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A Note on Distance Approximating Trees in Graphs

VICTOR CHEPOI AND FEODORDRAGAN

Let G = (V, E) be a connected graph endowed with the standard graph-rdetramd in which
longest induced simple cycle has lengit@). We prove that there exists a trée= (V, F) such that

MG
ldg (u, v) — dr (U, v)] < L%J +a

for all verticesu, v € V, wherea = 1 if A(G) # 4,5 anda = 2 otherwise. The casgG) = 3 (i.e.,
G is a chordal graph) has been considered in BramisChepoi, and Dragan, (1999Algorithms
30. The proof contains an efficient algorithm for determining such aTree
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All graphsG = (V, E) occurring in this note are connected, undirected, loopless, and without
multiple edges (but not necessarily finite). Tlhagthof a path from a vertex to a vertexv

is the number of edges in this path. Tdistance @ (u, v) between the verticasandv is the
length of a shortediu, v)-path, and thénterval between these vertices is the set

I (u,v) ={w eV :dg(u,v) =dg(u, w) + dg(w, v)}.
For each integek > 0, let Bx(u) denote thédall of radiusk centered ati:
Bk(u) ={v eV :dg(u,v) <k}
Let S(u) denote thesphereof radiusk centered ati:
S ={veV:dg(u,v) =k}

A levelingof G with respect to some basepoinis a partition ofV into the sphereSq(u), k =
0,1,2,.... We will say that a tre§ = (V, F) is adistances-approximating treef a graph
G=(V,E)if |dg(X, y) — dt (X, y)| < é for each pair of vertices, y € V. Finally, by A(G)
we denote the length of a longest induced simple cycl®.of

THEOREM. Given a graph G= (V, E) with A(G) > 0 and an arbitrary basepoint & V,
thereisa distanc(a[Lf)J +cx)-approximating tree T= (V, F) of G preserving the distances
to u, wherea = 1if L(G) # 4, 5anda = 2 otherwise.

PROOFE The case.(G) = 3 has been considered ifi]] whose idea is generalized here.
Thus assume(G) > 4. Consider the leveling o6 from u. For eactk > 0 define a graph
Sk with the kth sphereS(u) as a vertex set. Two verticesy € S(u) (k > 1) are adja-
cent inS if and only if they can be connected by a path outside the Ball (u). Define a
graphl” whose vertex-set is the collectighof all connected components of the grajhs
k=012, ..., and two vertices are adjacentlhif and only if there is an edge @& be-
tween the corresponding components (see Figdoe an example). Clearly, two adjacent in
" connected components lie in consecutive levels in the leveliig of
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FIGURE 1.

Claim 1 T is atree.

PROOF It suffices to show that any connected compon@nof Sk (k > 0) is adjacent
in T with exactly one connected component&§_ 1. Suppose not, and le) be adjacent
to the connected componen®® and Q” of Sk_1. Then we will find the verticex’ € Q’
andx” € Q” which are adjacent to some verticgsandy” of Q. Take a path connecting
the verticesy’, y” and lying outside the baBx_1(u). Adding the edgex’y’ andx”y”, we
will get a (X, x”)-path outside the baBx_»(u), contrary to the assumption thet, x” are in
different connected components&{_1. O

We will assume tharF is rooted withQ* := S = {u} as a root.

Claim 2 If the verticesx, y (not necessarily distinct) belong to a common connected com-
ponent ofSx andx’, y’' are some of their neighbors in the sph&e1, thendg (X', y) <

5]

PROOF First, we may assume thatandy’ are distinct non-adjacent vertices, for otherwise
ds (X', y) < 1 < [A(G)/2]. By the definition ofSk, there is a path connecting andy’
whose interior vertices are outside the &l 1 (u). Among all such paths, choose a chordless
oneP;. Sincex’ andy’ connect tai by paths insidéBy_1(u), there is a path connectingand
y’' whose interior vertices are insid_»(u). Among all such paths, choose a chordless one
P,. ThenP; and P, together form a chordless cydlepassing vi’ andy’. Thusdg (X', y') <
de (X, y) < [M(G)/2]. U

To construct a tre& = (V, F), for a connected componef of a graphSk (k > 1) we
select a vertexq of Sc_1(u) which is adjacent irs to at least one vertex @@, and makevg
adjacent inT to all vertices ofQ (see Figure?). From Claim 1 we conclude that is indeed
atree. Assum@ is rooted au. We denote the distance functionTnby dy. Thediscrepancy
function X, y) is now defined by

C(Xv y) = |dG (Xa Y) - dT (X, Y)|



A note on distance approximating trees in graphs 763

ldg (x,y)—dr (x,y)[=7-2=5

u

FIGURE 2. Distance 5-approximating tree f@rfrom Figurel.

By induction ondg (u, X) one can easily show thdg (u, x) = dy (u, x) for every vertexx.
From Claim 2 we deduce that ¥y is an edge ofl and not an edge d&, thendg (X, y) <
|29 | 11, ie.,cx, y) < | X2 |. Conversely, lek andy be adjacent i but not adjacent
in T. If x, y lie in the same level, then they are in a common connected comp@nehtis
in T bothx, y are adjacent tag, showing thatdr (x, y) = 2. Now suppose that andy
lie in consecutive levels, say € Q',y € Q”, whereQ’, Q” are connected components of
respective levels. Then necessaiily € Q”, thus bothvy andy are adjacent i to vgr.
This shows thatlt (x, y) = 3 in this case. Therefore, ¥y is an edge ofG or of T, then
cx,y) <[22

Finally pick the vertice, y such thaixy is an edge neither i@ nor inT. Letdg (U, X) =
n, dg (U, y) = m. Suppose that belongs to the connected compon&itf S, andy belongs
to the connected compone@t’ of Sy,. If Q' = Q”, thendg (X, y) < I_LzG)J + 2 by Claim 2
anddr (x, y) = 2 by the construction of . Thereforec(x, y) < L%G)J in this case. Thu§’
and Q” are distinct. LetQ be the nearest common ancestor@fand Q” in the treel” (as
usual, the nearest common ancestor of two vertices in a rooted tree is the root of the smallest
subtree that contains both vertices).

First assume tha® # Q* andQ’ # Q # Q”. Denote byQp, Q1, and Q» the neighbors
of Q in the treel’ on the paths connectin@ with Q*, Q’, and Q”, respectively. One can
easily show that everyx, y)-path of G will share vertices with each connected component
in S which lies on the unique path connecti@j andQ” in I. In particular, every shortest
(X, y)-path will intersect the set®;, Q, andQa. Sincedg(X,2) > n—k,dg(y,2 > m—Kk
for every vertexz € Q (herek := d(u, 2)), from this and Claim 2 we conclude that

n+m—2k§dg(x,y)§n+m—2k+{LZG)J+2.

On the other hand,
_[n+m-2k if v, = vq,,
dr(x,y) = { n+m-—2k+2 otherwise.

Comparing the expressions fdg (x, y) anddy (X, y), we obtain the desired estimation, ex-
ceptthe case wher(G) > 5, dr (X, y) = n+m—2k, anddg (X, y) = n-|-m—2k-|—|_%G>J-|-2.
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FIGURE 3. A graphG with A(G) = 4 and its distance 4-approximating tree.

We assert that this cannot happen. keandy’ be closest tox andy vertices ofQ in G, i.e.,
ds(x, X') = n—kanddg(y, y') = m—k. By Claim 2 necessarilgg (X', y') = | 22 | +2 >

5, otherwise we are done. Pick the verticgsy” € Qp, w1 € Q1, w2 € Q2 (they nec-
essarily exist) such thatx”, x'w1, Y'y’, yw2 € E. Denote byz; andz; some neighbors
of the vertexv := vq, = vq, in the connected componeng; and Q,. Finally, let z be

a vertex ofl (x”, u) N 1 (y”, u) located as far as possible fram Pick two shortestx”, z)-
and(y”, z)-pathsP(x”, z) andP(y”, z). Among the paths connecting the vertiaes z; and
w2, 2 outside the balBy(u) let P (w1, z1) and P (w2, z2) have minimal lengtty andl,. Ad-
ditionally assume that the pairs, w1 andz,, wz have been selected so thatandl, are as
small as possible. Denote lfy the simple cycle ofG formed by these four paths and the
edgeswix’, X'x”, way’, y'y”, vza, vzo. Arguing as in the proof of Claim 2 and taking into
account thatlg (X, y') > 5, we deduce that every possible chord®has either the form
vs with s € {xX/,x”,y’,y"} or the formab with a € P(x”,z) andb € P(y”, z). Since
de(X,y) = LLZG’)J + 2, no pair of verticegx’, y'}, {x', y"}, {x”, y’} lies on a common in-
duced cycle. This implies th& is not induced, and, moreover, thats adjacent to at least
one of the verticeg’, x” and to at least one of the verticgs y”. Then we get a path of length
at most 4 betweer’ andy’, contrary to the assumption thdd (x’, y') > 5. This establishes
the case # Q* andQ’ £ Q # Q”. Inthe remaining cases the proof is similar, even simpler.
O

We continue with two examples. First, we show that in the ¢a& = 4 our method can
construct distance 4-approximating treessofNote also that for the grapB with A(G) = 8
from Figure 1 our method may construct a distance 5-approximating tree. Second, we present
a chordal graph without distance 1-approximating trees, thus answering the question posed
in [1]. Recall thatG is a chordal graph iff(G) = 3.

EXAMPLE 1. Let G be a graph presented in Figudand leveled with respect to the bottom
vertexu. The graphsS; andS; are connected, while the gragh has two connected com-
ponentsQ’ = {x1, X2}, Q" = {y1, ¥2}. Sincev is adjacent tox, andys,, it may happen that
vo = v = vgr. Butin this case(xy, y1) = 4.

ExAMPLE 2. Consider a chordal grapB whose maximal cliques all have the same size
s > 4. Additionally assume that every two maximal cliques can be connected by a chain of
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TABLE 1.
Results
rG)
<3 =0
=3 =2
€{4,5,6,7} <4
€ {8, 9} <5

ef{2k,2k+1}, k>4 <k+1

maximal cliques such that every two consecutive cliques sha¢s arl)-clique, and thaG

has diameter at least 4 (one can easily draw such examples; every 3-tree of diameter 4 has
those properties). We claim th@t does not contain distance 1-approximating trees. Suppose
not, and lefT be such a tree. Take a maximal cligReof G. In T either all vertices oR are
adjacent to a vertex outside, or there is a vertex oR which is adjacent to the remaining
vertices of R. In both casesR is embedded il as a star. Now, if two maximal cliques
share a triangle, then if their stars must have a common center. From this we immediately
conclude thaf is a star. If we will take two vertices, y with dg (X, y) = 4, then obviously

dr (%, y) < 2, contrary to the choice of.

In Table 1 we summarize our results on distant@pproximating trees for graphs with
longest induced cycle of leng#t(G). Note that for chordal graphs our method is optimal in
the sense that a chordal graph may not have a distance 1-approximating tree. It remains an in-
teresting open question to characterize/recognize the graphs admitting distance 1-approxima-
ting trees.

REMARK 1. In the case of finite graphs, the proof of the theorem provides a linear algo-
rithm for determining a tre@. The most expensive step is the construction of the connected
components of the grapl& (k = 0, 1, ...). We start from the spherg,(u) of largest ra-
dius, find its connected components and contract each of them into a vertex. Then find the
connected components in the graph inducedShy; (u) and the set of contracted vertices,
contract each of them and descend to the lower level, until we will come to the wertex

REMARK 2. Our resultis in the vein of the following general result of Gromov (for a proof
and definitions see Chapitre 2 i]]: Let (X, d) be as-hyperbolic metric space with at most
2 4+ 2 points for some positive integer kKhen there exist a tree & (X, F) rooted at u such
that d(x, u) = dr (x, u) and

d(x,y) —2k8 < dr(x,y) <d(x,y)
forall x,y e X.

REMARK 3. The result for the cas&(G) = 4 can be refined. LeG be a graph with
A(G) = 4. If G contains neither a house (i.e., the complement of an induced path on five
vertices) nor a domino (the graph obtained from two induced 4-cycles by identifying an edge
in one cycle with an edge in the other cycle) as induced subgraphsGtlaeimits a distance
2-approximating tree. If5 does not contain only a domino as an induced subgraph, then
it admits a distance 3-approximating tree. This follows from the proof of the theorem and
from the fact (which is easy to prove) that in the cagg = vq,, we havedg(x', y) <
[A(G)/2] = 2, if G is house- and domino-free, adg (X', y) < |[A(G)/2] +1=3,if G is
domino-free.
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REMARK 4. The result can be applied to provide efficient approximate solutions of several
problems. In {] we outlined how to compute the entries of the distance matrix of a chordal
graph with an error of at most 2 in total optimal tirf@&|V |?) (it is unknown whether the exact
calculation can be done within the same time bounds). More generally, the distance matrix
and the diameter of a graph whose largest induced cycle has Ie@yhcan be computed
in optimal time with an error given in the theorem. As another application, considgr-the
center problem: given a graph (or, more generally, a metric space) and an intgger O,
we are searching for smallest radiusand a subset of vertices of G with |X| < p such
thatdg (v, X) < r* for every vertexw of G. The problem idN P-hard even for chordal graphs.
Solving thep-center problem on the tr@econstructed in the theorem, we will find an optimal
covering radiug of T and a set of centers. Then|r —r*| < |A/2] + « and X can be taken
as an approximate solution.
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