p) ·

(
p

1− p

)r

≤ p +
pr

(1− p)r−1

≤ 2 · p
as p ≤ 1/2 and we assume that n is sufficiently large. The number of different
B-factors is at least m1 = max(b − 1, z) (refer to the proof of Lemma 3.2).
Therefore

E[Bβ1 · . . . ·Bβk
] ≤ (2p)m1

as 2p ≤ 1. In the same way we get with m2 = max(c− 1, z)

E[Cγ1 · . . . · Cγk
] ≤ (2p)m2 .

From linearity of expectation we finally get

E[P(B, C, Z)] ≤ 2k · (2p)m1+m2 .

¤
The subsequent estimate of E[Trace[Ak]] together with (4) yields the

proof of Theorem 3.1.
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Theorem 3.4
E[Trace[Ak]] ≤ (

ln4 n · f)k

where k is the smallest even integer greater than ln n.

Proof: With Lemma 3.2 and (3) we have that

E[Trace[Ak]] =

k/2+1∑

b=1

k/2+1∑
c=1

k/2∑
z=1

∑
B

|B|=b

∑
C

|C|=c

∑
Z

|Z|=z

E[P(B,C, Z)].

For given b, c and z and m1 = max(b− 1, z) and m2 = max(c− 1, z) we have
with Lemma 3.3

E[P(B, C, Z)] ≤ 2k · (2p)m1+m2 .

As this is independent of the actual sequences B, C and Z we count the
number of such k-tuples. The number of different k-tuples B with |B| = b is
at most (

k

b

)
· nb · bk−b.

This is because each possible B can be obtained from the following choosing
process:

1. Pick the b positions among the k available altogether in which one of
the b variables occurs for the first time when going from left to right
over the k positions available:

(
k

b

)
possibilities.

2. Pick the b different variables and place them into the slots picked in 1.:

(
n

b

)
· b! ≤ nb possibilities.

3. Fill the remaining slots with the b variables picked in 2.:

≤ bk−b possibilities.
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As 1 ≤ b ≤ k we can bound the number of different k-tuples B by
(

k

b

)
· nb · bk−b ≤ 2k · nb · bk−b

≤ nb · 2k · kk

With analogous considerations we can bound the number of k-tuples C with
|C| = c (resp. Z with |Z| = z) by nc · 2k · kk (resp. nz · 2k · kk). Thus we get
that

E[Trace[Ak]] ≤
k/2+1∑

b=1

k/2+1∑
c=1

k/2∑
z=1

23k · k3k · nb+c+z · 2k · (2p)m1+m2 . (5)

Further below we bound nb+c+z ·(2p)m1+m2 ≤ (2f)k ·n2. This yields the claim
as we get from (5)

E[Trace[Ak]] ≤
k/2+1∑

b=1

k/2+1∑
c=1

k/2∑
z=1

24k · k3k · (2f)k · n2

≤(k/2 + 1)(k/2 + 1)(k/2) · 25k · k3k · fk · n2

and under assumption k is the smallest even integer greater than ln n, we get
with n sufficiently large

E[Trace[Ak]] ≤ (
ln4 n · f)k

.

To show the bound nb+c+z ·(2p)m1+m2 ≤ (2f)k ·n2 we calculate three cases

1. z ≥ b− 1 ≥ c− 1

2. b− 1 > z ≥ c− 1

3. b− 1 ≥ c− 1 > z .

The remaining three cases, where c > b are analogous.

1. For z ≥ b− 1 ≥ c− 1 we get

(2p)m1+m2 · nb+c+z = (2p)2z · nb−1+c−1+z · n2

≤ (4p2)z · n3z · n2

≤ (4p2 · n3)k/2 · n2

= (2pn3/2)k · n2

= (2f)k · n2
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2. For b− 1 > z ≥ c− 1 we get

(2p)m1+m2 · nb+c+z = (2p)b−1+z · nb−1+c−1/2+z · n3/2

≤ (2p)b−1+z · n3/2·(b−1+z) · n2

≤ (2pn3/2)k · n2

= (2f)k · n2

3. For b− 1 ≥ c− 1 > z we get

(2p)m1+m2 · nb+c+z = (2p)b−1+c−1 · nb−1+c−1+z+1 · n
≤ (2p)b−1+c−1 · n3/2·(b−1+c−1) · n
≤ (2pn3/2)k · n2

≤ (2f)k · n2

¤

4 Proof of Theorem 2.3

Throughout this section we let F be a 3-SAT instance over Varn which has
low discrepancy. Again we identify Varn with [n] = {1, . . . , n}. We consider
the graph GF = (V, EF ) with V = [n]× [n]. A = Ap(F ) is the V ×V -matrix
associated to F as in (1) on page 4.

The vectors we consider are column vectors whose coordinates are indexed
by V . The value of a vector v at coordinate (a, b) is denoted by va,b. For
W ⊆ V we let χ = χW be the characteristic vector of W . That is

χ(a,b) =

{
1 if (a, b) ∈ W

0 otherwise .

The subsequent relations allow us to relate λ = λA and i(GF ). Let
Ψ = A · χW , then for (a, b) ∈ V we have

Ψ(a,b) =
∑

(a′,b′)∈W

aa,b; a′,b′ .

13



When χtr
W is the transpose of χW we have that

χtr
W ·Ψ
=

∑

(a,b)∈W

Ψ(a,b)

=
∑

(a,b)∈W

∑

(a′,b′)∈W

aa,b; a′,b′

=
∑

(a,b)∈W

∑

(a′,b′)∈W

( ∑
z∈Varn

Ba,a′,z · Cb,b′,z +
∑

z∈Varn

Ba′,a,z · Cb′,b,z

)

=
∑

(a,b)∈W

∑

(a′,b′)∈W

∑
z∈Varn

Ba,a′,z · Cb,b′,z +
∑

(a,b)∈W

∑

(a′,b′)∈W

∑
z∈Varn

Ba′,a,z · Cb′,b,z

= 2 ·
∑

(a,b)∈W

∑

(a′,b′)∈W

∑
z∈Varn

Ba,a′,z · Cb,b′,z

The last equation holds since (a, b) and (a′, b′) run through the same set W .
The next lemma is included for expository reasons only, in order to point

out the ideas of the proof of Theorem 2.3.

Lemma 4.1 Let c > 1 be a constant and let

I = {(a, b) | 1 ≤ a, b ≤ n/c}

be an independent set of GF , then

λ = Ω(f 2).

Proof: Let χ = χI be the characteristic vector of I. From the min-max
characterization of Eigenvalues [Pr 94] of symmetric matrices we have that

λ ≥ λ1,A = max
v 6=0

vtr · A · v
vtr · v ≥ χtr · A · χ

χtr · χ .

The denominator of the preceding fraction is D = (n/c)2 = |I|. The enu-
merator is

N = 2 ·
∑

(a,b)∈I

∑

(a′,b′)∈I

∑
z∈Varn

Ba,a′,z · Cb,b′,z

14



as shown above. We show that N = Ω(f 2 · n2). From the simple structure
of I we get

∑

(a,b)∈I

∑

(a′,b′)∈I

∑
z∈Varn

Ba,a′,z · Cb,b′,z =
∑

1≤a,a′,b,b′≤n/c

∑
1≤z≤n

Ba,a′,z · Cb,b′,z (6)

In principle we have four possibilities for Ba,a′,z and Cb,b′,z which yield three
different values Ba,a′,z · Cb,b′,z :

1. If Ba,a′,z = −1, Cb,b′,z = 1 then Ba,a′,z · Cb,b′,z = −1

2. If Ba,a′,z = −1, Cb,b′,z = −p/(1− p) then Ba,a′,z · Cb,b′,z = p/(1− p)

3. If Ba,a′,z = p/(1− p), Cb,b′,z = 1 then Ba,a′,z · Cb,b′,z = p/(1− p)

4. If Ba,a′,z = p/(1− p), Cb,b′,z = −p/(1− p) then
Ba,a′,z · Cb,b′,z = −(p/(1− p))2

We count how often each of the possibilities occur in the sum (6).

1. This possibility does not occur as I is an independent set of GF .

2. Let M = {(a, a′, z) |Ba,a′,z = −1}. For each Ba,a′,z we have exactly
(n/c)2 possible factors Cb,b′,z. From low discrepancy of F we know
that |M | = 1/c2 · f · n3/2 · (1 + o(1)). Therefore we get an asymptotic
contribution of

p

1− p
· 1

c2
· f · n3/2 · n2

c2
≥ f 2n2

c4

to the sum, as p = f/n3/2.

3. In the same way as in (b) we get using low discrepancy of the clauses
b ∨ b′ ∨ ¬z ∈ F , b, b′, z ∈ Varn, a contribution of

≥ f 2 · n2

c4

4. We have at most n5/c4 possibilities to choose a, a′, b, b′, z. Each possi-
bility gives an addend of −(p/(1− p))2 and we get at least

−n5

c4
· p2

(1− p)2
= − n2f 2

c4 · (1− o(1))2
= −n2f 2 · (1 + o(1))

c4
,

as p = o(1).
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Thus we get asymptotically

N = 2 ·
∑

(a,b)∈I

∑

(a′,b′)∈I

∑
z∈Varn

Ba,a′,z · Cb,b′,z

≥ 2 ·
(

2 · f 2 · n2

c4
− f 2 · n2

c4

)

= Ω(f 2 · n2) .

The claim of the lemma holds as

λ ≥ N

D
=

Ω(f 2 · n2)

(n/c)2
= Ω(f 2).

¤

Theorem 2.3 is the analogue of Lemma 4.1 for independent sets I whose
structure may be arbitrary. The key in the proof of Lemma 4.1 is equation
(6), that

∑

(a,b)∈I

∑

(a′,b′)∈I

∑
z∈Varn

can be replaced by
∑

1≤a,a′,b,b′≤n/c

∑
1≤z≤n

.

To apply the principle from the proof of Lemma 4.1 to arbitrary sets I ⊆ V
we introduce some structure.

Definition 4.2

(a) For a ∈ Varn an s-section of I with respect to a in the first position is
a subset

S = {(a, b1), (a, b2), . . . , (a, bs)} ⊆ I

where the bi are all distinct. An s-section S ′ with respect to b in the
second position is defined analogously as

S ′ = {(a1, b), (a2, b), . . . , (as, b)} ⊆ I

(b) For 1 ≤ i ≤ s let Si be an s-section of I with respect to ai in the first
position and the ai are pairwise distinct. An s× s-tile of I with respect
to the first position is a subset

T = S1 ∪ . . . ∪ Ss ⊆ I.

With respect to the second position the notion of an s× s-tile is defined
analogously.
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The structure we impose on I is a decomposition into disjoint tiles plus a
small and furthermore irrelevant rest which does not contain a tile anymore.

Lemma 4.3 Let c > 1 be a constant and ε > 0 be a constant which we as-
sume sufficiently small and let s = bε ·nc. Let I ⊆ V with |I| = (n/c)2. Then
I contains at least 9/(10c2ε2) many s × s-tiles with respect to the first posi-
tion which are pairwise disjoint. The same statement applies to the second
position.

Proof: We consider the following process.

1. Pick s variables a1, . . . , as such that for each a = ai we can pick at
least s vertices (a,−) ∈ I. If no such vertices can be found, the process
stops.

2. Consider the vertices picked in 1. as an s× s-tile and delete them from
I.

3. Continue the process at step 1.

We claim that any set W ⊆ V with |W | ≥ 2ε · n2 ≥ 2s · n contains an
s × s-tile. This follows because if W contains no s × s-tile we have at most
s − 1 variables a such that we have s or more vertices (a,−) ∈ W . As we
can have at most n vertices (a,−) ∈ W and for all the remaining n− (s− 1)
variables a we have less than s vertices (a,−) ∈ W we get

|W | ≤ (s− 1) · n + (n− (s− 1)) · (s− 1)

= sn− n + n2− n− s2 + s + s− 1

= 2ns− 2n− s2 + 2s− 1

≤ 2ns

as ε ≤ 1 and 2s ≤ 2εn ≤ 2n.
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The number of s× s-tiles found by the process is at least

n2/c2 − 2ns

s2

=
n2

c2s2
− 2n

s

≥ n2

c2 · (εn)2
− 2n

εn− 1

≥ 1

c2 · ε2
− 2n

εn− 1

≥ 1

c2 · ε2
− 2

ε− 1/n

≥ 9

10c2 · ε2

which implies the claim if only we pick ε sufficiently small (ε < 1/(20c2) is
enough) and n is large. ¤

Now we come to the proof of Theorem 2.3: Let F have low discrepancy
and let I with |I| = (n/c)2 be an independent set of GF . As in the proof of
Lemma 4.1 we get that

λ = λAp(F ) ≥ N

D

with
N = 2 ·

∑

(a,b)∈I

∑

(a′,b′)∈I

∑
z∈Varn

Ba,a′,z · Cb,b′,z

and D = (n/c)2.
Let

J = {((a, b), (a′, b′), z) | (a, b), (a′, b′) ∈ I, z ∈ Varn}
be the set of indices of our sum. We partition J into four sets:

J1 = {((a, b), (a′, b′), z) ∈ J | a ∨ a′ ∨ z, b ∨ b′ ∨ z ∈ F}
J2 = {((a, b), (a′, b′), z) ∈ J | a ∨ a′ ∨ z ∈ F, b ∨ b′ ∨ z 6∈ F}
J3 = {((a, b), (a′, b′), z) ∈ J | a ∨ a′ ∨ z 6∈ F, b ∨ b′ ∨ z ∈ F}
J4 = {((a, b), (a′, b′), z) ∈ J | a ∨ a′ ∨ z, b ∨ b′ ∨ z 6∈ F}
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We consider the four statements to be proved below.

|J1| = 0

|J2| ≥ (9/(10c2))2 · f · n3/2 · n2

|J3| ≥ (9/(10c2))2 · f · n3/2 · n2

|J4| ≤ (n2/c2)2 · n
From these statements the theorem follows:

N =
∑
J1

Ba,a′,z · Cb,b′,z +
∑
J2

Ba,a′,z · Cb,b′,z

+
∑
J3

Ba,a′,z · Cb,b′,z +
∑
J4

Ba,a′,z · Cb,b′,z

≥ 0 +

(
9

10c2

)2

· f · n3/2 · n2 · p

1− p

+

(
9

10c2

)2

· f · n3/2 · n2 · p

1− p
−

(
n2

c2

)2

· n ·
(

p

1− p

)2

≥ 2 ·
(

9

10c2

)2

· f 2 · n2 − n2 · f 2 · (1 + o(1))

c4

≥ 1

2c4
· f 2 · n2

= Ω(f 2n2)

The statement |J1| = 0 is true because I is an independent set.
Now we come to J2. Here we need our tiles. First let s = bε · nc, where ε

is a constant, and let S, T ⊆ I be two disjoint s× s-tiles with respect to the
first position. Let

KS = {((a, b), (a′, b′), z) ∈ J2 | (a, b), (a′, b′) ∈ S, z ∈ Varn}
and

KS,T = {((a, b), (a′, b′), z) ∈ J2 | (a, b) ∈ S, (a′, b′) ∈ T or

(a′, b′) ∈ S, (a, b) ∈ T, z ∈ Varn}.
Note that KS,T = KT,S. We prove below that asymptotically

|KS| = ε2 · f · n3/2 · s2 (7)
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|KS,T | = 2ε2 · f · n3/2 · s2 . (8)

With this two statements we argue as follows. For s = bε ·nc let ε sufficiently
small, such that Lemma 4.3 can be applied. Then we get l ≥ 9/(10c2ε2) many
disjoint s× s-tiles T1, . . . , Tl inside of I. Then we have that all sets KTi

and
KTiTj

with i < j are disjoint. Moreover,

J2 ⊇ KT1 ∪̇ . . . ∪̇KTl
∪̇

⋃̇
1≤i<j≤l

KTi,Tj
.

From (7) and (8) we get that asymptotically

|J2| ≥ l · ε2 · f · n3/2 · s2 +

(
l

2

)
· 2 · ε2 · f · n3/2 · s2

≥ l2 · ε2 · f · n3/2 · s2

≥
(

9

10c2ε2

)2

· ε2 · f · n3/2 · (εn− 1)2

≥
(

9

10c2

)2

· f · n3/2 · n2

We need to calculate |KS|. Let

S =

(a1, b1,1) (a1, b1,2) . . . (a1, b1,s)
(a2, b2,1) (a2, b2,2) . . . (a2, b2,s)

...
...

...
(as, bs,1) (as, bs,2) . . . (as, bs,s)

⊆ J2 .

The ai are all distinct as are the bi,j. Let 1 ≤ i, j ≤ s and assume ai∨a′i∨z ∈ F
for a z ∈ Varn. Then for all 1 ≤ j, j′ ≤ s

bi,j ∨ bi′,j′ ∨ z 6∈ F

as I is independent. These are s2 clauses. Therefore for all 1 ≤ j, j′ ≤ s

((ai, bi,j), (ai′ , bi′,j′), z) ∈ KS .

These are s2 different indices j, j′. From low discrepancy of F the number
of clauses ai ∨ ai′ ∨ − ∈ F where 1 ≤ i, i′ ≤ s is asymptotically ε2 · f · n3/2.
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As the contributions to KS induced by different clauses ai ∨ ai′ ∨ − ∈ F are
disjoint sets of s2 indices asymptotically

|KS| = ε2 · f · n3/2 · s2 .

Now we come to KS,T . Here the typical situation can be sketched by

(a1, b1,1) · · ·
...
...
...

(as, bs,1) . . .

S

(α1, β1,1) · · ·
...
...
...

(αs, βs,1) · · ·

T

Figure 1

The technical problem here is the overlap in the variable in the first
position. That is, it may be that aj = αν . Let

X = {a1, . . . , as} and Y = {α1, . . . , αs} .

Let ai ∈ X \ Y and ai ∨ αν ∨ z ∈ F . In this case we have that for all
1 ≤ j, µ ≤ s bi,j ∨ βν,µ ∨ z 6∈ F as I is independent. Thus get a contribution
of s2 elements to KS,T . The same argument applies for αν ∈ Y \X.

The remaining case is that for ai ∈ Y and αν ∈ X, that is ai, αν ∈ X ∩Y ,
ai ∨ αν ∨ z ∈ F . In this case we get that for all 1 ≤ j, µ ≤ s (reading
ai ∈ X, αν ∈ Y )

bi,j ∨ βν,µ ∨ z 6∈ F

and
βν,µ ∨ bi,j ∨ z 6∈ F

(reading ai ∈ Y, αν ∈ X). We get a contribution of 2s2 elements to KS,T .
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What is the overall contribution to KS,T of all clauses ai ∨ aν ∨ z ∈ F?
We claim that it is |E(X, Y )| · s2. Here E(X, Y ) refers to the projection of
the all-positive clauses of F . From this claim to be proved below we get (8)
as asymptotically

|E(X, Y )| = 2 · ε2 · f · n3/2

by low discrepancy.
The claim above holds because in E(X, Y ) each edge of the projection

{ai, αν}ai∨αν∨z where ai, αν ∈ X ∩ Y occurs twice as (aj, αν)ai∨αν∨z and
(αν , aj)ai∨αν∨z whereas for ai ∈ X \ Y we only have (ai, αν)ai∨αν∨z and the
same for aν ∈ Y \X,

J3 is treated as J2 using tiles with respect to the second coordinate. The
claim for J4 is obvious.

5 Discrepancy considerations

Given a set of 3-clauses S over Varn the projection (onto coordinates 1 and
2)of S is the labelled multigraph G = (V,E) wit V = Varn and

{a, b}a∨b∨z ∈ E iff a ∨ b ∨ z ∈ S .

That is edges are labelled by clauses and we get one edge for each clause.
Loops are also possible. Let d = d(n). In our asymptotic context we say that
a projection is almost d-regular iff the degree of each vertex of the projection
is d(n) · (1+ o(1)). The projection G = (V,E) is of low discrepancy if for any
constant ε > 0 we have that

|E(X, Y )| = 2 · e · α · β · (1 + o(1))

where X, Y ⊆ V with |X| = αn, |Y | = βn and ε ≤ α, β ≤ 1− ε.
Low discrepancy can be certified by Eigenvalue methods. Given a pro-

jection, the adjacency and the Laplacian matrix A = A(G)and L = L(G)
are well defined. Edges are counted with their multiplicity in A(G). Let
λ1 ≥ λ2 ≥ . . . ≥ λn be the Eigenvalues of I − L(G). Then λ1 = 1, we let
λ = max(|λ2|, |λn|). We refer to [Ch 97]. The natural extension to multi-
graphs of Theorem 5.1 on page 71 of [Ch 97] gives

Fact 5.1 Let G = (V,E) be a projection which is almost d-regular. For
X, Y ⊆ V , |X| = α · n, Y = β · n we have

|E(X,Y )− 2 · e · α · β| ≤ λ · e ·
√

α · β
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where e = |E| is the number of labelled edges of G.

Thus λ = o(1) implies low discrepancy of the projection. As in [Coja et al]
λ = o(1) can be shown by showing that Trace[Ak] = dk + o(dk).

Algorithm 5.2 certifies low discrepancy. Input is a set of clauses S.

1. Construct the projection G = (V, E) of S.

2. Check almost regularity and determine a suitable d.

3. Compute Trace[A6].

4. Check if Trace[A6] = d6 + o(d6). If positive, certify low discrepancy
otherwise give an inconclusive answer.

The correctness of the algorithm follows from Fact 5.1. The algorithm
is complete if S is the set of all positive clauses of a random F ∈ Formn,p,
where p = f/n3/2. In this case the projection is almost a random graph
with n vertices and edge probability p · n = f/n1/2. We refer to [Coja et al]
for more details. Of course the algorithm is also complete if S is the set of
all clauses of F , whose first and second literal is positive and the third is
negative and also for the other six possibilities for S.
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[FuKo 80] Z. Füredi, J. Komlós, The eigenvalues of random symmetric
matrices, Combinatorica 1, 1981, 233–241

[GoJu 02] Andreas Goerdt, Tomasz Jurdzinski. Some Results on Random
Unsatisfiable k-Sat Instances and Approximation Algorithms
Applied to Random Structures. In Proceedings MFCS 2002,
LNCS 2420, 280–291

[GoKr 01] A. Goerdt, M. Krivelevich, Efficient recognition of random un-
satisfiable k-SAT instances by spectral methods, STACS 2001,
Lecture Notes in Computer Science 2010, 294–304

[Pr 94] V. V. Prasolov, Problems and Theorems in Linear Algebra,
1994, ISBN 0-8218-0236-4, 63-64, 93

24


