

Solving frequency assignment problems via tree-
decomposition
Citation for published version (APA):

Koster, A., van Hoesel, C. P. M., & Kolen, A. W. J. (1999). Solving frequency assignment problems via
tree-decomposition. METEOR, Maastricht University School of Business and Economics. METEOR
Research Memorandum No. 011 https://doi.org/10.26481/umamet.1999011

Document status and date:
Published: 01/01/1999

DOI:
10.26481/umamet.1999011

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 23 Apr. 2024

https://doi.org/10.26481/umamet.1999011
https://doi.org/10.26481/umamet.1999011
https://cris.maastrichtuniversity.nl/en/publications/123f82fc-0c53-4686-a40b-f0edf14b7406

Solving Frequency Assignment Problems via Tree-Decomposition

Arie M.C.A. Koster1;2 Stan P.M. van Hoesel1 Antoon W.J. Kolen1

May 6, 1999

Abstract

In this paper we describe a computational study to solve hard frequency assignment

problems (FAPs) to optimality using a tree decomposition of the graph that models interfer-

ence constraints. We present a dynamic programming algorithm which solves FAPs based

on this tree decomposition. We show that with the use of several dominance and bounding

techniques it is possible to solve small and medium-size real-life instances of the frequency

assignment problem to optimality. Moreover, with an iterative version of the algorithm we

obtain good lower bounds for large-size instances within reasonable time and memory limits.

1 Introduction

The Frequency Assignment Problem (FAP) has two basic structural properties: the limited
availability of frequencies to be assigned to wireless connections, and signal interference between
connections for some combinations of frequencies. Practical applications range from military
communication and television broadcasting to (the most popular example) mobile telephone
communication. This diversity has not only resulted in many di�erent models, but also in many
di�erent types of instances. The model we consider is fairly general in the sense that most
variants of the FAP can be transformed to it. It consists of a set of antennas that are all to
be assigned a frequency from an antenna-dependent set of available frequencies, the domain.
In some applications certain frequencies are favored over others. We model this by introducing
a penalty on each frequency from the domain of an antenna. For pairs of antennas speci�c
combinations of frequencies may interfere, resulting in loss of quality of the reception of the
signals. This loss of quality is measured and penalized with an amount related to the level of
interference. For each pair of antennas, the penalties for all possible combinations of frequencies
are stored in a penalty matrix. The penalty matrices have a structure that is often useful
in solution methods, namely that frequencies within a given distance have a high penalty, and
frequencies at larger distances have no penalty. The pair-wise relationship between the antennas
allows for the following graph model: the vertices represent the antennas, each antenna pair

1Dept of Quantitative Economics, Maastricht University, P.O.Box 616, 6200 MD Maastricht, The Netherlands.
2e-mail: A.Koster@KE.UniMaas.NL; home page: http://www.unimaas.nl/~akoster/

1

with a nonzero penalty matrix is connected by an edge. This graph is called the constraint or
interference graph. The standard objectives are to �nd a frequency plan that minimizes the sum
of the vertex and edge-penalties, or that minimizes the maximum penalty.

The determination of the penalties slightly depends on the application. In mobile phone networks
the area where signals interfere may also vary. In that case, the penalty is not only related with
the level of interference, but also with the size of the area in which the interference is measured.
Minimization of the changes in an existing frequency plan can be taken into account via a vertex
penalty on the other frequencies for an antenna. Also the number of frequencies that has to be
assigned to an antenna may vary per application. In mobile networks antennas are part of larger
units, such as sites. These units are sometimes treated like antennas so that multiple frequencies
are to be assigned to each site. In some applications the objective is not to minimize the sum of
the penalties, but to answer the question whether there exists an assignment without penalty.
We refer to Hale [10] for an overview of models for the FAP with other objectives. In this paper
we concentrate on the objective to minimize the total penalty in
icted by a plan.

The FAP is, in general, hard to solve, due to its close relation to the vertex coloring problem.
Namely, a special case of the FAP is the one, in which equal frequencies for vertices adjacent in
the constraint graph are penalized solely. Therefore, many heuristic approaches have been sug-
gested using the known methods in operations research and arti�cial intelligence, like simulated
annealing (cf. Hurkens and Tiourine [11]), tabu search (cf. Castelino, Hurley and Stephens [7])
and genetic algorithms (Kolen [14]). A comparison of these techniques on a speci�c set of data
can be found in [19]. In Bornd�orfer et al. [6] both heuristics based on graph coloring, and lo-
cal search techniques are described. In this paper we concentrate on �nding exact solutions,
or (second best) on �nding good lower bounds for the FAP. To obtain lower bounds for this
problem, Hurkens and Tiourine [11] use nonlinear programming techniques. Good lower bounds
are only obtained for very special cost structures and fairly simple constraint graphs. An exact
solution technique has been studied by Koster, van Hoesel and Kolen [15]. They investigate
the polyhedral approach which can also be used to obtain lower bounds. This approach only
works within reasonable time for problems with a limited number of frequencies available for
every antenna. Recently, Jaumard et al. [13] have tried column generation for solving the FAP.
Column generation seems to be able to solve to optimality only small instances, but generates
very good solutions during the process. Aardal et al. [1] use a branch and cut algorithm to solve
the FAP in which a solution without penalty is to be �nd, whereas in Janssen and Kilakos [12],
lower bounds for the minimum span frequency assignment problem are obtained via polyhedral
analysis of the problem. For an overview about exact approaches for the frequency assignment
problem we refer to Aardal et al. [2].

Forced by the limited success of the exact solution methods so far, we tried to exploit the
structure of the constraint graph more directly in our approach. Instances of the FAP have a
geographical nature, since each antenna is placed in a two-dimensional map. Moreover, this
geography in
uences interference, since pairs of antennas have no interference if their distance
is far enough. Finally, concentrations of antennas are found in densely populated areas. These
areas are connected with one another with a limited number of edges. This led us to believe that
many instances have a constraint graph with a tree-like structure, and thus may be solved using
a tree decomposition of the constraint graph with small treewidth. The notions treewidth and

2

tree decomposition are introduced by Robertson and Seymour [18] in their fundamental work
on graph minors. Besides the major role they play in graph theory, many NP-hard problems
on graphs have been shown to be solvable in polynomial (linear) time on graphs with bounded
treewidth (see Bodlaender [4] for an overview). We used this idea, together with sophisticated
processing techniques, on a set of instances for which the previous techniques generated only few
signi�cant results, i.e., only for a small set of instances non-trivial lower bounds were computed.
We are now able to solve many of these instances to optimality. Moreover, in an iterative version
of our algorithm we are able to generate good lower bounds on the very di�cult instances. The
algorithm is applicable on many instances. The only serious limitation is the treewidth of the
constraint graph. Finally, we mention that the FAP is a partial constraint satisfaction problem
with binary relations (PCSP). It seems likely due to the generic nature of the FAP, that our
techniques are also applicable to other PCSPs.

The main purpose of this paper is twofold. In the �rst place, our goal is to �nd benchmarks
for a set of publicly available FAPs. Secondly, our purpose is to show that the concept of
tree decomposition is not only of theoretical value, but can really used to solve combinatorial
optimization problems to optimality. We do not have the intention to demonstrate this method
as the method to solve FAPs. For that purpose the method is not competitive compared with
available heuristics.

The remainder of this paper is organized as follows. In Sections 2 and 3 we respectively model
the FAP in detail, and we introduce the graph theoretic concepts we use in the paper, such as
treewidth. In Section 4 we describe the heuristic method we use to obtain a tree decomposition
of the constraint graph, and in Section 5 we propose the dynamic programming algorithm based
on the tree decomposition of the constraint graph. The practical utility of the algorithm can be
improved via the use of (pre)processing techniques, which are described in Section 6. We present
an iterative extension of the algorithm that provides lower bounds for the original problem in
Section 7. The computational results obtained with these methods are the topic of Section 8.

2 Problem Description

A FAP is de�ned by the quadruple (G;D; p; q), where G = (V;E) is the constraint graph. The
set D = fDv : v 2 V g is the collection of all domains. For each of the n vertices v 2 V

in the graph the domain Dv contains the frequencies available for that vertex. The last two
components of the FAP are two penalty functions p and q. For each pair of adjacent vertices
and corresponding choice of frequencies, the function p determines the interference penalty. The
function q denotes the level of preference for all domain elements. The functions p and q are
called the edge-penalty function, and the vertex-penalty function, respectively. The objective of
the problem is to select from every domain Dv exactly one element in such a way that the total
sum of the edge- and vertex-penalties is minimized.

The FAP is formulated as a binary linear programming problem using the following binary

3

variables for all v 2 V , dv 2 Dv

y(v; dv) =
n
1 if dv 2 Dv is selected
0 otherwise

and for all fv; wg 2 E, dv 2 Dv, dw 2 Dw

z(v; dv ; w; dw) =
n
1 if (dv; dw) 2 Dv �Dw is selected
0 otherwise

The binary linear programming formulation then reads

min
X

fv;wg2E

X
dv2Dv

X
dw2Dw

p(v; dv ; w; dw)z(v; dv ; w; dw) +
X
v2V

X
dv2Dv

q(v; dv)y(v; dv) (1)

s.t.
X

dv2Dv

y(v; dv) = 1 8v 2 V (2)

X
dw2Dw

z(v; dv ; w; dw) = y(v; dv) 8fv; wg 2 E; dv 2 Dv (3)

z(v; dv ; w; dw) 2 f0; 1g 8fv; wg 2 E; dv 2 Dv; dw 2 Dw (4)

y(v; dv) 2 f0; 1g 8v 2 V; dv 2 Dv (5)

Constraints (2) restrict the selection of frequencies from each domain to one. Constraints (3)
enforce that the combination of values selected for an edge should be consistent with the values
selected for the vertices of that edge.

The NP-hardness of the FAP with domain sizes at least 3 follows from a reduction of the graph
3-colorability problem (cf. [8]). In Koster, van Hoesel and Kolen [15] it is proved with a reduction
from Maximum Satis�ability that the FAP is NP-hard, even if all domains have size 2.

In the sequel of this paper we use the following notation. Let N(v) = fw 2 V : fv; wg 2 Eg

denote the set of vertices adjacent to v 2 V , whereas N(S) = fw 2 V n S : 9v2Sfv; wg 2 Eg

denotes the neighbors of the vertices in the subset S � V . Moreover, let �(S; T) denote the set of
all edges between the vertices in S � V and T � V , i.e., �(S; T) = ffv; wg 2 E : v 2 S;w 2 Tg.
We use �(S) as short version of �(S; V n S). With E[S] we denote all edges with both vertices
in S, i.e., E[S] = �(S; S). By G[S] = (S;E[S]) we denote the subgraph of G = (V;E) induced
by S.

3 Graph Theoretic Concepts

In this section we introduce the graph theoretic concepts used in our solution method. We de�ne
the notions tree decomposition and treewidth, together with some (well-known) properties of

4

these notions. We also de�ne the concept separating vertex set, which will be used in the
heuristic to construct a tree decomposition.

Before we introduce the notion of tree decomposition of a graph we start with the simpler notion
of path decomposition (Robertson and Seymour [17]). A path decomposition decomposes the
graph in a sequence i = 1; : : : ; r of subgraphs induced by subsets Xi � V . All vertices and edges
have to be in at least one subgraph. Moreover, if a vertex is part of two induced subgraphs,
then all the subgraphs in between these two in the sequence should also contain this vertex.
Or equivalently, the subgraphs for which the vertex sets contain a certain vertex should be a
subsequence of the total sequence. The width of a path decomposition is given by the maximum
size of the vertex sets of the subgraphs minus one. The pathwidth of a graph G is the minimum
width over all path decompositions of G. Formally,

De�nition 3.1 (Robertson and Seymour [17]) Let G = (V;E) be a graph. A path-decom-

position is a sequence X1; : : : ;Xr of subsets of V , such that

(i).
S
i=1;:::;rXi = V ,

(ii). for every edge fv; wg 2 E, there is an i 2 I with v 2 Xi and w 2 Xi, and

(iii). for all i; j; k 2 f1; : : : ; rg, if i < j < k, then Xi \Xk � Xj.

The width of a path decomposition is maxi=1;:::;rjXij � 1. The pathwidth of a graph G, denoted

by pw(G), is the minimum width over all possible path decompositions of G.

v

v

v

v

v

v

v

v

v

v

v

PPPPP

��
��
�

��
��
�Q
Q
Q
QQ

a

b

c

d

e

f

g

h

i

j

k

��
��
��
��
��
��
��
��

..

..

..

..

..

..

..

..

..
...
...
......
..
...
...
..
..
..
..
..
..
..
..
..
.. ��
��
��
��

abd acd cde def efgh fi ijk

Figure 1: Example of a graph and path decomposition with width 3

In Figure 1 an example of a graph and an optimal path decomposition with width 3 is given. For
special classes of graphs the pathwidth is known in advance (cf. [4]). For example, if the graph
consists of a single path, the pathwidth is equal to one. For trees the pathwidth is O(d), where
d is the length of the longest path in the tree. Robertson and Seymour developed a variant of
the path decomposition concept called tree decomposition in [18]. Instead of a decomposition
of the graph into a path, the graph is decomposed into a tree of induced subgraphs. The width
of a tree decomposition is the maximum cardinality of the subgraphs minus one. Formally,

5

De�nition 3.2 (Robertson and Seymour [18]) Let G = (V;E) be a graph. A tree-decom-

position is a pair (T;X), where T = (I; F) is a tree with nodes I and edges F , and X = fXi :
i 2 Ig is a family of subsets of V , one for each node of T , such that

(i).
S
i2I Xi = V ,

(ii). for every edge fv; wg 2 E, there is an i 2 I with v 2 Xi and w 2 Xi, and

(iii). for all i; j; k 2 I, if j is on the path from i to k in T , then Xi \Xk � Xj.

The width of a tree decomposition is maxi2I jXij � 1. The treewidth of a graph G, denoted by

tw(G), is the minimum width over all possible tree decompositions of G.

The third condition of the tree decomposition is equivalent to the condition that for all v 2 V ,
the set of nodes fi 2 I : v 2 Xig is connected in T . Note that, since each path decomposition is
also a tree decomposition, tw(G) � pw(G).

��
��

��
��

��
��

��
��

��
��

��
��

��
��
��
��

@
@
@

abd acd cde

egh

def fi

ij

ik

Figure 2: Example of a tree decomposition with width 2

In Figure 2 an optimal tree decomposition of the graph of Figure 1 is given. The width of
this decomposition is 2. A connected graph has treewidth 1 if and only if the graph is a tree.
The complexity of the construction of a tree decomposition (path decomposition) of minimal
treewidth (pathwidth) is discussed in the next proposition.

Proposition 3.1

(i). The problem `Given a graph G = (V;E) and an integer k, is the treewidth (pathwidth) of

G at most k' is NP-complete.

(ii). Given a constant integer k, the problem `Given a graph G = (V;E), is the treewidth

(pathwidth) of G at most k' can be solved in polynomial time.

So, if the integer k is part of the input of the problem, the problem is NP-complete whereas it
can be solved in polynomial time in case k is �xed. The NP-completeness results for treewidth
and pathwidth are due to Arnborg, Corneil and Proskurowski [3]. An algorithm that solves the
problem in polynomial time for constant k is given by Bodlaender [5]. However, this algorithm
is exponential in k, and is therefore impractical for graphs with larger treewidth. Therefore, we
use a heuristic to construct tree decompositions.

6

In a tree decomposition we can remove nodes for which the corresponding vertices form a subset
of the vertices of another node. As a consequence, every tree decomposition can be transformed
to a tree decomposition in which the vertex-sets of all internal nodes separate the constraint
graph in at least two components, i.e., the vertices form a separating vertex set.

De�nition 3.3 An st-separating set of G = (V;E) is a set S � V n fs; tg with the property that

any path from s to t passes through a vertex of S. The minimal separating vertex set of G is

given by the st-separating set with minimum cardinality over all combinations fs; tg 62 E.

Note that the separating vertex sets in a tree decomposition are not necessarily minimal. The
property that every internal node correspond with a separating vertex set forms the basis of our
heuristic, which is the topic of the next section.

4 Construction of a Tree-Decomposition

Since the algorithm we want to use for solving FAPs heavily depends on the width of the tree
decomposition of the constraint graph, we need a tree decomposition with small width. Finding
a tree decomposition with optimal width is NP-hard. Therefore, we implemented a sequential
improvement heuristic. The algorithm aims at decreasing the cardinality of the nodes in a given
tree decomposition based on the property that the vertices that correspond to internal nodes of
the tree are separating vertex sets in the graph. We try to replace a node in an existing tree
decomposition by a number of new nodes for which the maximum cardinality is smaller than the
cardinality of the original node. To achieve this goal, we search for small separating vertex sets.
In Section 4.1 we describe the algorithm to �nd a minimum separating vertex set in a graph,
whereas the heuristic itself is the topic of Section 4.2.

4.1 Minimum separating vertex set in a graph

For any combination of 2 non-adjacent vertices, the st-separating set with minimal cardinality
can be found e�ciently using Menger's theorem.

Theorem 4.1 (Menger [16]) Given a graph G = (V;E) and two distinct non-adjacent vertices

s; t 2 V , the minimum number of vertices in an st-separating set is equal to the maximum number

of vertex-disjoint paths connecting s and t.

So, we have to calculate the maximum number of vertex-disjoint paths. This problem is solvable
in polynomial time by standard network
ow techniques. First, we construct a directed graph
D = (V;A), in which each edge fv,wg is replaced by two arcs (v; w) and (w; v) both with weight
1. Next, we construct an auxiliary directed graph D0 by

� replacing each vertex v by two vertices v0 and v00,

7

� redirecting each arc with head v to v0,

� redirecting each arc with tail v to v00, and

� adding an arc from v0 to v00 with weight 1.

Then, the minimum number of vertices in an st-separating set in G is equal to the minimum
weight of an s00� t0 cut in D0. So, if we calculate the minimum s00� t0 cut for every combination
s; t 2 V , fs; tg 62 E, we obtain the minimum separating vertex set. Note that since the graph D0

is a directed graph, we have to solve O(n2) minimum cut problems. In other words, we cannot
use the algorithm of Gomory and Hu [9], which solves the all pairs minimum cut problem for
undirected graphs by solving only O(n) minimum cut problems.

4.2 Heuristic

The heuristic we use to obtain a tree decomposition can be described as follows. We start with
the trivial tree decomposition in which we have one node corresponding to the complete graph.
During the process we have a tree decomposition (T;X). We select the node i 2 I with jXij

maximum. This node is replaced by m+ 1 nodes i0; : : : ; im with vertex sets Xi0 ; : : : ;Xim . The
nodes i1; : : : ; im all are connected with i0. Each node k 2 N(i) is connected to exactly one node
j 2 fi0; : : : ; img, such that all conditions of a tree decomposition are satis�ed again.

The sets Xi0 ; : : : ;Xim are de�ned as follows. We construct a graph Gi = (Vi; Ei) that consist of
the induced subgraph G[Xi] and the additional edges [k2N(i)C(Xi \Xk), where C(X) denotes
a complete graph on the vertices X (i.e., C(X) is a clique). If Gi is a complete graph, then
Xi0 := Xi and m = 0, i.e., we do not change the tree decomposition. If Gi is not a clique, then
we calculate a minimum separating vertex set S � Vi. Let Yi1 ; : : : ; Yim be the vertex sets of the
m � 2 components of Gi[Vi nS]. We de�ne Xi0 := S, and Xij := Yij [S for all j 2 1; : : : ;m. The
set Xk has a non-empty intersection with at most one set Yij , j = 1; : : : ;m: Let v; w 2 Xi \Xk,
then fv; wg 2 C(Xi \ Xk) � Ei, which implies that v and w cannot be separated by S. So,
either v; w 2 S or v; w 2 Yij [S for only one j 2 f1; : : : ;mg. Therefore, we connect each
neighbor k 2 N(i) with the node ij , j 2 f1; : : : ;mg for which the intersection of Xk and Yij
is non-empty, or in case there is none with i0. As a consequence, the new construction is a
tree again (see Figure 3). In the new tree the conditions for a valid tree decomposition again

v

v v v v v�

�

�

�

�
�

J

J

J

JJ

Z

Z

Z

Z

Z
Z

Xi

Xk, k 2 N(i)
)

v

v v v v v�

�

�

�

�
�

v

v

J

JJ

vH
H

H
HH
Xi0

Xij
, j = 1; : : : ;m

Xk, k 2 N(i)

Figure 3: Improvement step of a tree decomposition

hold. Since [mj=0Xij = ([mj=0Yij) [S = Xi condition (i) is satis�ed. To satisfy condition (ii)
we have to prove that for each edge fv; wg 2 E[Xi] one of the new vertex sets Xi0 ; : : : ;Xim

contains both vertices. If v; w 2 S, then this is trivially true. Otherwise, suppose v 2 Yij for

8

some j 2 f1; : : : ;mg. If w 2 Yik , k 6= j, then S does not separate Yij and Yik ; a contradiction.
And thus, w 2 Yij [S = Xij . Condition (iii) states that all nodes in the tree that contain the
same vertex v must form a subtree. We only need to check this for v 2 Xi. If v 2 S then v is
contained in all new nodes and the condition is trivially satis�ed. Otherwise, let v 2 Yij for some
j 2 f1; : : : ;mg. By construction, nodes k 2 N(i) and ij are connected if Xk and Yij intersect.
Hence, all nodes that contain v form a subtree again.

Note that, if Gi is not a clique, then there exist vertices v; w 2 Xi with fv; wg 62 Ei. Thus
S = Xi n fv; wg separates Gi in two components; Yi1 = fvg and Yi2 = fwg. So, maxfjYi1 [
Sj; jYi2 [Sjg = jXij � 1 < jXij. As a consequence, the width of the tree decomposition may
decrease. Figure 4 shows the heuristic in a
owchart.

INPUT:

Graph G = (V;E)

Construct (T;X)

with jIj = 1 and X1 = V

9i 2 I with

Gi not a clique

no OUTPUT: current

tree-decomposition

yes

Calculate minimal separating

vertex set S for Gi:

m components Yi1 ; : : : ; Yim

De�ne Xi0 := S

Xij
:= Yij

[S, for j = 1; : : : ;m

Construct new (T;X)

Figure 4: Heuristic for construction of a tree decomposition

5 Dynamic Programming Algorithm

The algorithm that solves the FAP in polynomial time (given that the treewidth is at most a
constant k) is based on the following idea. Let S � V be a separating vertex set of G with
G[V n S] = G[V1] [G[V2]. Then the optimal assignment in V1 (or V2) only depends on the
assignment in S. So, given an assignment of S the problem decomposes in two FAPs on G[V1]
and G[V2]. Thus, the FAP can be solved by solving the two FAPs on G[V1] and G[V2] for all
possible assignments in S. This idea can be formulated as a dynamic programming algorithm

9

using a tree decomposition of the graph. For every internal node i 2 I, Xi is a separating vertex
set, which implies that given an assignment for Xi, the FAP decomposes in smaller FAPs for
every branch in the tree.

Before we describe the algorithm in more detail, we �rst introduce some additional notation. In
the sequel of the paper we assume that the tree is rooted and binary. Let Yi = fv 2 V : 9j 2
I; j descendant of i and v 2 Xjg denote the set of vertices that is represented by the subtree
rooted at node i. Given a subset S � V , we denote with dS = (dv)v2S an assignment of domain
elements dv 2 Dv for every vertex v 2 S. Similar, DS denote the complete set of all assignments
for a set S.

Now, we can describe the dynamic programming algorithm as follows. In a bottom-to-top way
we compute for every node i 2 I all assignments for the subset Yi, DYi . Starting with a leaf
i 2 I of the tree, the algorithm stores all assignments for the vertices in Xi. The computation
of all assignments takes O(�v2Xi

jDv j) = O(djXij) time, where d = maxv2V jDv j. Next, given
all assignments for two nodes j; k 2 I with common predecessor i 2 I, we can compute all
assignments Yi by combining every assignment of Yj , every assignment of Yk that has the same
assignment for the vertices in Xj \Xk, and every assignment of domain elements to the vertices
in Xi n (Xj [Xk). However, since Xi is a separating vertex set in the graph, we do not have to
store all assignments for the vertices in Yi, but only the assignments that di�er for the vertices
in Xi. For an assignment of the vertices in Xi, we only have to store the best assignment for
the vertices in Yi nXi. In other words, we have to store at most �v2Xi

jDv j assignments for node
i 2 I instead of �v2Yi jDv j assignments to obtain the overall optimal solution. The computation
of these assignments can be done in O(�v2Xi[Xj[Xk

jDv j) = O(djXij+jXjj+jXkj). Finally, for the
root node r 2 I of the tree T , Yr = V , and so we only have to store one solution which gives
the desired optimal solution for the problem. The overall computation time of this algorithm
is given by O(nd3k), where k is the width of the tree decomposition (T;X) of G that is used.
So, for graphs with treewidth bounded by a constant k, this algorithm solves the FAP in time
polynomial in n and d, but exponential in k. In Figure 5 the algorithm is represented in a

owchart, where we assume that the nodes are numbered 1; : : : ; jIj in a topological order from
top to bottom.

The performance of the algorithm highly relies on additional techniques to reduce the size of
the sets of assignments DYi . These techniques are described in the next section.

6 Reduction Techniques

Quick ways to remove vertices and edges from the constraint graph or to remove frequencies
from the domains of the vertices may speed up any solution technique for the FAP applied
afterwards. Our technique for solving the FAP, a dynamic programming algorithm based on the
tree decomposition of G, computes all non-redundant assignments for subsets of vertices. The
number of di�erent assignments grows exponentially with the cardinality of the subset, which
makes the need for good reduction techniques evident. In this section we present several such
techniques. All are based on the following paradigm for extending partial feasible solutions:

10

INPUT:

Problem P = (G = (V;E);D; p; q)

Tree-decomposition (T;X)

i := jIj

Node i is a leaf ?
yes

Compute all assignments for Xi

no

Let i be the predecessor of j; k 2 I

Compute all assignments for Yi

from assignments for Yj and Yk

i := i� 1

i > 0 ?

no

P solved

yes

Figure 5: Dynamic programming algorithm

A partial feasible solution can be extended to an optimal solution only if the extension itself is
optimal with respect to the partial feasible solution. In other words, if a partial feasible solution
is not extended optimally, the resulting feasible solution is certainly not optimal.

In the next subsection we use this paradigm directly to remove vertices, or replace them by
edges. In Subsection 6.2 we present a penalty shifting procedure, which is mainly used to obtain
lower bounds on the value of the instances, but can sometimes remove edges from the constraint
graph as well. In Subsection 6.3, we present techniques to remove frequencies from the domains
of vertices, and to remove non-optimal partial feasible solutions. This is done in two ways: by
using upper bounding techniques, and by using dominance criteria.

6.1 Constraint graph reduction

In this subsection we describe how we can remove vertices v 2 V with jDvj = 1 or jN(v)j � 2
from G. First of all, for vertices v with Dv = fd�vg we do not have a choice for the frequency.
Therefore v can be removed from the constraint graph, provided that q(v; d�v) is added to the
solution value, and that for every w 2 N(v), dw 2 Dw the penalty p(v; d�v ; w; dw) is added to the
vertex penalty q(w; dw). Vertices with degree zero can also be removed from the constraint graph.
For a vertex v 2 V with jN(v)j = 0, the optimal choice of a frequency is argmindv2Dv

q(v; dv).
So, the vertex can be removed from the graph, provided that the value of the optimal solution

11

in the remaining problem will be increased with mindv2Dv
q(v; dv).

Next, let v 2 V be a vertex with jN(v)j = 1, and let N(v) = fwg. Consider a partial solution
in which v is the only vertex without a frequency assigned to it. We should assign a frequency
to v, that has minimal penalty with respect to the partial solution. To do so, we only need
to consider the frequency assigned to w, say d�w, since the other vertices are not connected
to v in G, and, thus, do not in
uence the penalty incurred by any choice of frequency for v.
Therefore, it su�ces to compute the smallest penalty incurred by the frequencies of v, i.e.,
mindv2Dv

fq(v; dv) + p(v; dv ; w; d
�
w)g, and extend the partial feasible solution with a frequency

d�v that attains this minimum. Although d�w may di�er among all partial solutions, we can
determine the best extension of any partial feasible solution beforehand by, for all dw 2 Dw,
computing the value

q0(w; dw) = mindv2Dv
fq(v; dv) + p(v; dv ; w; dw)g

and subsequently adding q0(w; dw) to q(w; dw). This, in e�ect, adds to each dw the optimal
choice in Dv at the beginning of the algorithm, allowing us to remove the vertex v and the edge
fv; wg from the instance. At the end of the algorithm an optimal solution found for the problem
instance restricted to G[V n fvg], can then be extended by selecting the optimal choice d�v 2 Dv

given the chosen frequency d�w of w.

We can generalize this idea to vertices with degree two as follows. Let v be such a vertex, and let
N(v) = fu;wg. To extend a partial solution in which v is the only node without a frequency, we
should assign a frequency to v, that is optimal with respect to the frequencies of u and w. Let d�u
and d�w be the selected frequencies. We then select d�v = argmindv2Dv

fp(u; d�u; v; dv)+ q(v; dv)+
p(v; dv ; w; d

�
w)g. Again, we can do this beforehand by, for all du 2 Du; dw 2 Dw, computing the

value

p0(u; du; w; dw) = mindv2Dv
fp(u; du; v; dv) + q(v; dv) + p(v; dv ; w; dw)g

and subsequently adding p0(u; du; w; dw) to p(u; du; w; dw). This, in e�ect, adds to each combina-
tion fdu; dwg the optimal choice in Dv , allowing us to remove the vertex v and its two incident
edges from the instance. Note that possibly the edge fu;wg may have to be inserted in the
constraint graph.

We can repeat the reduction process until all vertices with degree at most two are removed.

6.2 Penalty shifting - Lower bounding

In this subsection we present a technique to obtain a lower bound on the optimal value of the
instances by shifting penalties from edges to vertices and back, and from vertices to the objective
and back. We �rst illustrate the technique by the example in Figure 6(a). We have three
vertices, each with 2 domain elements. The non-zero edge-penalties are given by edges. We can

12

transform this part of the instance by moving penalty from the penalty matrix to the penalties
on frequencies (Figure 6(b)), and even from the frequencies to the objective (Figure 6(c)).

u

u

u

u

u

v

u

u

w

..............
........
.....
.....
.....
...
...
...
...
...
...
..
..
...
..
..
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
...
...
...
...
...
...
....
.....
.....
....
...........
..

.....

....

....

....

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

.....

....

....

.....

...
........
.....
.....
.....
...
...
...
...
...
...
..
..
...
..
..
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
...
...
...
...
...
...
....
.....
.....
....
...........
..

.....

....

....

....

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

.....

....

....

.....

...
........
.....
.....
.....
...
...
...
...
...
...
..
..
...
..
..
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
...
...
...
...
...
...
....
.....
.....
....
...........
..

.....

....

....

....

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

.....

....

....

.....

...

..

1

...

2
...

2

..

1

(a) original

u

u

u

u

u

v

u

u

w

..............
........
.....
.....
.....
...
...
...
...
...
...
..
..
...
..
..
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
...
...
...
...
...
...
....
.....
.....
....
...........
..

.....

....

....

....

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

.....

....

....

.....

...
........
.....
.....
.....
...
...
...
...
...
...
..
..
...
..
..
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
...
...
...
...
...
...
....
.....
.....
....
...........
..

.....

....

....

....

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

.....

....

....

.....

...
........
.....
.....
.....
...
...
...
...
...
...
..
..
...
..
..
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
...
...
...
...
...
...
....
.....
.....
....
...........
..

.....

....

....

....

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

.....

....

....

.....

...

1

1

..

0

...

1
...

1

..

0

(b) shift to vertex v

u

u

u

u

u

v

u

u

w

..............
........
.....
.....
.....
...
...
...
...
...
...
..
..
...
..
..
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
...
...
...
...
...
...
....
.....
.....
....
...........
..

.....

....

....

....

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

.....

....

....

.....

...
........
.....
.....
.....
...
...
...
...
...
...
..
..
...
..
..
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
...
...
...
...
...
...
....
.....
.....
....
...........
..

.....

....

....

....

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

.....

....

....

.....

...
........
.....
.....
.....
...
...
...
...
...
...
..
..
...
..
..
...
..
...
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
.
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...
..
..
...
...
...
...
...
...
...
....
.....
.....
....
...........
..

.....

....

....

....

.

..

..

.

..

.

..

.

..

..

.

..

.

..

.

..

.

..

..

.

..

.

..

.

.....

....

....

.....

...

0

0

z = 1

...

1
...

1

(c) shift to objective

Figure 6: Example shifting penalties

If for an edge fv; wg 2 E we have a penalty matrix such that given d�v 2 Dv for all dw 2 Dw,
p(v; d�v ; w; dw) > 0 then by model equality (3) we can decrease these penalties, and simultane-
ously increase q(v; d�v) with the same amount. The same procedure works on vertices. Suppose
that we have a positive penalty q(v; dv) for all dv 2 Dv. Then by (2) we can decrease the penalty
q(v; dv) with the minimum vertex penalty and add the same value to the objective. The condi-
tion that all penalties should be nonnegative is not really crucial, but allows us to maintain a
lower bound on the objective value.

A special case are penalty matrices with the property that p(v; dv ; w; dw) = �q(v; dv) + �q(w; dw),
i.e., the elements are the sum of values corresponding to the rows and columns. Then we can
reduce all edge-penalties to zero, and thus remove the edge from the constraint graph by shifting
all edge-penalties to the frequencies of the two corresponding vertices.

6.3 Domain reduction

In this section we devise methods to reduce the number of partial feasible solutions to the ones
that are candidates to be used in optimal solutions. We describe two ways of doing so, namely
upper bounding (in Section 6.3.1), and dominance (in Section 6.3.2).

6.3.1 Upper bounding

Upper bounding in its simplest form is performed on vertices as follows. Consider a vertex v and
its neighbors N(v). We want to derive an upper bound u(v; �(v)) on the total penalty incurred
by node v in the optimal solution of the FAP, i.e., an upper bound on the vertex-penalty of v
and the edge-penalties of the edges incident with v.

Consider an arbitrary partial solution d�
N(v)

2 DN(v). Then we compute the frequency for v

13

with the lowest penalty:

P (d�
N(v)

) = mindv2Dv

n
q(v; dv) +

P
w2N(v) p(v; dv ; w; d

�
w)
o

Among all possible choices for d�
N(v)

2 DN(v) we take the one with highest penalty, i.e.

u(v; �(v)) = maxd�
N(v)

2DN(v)
P (d�

N(v)
)

Then the value u(v; �(v)) is certainly an upper bound on the penalty incurred by an optimal
choice of frequency for v.

uv

uw3

@
@
@

uw2

uw1

�
�
�

G[V n fvg]

Dv q(v; dv)

1 0
2 0
3 0

p(v; dv ; w; dw1
)

Dw1

Dv 1 2

1 2 0
2 0 2
3 1 1

p(v; dv ; w; dw2
)

Dw2

Dv 1 2

1 0 2
2 2 0
3 1 1

p(v; dv ; w; dw3
)

Dw3

Dv 1 2

1 1 0
2 0 1
3 0 0

Figure 7: Example upper bounding and dominance

We illustrate this upper bounding technique with the following example, see Figure 7. Let v be
a vertex in the constraint graph G. Its domain contains three frequencies: 1, 2, and 3. It is
connected to three vertices w1, w2, and w3 each of which has two frequencies: 1 and 2. For all
dv 2 Dv, the total penalty is q(v; dv) +

P
w2�(v) p(v; dv ; w; d

�
w) where d

�
w is the frequency chosen

for w. In Table 1 we have computed for any combination of (dw1
; dw2

; dw3
) the best frequency

d�v for v, i.e., the one such that the total penalty is minimal among all possible frequencies for
v. Table 1 shows that for this example the upper bound is 2, the maximum of the last column.
In general, though not in this example, any frequency dv 2 Dv with q(v; dv) > u(v; �(v)) can be
removed from Dv.

For arbitrary v 2 V , we can compute this upper bound by solving an integer linear program.
For all w 2 N(v), dw 2 Dw we introduce a binary variable

y(w; dw) =
n
1 if dw 2 Dw is assigned to w 2 N(v)
0 otherwise

If the variable z denotes the actual upper bound, the integer linear program reads as

u(v; �(v)) = max z (6)

14

q(v; dv) +
P

w2N(v) p(v; dv ; w; dw)

dw1
dw2

dw3
dv = 1 dv = 2 dv = 3 best

1 1 1 5 0 2 0
1 1 2 4 1 2 1
1 2 1 3 2 2 2
1 2 2 2 3 2 2
2 1 1 3 2 2 2
2 1 2 2 3 2 2
2 2 1 1 4 2 1
2 2 2 0 5 2 0

Table 1: Penalties example upper bounding and dominance

s.t. z � q(v; dv) +
X

w2N(v)

X
dw2Dw

p(v; dv ; w; dw)y(w; dw)8dv 2 Dv (7)

X
dw2Dw

y(w; dw) = 1 8w 2 N(v) (8)

y(w; dw) 2 f0; 1g 8w 2 N(v); dw 2 Dw (9)

The constraints (8) and (9) enforce that for each neighbor of v exactly one frequency is chosen.
For a given choice of frequencies d�

N(v)
the right-hand sides of constraints (7) are the penalties

incurred with each of the corresponding frequencies for v. Thus, a frequency dv with smallest
penalty determines the highest value z can obtain for the particular choice of frequencies for the
neighbors of v. For each possible assignment of frequencies to the neighbors of v we determine
this value. The worst choice of d�

N(v)
is one for which this value is maximal. This choice

determines the value of z, and so u(v; �(v)).

Frequencies dv 2 Dv for which q(v; dv) > u(v; �(v)) can be removed from the domain. In the
preprocessing phase such frequencies are removed for all vertices. Also, partial feasible solutions
dS 2 DS , v 2 S, for which the penalty incurred by the frequency assigned to v and its incident
edges is higher than u(v; �(v)) need not be considered.

The above technique can be generalized to sets of vertices, instead of single vertices. Consider
a set S � V with its set of assignments DS .

u(S; �(S)) = max z (10)

s.t. z � q(S; dS) +
X

w2N(S)

X
dw2Dw

X
v2N(w)\S

p(v; dv ; w; dw)y(w; dw)

8dS 2 DS (11)
X

dw2Dw

y(w; dw) = 1 8w 2 N(S) (12)

y(w; dw) 2 f0; 1g 8w 2 N(S); dw 2 Dw (13)

15

Here, q(S; dS) denote the total penalty involved by an assignment dS , i.e.,

q(S; dS) =
P

v2S q(v; dv) +
P

fv;wg2E[S] p(v; dv ; w; dw)

This value is a lower bound on the total penalty involved in any complete assignment based
on the partial assignment dS . So, if q(S; dS) > u(S; �(S)), then this partial assignment cannot
be extended to an optimal complete assignment. Hence, it can be removed from the set of
assignments DS . An even better lower bound on the penalty in any complete assignment is
given by the total penalty incurred by the subgraph G[S] and the edges �(S), i.e.

l(S; �(S); dS) = q(S; dS) +
P

w2N(S)mindw2Dw

nP
v2N(w)\S p(v; dv ; w; dw)

o

Whenever l(S; �(S); dS) > u(S; �(S)), we can remove dS from our set of assignments for S. We
will call an assignment non-redundant if l(S; �(S); dS) � u(S; �(S)).

The upper bound u(S; �(S)) is especially powerful if the number of edges in the cut-set �(S;) is
small, or if the sum of the maximum penalties incurred by the cut-set edges is not too large. If
the upper bound u(S; �(S)) = 0 for a subset S, then we know that given any assignment to the
vertices V n S, the partial solution can be extended to a complete solution without additional
penalty. This implies that we can remove the subset S and the edges �(S) from the constraint
graph.

A similar upper bounding technique can be applied to a small extension of the set S and the
edges in its cut-set, i.e., an upper bound for the induced subgraph G[S], the edges �(S) and the
vertices N(S).

Note that, if T � S, u(T; �(T)) � u(S; �(S)), which implies that the upper bound for S is also
valid for T . The upper bound u(S; �(S)) can also be used in combination with lower bounds.
Let S; T � V be disjoint subsets, and let l(S) be a lower bound on the penalty incurred by
G[S]. Then, an upper bound u(T; �(T)) is given by u(T; �(T)) = u(T; �(T))� l(S). Similarly, if
l(S; �(S)) is a lower bound on the penalty incurred by G[S] and the edges �(S), then an upper
bound for G[T] is given by u(T) = u(S [T; �(S [T))� l(S; �(S)).

The main problem with u(S; �(S)) is that it may take quite some time to compute it. It may
be preferable to compute the value of some relaxation of (10)-(13). The LP-relaxation does not
generate really powerful upper bounds. Our choice is therefore to relax (10)-(13) by taking a
subset of the constraints (11), i.e., a number of partial feasible solutions with low q(S; dS). In
case we restrict ourselves to one good partial solution d�S for S we can solve the relaxed problem
by inspection, and use this as an upper estimate of u(S; �(S)):

u(S; �(S)) � q(S; d�S) +
X

w2N(S)

X
dw2Dw

X
v2N(w)\S

p(v; d�v ; w; dw)y(w; dw)

= q(S; d�S) +
X

w2N(S)

max
dw2Dw

X
v2N(w)\S

p(v; d�v ; w; dw) (14)

16

Note that good partial solutions are usually available through heuristics, or are generated in the
dynamic programming algorithm.

6.3.2 Dominance

Upper bounding techniques are a quick way to eliminate the worst partial feasible solutions, but
these techniques sometimes only remove a small fraction of the solutions that are redundant. In
this subsection we develop techniques that remove partial solutions for which there exist better
alternatives. Consider again the example of Figure 7. Though frequency 3 could not be removed
from Dv using the upper bound, we can verify in Table 1 that for no choice of frequencies for the
neighbors of v frequency 3 is the unique optimal choice. In other words, in any solution where
frequency 3 is chosen we can replace it by another frequency without obtaining a worse solution.
Therefore, we maintain at least one of the optimal solutions by removing this frequency from
Dv.

The abstract concept of dominance is as follows. Let v 2 V . Consider all partial solutions of
N(v). If these solutions can be extended with a frequency of Dv n fd

�
vg to solutions at minimum

cost, then d�v is not necessary to obtain an optimal solution. Therefore d�v can be removed from
Dv. We say that d�v is dominated by the frequencies in Dv n fd

�
vg. This concept can also be

generalized to sets of vertices, similar to the generalization of the upper bounds to sets S � V .
Let d�S be an assignment to S, then d�S is dominated by the other non-redundant assignments
DS n fd

�
Sg if every partial feasible solution of N(S) can be extended to a solution at minimum

cost with an assignment of DS n fd
�
Sg.

To �nd out whether d�S is dominated byDSnfd
�
Sg, we formulate the following feasibility problem,

which has a feasible solution if and only if d�S is the unique minimum for some choice of frequencies
of the neighbors. Therefore, it is dominated if and only if this problem has no solution. The
binary variables y(w; dw) used in this formulation have the same meaning as in the previous
subsection: y(w; dw) = 1 if frequency dw is chosen for node w, and 0 otherwise. Then the
feasibility problem reads

q(S; d�S) +
X

w2N(S)

X
dw2Dw

f
X

v2N(w)\S

p(v; d�v ; w; dw)gy(w; dw)

< q(S; dS) +
X

w2N(v)

X
dw2Dw

f
X

v2N(w)\S

p(v; dv ; w; dw)gy(w; dw) 8dS 2 DS n fd
�
Sg (15)

X
dw2Dw

y(w; dw) = 1 8w 2 N(S) (16)

y(w; dw) 2 f0; 1g 8w 2 N(S)8dw 2 Dw (17)

For any solution of N(S) the constraints (15) state that the penalty of d�S , the left hand side
(LHS), should be smaller than the penalty of each dS 2 DS n fd

�
Sg, the right hand side (RHS).

In other words, if there is a solution of N(S) with this property, then d�S is the unique optimum
for this solution, and thus it is not dominated by the other frequencies in DS n fd

�
Sg.

17

To transform (15)-(17) into an integer linear program we introduce a variable z, which de-
notes the maximum di�erence between the RHS and LHS of (15), i.e., it is a measure of the
\minimality" of d�S .

max z (18)

s.t. z � q(S; dS)� q(S; d�S) +
X

w2N(v)

X
dw2Dw

f
X

v2N(w)\S

�p(v; dv ; d
�
v ; w; dw)gy(w; dw)

8dS 2 DS n fd
�
Sg (19)

X
dw2Dw

y(w; dw) = 1 8w 2 N(S) (20)

y(w; dw) 2 f0; 1g (21)

where �p(v; dv ; d
�
v ; w; dw) = p(v; dv ; w; dw) � p(v; d�v ; w; dw). Clearly, if z > 0, then d�S is not

dominated, since the feasibility problem has a solution; otherwise, if z � 0, d�S is dominated.

The formulation (18)-(21) resembles the upper bound formulation (10)-(13). Moreover, this
problem has to be solved for all non-redundant assignments. Therefore, we again relax the
problem by removing constraints. For a good partial solution dS we generate the corresponding
constraint (19). This restricted problem can then be approximated by inspection. From (19) we
get:

z � q(S; dS)� q(S; d�S) +
X

w2N(v)

X
dw2Dw

f
X

v2N(w)\S

�p(v; dv ; d
�
v ; w; dw)gy(w; dw)

= q(S; dS)� q(S; d�S) +
X

w2N(v)

max
dw2Dw

f
X

v2N(w)\S

�p(v; dv ; d
�
v ; w; dw)g

� q(S; dS)� q(S; d�S) +
X

fv;wg2�(S)

max
dw2Dw

�p(v; dv; d
�
v ; w; dw) (22)

So, if the RHS of (22) is already � 0, then d�S is dominated.

7 Iterative Version of the Dynamic Programming Algorithm

Both time and memory are insu�cient to solve large instances with the dynamic programming
algorithm described in Section 5, even if we use the reduction techniques of Section 6. During
the algorithm, the number of non-redundant assignments explodes for these instances. We can
point out two reasons. On the one hand, the width of our tree decomposition is too large. On
the other hand, the number of frequencies available for a vertex is too large. In this section we
focus on this last reason. Instead of assigning frequencies to the vertices, we propose to assign
subsets of frequencies. So, we partition the domain of a vertex in a number of subsets, and assign

18

one of them to the vertex. To handle these subsets as frequencies of a new FAP, we have to
harmonize the vertex and edge-penalties for all frequencies in a subset. We take as penalty the
minimum of the individual penalties. In this way the solution value of the new FAP is a lower
bound for the original problem. We can extend this idea to an iterative method which provides
a sequence of lower bounds for the original instance. The dynamic programming algorithm is
used as a subroutine to solve the FAPs with the substantially smaller domains. Contrary to
the original FAP, time and memory are su�cient to solve these FAPs, because they are much
smaller.

The idea of the method is that we identify a subset of the domain with each vertex. The vertex-
and edge-penalties for these subsets are estimated from below. For example, consider the matrix
of edge-penalties given in Figure 8(a). The level of interference on this edge is 10 if the di�erence
between the frequencies is less than 2. If we divide the frequencies in two groups f1; 2g, and
f3; 4g, we obtain 4 blocks in the table of edge-penalties with (almost) the same values. In most
cases there is no di�erence between the penalties as long as the pairs of frequencies are in the
same block. Therefore, let us construct a new FAP in which we have to assign either the subset
f1; 2g or the subset f3; 4g to the vertices. The edge-penalties in this new FAP are given by
the minimum of the values in each block (see Figure 8(b)). Solving this substantially smaller
problem provides a lower bound for the optimal value of the original problem. The quality of
the lower bound depends on the size of the blocks: many small blocks will provide a better lower
bound than a small number of large blocks. In most real-life instances the block structure of the
penalty matrices arises naturally, since the available frequencies for an antenna can be divided
in groups of frequencies that are in the same part of the spectrum.

dv, dw 1 2 3 4

1 10 10 0 0
2 10 10 10 0

3 0 10 10 10
4 0 0 10 10

(a) original penalty matrix

dv, dw f1; 2g f3; 4g

f1; 2g 10 0

f3; 4g 0 10

(b) new penalty matrix

Figure 8: Example to illustrate the idea behind the iterative algorithm

This idea can be formalized in the following algorithm. We start with the original problem
P = (G;D; p; q) and we partition for every vertex v 2 V the domain Dv in an initial number
of nv subsets D1

v ; : : : ;D
nv
v . This partition is, for example, based on a natural partition of the

frequencies in groups of frequencies that are in the same part of the spectrum.

Next, we construct a new FAP P 0 = (G;D0; p0; q0), with

� domains D0
v = f1; : : : ; nvg for all vertices v 2 V ,

� vertex-penalties q0(v; i) = mindv2Di
v
q(v; dv) for every vertex v 2 V , i 2 D0

v, and

19

� edge-penalties p0(v; i; w; j) = mindv2Di
v
min

dw2D
j
w
p(v; dv ; w; dw) for every edge fv; wg 2 E,

i 2 D0
v, j 2 D0

w.

So, P 0 is de�ned on the same graph as P , and the domains of P 0 correspond with the subsets
Di
v, i = 1; : : : ; nv. Since the vertex and edge-penalties in P 0 are the minimum of the penalties

in the corresponding subset(s), the optimal value of the problem P 0 provides a lower bound for
the optimal value of the original problem P .

Our way to obtain a sequence of non-decreasing lower bounds is based on an iterative re�nement
of the domain-subsets. A partition ~D1

v ; : : : ;
~Dm
v of a domain Dv is called a re�nement of another

partition �D1
v ; : : : ;

�Dn
v , if for every subset ~Di

v , i = 1; : : : ;m, there exists a subset �Dj
v, j 2 f1; : : : ; ng

in the second partition for which Di
v � D

j
v. If ~P and �P are FAPs corresponding to these

partitions, then the value of the optimal solution of ~P will be at least as high as the value of
the optimal solution of �P , which implies that ~P provides a lower bound that is greater than or
equal to the lower bound provided by �P .

Now, we can extend the algorithm to obtain a lower bound to an algorithm that provides a
sequence of non-decreasing lower bounds as follows. We construct a problem P 0 which provides
us with the �rst lower bound. Next, we re�ne the partition of the subsets, and again construct
a FAP P 0 which hopefully provides us with a better lower bound. We can repeat the re�nement
of the partition as long as the e�orts to solve the problem P 0 is reasonable in both time and
memory. A
owchart of this algorithm is presented in Figure 9.

INPUT:

Problem P = (G = (V;E);D; p; q)

Tree-decomposition (T;X), tree T = (I; F)

Lower bounds l+
i
, i 2 I, upper bound: u

Subsets Di
v, 8v 2 V , i 2 f1; : : : ; nvg

Construct new instance P 0 = (G;D0; p0; q0)

Apply Heuristic on P 0: upper bound u0

Apply Dynamic Programming Algorithm on P 0: l0

l0 < u
no Best-known solution

is optimal

yes

Re�ne the partition of the domains

Figure 9: Iterative version of the algorithm

Whatever re�nement procedure (i.e., for which vertices do we re�ne the partition, and how do
we re�ne the partition) we apply, a guarantee that the new lower bound will be strictly greater
than the old lower bound cannot be given in general. However, if for all vertices v 2 V , the

20

domain-subset that corresponds to the optimal solution of P 0 is not partitioned in the re�nement
procedure, then the `old' optimal solution is still optimal in the new problem P 0. This implies
that a re�nement can only be e�ective if at least one selected domain-subset is re�ned. Therefore,
for each re�nement we select one vertex v, for which we partition the assigned subset. To speed
up the process in practice, we do not apply the dynamic programming algorithm after each
single re�nement, but after the re�nement of the domains for a subset of the vertices S � V .

For a partition of the assigned subset for a vertex v 2 V we can compute an upper bound on the
increase of the value of P 0. This upper bound is used as criteria to select a partition. Consider

u

u

u

v

w

u

X
X
X
X
X
X

�
�
�
�
�
�

penalties D
0

u
D

0

w
total

d
1

v
1 0 1

D
0

v
d
2

v
0 1 1

minimum 0 0 1

Figure 10: Example to illustrate the partition of assigned subsets

the example of Figure 10. Let D0
v = fd1v; d

2
vg be the assigned subset to v, and let D0

u and D0
w

be the assigned subsets to the neighbors u and w, respectively. The total penalty incurred by
this assignment is 0. However, if we either assign d1v or d2v to v, then the total penalty will
be one. Hence, partition of the subset may lead to an increase of the value of P 0. It cannot
be guaranteed however, since the new optimal assigned may select a subset other than fd1vg or
fd2vg.

In general, an upper bound on the increase of the optimal value by a partition of the assigned
subset can be computed as follows. We restrict ourselves to a partition of the assigned domain-
subset in two domain-subsets, but the procedure can easily be extended to a partition in more
than two domain-subsets. The procedure can also be generalized to subsets of vertices instead
of single vertices. Let v 2 V , and D0

v be the domain-subset that corresponds to the optimal
assignment. If we partition D0

v in Av and D
0
v nAv, then the value of the problem P 0 will increase

with at most ��(v;Av),

��(v;Av) = minf�(v;Av); �(v;D
0
v n Av)g � �(v;D0

v)

where

�(v;D) = mindv2D q(v; dv) +
P

w2N(v)mindv2Dmindw2D0

w
p(v; dv ; w; dw)

Among all partitions Av, D
0
v n Av, the best partition, according to the value ��(v;Av), is

A�
v = argmaxAv�D0

v
��(v;Av). If ��(v;A

�
v) = 0 then no single re�nement of the partition for

vertex v will result in an increase of the lower bound for P . Therefore, the subset S for which
we will partition the assigned subset is given by the vertices for which ��(v;A�

v) > 0.

The iterative method can be separated from the dynamic programming algorithm. In principle
we can use any exact algorithm to solve the consecutive FAPs. However, the use of the dynamic

21

programming algorithm of Section 5 enables us to use information of previous solved problems.
More precisely, during the computation of the optimal solution of a previous problem P 0, we
obtain for all i 2 I a lower bound l(Yi; �(Yi)) for the penalty incurred by G[Yi] and the edges
�(Yi). These values are also lower bounds on the penalty in the new problem P 0, which implies
that we can compute upper bounds u(V nYi) = u0� l(Yi; �(Yi)) for all i 2 I. Here, u0 is a general
upper bound for the new problem P 0 which can be computed by one of the heuristics available
for the FAP. If the increase of u0 is not too large for two consecutive problems P 0, then the upper
bounds for the subsets are often relatively strong.

8 Computational Results

In this section we report on the results we have obtained using the approach described in the pre-
vious sections. We tested the methods described in this paper on real-life instances obtained from
the CALMA-project [19]. The set of instances consists of two parts. The CELAR instances are
real-life problems from a military application. The GRAPH instances are randomly generated
problems with the same characteristics. We only used the 11 so-called penalty-instances, since
for the other instances the objective is either to minimize the frequency span, or the minimize
the number of frequencies used. In this section we solve 7 out of the 11 instances to optimality
and we obtain good lower bounds for the other instances. Before this study non-trivial lower
bounds were only available for 2 instances.

The solution procedure can be divided in four parts, each of which is analyzed in the forthcoming
subsections. In Section 8.1 we report on the results obtained with the preprocessing techniques
of Section 6. The results of the heuristic to construct a tree decomposition of Section 4 are
presented in Section 8.2. In Section 8.3, we show that some of the instances of the CALMA-
project can be solved to optimality with the dynamic programming algorithm of Section 5.
Furthermore, we compare the performance of the dynamic programming algorithm with the
polyhedral approach on 5 small test instances that have been constructed from one of the
CELAR instances. Section 8.4 is devoted to the lower bounds which were obtained with the
iterative version of the algorithm described in Section 7.

All implementations have been carried out in C++. The programs for the dynamic programming
algorithm and the iterative version of the algorithm were running on a DEC 2100 A500MP
workstation with 128Mb internal memory. The programs for preprocessing, for the construction
of a tree decomposition, and for the computation of upper bounds for single vertices were
executed on a Pentium II - 233 Mhz Personal Computer with 32Mb internal memory. We used
the callable library of CPLEX 4.0 to solve (integer) linear programming problems.

8.1 Preprocessing

We start our computations with the application of the graph and domain reduction techniques
described in Section 6. The following procedure is repeated as long as the size of the problem
is reduced. First of all, we apply penalty shifting from edges to vertices and from vertices to

22

the objective. Next, we apply the graph reduction techniques: the removal of vertices with only
one domain element, the removal of edges with only zero penalty, and the removal of vertices
of degree less than or equal to two. Then, we calculate the upper bound (14) for every vertex,
and we apply the dominance test (22) for single vertices. If a frequency is dominated, then we
remove this frequency from the domain. The dominance test (18)-(21) with S = fvg yields no
additional reduction. If, due to the upper bound and dominance test, a vertex with only one
frequency occurs, we remove the vertex. We apply the same upper bound (14) and dominance
test (22) for adjacent vertices. Contrary to the dominance test for a single vertex we cannot
remove the frequencies of the combination in case it is dominated. Therefore, we increase the
edge-penalty of this combination with an amount that guarantees that it will never occur in a
non-redundant assignment. Moreover, if given a frequency dv 2 Dv, the combination (dv ; dw) is
dominated for all dw 2 Dw, we can remove the frequency dv from the domain Dv.

before preprocessing after preprocessing best previous
instance jV j jEj jDj jV j jEj jDj �xed value lower bound

CELAR 06 100 350 39.9 82 327 39.9 0 3389 0
CELAR 07 200 817 39.9 162 764 34.6 0 343592 0
CELAR 08 458 1655 39.5 365 1539 39.4 0 262 0
CELAR 09 340 1130 39.5 67 165 35.6 11391 15571 14969
CELAR 10 340 1130 39.5 0 0 - 31516 31516 31204

GRAPH 05 100 416 37.1 0 0 - 221 221 -
GRAPH 06 200 843 37.7 119 348 16.2 4112 4123 -
GRAPH 07 200 843 36.7 0 0 - 4324 4324 -
GRAPH 11 340 1425 37.7 340 1425 32.6 2553 3080 -
GRAPH 12 340 1255 37.6 61 123 15.3 11496 11827 -
GRAPH 13 458 1877 38.4 456 1874 38.1 8676 10110 -

Table 2: Statistics and preprocessing penalty-instances CALMA-project

In the Table 2 statistics for all penalty-instances before and after preprocessing are reported.
Consecutively, we report the number of vertices (jV j) and the number of edges (jEj) in the
constraint graph, and the average number of domain elements (jDj). In addition, we report
the value that is �xed by the preprocessing phase, the best known value (see Kolen [14]), and
the best known lower bound (cf. Hurkens and Tiourine [11]). For the GRAPH instances this
lower bound is not available. Table 2 shows that 3 out of the 11 penalty-instances are solved by
preprocessing only. For the instances CELAR 10 and GRAPH 07 this is mainly due to the vertex
penalties, that cause the removal of many frequencies. The graph reduction in the instances
CELAR 09 and GRAPH 12 can be explained in the same way. Table 2 also shows that there is a
major di�erence between the real-life CELAR instances and the randomly generated GRAPH
instances. The �xed value for the CELAR instances without vertex-penalties is simply zero,
whereas for the GRAPH instances 80% or more of the best known value can be �xed. This
di�erence can be explained by the e�ectiveness of the di�erent preprocessing rules. For the
CELAR instances, the main part of the reduction is due to the removal of vertices with degree
less than or equal to two, whereas the main part of the reduction for the GRAPH instances is
due to penalty shifting (�xing) and the dominance test (22) for single vertices. In fact, for the

23

instance GRAPH 05, a �rst round of shifting penalties resulted in a lower bound of 220. As a
consequence, many domain elements could be removed from the problem, and the constraint
graph reduced substantially. A new round of shifting penalties resulted in the proof of optimality
of the best known solution. The running time of the preprocessing phase is within a minute for
all penalty-instances.

8.2 Construction of Tree-decompositions

The second step in solving a FAP is the construction of a tree decomposition of the preprocessed
constraint graph.

instance jV j jEj width max clique - 1 cpu-time (sec)

CELAR 06 82 327 11 10 17
CELAR 07 162 764 17 10 176
CELAR 08 365 1539 18 10 802
CELAR 09 67 165 7 7 0

GRAPH 06 119 348 17 5 137
GRAPH 11 340 1425 104 7 19749
GRAPH 12 61 123 4 4 6
GRAPH 13 456 1874 133 6 63586

Table 3: Construction of a tree decomposition

In Table 3 we report on the results of the heuristic of Section 4. We also report the maximum
clique size minus one. Since every clique should be in at least one node of the tree, this value
is a lower bound for the treewidth of a graph. Table 3 shows that the gap between the width
and the lower bound varies from zero for small instances to very large for the large GRAPH
instances. For these instances it is not clear which bound is poor. We have tried several variants
of our heuristic to improve the width of the tree decomposition, but without any success.

8.3 Dynamic Programming Algorithm

In this subsection we report the computational results obtained with the dynamic programming
algorithm of Section 5. The order in which we calculate all non-redundant assignments for the
subsets Yi, i 2 I is based on the available upper bounds (14) for S = Yi. The sets Yi are ordered
according to non-decreasing u(Yi; �(Yi)). During the dynamic programming algorithm the upper
bounds for the subsets are updated every time we obtain a new lower bound for a subset
by computing all non-redundant assignments. If an upper bound for a subset decreases and
all non-redundant assignments are already computed, we remove all assignments with penalty
larger than the new upper bound. The dynamic programming algorithm is used with and
without applying a dominance test for the subsets Yi. As dominance test, we solve the linear
programming relaxation of (18)-(21) with a limited number of constraints (19).

24

A �rst test of the dynamic programming algorithm is performed on 5 instances with size of the
domains between 2 and 6 for all vertices. These instances were constructed from the instance
CELAR 6 by taking a subset of the domain elements of prede�ned size. In Koster, van Hoesel
and Kolen [15] the polyhedral approach is tested on these instances. The tree decomposition
approach is tested on these instances with and without using the dominance test (18)-(21). In

instance jDvj CPU-time for
polyhedral method DP without dominance DP with dominance

CELAR6a 2 3.5 3.8 8.8
CELAR6b 3 84.1 38.4 35.1
CELAR6c 4 11785.5 408.6 219.2
CELAR6d 5 22501.2 2306.5 592.9
CELAR6e 6 75570.5 - 2399.4

Table 4: Computational results dynamic programming algorithm test instances

Table 4 the computation times of the polyhedral method and the tree decomposition approach
are compared. Without using dominance the dynamic programming algorithm cannot solve
the largest instance. At some point during the dynamic programming algorithm the number of
non-redundant assignments for a subset is too large to store into the memory of our computer.
The table shows that both dynamic programming algorithms are competitive or substantially
faster than the polyhedral method. We also may conclude that the use of the dominance test
in the dynamic programming algorithm speeds up the process for these instances.

The dynamic programming algorithm is also performed on the original penalty-instances. The
polyhedral method is not able to solve these instances, or even to generate non-trivial lower
bounds. Table 5 shows the results that are obtained with the dynamic programming algorithm

instance optimal value CPU-time (sec)

CELAR 06 3389 27102
CELAR 07 - -
CELAR 08 - -
CELAR 09 15571 23

GRAPH 06 4123 29
GRAPH 11 - -
GRAPH 12 11827 11
GRAPH 13 - -

Table 5: Computational results dynamic programming algorithm

without dominance. Experiments with the dominance test did not result in a better performance
of the algorithm for these instances. The instances CELAR 09, GRAPH 06 and GRAPH 12 can be
solved very e�ciently with this method. After more than 7.5 hours the algorithm was able to
prove that the best known solution was optimal for this instance as well. Figure 11 shows the
number of non-redundant assignments during the process compared with the theoretical number.

25

The optimal value for all these instances is equal to the best known. The instance CELAR 06 is
more di�cult to solve. Mainly due to limitations in computer memory, we are not able to solve
the other instances.

1

100

10000

1E+06

1E+08

1E+10

1E+12

1E+14

1E+16

1E+18

1E+20

1E+22

subsets during dynamic programming algorithm

as

si
gn

m
en

ts

computed theoretical

Figure 11: Number of non-redundant assignments CELAR 06

8.4 Iterative version

Table 5 in the previous subsection shows that the dynamic programming algorithm is not able
to solve several instances. For these problems we apply the iterative version of the algorithm
of Section 7. Before we start our computations we have to partition all domains in an initial
number of subsets. In our experiments we start with either 2 or 4 subsets for every vertex. The
partition of the subsets is based on a natural partition of the frequencies in the radio spectrum.

In each iteration of the algorithm, �rst a heuristic is applied to obtain an upper bound for
the instance. In our computational experiments we used the genetic algorithm developed by
Kolen [14]. Then, we apply the dynamic programming algorithm in the same way as in the
previous subsection. As last step in an iteration, we partition the selected domain-subset of
the vertices in the set S. As described in Section 7, we base our selection of S and the actual
partitions on the values ��(v;A�

v). We limit the set S to at most 20 vertices. Moreover, we
do not compute ��(v;Av) for every partition of the selected domain-subset D0

v, but only for
partitions of the form f1; : : : ; ig; fi + 1; : : : ; jD0

v jg.

In Table 6 we report the results we obtained in this way for the instances that we could not
solve with the original dynamic programming algorithm. For CELAR 07 we obtain a lower bound

26

instance initial lower bound lower bound upper CPU-time
subsets after preprocessing iterative algorithm bound (sec)

2 3388 13734
CELAR 06

4
0

3388
3389

9429

2 243066 259022
CELAR 07

4
0

300000
343592

275736

2 87 313168
CELAR 08

4
0

74
262

12482

GRAPH 11 4 2553 - 3080 -

GRAPH 13 4 8676 - 10110 -

Table 6: Computational results iterative version of the algorithm

that is within 12.5% of the best known value. Both for CELAR 07 and CELAR 08 the values are
the �rst non-trivial lower bounds. For the instances GRAPH 11 and GRAPH 13, the width of the
tree decomposition is too large to apply the dynamic programming algorithm with any success.
We also apply the iterative version to the instance CELAR 06. If we either start with an initial
number of subsets of 2 or 4, we obtain a lower bound that is one away from optimal in third
the time (or half the time) that is needed to solve the problem to optimality with the original
dynamic programming algorithm. Figure 12 shows the improvement of the lower bound during

0

3389

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

iteration

va
lu

e

Start with 4 domain elements Start with 2 domain elements

Figure 12: Lower bounds CELAR 06

the process. In case we start with 2 subsets per vertex we need 38 iterations to achieve the lower
bound of 3388, whereas if we start with 4 subsets per vertex we need 35 iterations. Figure 13
shows a histogram with the vertices as a function of the number of subsets after the last iteration.

27

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

iteration

ve

rt
ic

es

Start with 2 domain elements Start with 4 domain elements

Figure 13: Number of vertices as function of number of domain-subsets for CELAR 06 at the
end of the iterative algorithm.

It shows that only for a restricted number of vertices the domain is re�ned during the process.

9 Concluding Remarks

In this paper we described a computational study to use the concept of tree decomposition
to solve frequency assignment problems to optimality. We showed that the method, although
theoretically polynomial in both time and space requirements, can only be applied to real-
life problem instances if we use additional reduction techniques, like graph reduction, upper
bounding and dominance. Even with these techniques, it is not sure that the instances can be
solved. Therefore, we presented an iterative version of the algorithm which can be used to obtain
lower bounds for most of the instances. For a set of real-life instances, we proved optimality for
several instances, whereas we obtained the �rst non-trivial lower bounds for the other instances.
Other methods, like integer programming techniques were not able to solve these instances.

Based on these results, we state two directions for further research. One way is to embed
either the dynamic programming algorithm or the iterative algorithm in a branch-and-bound
framework. Hopefully, this result in even better lower bounds. Another way for further research
is the application of this method to other hard combinatorial optimization problems. It is
worthwhile to investigate the possibilities of this method for problems that are based on a
graph, and which cannot be solved by the current solution methods.

28

Acknowledgement

The authors would like to thank Rudolf M�uller for his suggestions which resulted in the iterative
algorithm of Section 7.

References

[1] K.I. Aardal, A. Hipolito, C.P.M. van Hoesel, and B. Janssen. \A branch-and-cut algo-
rithm for the frequency assignment problem.". Research Memorandum 96/011, Maastricht
University, 1996.

[2] K.I. Aardal, C.P.M. Van Hoesel, A.M.C.A. Koster, C. Mannino, and A. Sassano. Models
and solutions techniques for the frequency assignment problem. Working paper, Maastricht
University, 1999.

[3] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of �nding embeddins in a
k-tree. SIAM Journal on Algebraic and Discrete Methods, 8:277{284, 1987.

[4] H.L. Bodlaender. \A tourist guide through treewidth". Acta Cybernetica, 11(1-2):1{21,
1993.

[5] H.L. Bodlaender. \A linear time algorithm for �nding tree-decompositions of small
treewidth". SIAM Journal on Computing, 25(6):1305{1317, 1996.

[6] R. Bornd�orfer, A. Eisenbl�atter, M. Gr�otschel, and A. Martin. Frequency assignment in
cellular phone networks. Annals of Operations Research, 76:73{94, 1998.

[7] D.J. Castelino, S. Hurley, and N.M. Stephens. A tabu search algorithm for frequency
assignment. Annals of Operations Research, 10:301{319, 1996.

[8] M. R. Garey and D.S. Johnson. \Computers and intractability: a guide to the Theory of

NP-Completeness". Freeman and Company, N.Y., 1979.

[9] R.E. Gomory and T.C. Hu. Multi-terminal network
ows. Journal of SIAM, 9:551{570,
1961.

[10] W.K. Hale. Frequency assignment: Theory and applications. Proceedings of the IEEE,
68:1497{1514, 1980.

[11] C.A.J. Hurkens and S.R. Tiourine. Upper and lower bounding techniques for frequency
assignment problems. Technical Report COSOR 95-34, Eindhoven University of Technology,
1995.

[12] J. Janssen and K. Kilakos. Polyhedral analysis of channel assignment problems: (i) tours.
Technical Report CDAM-96-17, London School of Economics, 1996.

[13] B. Jaumard, O. Marcotte, C. Meyer, and T. Vovor. Comparison of column generation
models for channel assignment in cellular networks. Discrete Applied Mathematics, October
1999.

29

[14] A.W.J. Kolen. A genetic algorithm for the partial binary constraint satisfaction problem:
An application to a frequency assignment problem. Technical report, Maastricht University,
1999.

[15] A.M.C.A. Koster, C.P.M. Van Hoesel, and A.W.J. Kolen. The partial constraint satisfaction
problem: Facets and lifting theorems. Operations Research Letters, 23(3-5):89{97, 1998.

[16] K. Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10:96{115, 1927.

[17] N. Robertson and P.D. Seymour. Graph minors. I. excluding a forest. Journal of Combi-

natorial Theory, Series B, 35:39{61, 1983.

[18] N. Robertson and P.D. Seymour. Graph minors. II. algorithmic aspects of tree-width.
Journal of Algorithms, 7:309{322, 1986.

[19] S. Tiourine, C. Hurkens, and J.K. Lenstra. \An overview of algorithmic approaches to
frequency assignment problems". In Calma Symposium on Combinatorial Algorithms for

Military Applications, pages 53{62, 1995. Available at http://www.win.tue.nl/math/bs/
comb opt/hurkens/calma.html.

30

