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A coding problem for pairs of subsets

Béla Bollobás∗ Zoltán Füredi† Ida Kantor‡ G. O. H. Katona§ Imre Leader¶
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Abstract: Let X be an n–element finite set, 0 < k ≤ n/2 an integer. Suppose that {A1, A2} and

{B1, B2} are pairs of disjoint k-element subsets of X (that is, |A1| = |A2| = |B1| = |B2| = k, A1∩A2 = ∅,

B1∩B2 = ∅). Define the distance of these pairs by d({A1, A2}, {B1, B2}) = min{|A1−B1|+|A2−B2|, |A1−

B2| + |A2 − B1|}. This is the minimum number of elements of A1 ∪ A2 one has to move to obtain the

other pair {B1, B2}. Let C(n, k, d) be the maximum size of a family of pairs of disjoint k-subsets, such

that the distance of any two pairs is at least d.

Here we establish a conjecture of Brightwell and Katona concerning an asymptotic formula for

C(n, k, d) for k, d are fixed and n → ∞. Also, we find the exact value of C(n, k, d) in an infinite

number of cases, by using special difference sets of integers. Finally, the questions discussed above are

put into a more general context and a number of coding theory type problems are proposed.

Keywords: Transportation distance, packings, codes, designs, difference sets, randomized

constructions.

AMS Subject Classification: 05B40, 94B60

1 The transportation distance

Let X be a finite set of n elements. When it is convenient we identify it with the set [n] :=
{1, 2, . . . , n}. The family of the k-sets of an underlying set X is denoted by

(

X
k

)

. For 0 < k ≤ n/2
let Y be the family of unordered disjoint pairs {A1, A2} of k-element subsets of X (that is,
|A1| = |A2| = k,A1 ∩A2 = ∅). The transportation distance or Enomoto-Katona distance d on Y
is defined by

d({A1, A2}, {B1, B2}) = min{|A1 −B1|+ |A2 −B2|, |A1 −B2|+ |A2 −B1|}. (1)
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§Rényi Institute, Hungarian Academy of Sciences, Budapest, Reáltanoda u. 13–15, 1053 Hungary.
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In fact, this is an instance of a more general notion. Whenever (Z, ρ) is a metric space, we
can define a metric ρ(s) on Z(s), the set of unordered s-tuples from Z, by

ρ(s)({x1, . . . , xs}, {y1, . . . , ys}) = min
π∈Ss

s
∑

i=1

ρ(xi, yπ(i)). (2)

It is not hard to verify that ρ(s) satisfies the triangle inequality, i.e., it really is a metric. The
transportation distance defined above is obtained by taking s = 2, Z to be the set of k-elements
subsets of X and ρ is half of their symmetric difference.

The minimization problem (2) (where ρ can be an arbitrary metric) is one of the fundamental
combinatorial optimization problems, a so called assignment problem, a special case of a more
general Monge-Kantorovich transportation problem (see, e.g., the monograph [18]).

The transportation distance between finite sets of the same cardinalities is one of the in-
teresting measurements among many different ways to define how two sets differ from each
other. In [1], Ajtai, Komlós and Tusnády considered the assignment problem from a different
perspective, and determined with high probability the transportation distance between two sets
of points randomly chosen in a unit square.

Since the transportation distance is an important notion, especially from the algorithmic
point of view, there are monographs and graduate texts about this topic, see, e.g., [18]. It is
also mentioned in the Encyclopedia of Distances [5] as the “KMMW metric” (p. 245 in Chapter
14) or as the “c-transportation distance”. Nevertheless, many combinatorial problems are still
unsolved. The packing of sets in spherical spaces with large transportation distance will be
discussed in [8].

2 Packings and codes

Given a metric space (Z, ρ) and a distance h > 0, the packing number δ(Z,≥ h) is the maximum
number of elements in Z with pairwise distance at least h.

A (v, k, t) packing P ⊆
([v]
k

)

is a family of k-sets with pairwise intersections at most t − 1
(here v ≥ k ≥ t ≥ 1). In other words, every t-subset is covered at most once. Its maximum size
is denoted by P (v, k, t). Obviously,

P (v, k, t) ≤

(

v

t

)

/

(

k

t

)

. (3)

If here equality holds then P is called a Steiner system S(v, k, t), or a t-design of parameters v, k, t
and λ = 1 (for more definitions concerning symmetric combinatorial structures esp., difference
sets, etc. see, e.g., the monograph by Hall [10]). More generally, for a set K of integers, a
family P on v elements is called a (v,K, t)-design (packing) if every t-subset of [v] is contained
in exactly one (at most one) member of P and |P | ∈ K for every P ∈ P.

Determining the packing number is a central problem of Coding Theory, it is essentially the
same problem as finding the rate of a large-distance error-correcting code.

If equality holds in (3) then every i-subset of [v] is contained in
(

v−i
t−i

)

/
(

k−i
t−i

)

members of P
for i = 0, 1, . . . , t−1. We say that v, k, and t satisfy the divisibility conditions if these t fractions
are integers. It was recently proved by Keevash [13] that for any given k and t there exists a
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bound v0(k, t) such that these trivial necessary conditions are also sufficient for the existence of
a t-design.

An S(v, k, t) exists if v, k, and t satisfy the divisibility conditions and v > v0(k, t). (4)

This implies Rödl’s theorem[17], that for given k and t as v → ∞

P (v, k, t) = (1 + o(1))

(

v

t

)

/

(

k

t

)

. (5)

Even more, (4) implies that here the error term is only O(vt−1). The case t = 2 was proved
much earlier by Wilson [19]. For this case he also proved the following more general version.
For a finite K there exists a bound v0(K, 2) such that for v > v0(K, 2)

a (v,K, 2) design exists if v and K satisfy the generalized divisibility conditions, (6)

namely, g.c.d.(
(

k
2

)

: k ∈ K) divides
(

v
2

)

and g.c.d.(k − 1 : k ∈ K) divides v − 1.

3 Packing pairs of subsets

In this paper, we concentrate on the space Y of pairs of disjoint k-subsets. We say that a
set C ⊂ Y of such pairs is a 2-(n, k, d)–code if the distance of any two elements is at least d.
Let C(n, k, d) be the maximum size of a 2-(n, k, d)-code. Enomoto and Katona in [6] proposed
the problem of determining C(n, k, d). For the origin of the problem see [4]. Connections to
Hamilton cycles in the Kneser graph K(n, k) are discussed in [12]. The problem makes sense
only when d ≤ 2k ≤ n. It is obvious, that a maximal 2-(n, k, 1) code consists of all the pairs,
C(n, k, 1) = |Y| = 1

2

(

n
k

)(

n−k
k

)

. A 2-(n, k, 2k) code consists of mutually disjoint k-sets, hance
C(n, k, 2k) = ⌊n/2k⌋.

In Section 5 we present a method for the determination the exact value of C(n, k, 2k− 1) for
infinitely many n. However, we were able to complete the cases k = 2, 3 only, the cases of pairs
and triple systems.

Theorem 1. If n ≡ 1 mod 8 and n > n0 then C(n, 2, 3) = n(n−1)
8 .

If n ≡ 1, 19 mod 342 and n > n0 then C(n, 3, 5) = n(n−1)
18 .

The following theorem was proved in [2]. Let d ≤ 2k ≤ n be integers. Then

C(n, k, d) ≤
1

2

n(n− 1) · · · (n− 2k + d)

k(k − 1) · · · ⌈d+1
2 ⌉ · k(k − 1) · · · ⌊d+1

2 ⌋
. (7)

Quisdorff [16] gave a new proof and using ideas from classical coding theory he significantly
improved the upper bound for small values of n (for n ≤ 4k). For completeness, in Section 6 we
reprove (7) in an even more streamlined way.

Concerning larger values of n one can build a 2-(n, k, d) code from smaller ones using the
following observation. If |(A1∪A2)∩(B1∪B2)| ≤ 2k−d holds for the disjoint pairs {A1, A2} ∈ Y,
{B1, B2} ∈ Y then d({A1, A2}, {B1, B2}) ≥ d. Take a (2k− d+1)-packing P on n elements and
choose a 2-(|P |, k, d)-code on each members P ∈ P. We obtain

∑

P∈P

C(|P |, k, d) ≤ C(n, k, d). (8)
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This gives
P (n, p, 2k − d+ 1)C(p, k, d) ≤ C(n, k, d). (9)

Fix p (and k, t and d) then Rödl’s theorem (5) gives (1 + o(1))
(

n
2k−d+1

)(

p
2k−d+1

)−1
C(p, k, d) ≤

C(n, k, d). Rearranging we get, that the sequence C(n, k, d)/
(

n
2k−d+1

)

is essentially nondecreasing
in n, for any fixed p (and k, t and d)

C(p, k, d)/

(

p

2k − d+ 1

)

≤ (1 + o(1))C(n, k, d)/

(

n

2k − d+ 1

)

.

Since, obviously, C(2k, k, d) ≥ 1 we obtain that limn→∞C(n, k, d)/
(

n
2k−d+1

)

exists, it is positive,
it equals to its supremum, and finite by (7).

It was conjectured ([2], Conjecture 8) that the upper estimate (7) is asymptotically sharp.
We prove this conjecture in Section 7.

Theorem 2.

lim
n→∞

C(n, k, d)

n2k−d+1
=

1

2

1

k(k − 1) · · · ⌈d+1
2 ⌉ · k(k − 1) · · · ⌊d+1

2 ⌋
.

4 The case d = 2, the exact values of C(n, k, 2)

Besides the cases mentioned in the previous Section (the cases d = 1, d = 2k and (k, d) ∈
{(2, 3), (3, 5)}) we can solve one more case easily, namely if d = 2. Since C(2k, k, 2)] = |Y| =
1
2

(

2k
k

)

the construction (9) gives P (n, 2k, 2k − 1)12
(

2k
k

)

≤ C(n, k, 2). Then the recent result
of Keevash (4) gives the lower bound in the following Proposition. The upper bound follows
from (7).

Proposition 3. C(n, k, 2) =
(

n
2k−1

)

1
4k

(2k
k

)

for all n > n0(k) whenever the divisibility conditions

of (4) hold.

5 The case d = 2k − 1, the exact values of C(n, k, 2k − 1)

The distance δ(a, b) of two integers mod m (1 ≤ a, b ≤ m) is defined by

δ(a, b) = min{|b− a|, |b− a+m|}.

(Imagine that the integers 1, 2, . . . ,m are listed around the cirle clockwise uniformly. Then
δ(a, b) is the smaller distance around the circle from a to b.) δ(a, b) ≤ m

2 is trivial. Observe that
b− a ≡ d− c mod m implies δ(a, b) = δ(c, d).

We say that the pair S = {s1, . . . , sk}, T = {t1, . . . , tk} ⊂ {1, . . . ,m} of disjoint sets is
antagonistic mod m if

(i) all the k(k − 1) integers δ(si, sj) (i 6= j) and δ(ti, tj) (i 6= j) are different,
(ii) the k2 integers δ(si, tj) (1 ≤ i, j ≤ k) are all different and
(iii) δ(si, tj) 6=

m
2 (1 ≤ i, j ≤ k).

If there is a pair of disjoint antagonistic k-element subsets mod m then 2k2 +1 ≤ m must hold
by (ii) and (iii).

Problem 4. Is there a pair of disjoint, antagonistic k-element sets mod 2k2 + 1?
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We have an affirmative answer only in three cases.

Proposition 5. There is a pair of disjoint, antagonistic k-element sets mod 2k2 + 1 when k =
1, 2, 3.

Proof: We simply give such k-element sets in these cases. It is easy to check that they satisfy
the conditions.

k = 1: S = {1}, T = {2}.
k = 2: S = {1, 8}, T = {2, 3}.
k = 3: S = {1, 5, 19}, T = {2, 13, 15}. �

Lemma 6. If there is a pair of disjoint, antagonistic k-element sets mod m then

C(m,k, 2k − 1) ≥ m.

Proof: Let (S, T ) be the antagonistic pair. The shifts S(u) = {a + u mod m : s ∈ S}, T (u) =
{s+ u mod m : s ∈ T}(0 ≤ u < m) will serve as pairs of disjoint subsets of X.

Suppose that S(u) and S(v) (u 6= v) have two elements in common: s1 + u = s2 + v 6=
s3 + u = s4 + v where s1, s2, s3, s4 ∈ S, (s1, s2) 6= (s3, s4). The difference is s1 − s2 = s3 − s4
contradicting (i). One can prove in the same way that T (u) and T (v) (u 6= v) and S(u) and
T (v), respectively, have at most one element in common. In other words the intersection of any
pair from the sets S(u), T (u), S(v), T (v) has at most one element.

Suppose now that both S(u) ∩ S(v) and T (u) ∩ T (v) are non-empty for some u 6= v. Then
s1 + u = s2 + v, t1 + u = t2 + v holds for some s1, s2 ∈ S, t1, t2 ∈ T . This leads to v − u =
s1 − s2 = t1 − t2, contradicting (i), again.

Finally, suppose that both S(u)∩T (v) and T (u)∩S(v) are non-empty for some u 6= v. Then
s1+u = t1+v, t2+u = s2+v is true for some s1, s2 ∈ S, t1, t2 ∈ T . Here v−u = s1− t1 = t2−s2
is obtained, contradicting either (ii) or (iii) (the latter one, if s1 − t1 = t1 − s1 is obtained).

This proves that the distance of the pairs (S(u), T (u)) and (S(v), T (v)) (u 6= v) is at least
2k − 1. �

Corollary 7. Suppose that there is Steiner family S(n, 2k2 + 1, 2) and a disjoint, antagonistic

pair of k-element subsets mod 2k2 + 1 then

C(n, k, 2k − 1) =
n(n− 1)

2k2
.

Proof: The upper bound C(n, k, 2k − 1) ≤ n(n− 1)/2k2 is a corollary of (7).
The lower estimate is obtained from (9). By Lemma 6 one can choose 2k2+1 pairs of disjoint

k-subsets with distance 2k − 1 in a set of 2k2 + 1 elements. This can be done in each of the
members of S(n, 2k2+1, 2). Since the members have at most one common element, the distance
of two pairs in distinct members of S(n, 2k2 +1, 2) will have distance at least 2k− 1. Therefore
all the

|S(n, 2k2 + 1, 2)|(2k2 + 1) =

(

n
2

)

(2k2+1
2

)
(2k2 + 1) =

n(n− 1)

2k2

pairs have distance at least 1. �
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Proof of Theorem 1. We only need lower bounds, i.e., constructions. The case k = 3 follows
from Wilson’s theorem (4) of the existence of S(n, 19, 2), Proposition 5 and Corollary 7.

Similarly, the case k = 2 for n ≡ 1, 9 mod 72 follows in the same way using Steiner systems
S(n, 9, 2) and the fact C(9, 2, 3) = 9 from Corollary 7. However, one can see that C(17, 3, 2) = 34
and then the results follows from Wilson’s theorem (6) of the existence of S(n, {9, 17}, 2) for all
large n ≡ 1 mod 8 and construction (8).

The construction for C(17, 2, 3) is similar to the proof of Lemma 6. The 9 pairs there are
defined as {{x + 1, x + 8}, {x + 2, x + 3}} : x ∈ Z9}. These correspond to a perfect edge
decomposition of K9 into C4’s with side lengths 1, 3, 4, and 2. For n = 17 we take the pairs
{{x, x+7}, {x+2, x+6}} : x ∈ Z17} and {{y, y+11}, {y+7, y+8}} : y ∈ Z17} which correspond
to C4’s of side lengths (2, 5, 1, 6) and (7, 4, 3, 8), respectively.

Note that the method gives that C(n, 1, 1) = n(n−1)
2 when n ≡ 1, 3 mod 6. This, however, is

trivial for all n.

6 A new proof of the upper estimate

The upper estimate in (7) was proved in [2]. We give a new, more illuminating proof here.
Given a pair {A,B} of disjoint k-element sets let P({A,B}, u, v) denote the family of pairs

{U, V } where |U | = u, |V | = v and U ⊆ A,V ⊆ B or vice versa. We have

|P({A,B}, u, v)| = 2

(

k

u

)(

k

v

)

.

Suppose first u < v. Then the total number of pairs {U, V }, U ∩ V = ∅, |U | = u, |V | = v in an
n-element set is

(

n

u

)(

n− u

v

)

.

Let {A1, B1}, {A2, B2} be two pairs with distance at least d, and u < v be two nonnegative
integers such that u+ v = 2k− d+1. By definition (1), P({A1, B1}, u, v) and P({A2, B2}, u, v)
are disjoint. We have

C(n, k, d) ≤

(

n
u

)(

n−u
v

)

2
(

k
u

)(

k
v

) =
n(n− 1) . . . (n− 2k + d)

2k(k − 1) . . . (k − u+ 1)k(k − 1) . . . (k − v + 1)
(10)

for every pair u, v that satisfies the above requirements. If u = v, then equality (10) holds by
similar arguments.

The numerator does not depend on u, and the denominator is maximized when u and v are
as close as possible, i.e., for u = 2k − ⌈d−1

2 ⌉ and v = 2k − ⌊d−1
2 ⌋. Substituting these values, we

obtain the upper estimate in (7).

7 Nearly perfect selection

Let W be the family of pairs {U, V } such that U, V ⊆ [n], U ∩V = ∅, and |U |+ |V | = 2k− d+1
holds. Note that |W| = 1

2

∑

0≤u≤2k−d+1

(

n
u

)(

n−u
(2k−d+1)−u

)

. For a pair {A,B} of disjoint k-element

sets, let P({A,B}) denote the family of pairs {U, V } ∈ W for which U ⊆ A and V ⊆ B, or vice
versa.
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Lemma 8. d({A1, B1}, {A2, B2}) ≤ d− 1 holds if and only if P({A1, B1}) ∩ P({A2, B2}) 6= ∅.

Proof: Suppose that {U, V } ∈ P({A1, B1})∩P({A2, B2}), say U ⊂ A1 ∩A2 and V ⊂ B1 ∩B2.
Then |A1−A2| ≤ k−|U |, |B1−B2| ≤ k−|V | imply |A1−A2|+ |B1−B2| ≤ 2k−|U |−|V | = d−1
proving the statement. The other case is analogous.

Conversely, if the distance is at most d − 1 then either |A1 − A2| + |B1 − B2| ≤ d − 1 or
|A1−B2|+ |B1−A2| ≤ d−1 must hold. Suppose that the first one is true. Then |A1∩A2|+ |B1∩
B2| ≥ 2k− d+1 follows. Take U = A1∩A2 and a V ⊆ B1∩B2 such that |V | = 2k− d+1−|U |.
Then P({A1, B1}) ∩ P({A2, B2}) 6= ∅ holds, as claimed. �

We can view the sets P({A,B}) as the edges of a hypergraph on the vertex set W. Let us
call this hypergraph H. Then a 2-(n, k, d)-code corresponds to a matching in H.

In his celebrated paper [17], Rödl established (5) in the following way. He viewed the
t-element sets as vertices of a

(

k
t

)

-uniform hypergraph Hn whose edges correspond to the k-
element subsets of [n]. Equality (5) is in fact a statement about the existence of an almost
perfect matching in Hn. Using the same key proof idea, a powerful generalization by Frankl
and Rödl [7] guarantees the existence of almost perfect matchings in hypergraphs satisfying
certain more general conditions. Various generalizations and stronger versions versions were
later proved, e.g., by Pippenger and Spencer [15].

A function t : E(H) → R is a fractional matching of the hypergraph H if
∑

e∈E(H);x∈e t(e) ≤
1 holds for every vertex x ∈ V (H). The fractional matching number, denoted ν∗(H) is the
maximum of

∑

e∈E(H) t(e) over all fractional matchings. If ν(H) denotes the maximum size of
a matching in H, then clearly

ν(H) ≤ ν∗(H).

Kahn [11] proved that under certain conditions, asymptotic equality holds. Both the hypotheses
and the conclusion are in the spirit of the Frankl–Rödl theorem.

Given a hypergraph H with vertex set [n], a fractional matching t and a subset W ⊆ [n],
define t̄(W ) =

∑

W⊆e∈E(H) t(e) and α(t) = max{t̄({x, y}) : x, y ∈ V (H), x 6= y}. In other words,
α(t) is a fractional generalization of the codegree. Let t(H) denote

∑

e∈E(H) t(e). We say that
H is s-bounded if each of its edges has size at most s.

Theorem 9 ([11]). For every s and every ε > 0 there is a δ such that whenever H is an

s-bounded hypergraph and t a fractional matching with α(t) < δ, then

ν(H) > (1− ε)t(H).

Proof of Theorem 2. In the light of Lemma 8 it suffices to verify the conditions of Theorem 9
and to produce a fractional matching t of the hypergraph H of the desired size.

Define a constant weight function t : E(H) → R by

t(e) =
⌈d−1

2 ⌉!⌊d−1
2 ⌋!

nd−1
.

For a vertex x = {U, V } ∈ W with |U | = u and |V | = v we have

deg({U, V }) =

(

n− u− v

k − u

)(

n− k − v

k − v

)

≤
nd−1

(k − u)!(k − v)!
≤

nd−1

⌈d−1
2 ⌉!⌊d−1

2 ⌋!

7



hence t is indeed a fractional matching. Note that t(H) is is asymptotically equal to the quantity
in the statement of the Theorem 2.

The hypergraph H is not regular but s-bounded with s = 1
2

∑

u

(

k
u

)(

k
(2k−d+1)−u

)

. Here s

does not depend on n. For x, y ∈ V (H) = W let deg(x, y) denote the codegree of x = {U, V }
and y = {U ′, V ′}, i.e., the number of hyperedges P({A,B}) that contain both x and y. If
U∪V = U ′∪V ′ (they partition the same (2k−d+1)-element set) then the codegre deg(x, y) = 0.
Otherwise, |U ∪ U ′ ∪ V ∪ V ′| ≥ 2k − d+ 2 and (U ∪ U ′ ∪ V ∪ V ′) ⊂ (A ∪B) imply that

deg({U, V }, {U ′, V }) = O(nd−2).

Hence α(t) = deg({U, V }, {U ′, V }) · t(e) = o(1) and Kahn’s theorem completes the proof.

8 s-tuples of sets, q-ary codes

Let Y(s) be the family of s-tuples of pairwise disjoint k-element subsets of [n]. A natural
definition of a metric on Y(s) was already mentioned in the introduction, in equation (2). With
ρ being half the symmetric difference, the distance is defined as

ρ(s)({A1, . . . , As}, {B1, . . . , Bs}) = min
π∈Ss

s
∑

i=1

|Ai \Bπ(i)|.

Let Cs(n, k, d) denote the maximum size of a subfamily S of Y(s) such that any two elements
in S have distance at least d. The proofs presented in Sections 7 and 6 can be easily adapted to
determining Cs(n, k, d), as well. The proof of the lower and the upper bounds in Theorem 10 is
completely analogous to the proofs of inequality (7) and Theorem 2.

Theorem 10.

lim
n→∞

Cs(n, k, d)

nsk−d+1
=

1

s!

⌈d−1
s
⌉!⌈d−2

s
⌉! . . . ⌈d−s

s
⌉!

(k!)s
.

Let Yq be the set of q-ary vectors of length n and weight k (weight is the number of nonzero
entries). Let Aq(n, d, k) be the maximum size of a subset C ⊆ Yq such that ρ′(u, v) ≥ d whenever
u, v ∈ C. Here ρ′ is the Hamming distance.

With a slightly more technical proof along the same lines, the following can be proven.

Theorem 11. Fix q ≥ 2, k and d. If d is odd, then, as n → ∞,

Aq(n, d, k) ∼
nk− d−1

2 (q − 1)k−
d−1

2

(

d−1
2

)

!

k!
.

If d ≥ 2 is even, then, as n → ∞,

Aq(n, d, k) ∼
nk− d

2
+1(q − 1)k−

d

2
+1

(

d
2 − 1

)

!

k!
.

To use random methods constructing codes is not a new idea. The best known general
bounds for the covering radius problems are obtained in this way, see, e.g., [9, 14].

We can also consider pairs (or more generally s-tuples) of q-ary vectors of weight k. For

simplicity, we will only state the results for pairs here. Define the set Y
(2)
q of pairs {u, v} of

vectors such that
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• u, v ∈ {0, 1, . . . , q − 1}n

• each of u and v has exactly k nonzero entries

• the supports of u and v are disjoint (i.e. ui = 0 for all i such that vi 6= 0, and vi = 0 for
all i such that ui 6= 0).

Define the distance between these pairs by

δ({u, v}, {w, z}) = min{ρ′(u,w) + ρ′(v, z), ρ′(u, z) + ρ′(v,w)}

where ρ′ is again the Hamming distance.

In the following, A2
q(n, d, k) will denote the maximum size of a subset C ⊆ Y

(2)
q such that

δ({u, v}, {w, z}) ≥ d for any pair {u, v}, {w, z} of members of C.

Theorem 12. Fix q, d and k. If d is odd and q ≥ 3, then, as n → ∞,

A2
q(n, d, k) ∼

1

2
·
n2k− d−1

2 · (q − 1)2k−
d−1

2 · ⌊d−1
4 ⌋!⌈d−1

4 ⌉!

(k!)2
.

If d ≥ 2 is even and q ≥ 2, then, as n → ∞,

A2
q(n, d, k) ∼

1

2
·
n2k− d

2
+1 · (q − 1)2k−

d

2 · ⌊d4⌋!
(

⌈d4⌉ − 1
)

!

(k!)2
.

The distance δ used here is twice the distance defined in Section 1, hence the apparent
inconsistency of this result for q = 2 with Theorem 2.

For q = 2 and d odd we have Aq(n, d, k) = Aq(n, d+ 1, k).

9 Open problems

We believe that for an arbitrary pair of k and d, there are infinitely many n’s with equality in
inequality (7).

10 Further developments

Let us note that since announcing the first version of the present paper Theorem 1 has been
greatly extended by Chee, Kiah, Zhang and Zhang [3]. They determined the exact value of
C(n, 2, d) completely, and for any fixed k the exact value of C(n, k, 2k − 1) for all n > n0(k)
satisfying either n = 0 mod k or n = 1 mod k and n(n − 1) = 0 mod 2k2. Their proofs are
different: they use more design theory. However, our Section 5 is still interesting for its own
sake and Problem 4 is still open.

Acknowledgements. The authors are very grateful for the helpful remarks of the referees.
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