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A Note on Distance Approximating Trees in Graphs

V ICTOR CHEPOI AND FEODORDRAGAN

Let G = (V, E) be a connected graph endowed with the standard graph-metricdG and in which
longest induced simple cycle has lengthλ(G).We prove that there exists a treeT = (V, F) such that

|dG(u, v)− dT (u, v)| ≤
⌊λ(G)

2

⌋
+ α

for all verticesu, v ∈ V, whereα = 1 if λ(G) 6= 4, 5 andα = 2 otherwise. The caseλ(G) = 3 (i.e.,
G is a chordal graph) has been considered in Brandstädt, Chepoi, and Dragan, (1999)J.Algorithms
30. The proof contains an efficient algorithm for determining such a treeT .

c© 2000 Academic Press

All graphsG = (V, E) occurring in this note are connected, undirected, loopless, and without
multiple edges (but not necessarily finite). Thelengthof a path from a vertexu to a vertexv
is the number of edges in this path. Thedistance dG(u, v) between the verticesu andv is the
length of a shortest(u, v)-path, and theintervalbetween these vertices is the set

I (u, v) = {w ∈ V : dG(u, v) = dG(u, w)+ dG(w, v)}.

For each integerk ≥ 0, let Bk(u) denote theball of radiusk centered atu:

Bk(u) = {v ∈ V : dG(u, v) ≤ k}.

Let Sk(u) denote thesphereof radiusk centered atu:

Sk(u) = {v ∈ V : dG(u, v) = k}.

A levelingof G with respect to some basepointu is a partition ofV into the spheresSk(u), k =
0, 1, 2, . . . . We will say that a treeT = (V, F) is adistanceδ-approximating treeof a graph
G = (V, E) if |dG(x, y)− dT (x, y)| ≤ δ for each pair of verticesx, y ∈ V. Finally, byλ(G)
we denote the length of a longest induced simple cycle ofG.

THEOREM. Given a graph G= (V, E) with λ(G) > 0 and an arbitrary basepoint u∈ V,
there is a distance

(⌊
λ(G)

2

⌋
+α

)
-approximating tree T= (V, F) of G preserving the distances

to u, whereα = 1 if λ(G) 6= 4, 5 andα = 2 otherwise.

PROOF. The caseλ(G) = 3 has been considered in [1], whose idea is generalized here.
Thus assumeλ(G) ≥ 4. Consider the leveling ofG from u. For eachk ≥ 0 define a graph
Sk with the kth sphereSk(u) as a vertex set. Two verticesx, y ∈ Sk(u) (k ≥ 1) are adja-
cent inSk if and only if they can be connected by a path outside the ballBk−1(u). Define a
graph0 whose vertex-set is the collectionS of all connected components of the graphsSk,

k = 0, 1, 2, . . . , and two vertices are adjacent in0 if and only if there is an edge ofG be-
tween the corresponding components (see Figure1 for an example). Clearly, two adjacent in
0 connected components lie in consecutive levels in the leveling ofG.
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FIGURE 1.

Claim 1. 0 is a tree.

PROOF. It suffices to show that any connected componentQ of Sk (k > 0) is adjacent
in 0 with exactly one connected component ofSk−1. Suppose not, and letQ be adjacent
to the connected componentsQ′ and Q′′ of Sk−1. Then we will find the verticesx′ ∈ Q′

andx′′ ∈ Q′′ which are adjacent to some verticesy′ and y′′ of Q. Take a path connecting
the verticesy′, y′′ and lying outside the ballBk−1(u). Adding the edgesx′y′ andx′′y′′, we
will get a (x′, x′′)-path outside the ballBk−2(u), contrary to the assumption thatx′, x′′ are in
different connected components ofSk−1. 2

We will assume that0 is rooted withQ∗ := S0 = {u} as a root.

Claim 2. If the verticesx, y (not necessarily distinct) belong to a common connected com-
ponent ofSk and x′, y′ are some of their neighbors in the sphereSk−1, thendG(x′, y′) ≤⌊
λ(G)

2

⌋
.

PROOF. First, we may assume thatx′ andy′ are distinct non-adjacent vertices, for otherwise
dG(x′, y′) ≤ 1 ≤ bλ(G)/2c. By the definition ofSk, there is a path connectingx′ and y′

whose interior vertices are outside the ballBk−1(u). Among all such paths, choose a chordless
oneP1. Sincex′ andy′ connect tou by paths insideBk−1(u), there is a path connectingx′ and
y′ whose interior vertices are insideBk−2(u). Among all such paths, choose a chordless one
P2. ThenP1 andP2 together form a chordless cycleC passing viax′ andy′. ThusdG(x′, y′) ≤
dC(x′, y′) ≤ bλ(G)/2c. 2

To construct a treeT = (V, F), for a connected componentQ of a graphSk (k ≥ 1) we
select a vertexvQ of Sk−1(u) which is adjacent inG to at least one vertex ofQ, and makevQ

adjacent inT to all vertices ofQ (see Figure2). From Claim 1 we conclude thatT is indeed
a tree. AssumeT is rooted atu.We denote the distance function inT by dT . Thediscrepancy
function c(x, y) is now defined by

c(x, y) := |dG(x, y)− dT (x, y)|.
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FIGURE 2. Distance 5-approximating tree forG from Figure1.

By induction ondG(u, x) one can easily show thatdG(u, x) = dT (u, x) for every vertexx.
From Claim 2 we deduce that ifxy is an edge ofT and not an edge ofG, thendG(x, y) ≤⌊
λ(G)

2

⌋
+ 1, i.e.,c(x, y) ≤

⌊
λ(G)

2

⌋
. Conversely, letx andy be adjacent inG but not adjacent

in T. If x, y lie in the same level, then they are in a common connected componentQ, thus
in T both x, y are adjacent tovQ, showing thatdT (x, y) = 2. Now suppose thatx and y
lie in consecutive levels, sayx ∈ Q′, y ∈ Q′′, whereQ′, Q′′ are connected components of
respective levels. Then necessarilyvQ′ ∈ Q′′, thus bothvQ′ andy are adjacent inT to vQ′′ .

This shows thatdT (x, y) = 3 in this case. Therefore, ifxy is an edge ofG or of T, then
c(x, y) ≤

⌊
λ(G)

2

⌋
.

Finally pick the verticesx, y such thatxy is an edge neither inG nor in T. Let dG(u, x) =
n, dG(u, y) = m. Suppose thatx belongs to the connected componentQ′ of Sn andy belongs
to the connected componentQ′′ of Sm. If Q′ = Q′′, thendG(x, y) ≤

⌊
λ(G)

2

⌋
+ 2 by Claim 2

anddT (x, y) = 2 by the construction ofT. Thereforec(x, y) ≤
⌊
λ(G)

2

⌋
in this case. ThusQ′

and Q′′ are distinct. LetQ be the nearest common ancestor ofQ′ and Q′′ in the tree0 (as
usual, the nearest common ancestor of two vertices in a rooted tree is the root of the smallest
subtree that contains both vertices).

First assume thatQ 6= Q∗ andQ′ 6= Q 6= Q′′. Denote byQ0, Q1, andQ2 the neighbors
of Q in the tree0 on the paths connectingQ with Q∗, Q′, and Q′′, respectively. One can
easily show that every(x, y)-path ofG will share vertices with each connected component
in S which lies on the unique path connectingQ′ and Q′′ in 0. In particular, every shortest
(x, y)-path will intersect the setsQ1, Q, andQ2. SincedG(x, z) ≥ n− k,dG(y, z) ≥ m− k
for every vertexz ∈ Q (herek := d(u, z)), from this and Claim 2 we conclude that

n+m− 2k ≤ dG(x, y) ≤ n+m− 2k+

⌊
λ(G)

2

⌋
+ 2.

On the other hand,

dT (x, y) =
{

n+m− 2k if vQ1 = vQ2,
n+m− 2k+ 2 otherwise.

Comparing the expressions fordG(x, y) anddT (x, y), we obtain the desired estimation, ex-
cept the case whenλ(G) > 5, dT (x, y) = n+m−2k, anddG(x, y) = n+m−2k+

⌊
λ(G)

2

⌋
+2.
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FIGURE 3. A graphG with λ(G) = 4 and its distance 4-approximating tree.

We assert that this cannot happen. Letx′ andy′ be closest tox andy vertices ofQ in G, i.e.,
dG(x, x′) = n−k anddG(y, y′) = m−k. By Claim 2 necessarilydG(x′, y′) =

⌊
λ(G)

2

⌋
+2≥

5, otherwise we are done. Pick the verticesx′′, y′′ ∈ Q0, w1 ∈ Q1, w2 ∈ Q2 (they nec-
essarily exist) such thatx′x′′, x′w1, y′y′′, y′w2 ∈ E. Denote byz1 andz2 some neighbors
of the vertexv := vQ1 = vQ2 in the connected componentsQ1 and Q2. Finally, let z be
a vertex ofI (x′′, u) ∩ I (y′′, u) located as far as possible fromu. Pick two shortest(x′′, z)-
and(y′′, z)-pathsP(x′′, z) andP(y′′, z). Among the paths connecting the verticesw1, z1 and
w2, z2 outside the ballBk(u) let P(w1, z1) andP(w2, z2) have minimal lengthl1 andl2. Ad-
ditionally assume that the pairsz1, w1 andz2, w2 have been selected so thatl1 andl2 are as
small as possible. Denote byC the simple cycle ofG formed by these four paths and the
edgesw1x′, x′x′′, w2y′, y′y′′, vz1, vz2. Arguing as in the proof of Claim 2 and taking into
account thatdG(x′, y′) ≥ 5, we deduce that every possible chord ofC has either the form
vs with s ∈ {x′, x′′, y′, y′′} or the formab with a ∈ P(x′′, z) and b ∈ P(y′′, z). Since
dG(x′, y′) =

⌊
λ(G)

2

⌋
+ 2, no pair of vertices{x′, y′}, {x′, y′′}, {x′′, y′} lies on a common in-

duced cycle. This implies thatC is not induced, and, moreover, thatv is adjacent to at least
one of the verticesx′, x′′ and to at least one of the verticesy′, y′′. Then we get a path of length
at most 4 betweenx′ andy′, contrary to the assumption thatdG(x′, y′) ≥ 5. This establishes
the caseQ 6= Q∗ andQ′ 6= Q 6= Q′′. In the remaining cases the proof is similar, even simpler.
2

We continue with two examples. First, we show that in the caseλ(G) = 4 our method can
construct distance 4-approximating trees ofG. Note also that for the graphG with λ(G) = 8
from Figure 1 our method may construct a distance 5-approximating tree. Second, we present
a chordal graph without distance 1-approximating trees, thus answering the question posed
in [1]. Recall thatG is a chordal graph iffλ(G) = 3.

EXAMPLE 1. Let G be a graph presented in Figure3 and leveled with respect to the bottom
vertexu. The graphsS1 andS2 are connected, while the graphS3 has two connected com-
ponentsQ′ = {x1, x2}, Q′′ = {y1, y2}. Sincev is adjacent tox2 andy2, it may happen that
vQ′ = v = vQ′′ . But in this casec(x1, y1) = 4.

EXAMPLE 2. Consider a chordal graphG whose maximal cliques all have the same size
s ≥ 4. Additionally assume that every two maximal cliques can be connected by a chain of
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TABLE 1.
Results.

λ(G) δ

< 3 =0
=3 =2
∈ {4, 5, 6, 7} ≤ 4
∈ {8, 9} ≤ 5
· · · · · ·

∈ {2k, 2k+ 1}, k ≥ 4 ≤ k+ 1

maximal cliques such that every two consecutive cliques share an(s− 1)-clique, and thatG
has diameter at least 4 (one can easily draw such examples; every 3-tree of diameter 4 has
those properties). We claim thatG does not contain distance 1-approximating trees. Suppose
not, and letT be such a tree. Take a maximal cliqueR of G. In T either all vertices ofR are
adjacent to a vertex outsideR, or there is a vertex ofR which is adjacent to the remaining
vertices ofR. In both cases,R is embedded inT as a star. Now, if two maximal cliques
share a triangle, then inT their stars must have a common center. From this we immediately
conclude thatT is a star. If we will take two verticesx, y with dG(x, y) = 4, then obviously
dT (x, y) ≤ 2, contrary to the choice ofT.

In Table 1 we summarize our results on distanceδ-approximating trees for graphs with
longest induced cycle of lengthλ(G). Note that for chordal graphs our method is optimal in
the sense that a chordal graph may not have a distance 1-approximating tree. It remains an in-
teresting open question to characterize/recognize the graphs admitting distance 1-approxima-
ting trees.

REMARK 1. In the case of finite graphs, the proof of the theorem provides a linear algo-
rithm for determining a treeT. The most expensive step is the construction of the connected
components of the graphsSk (k = 0, 1, . . .). We start from the sphereSn(u) of largest ra-
dius, find its connected components and contract each of them into a vertex. Then find the
connected components in the graph induced bySn−1(u) and the set of contracted vertices,
contract each of them and descend to the lower level, until we will come to the vertexu.

REMARK 2. Our result is in the vein of the following general result of Gromov (for a proof
and definitions see Chapitre 2 in [2]): Let (X,d) be aδ-hyperbolic metric space with at most
2k
+ 2 points for some positive integer k. Then there exist a tree T= (X, F) rooted at u such

that d(x,u) = dT (x,u) and

d(x, y)− 2kδ ≤ dT (x, y) ≤ d(x, y)

for all x, y ∈ X.

REMARK 3. The result for the caseλ(G) = 4 can be refined. LetG be a graph with
λ(G) = 4. If G contains neither a house (i.e., the complement of an induced path on five
vertices) nor a domino (the graph obtained from two induced 4-cycles by identifying an edge
in one cycle with an edge in the other cycle) as induced subgraphs, thenG admits a distance
2-approximating tree. IfG does not contain only a domino as an induced subgraph, then
it admits a distance 3-approximating tree. This follows from the proof of the theorem and
from the fact (which is easy to prove) that in the casevQ1 = vQ2, we havedG(x′, y′) ≤
bλ(G)/2c = 2, if G is house- and domino-free, anddG(x′, y′) ≤ bλ(G)/2c + 1 = 3, if G is
domino-free.
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REMARK 4. The result can be applied to provide efficient approximate solutions of several
problems. In [1] we outlined how to compute the entries of the distance matrix of a chordal
graph with an error of at most 2 in total optimal timeO(|V |2) (it is unknown whether the exact
calculation can be done within the same time bounds). More generally, the distance matrix
and the diameter of a graph whose largest induced cycle has lengthλ(G) can be computed
in optimal time with an error given in the theorem. As another application, consider thep-
center problem: given a graphG (or, more generally, a metric space) and an integerp > 0,
we are searching for smallest radiusr ∗ and a subset of verticesX of G with |X| ≤ p such
thatdG(v, X) ≤ r ∗ for every vertexv of G. The problem isN P-hard even for chordal graphs.
Solving thep-center problem on the treeT constructed in the theorem, we will find an optimal
covering radiusr of T and a set of centersX. Then|r − r ∗| ≤ bλ/2c + α andX can be taken
as an approximate solution.
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