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Abstract

Let GG be an (edge-)colored graph. A path (cycle) is called monochro-
matic if all the edges of it have the same color, and is called heterochro-
matic if all the edges of it have different colors. In this note, some
sufficient conditions for the existence of monochromatic and heterochro-
matic paths and cycles are obtained. We also propose a conjecture on
the existence of paths and cycles with many colors.
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1 Introduction

We use [1] for terminology and notation not defined here and consider simple graphs
only.

Let G = (V(G), E(G)) be a graph. By an edge-coloring of G we will mean a
function C': E(G) — IN. If GG is assigned such a coloring, then we say that G is a

colored graph, and we call C'(e) the color of the edge e € F(G). We note that C'is not
necessarily a proper edge-coloring, i.e., two adjacent edges may have the same color.
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For a subgraph H of G, welet C'(H) = UeepyC(€) and ¢(H) = |C'(H)|. For a vertex
v of G, the colored neighbor C'N (v) of v is defined as the set {C'(e)le is incident to v}
and the colored degree d°(v) = |C'N(v)|. A path (cycle) is called monochromatic, if
all the edges of it have the same color; and is called heterochromatic, if all the edges
of it have different colors. For a vertex z, a z-path is one with z as an end-vertex of
it. We shall use [z] for the smallest integer not smaller than z.

A usual graph can be regarded as a colored graph in which all edges have different
colors. The number of the colors of a subgraph is just the number of the edges of it.
The colored degree of a vertex is the degree of it.

Our aim in this note is to investigate sufficient conditions for the existence of
monochromatic and heterochromatic paths and cycles. We also propose a conjecture
on the existence of paths and cycles with many colors.

2 Monochromatic Paths and Cycles

The arboricity a(G) of a graph G is defined as the minimum number of edge-disjoint
forests into which G' can be decomposed. It is also the minimum number of colors
necessary to color the edges of G so that no cycle has edges all of the same color. So,
we have

Theorem 1
Let G be colored graph. If ¢(G) < a(G), then G contains at least one monochromatic
cycle.

The arboricity a(G) could be found by the matroid partitioning algorithms of
Edmonds [4]. Picard and Queyranne [5] showed that this number can be determined
in at most O(n*) operations, by using network flow method.

Furthermore, we have the following obvious result.

Theorem 2

Let GG be a colored graph with color classes Fy, Fo, - -+, E.. Then, G has a monochro-
matic path (cycle) of length at least [ if and only if some G[FE;] has a path (cycle) of
length at least [.

3 Heterochromatic Paths and Cycles

The following results on the existence of long paths and cycles are well known.

Theorem A (Erdés and Gallai [3])
Let G be a graph of order n and size m. Then, G contains a path of length at least
2m/n.

Theorem B (Erdos and Gallai [3])



Let G be a 2-edge-connected graph of order n and size m. Then, GG contains a cycle
of length at least 2m/(n — 1).

For a colored graph G, by selecting an edge in each color class, we can get a colored
graph G, such that all the edges of G’ have different colors, and ¢(G’) = ¢(G). From
Theorems A and B, we have the following two results.

Theorem 3
Let G be a colored graph of order n. Then, GG contains a heterochromatic path of
length at least 2¢(G)/n.

Theorem 4
Let G be a 2-edge-connected colored graph of order n. Then, (G contains a hete-
rochromatic cycle of length at least 2¢(G)/(n — 1).

The following two theorems on the existence of long heterochromatic paths are
not difficult to be proved.

Theorem 5
Let GG be a colored graph and k an integer. Suppose that d°(v) > k for any vertex v
of GG, then for any vertex z of G there exists a heterochromatic z-path of length at

least [(k+1)/2].

Theorem 6

Let G be a colored graph and s an integer. Suppose that [C'N(u) U C'N(v)| > s for
any pair of vertices # and v of G, then GG contains a heterochromatic path of length
at least [s/3] + 1.

The results in Theorem 5 and 6 are best possible.

In the following, we give an sufficient condition for the existence of heterochro-
matic triangles or quadrilaterals and heterochromatic Hamilton cycles.

Theorem 7

Let GG be a colored graph of order n(> 4), such that |CN(u) UCN (v)| > n—1 for any
pair of vertices w and v of GG. Then, G contains at least one heterochromatic triangle
or one heterochromatic quadrilateral.

Theorem 8
Let G be a colored graph of order n, such that |[CN(u) U CN (v)| > 2n — 3 for any
pair of vertices u and v of G. Then, GG contains a heterochromatic Hamilton cycle.

We don’t believe that the results in Theorems 7 and 8 are best possible. But we
can’t provide examples to show this.



4 Paths and Cycles with Many Colors

As we mentioned in Section 1, if we regard a (usual) graph as a colored graph in which
all edges have different colors, then the number of the colors of a subgraph is just the
number of the edges of it. It is well known that the problem of finding the longest
paths and the longest cycles in a graph is NP-complete. Therefore, the problem of
finding paths and cycles with as many colors as possible in a colored graph is also
NP-complete.

In the past decades, many sufficient conditions for the existence of long paths and
cycles has been derived . The following result is due to Dirac.

Theorem C (Dirac [2])
Let G be graph and d an integer. If d(v) > d for every vertex v of G, then (7 contains
(1) a path of length at least d, and (2) a cycle of length at least d 4 1 if d > 1.

It is an interesting problem that whether Theorem C admits a generalization to
colored graphs. We have the following conjecture.

Conjecture 1

Let (G be a colored graph and d an integer. If d°(v) > d for every vertex v of G, then
G contains (1) a path with at least d — 1 colors, and (2) a cycle with at least d colors
if d > 1.

If the above conjecture is true, then it would be best possible. This can be shown
by considering a special coloring of complete graphs. Let K, be a complete graph of
order n. The y-coloring of K,, when n is even is defined as a proper (n—1)-coloring of
K,,. In the case that n is odd, the y-coloring of K, is defined as follows: first assign
a y-coloring to K,, — v for some vertex v, then assign the edges incident to v with
n — 1 colors which are all different from the colors of the y-coloring of K,, — v. It is
not difficult to verify that, for the complete graph K, with y-coloring, d”(v) > n—1
for any vertex v of it, but there is no path with more than n — 2 colors and no cycle
with more than n — 1 colors.

By improving the connectivity of graphs, Dirac give the following

Theorem D (Dirac [2])
Let GG be a 2-connected graph and d an integer. If d(v) > d for every vertex v of (G,
then G contains either a Hamilton cycle or a cycle of length at least 2d.

Let K, ,4+1 be the complete bipartite graph with bipartition (X,Y) such that
|X|=nand |Y|=mn+1. Assign an edge-coloring to K, ,1; as follows: first color the
graph K, ,41 —y for some vertex y € Y properly, then assign the colors of K, ;.41 to
the n edges incident to y respectively. It is easy to know that d°(v) > n for each vertex
vof K, 41 but K, ;41 contains neither a Hamilton cycle nor a cycle with more than
n colors. This shows that, different from Theorem D, improving the connectivity of
the graphs in Conjecture 1 can not guarantee cycles with more colors.
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