
Constraint Propagation

Christian Bessiere
Technical Report LIRMM 06020
CNRS/University of Montpellier

March 2006

Constraint propagation is a form of inference, not search, and as
such is more ”satisfying”, both technically and aesthetically.

—E.C. Freuder, 2005.

1 Introduction

Constraint reasoning involves various types of techniques to tackle the inherent
intractability of the problem of satisfying a set of constraints. Constraint prop-
agation is one of those types of techniques. Constraint propagation is central
to the process of solving a constraint problem, and we could hardly think of
constraint reasoning without it.

Constraint propagation is a very general concept that appears under different
names depending on both periods and authors. Among these names, we can
find constraint relaxation, filtering algorithms, narrowing algorithms, constraint
inference, simplification algorithms, label inference, local consistency enforcing,
rules iteration, chaotic iteration.

Constraint propagation embeds any reasoning which consists in explicitly
forbidding values or combinations of values for some variables of a problem
because a given subset of its constraints cannot be satisfied otherwise. For
instance, in a crossword-puzzle, when you discard the words NORWAY and
SWEDEN from the set of European countries that can fit a 6-digit slot because
the second letter must be a ’R’, you propagate a constraint. In a problem
containing two variables x1 and x2 taking integer values in 1..10, and a constraint
specifying that |x1−x2| > 5, by propagating this constraint we can forbid values
5 and 6 for both x1 and x2. Explicating these ’nogoods’ is a way to reduce the
space of combinations that will be explored by a search mechanism.

The concept of constraint propagation can be found in other fields under
different kinds and names. (See for instance the propagation of clauses by ’unit
propagation’ in propositional calculus [40].) Nevertheless, it is in constraint
reasoning that this concept shows its most accomplished form. There is no
other field in which the concept of constraint propagation appears in such a
variety of forms, and in which its characteristics have been so deeply analyzed.

1

In the last 30 years, the scientific community has put a lot of effort in for-
malizing and characterizing this ubiquitous concept of constraint propagation
and in proposing algorithms for propagating constraints. This formalization
can be presented along two main lines: local consistencies and rules iteration.
Local consistencies define properties that the constraint problem must satisfy
after constraint propagation. This way, the operational behavior is left com-
pletely open, the only requirement being to achieve the given property on the
output. The rules iteration approach, on the contrary, defines properties on the
process of propagation itself, that is, properties on the kind/order of operations
of reduction applied to the problem.

This report does not include data-flow constraints [76], even if this line of
research has been the focus of quite a lot of work in interactive applications and
if some of these papers speak about ‘propagation’ on these constraints [27]. They
are indeed quite far from the techniques appearing in constraint programming.

The rest of this report is organized as follows. Section 2 contains basic
definitions and notations used throughout the report. Section 3 formalizes all
constraint propagation approaches within a unifying framework. Sections 4–9
contain the main existing types of constraint propagation. Each of these sections
presents the basics on the type of propagation addressed and goes briefly into
sharper or more recent advances on the subject.

2 Background

The notations used in this report have been chosen to support all notions pre-
sented. I tried to remain on the borderline between ‘heavy abstruse notations’
and ‘ambiguous definitions’, hoping I never fall too much on one side or the
other of the edge.

A constraint satisfaction problem (CSP) involves finding solutions to a con-
straint network, that is, assignments of values to its variables that satisfy all
its constraints. Constraints specify combinations of values that given subsets of
variables are allowed to take. In this report, we are only concerned with con-
straint satisfaction problems where variables take their value in a finite domain.
Without loss of generality, I assume these domains are mapped on the set
of integers, and so, I consider only integer variables, that is, variables with a
domain being a finite subset of .

Definition 1 (Constraint). A constraint c is a relation defined on a sequence
of variables X(c) = (xi1 , . . . , xi|X(c)|

), called the scheme of c. c is the subset

of |X(c)| that contains the combinations of values (or tuples) τ ∈ |X(c)| that
satisfy c. |X(c)| is called the arity of c. Testing whether a tuple τ satisfies a
constraint c is called a constraint check.

A constraint can be specified extensionally by the list of its satisfying tu-
ples, or intensionally by a formula that is the characteristic function of the
constraint. Definition 1 allows constraints with an infinite number of satis-
fying tuples. I sometimes write c(x1, . . . , xk) for a constraint c with scheme

2

X(c) = (x1, . . . , xk). Constraints of arity 2 are called binary and constraints
of arity greater than 2 are called non-binary. Global constraints are classes of
constraints defined by a formula of arbitrary arity (see Section 9.2).

Example 2. The constraint alldifferent(x1, x2, x3) ≡ (vi $= vj ∧
vi $= vk ∧ vj $= vk) allows the infinite set of 3-tuples in 3 such
that all values are different. The constraint c(x1, x2, x3) = {(2, 2, 3),
(2, 3, 2), (2, 3, 3), (3, 2, 2), (3, 2, 3), (3, 3, 2)} allows the finite set of 3-tuples con-
taining both values 2 and 3 and only them.

Definition 3 (Constraint network). A constraint network (or network) is
composed of:

• a finite sequence of integer variables X = (x1, . . . , xn),

• a domain for X, that is, a set D = D(x1)× . . .×D(xn), where D(xi) ⊂
is the finite set of values, given in extension,1 that variable xi can take,
and

• a set of constraints C = {c1, . . . , ce}, where variables in X(cj) are in X.

Given a network N , I sometimes use XN , DN and CN to denote its sequence
of variables, its domain and its set of constraints. Given a variable xi and its
domain D(xi), minD(xi) denotes the smallest value in D(xi) and maxD(xi) its
greatest one. (Remember that we consider integer variables.)

In the whole report, I consider constraints involving at least two variables.
This is not a restriction because domains of variables are semantically equivalent
to unary constraints. They are separately specified in the definition of constraint
network because the domains are given extensionally whereas a constraint c
can be defined by any Boolean function on |X(c)| (in extension or not). I
also consider that no variable is repeated in the scheme of a constraint. This
restriction could be relaxed in most cases, but it simplifies the notations. The
vocabulary of graphs is often used to describe networks. A network can indeed
be associated with a (hyper)graph where variables are nodes and where schemes
of constraints are (hyper)edges.

According to Definitions 1 and 3, the variables XN of a network N and the
scheme X(c) of a constraint c ∈ CN are sequences of variables, not sets. This
is required because the order of the values matters for tuples in DN or in c.
Nevertheless, it simplifies a lot the notations to consider sequences as sets when
no confusion is possible. For instance, given two constraints c and c′, X(c) ⊆
X(c′) means that constraint c involves only variables that are in the scheme of
c′, whatever their ordering in the scheme. Given a tuple τ on a sequence Y of
variables, and given a sequence W ⊆ Y , τ [W] denotes the restriction of τ to the
variables in W , ordered according to W . Given xi ∈ Y, τ [xi] denotes the value
of xi in τ . If X(c) = X(c′), c ⊆ c′ means that for all τ ∈ c the reordering of τ
according to X(c′) satisfies c′.

1The condition on the domains given in extension can be relaxed, especially in numerical
problems where variables take values in a discretization of the reals. (See Chapter 16 in Part
II of [109].)

3

Example 4. Let (1, 1, 2, 4, 5) be a tuple on Y = (x1, x2, x3, x4, x5) and
W = (x3, x2, x4). τ [x3] is the value 2 and τ [W] is the tuple (2, 1, 4). Given
c(x1, x2, x3) defined by x1 + x2 = x3 and c′(x2, x1, x3) defined by x2 + x1 ≤ x3,
we have c ⊆ c′.

We also need the concepts of projection, intersection, union and join. Given
a constraint c and a sequence Y ⊆ X(c), πY (c) denotes the projection of c on Y ,
that is, the relation with scheme Y that contains the tuples that can be extended
to a tuple on X(c) satisfying c. Given two constraints c1 and c2 sharing the
same scheme X(c1) = X(c2), c1 ∩ c2 (resp. c1 ∪ c2) denotes the intersection
(resp. the union) of c1 and c2, that is, the relation with scheme X(c1) that
contains the tuples τ satisfying both c1 and c2 (resp. satisfying c1 or c2). Given
a set of constraints {c1, . . . , ck}, !"

k
j=1 cj (or !" {c1, . . . , ck}) denotes the join of

c1, . . . , ck, that is, the relation with scheme ∪k
j=1X(cj) that contains the tuples

τ such that τ [X(cj)] ∈ cj for all j, 1 ≤ j ≤ k.
Backtracking algorithms are based on the principle of assigning values to

variables until all variables are instantiated.

Definition 5 (Instantiation). Given a network N = (X, D, C),

• An instantiation I on Y = (x1, . . . , xk) ⊆ X is an assignment of values
v1, . . . vk to the variables x1, . . . , xk, that is, I is a tuple on Y . I can be
denoted by ((x1, v1), . . . , (xk, vk)) where (xi, vi) denotes the value vi for
xi.

• An instantiation I on Y is valid if for all xi ∈ Y, I[xi] ∈ D(xi).

• An instantiation I on Y is locally consistent iff it is valid and for all
c ∈ C with X(c) ⊆ Y , I[X(c)] satisfies c. If I is not locally consistent, it
is locally inconsistent.

• A solution to a network N is an instantiation I on X which is locally
consistent. The set of solutions of N is denoted by sol(N).

• An instantiation I on Y is globally consistent (or consistent) if it can be
extended to a solution (i.e., there exists s ∈ sol(N) with I = s[Y]).

Example 6. Let N = (X, D, C) be a network with X =
(x1, x2, x3, x4), D(xi) = {1, 2, 3, 4, 5} for all i ∈ [1..4] and
C = {c1(x1, x2, x3), c2(x1, x2, x3), c3(x2, x4)} with c1(x1, x2, x3) =
alldifferent(x1, x2, x3), c2(x1, x2, x3) ≡ (x1 ≤ x2 ≤ x3), and
c3(x2, x4) ≡ (x4 ≥ 2 · x2). We thus have π{x1,x2}(c1) ≡ (x1 $= x2) and
c1 ∩ c2 ≡ (x1 < x2 < x3). I1 = ((x1, 1), (x2, 2), (x4, 7)) is a non valid instan-
tiation on Y = (x1, x2, x4) because 7 /∈ D(x4). I2 = ((x1, 1), (x2, 1), (x4, 3))
is a locally consistent instantiation on Y because c3 is the only constraint
with scheme included in Y and it is satisfied by I2[X(c3)]. However, I2

is not globally consistent because it does not extend to a solution of N .
sol(N) = {(1, 2, 3, 4), (1, 2, 3, 5)}.

There are many works in the constraint reasoning community that put some
restrictions on the definition of a constraint network. These restrictions can

4

have some consequences on the notions handled. I define the main restrictions
appearing in the literature and that I will use later.

Definition 7 (Normalized and binary networks).

• A network N is normalized iff two different constraints in CN do not
involve exactly the same variables.

• A network N is binary iff for all ci ∈ CN , |X(ci)| = 2.

When a network is both binary and normalized, a constraint c(xi, xj) ∈ C
is often denoted by cij . To simplify even further the notations, cji denotes its
transposition, i.e., the constraint c(xj , xi) = {(vj , vi) | (vi, vj) ∈ cij}, and since
there cannot be ambiguity with another constraint, I act as if cji was in C as
well.

Given two normalized networks N = (X, D, C) and N ′ = (X, D′, C′), N -N

N ′ denotes the network N ′′ = (X, D′′, C′′) with D′′ = D ∪ D′ and C′′ =
{c′′ | ∃c ∈ C, ∃c′ ∈ C′, X(c) = X(c′) and c′′ = c ∪ c′}.

The constraint reasoning community often used constraints with a finite
number of tuples, and even more, constraints that only allow valid tuples, that
is, combinations of values from the domains of the variables involved. I call
these constraints ‘embedded’.

Definition 8 (Embedded network). Given a network N and a constraint
c ∈ CN , the embedding of c in DN is the constraint ĉ with scheme X(c) such
that ĉ = c ∩ πX(c)(DN). A network N is embedded iff for all c ∈ CN , c = ĉ.

In complexity analysis, we sometimes need to refer to the size of a network.
The size of a network N is equal to |XN | +

∑
xi∈XN

|DN (xi)| +
∑

cj∈CN
‖cj‖,

where ‖c‖ is equal to |X(c)| · |c| if c is given in extension, or equal to the size of
its encoding if c is defined by a Boolean function.

3 Formal Viewpoint

This section formally characterizes the concept of constraint propagation. The
aim is essentially to relate the different notions of constraint propagation.

The constraint satisfaction problem being NP-complete, it is usually solved
by backtrack search procedures that try to extend a partial instantiation to a
global one that is consistent. Exploring the whole space of instantiations is of
course too expensive. The idea behind constraint propagation is to make the
constraint network more explicit (or tighter) so that backtrack search commits
into less inconsistent instantiations by detecting local inconsistency earlier. I
first introduce the following preorder on constraint networks.

Definition 9 (Preorder 0 on networks). Given two networks N and N ′,
we say that N ′ 0 N iff XN ′ = XN and any instantiation I on Y ⊆ XN locally
inconsistent in N is locally inconsistent in N ′ as well.

5

From the definition of local inconsistency of an instantiation (Definition 5)
I derive the following property of constraint networks ordered according to 0.

Proposition 10. Given two networks N and N ′, N ′ 0 N iff XN ′ = XN ,
DN ′ ⊆ DN ,2 and for any constraint c ∈ CN , for any tuple τ on X(c) that does
not satisfy c, either τ is not valid in DN ′ or there exists a constraint c′ in CN ′ ,
X(c′) ⊆ X(c), such that τ [X(c′)] /∈ c′.

The relation 0 is not an order because there can be two different networks
N and N ′ with N 0 N ′ 0 N .

Definition 11 (Nogood-equivalence). Two networks N and N ′ such that
N 0 N ′ 0 N are said to be nogood-equivalent. (A nogood is a partial instan-
tiation that does not lead to a solution.)

Example 12. Let N = (X, D, C) be the network with X = {x1, x2, x3},
D(x1) = D(x2) = D(x3) = {1, 2, 3, 4} and C = {x1 < x2, x2 < x3, c(x1, x2, x3)}
where c(x1, x2, x3) = {(111), (123), (222), (333)}. Let N ′ = (X, D, C ′) be the
network with C ′ = {x1 < x2, x2 < x3, c′(x1, x2, x3)}, where c′(x1, x2, x3) =
{(123), (231), (312)}. The only difference between N and N ′ is that the latter
contains c′ instead of c. For any tuple τ on X(c) (resp. X(c′)) that does not sat-
isfy c (resp. c′), there exists a constraint in C ′ (resp. in C) that makes τ locally
inconsistent. As a result, N 0 N ′ 0 N and N and N ′ are nogood-equivalent.

Constraint propagation transforms a network N by tightening DN , by tight-
ening constraints from CN , or by adding new constraints to CN . Constraint
propagation does not remove redundant constraints, which is more a reformu-
lation task. I define the space of networks that can be obtained by constraint
propagation on a network N .

Definition 13 (Tightenings of a network). The space PN of all possible
tightenings of a network N = (X, D, C) is the set of networks N ′ = (X, D′, C′)
such that D′ ⊆ D and for all c ∈ C there exists c′ ∈ C′ with X(c′) = X(c) and
c′ ⊆ c.

Note that PN does not contain all networks N ′ 0 N . In Example 12,
N ′ /∈ PN because c′ $⊆ c. However, if N ′′ = (X, D, C ′′) with C ′′ = {x1 <
x2, x2 < x3, c′′ = c ∪ c′}, we have N ∈ PN ′′ and N ′ ∈ PN ′′ . The set of networks
PN together with 0 forms a preordered set. The top element of PN according to
0 is N itself and the bottom elements are the networks with empty domains.3 In
PN we are particularly interested in networks that preserve the set of solutions
of N . Psol

N denotes the subset of PN containing only the elements N ′ of PN

such that sol(N ′) = sol(N). Among the networks in Psol
N , those that are the

smallest according to 0 have interesting properties.

2DN′ ⊆ DN because we supposed that networks do not contain unary constraints, and so,
instantiations of size 1 can be made locally inconsistent only because of the domains.

3Remember that we consider that unary constraints are expressed in the domains.

6

Proposition 14 (Global consistency). Let N = (X, D, C) be a network,
and GN = (X, DG, CG) be a network in Psol

N . If GN is such that for all
N ′ ∈ Psol

N , GN 0 N ′, then any instantiation I on Y ⊆ X which is locally
consistent in GN can be extended to a solution of N . GN is called a globally
consistent network.

Proof. Suppose there exists an instantiation I on Y ⊆ X locally consistent in
GN which does not extend to a solution. Build the network N ′ = (X, DG, CG ∪
{c}) where X(c) = Y and c = |Y | \ {I}. N ′ ∈ Psol

N because GN ∈ Psol
N and I

does not extend to a solution of N . In addition, I is locally inconsistent in N ′.
So, GN $0 N ′.

Thanks to Proposition 14 we see the advantage of having a globally consis-
tent network of N . A simple brute-force backtrack search procedure applied on a
globally consistent network is guaranteed to produce a solution in a backtrack-
free manner. However, globally consistent networks have a number of disad-
vantages that make them impossible to use in practice. A globally consistent
network is not only exponential in time to compute, but in addition, its size is
in general exponential in the size of N . In fact, building a globally consistent
network is similar to generating and storing all minimal nogoods of N . Building
a globally consistent network is so hard that a long tradition in constraint pro-
gramming is to try to transform N into an element of Psol

N as close as possible
to global consistency at reasonable cost (usually keeping polynomial time and
space). This is constraint propagation.

Rules iteration and local consistencies are two ways of formalizing constraint
propagation. Rules iteration consists in characterizing for each constraint (or
set of constraints) a set of reduction rules that tighten the network. Reduction
rules are sufficient conditions to rule out values (or instantiations) that have
no chance to appear in a solution. The second —and most well-known— way
of considering constraint propagation is via the notion of local consistency. A
local consistency is a property that characterizes some necessary conditions on
values (or instantiations) to belong to solutions. A local consistency property
(denoted by Φ) is defined regardless of the domains or constraints that will be
present in the network. A network is Φ-consistent if and only if it satisfies the
property Φ.

It is difficult to say more about constraint propagation in completely general
terms. The preorder (PN ,0) is indeed too weak to characterize the features of
constraint propagation. Most of the constraint propagation techniques appear-
ing in constraint programming (or at least those that are used in solvers) are
limited to modifications of the domains. So, I first concentrate on this subcase,
that I call domain-based constraint propagation. I will come back to the general
case in Section 5.

Definition 15 (Domain-based tightenings). The space PND of domain-
based tightenings of a network N = (X, D, C) is the set of networks in PN with
the same constraints as N , that is, N ′ ∈ PND iff XN ′ = X, DN ′ ⊆ D and
CN ′ = C.

7

Proposition 16 (Partial order on networks). Given a network N , the
relation 0 restricted to the set PND is a partial order (denoted by ≤).

(PND,≤) is a partially ordered set (poset) because given two networks N1 =
(X1, D1, C1) and N2 = (X2, D2, C2), N1 ≤ N2 ≤ N1 implies that X1 = X2,
C1 = C2, and D1 ⊆ D2 ⊆ D1, which means that N1 = N2. In fact, the poset
(PND,≤) is isomorphic to the partial order ⊆ on DN . We are interested in
the subset Psol

ND of PND containing all the networks that preserve the set of
solutions of N . Psol

ND has the same top element as PND, namely N itself, and a
unique bottom element GND = (XN , DG, CN), where for any xi ∈ XN , DG(xi)
only contains values belonging to a solution of N , i.e., DG(xi) = π{xi}(sol(N)).
Such a network was named variable-completable by Freuder [56].

Domain-based constraint propagation looks for an element in Psol
ND on which

the search space to explore is smaller (that is, values have been pruned from
the domains). Since finding GND is NP-hard (consistency of N reduces to
checking non emptiness of domains in GND), domain-based constraint propa-
gation usually consists of polynomial techniques that produce a network which
is an approximation of GND. The network N ′ produced by a domain-based
constraint propagation technique always verifies GND ≤ N ′ ≤ N , that is,
DG ⊆ DN ′ ⊆ DN .

Domain-based rules iteration consists in applying for each constraint c ∈ CN

a set of reduction rules that rule out values of xi that cannot appear in a
tuple satisfying c. Domain-based reduction rules are also named propaga-
tors. For instance, if c ≡ (|x1 − x2| = k), a propagator for c on x1 can be
DN(x1) ← DN (x1)∩ [minDN

(x2)− k .. minDN
(x2)+ k]. Applying propagators

iteratively tightens DN while preserving the set of solutions of N . In other
words, propagators slide down the poset (PND,≤) without moving out of Psol

ND.
Reduction rules will be presented in Section 8. From now on, we concentrate
on domain-based local consistencies. Any property Φ that specifies a necessary
condition on values to belong to solutions can be considered as a domain-based
local consistency. Nevertheless, we usually consider only those properties that
are stable under union.

Definition 17 (Stability under union). A domain-based property Φ is
stable under union iff for any Φ-consistent networks N1 = (X, D1, C) and
N2 = (X, D2, C), the network N ′ = (X, D1 ∪ D2, C) is Φ-consistent.

Example 18. Let Φ be the property that guarantees that for each constraint
c and variable xi ∈ X(c), at least half of the values in D(xi) belong to a valid
tuple satisfying c. Let X = (x1, x2) and C = {x1 = x2}. Let D1 be the
domain with D1(x1) = {1, 2} and D1(x2) = {2}. Let D2 be the domain with
D2(x1) = {2, 3} and D2(x2) = {2}. (X, D1, C) and (X, D2, C) are both Φ-
consistent but (X, D1 ∪ D2, C) is not Φ-consistent because among the three
values for x1, only value 2 can satisfy the constraint x1 = x2. Φ is not stable
under union.

Stability under union brings very useful features for local consistencies.

8

Among all networks in PND that verify a local consistency Φ, there is a partic-
ular one.

Theorem 19 (Φ-closure). Let N = (X, D, C) be a network and Φ be a
domain-based local consistency. Let Φ(N) be the network (X, DΦ, C) where
DΦ = ∪{D′ ⊆ D | (X, D′, C) is Φ-consistent}. If Φ is stable under union,
Φ(N) is Φ-consistent and is the unique network in PND such that for any Φ-
consistent network N ′ ∈ PND, N ′ ≤ Φ(N). Φ(N) is called the Φ-closure of N .
(By convention, we suppose (X, ∅, C) is Φ-consistent.)

Φ(N) has some interesting properties. The first one I can point out is that
it preserves the solutions: sol(Φ(N)) = sol(N). This is not the case for all
Φ-consistent networks in PND.

Example 20. Let Φ be the property that guarantees that all values for all
variables can be extended consistently to a second variable. Consider the
network N = (X, D, C) with variables x1, x2, x3, domains all equal to {1, 2}
and C = {x1 ≤ x2, x2 ≤ x3, x1 $= x3}. Let D1 be the domain with
D1(x1) = D1(x2) = {1} and D1(x3) = {2}. (X, D1, C) is Φ-consistent but does
not contain the solution (x1 = 1, x2 = 2, x3 = 2) which is in sol(N). In fact,
Φ(N) = (X, DΦ, C) with DΦ(x1) = {1}, DΦ(x2) = {1, 2} and DΦ(x3) = {2}.

Computing a particular Φ-consistent network of PND can be difficult. GND

for instance, is obviously Φ-consistent for any domain-based local consistency
Φ, but it is NP-hard to compute. The second interesting property of Φ(N) is
that it can be computed by a greedy algorithm.

Proposition 21 (Fixpoint). If a domain-based consistency property Φ is sta-
ble under union, then for any network N = (X, D, C), the network N ′ =
(X, D′, C), where D′ is obtained by iteratively removing values that do not sat-
isfy Φ until no such value exists, is the Φ-closure of N .

Corollary 22. If a domain-based consistency property Φ is polynomial to check,
finding Φ(N) is polynomial as well.

By achieving (or enforcing) Φ-consistency on a network N , I mean finding
the Φ-closure Φ(N).

I define a partial order on local consistencies to express how much they per-
mit to go down the poset (PND,≤). A domain-based local consistency Φ1 is
at least as strong as another local consistency Φ2 if and only if for any net-
work N , Φ1(N) ≤ Φ2(N). If in addition there exists a network N ′ such that
Φ1(N ′) < Φ2(N ′), then Φ1 is strictly stronger than Φ2. If there exist networks
N ′ and N ′′ such that Φ1(N ′) < Φ2(N ′) and Φ2(N ′′) < Φ1(N ′′), Φ1 and Φ2 are
incomparable.

When networks are both normalized and embedded, stability under union, Φ-
closure, and the ‘stronger’ relation between local consistencies can be extended
to local consistencies other than domain-based ones by simply replacing PND

by PN , the union on domains ∪ by the union on networks -N (see Section 2),
and the partial order ≤ on PND by the preorder 0 on PN (see Section 5).

9

1

2

1

2 2

3

1

2

3

1

2

3

1

2

3

2 4

X1 X2 X3X1 X2 X3

X2 < X3X1 = X2

: allowed pair

Figure 1: Network of Example 23 before arc consistency (left) and after (right).

4 Arc Consistency

Arc consistency is the oldest and most well-known way of propagating con-
straints. This is indeed a very simple and natural concept that guarantees
every value in a domain to be consistent with every constraint.

Example 23. Let N be the network depicted in Fig. 1(left). It involves
three variables x1, x2 and x3, domains D(x1) = D(x2) = D(x3) = {1, 2, 3}, and
constraints c12 ≡ (x1 = x2) and c23 ≡ (x2 < x3). N is not arc consistent because
there are some values inconsistent with some constraints. Checking constraint
c12 does not permit to remove any value. But when checking constraint c23,
we see that (x2, 3) must be removed because there is no value greater than it
in D(x3). We can also remove value 1 from D(x3) because of constraint c23.
Removing 3 from D(x2) causes in turn the removal of value 3 for x1 because of
constraint c12. Now, all remaining values are compatible with all constraints.

REF-ARF [51], is probably one of the first systems incorporating a fea-
ture which looks similar to arc consistency (even if the informal description
does not permit to be sure of the equivalence). In papers by Waltz [125] and
Gaschnig [61], the correspondence is more evident since algorithms for achieving
arc consistency were presented. But the seminal papers on the subject are due
to Mackworth, who is the first who clearly defined the concept of arc consis-
tency for binary constraints [86], who extended definitions and algorithms to
non-binary constraints [88], and who analyzed the complexity [89].

I give a definition of arc consistency in its most general form, i.e., for ar-
bitrary constraint networks (in which case it is often called generalized arc
consistency). In its first formal presentation, Mackworth limited the definition
to binary normalized networks.

Definition 24 ((Generalized) arc consistency ((G)AC)). Given a network
N = (X, D, C), a constraint c ∈ C, and a variable xi ∈ X(c),

• A value vi ∈ D(xi) is consistent with c in D iff there exists a valid tuple
τ satisfying c such that vi = τ [{xi}]. Such a tuple is called a support for
(xi, vi) on c.

10

• The domain D is (generalized) arc consistent on c for xi iff all the values
in D(xi) are consistent with c in D (that is, D(xi) ⊆ π{xi}(c∩πX(c)(D))).

• The network N is (generalized) arc consistent iff D is (generalized) arc
consistent for all variables in X on all constraints in C.

• The network N is arc inconsistent iff ∅ is the only domain tighter than
D which is (generalized) arc consistent for all variables on all constraints.

By notation abuse, when there is no ambiguity on the domain D to consider,
we often say ’constraint c is arc consistent’ instead of ’D is arc consistent on
c for all xi ∈ X(c)’. We also say ’variable xi is arc consistent on constraint c’
instead of ’all values in D(xi) are consistent with c in D’. When a constraint
cij is binary and a tuple τ = (vi, vj) supports (xi, vi) on cij , we often refer to
(xj , vj) (rather than to τ itself) when we speak about a ‘support for (xi, vi)’.

Historically, many papers on constraint satisfaction made the simplifying
assumption that networks are binary and normalized. This has the advantage
that notations become much simpler (see Section 2) and new concepts are easier
to present. But this had some strange effects that we must bear in mind.

First, the name ’arc consistency’ is so strongly bound to binary networks that
even if the definition is perfectly the same for both binary and non-binary con-
straints, a different name has often been used for arc consistency on non-binary
constraints. Some papers use hyper arc consistency, or domain consistency, but
the most common name is generalized arc consistency. In the following, I will
use indifferently arc consistency (AC) or generalized arc consistency (GAC),
though I will use GAC when the network is explicitly non-binary.

The second strange effect of associating AC with binary normalized networks
is the confusion between the notions of arc consistency and 2-consistency. (As we
will see in Section 5, 2-consistency guarantees that any instantiation of a value
to a variable can be consistently extended to any second variable.) On binary
networks, 2-consistency is at least as strong as AC. When the binary network is
normalized, arc consistency and 2-consistency are equivalent. However, this is
not true in general. The following examples show that 2-consistency is strictly
stronger than AC on non normalized binary networks and that generalized arc
consistency and 2-consistency are incomparable on arbitrary networks.

Example 25. Let N be a network involving two variables x1 and x2, with
domains {1, 2, 3}, and the constraints x1 ≤ x2 and x1 $= x2. This network is arc
consistent because every value has a support on every constraint. However, this
network is not 2-consistent because the instantiation x1 = 3 cannot be extended
to x2 and the instantiation x2 = 1 cannot be extended to x1.

Let N be a network involving three variables x1, x2, and x3, with do-
mains D(x1) = D(x2) = {2, 3} and D(x3) = {1, 2, 3, 4}, and the constraint
alldifferent(x1, x2, x3). N is 2-consistent because every value for any vari-
able can be extended to a locally consistent instantiation on any second variable.
However, this network is not GAC because the values 2 and 3 for x3 do not have
support on the alldifferent constraint.

11

4.1 Complexity of arc consistency

There are a number of questions related to GAC reasoning. It is worth analyz-
ing their complexity. Bessiere et al. have characterized five questions that can
be asked about a constraint [21]. Some of the questions are more of an aca-
demic nature whereas others are at the heart of propagation algorithms. These
questions can be asked in general, or on a particular class of constraints, such as
a given global constraint (see Section 9.2). These questions can be adapted to
other local consistencies that we will present in latter sections. In the following,
I use the notation Problem[data] to refer to the instance of Problem with
the input ’data’.

GACSupport

Instance. A constraint c, a domain D on X(c), and a value v for
variable xi in X(c)
Question. Does value v for xi have a support on c in D?

GACSupport is at the core of all generic arc consistency algorithms. GAC-

Support is generally asked for all values one by one.

IsItGAC

Instance. A constraint c, a domain D on X(c)
Question. Does GACSupport[c, D, xi, v] answer ‘yes’ for each
variable xi ∈ X(c) and each value v ∈ D(xi)?

IsItGAC has both practical and theoretical importance. If enforcing GAC on
a particular constraint is expensive, we may first test whether it is necessary
or not to launch the propagation algorithm (i.e., whether the constraint is al-
ready GAC). On the academic side, this question is commonly used to compare
different levels of local consistency.

NoGACWipeOut

Instance. A constraint c, a domain D on X(c)
Question. Is there a non empty D′ ⊆ D on which IsItGAC[c, D′]
answers ‘yes’?

NoGACWipeOut occurs when GAC is maintained during search by a back-
track procedure. At each node in the search tree (i.e., after each instantiation
of a value to a variable), we want to know if the remaining network can be
made GAC without wiping out the domain. If not, we must unassign one of the
variables already instantiated.

maxGAC

Instance. A constraint c, a domain D0 on X(c), and a domain
D ⊆ D0

Question. Is (X(c), D, {c}) the arc consistent closure of
(X(c), D0, {c})?

12

NoGACWipeOut

GACDomain

maxGAC

IsItGAC

GACSupport

A B : if A is NP−hard then B is NP−hard

Figure 2: Dependencies between intractability of arc consistency questions

Arc consistency algorithms (see next subsection) are asked to return the arc con-
sistent closure of a network, that is, the subdomain that is GAC and any larger
subdomain is not GAC. maxGAC characterizes this ‘maximality’ problem.

GACDomain

Instance. A constraint c, a domain D0 on X(c)
Output. The domain D such that maxGAC[c, D0, D] answers ‘yes’

GACDomain returns the arc consistent closure, that is, the domain that a GAC
algorithm computes. GACDomain is not a decision problem as it computes
something other than ‘yes’ or ‘no’.

In [20, 21], Bessiere et al. showed that all five questions are NP-hard in
general. In addition, they showed that on any particular class of constraints,
NP-hardness of a question implies NP-hardness of other questions.

Theorem 26 (Dependencies in the NP-hardness of GAC ques-
tions). Given a class C of constraints, GACSupport is NP-hard on C
iff NoGACWipeOut is NP-hard on C. GACSupport is NP-hard on C
iff GACDomain is NP-hard on C. If maxGAC is NP-hard on C then
GACSupport is NP-hard on C. If IsItGAC is NP-hard on C then maxGAC

is NP-hard on C.

A summary of the dependencies in Theorem 26 is given in Fig. 2. Note
that because each arrow from question A to question B in Fig. 2 means that A
can be rewritten as a polynomial number of calls to B, we immediately derive
that tractability of B implies tractability of A. Whereas the decision problems
GACSupport, IsItGAC, and NoGACWipeOut are in NP, maxGAC may be
outside NP. In fact, maxGAC is DP -complete in general. The DP complexity
class contains problems which are the conjunction of a problem in NP and one
in coNP [101].

Assuming P $= NP, GAC reasoning is thus not tractable in general. In fact,
the best complexity that can be achieved for an algorithm enforcing GAC on
a network with any kind of constraints is in O(erdr), where e is the number of
constraints and r is the largest arity of a constraint.

13

Though not related to GAC, constraint entailment ([70]) is a sixth ques-
tion that is used by constraint solvers to speed up propagation. An entailed
constraint can safely be disconnected from the network.

Entailed

Instance. A constraint c, a domain D on X(c)
Question. Does IsItGAC[c, D′] answer ‘yes’ for all D′ ⊆ D?

Entailment of c on D means that D ⊆ c. Entailed is coNP-complete in general.
There is no dependency between intractability of entailment and intractability of
the GAC questions. On a class C of constraints, Entailed can be tractable and
the GAC questions intractable, or the reverse, or both tractable or intractable.

4.2 Arc consistency algorithms

Proposing efficient algorithms for enforcing arc consistency has always been
considered as a central question in the constraint reasoning community. A first
reason is that arc consistency is the basic propagation mechanism that is prob-
ably used in all solvers. A second reason is that the new ideas that permit
to improve efficiency of arc consistency can usually be applied to algorithms
achieving other local consistencies. This is why I spend some time presenting
the main algorithms that have been introduced, knowing that the techniques
involved can be used for other local consistencies presented in forthcoming sec-
tions. I follow a chronological presentation to emphasize the incremental process
that led to the current algorithms.

4.2.1 AC3

The most well-known algorithm for arc consistency is the one proposed by Mack-
worth in [86] under the name AC3. It was proposed for binary normalized net-
works and actually achieves 2-consistency. It was extended to GAC in arbitrary
networks in [88]. This algorithm is quite simple to understand. The burden of
the general notations being not so high, I present it in its general version. (See
Algorithm 1.)

The main component of GAC3 is the revision of an arc, that is, the update
of a domain wrt a constraint.4 Updating a domain D(xi) wrt a constraint c
means removing every value in D(xi) that is not consistent with c. The function
Revise(xi, c) takes each value vi in D(xi) in turn (line 2), and explores the space
πX(c)\{xi}(D), looking for a support on c for vi (line 3). If such a support is
not found, vi is removed from D(xi) and the fact that D(xi) has been changed
is flagged (lines 4–5). The function returns true if the domain D(xi) has been
reduced, false otherwise (line 6).

The main algorithm is a simple loop that revises the arcs until no change
occurs, to ensure that all domains are consistent with all constraints. To avoid
too many useless calls to Revise (as this is the case in the very basic AC

4The word ’arc’ comes from the binary case but we also use it on non-binary constraints.

14

Algorithm 1: AC3 / GAC3

function Revise3(in xi: variable; c: constraint): Boolean ;
begin

CHANGE ← false;1

foreach vi ∈ D(xi) do2

if # ∃τ ∈ c ∩ πX(c)(D) with τ [xi] = vi then3

remove vi from D(xi);4

CHANGE ← true;5

return CHANGE ;6

end

function AC3/GAC3(in X: set): Boolean ;
begin

/* initalisation */;
Q ← {(xi, c) | c ∈ C, xi ∈ X(c)};7

/* propagation */;
while Q #= ∅ do8

select and remove (xi, c) from Q;9

if Revise(xi, c) then10

if D(xi) = ∅ then return false ;11

else Q ← Q ∪ {(xj , c
′) | c′ ∈ C ∧ c′ #= c ∧ xi, xj ∈ X(c′) ∧ j #= i};12

return true ;13

end

algorithms such as AC1 or AC2), the algorithm maintains a list Q of all the
pairs (xi, c) for which we are not guaranteed that D(xi) is arc consistent on
c. In line 7, Q is filled with all possible pairs (xi, c) such that xi ∈ X(c).
Then, the main loop (line 8) picks the pairs (xi, c) in Q one by one (line 9)
and calls Revise(xi, c) (line 10). If D(xi) is wiped out, the algorithm returns
false (line 11). Otherwise, if D(xi) is modified, it can be the case that a value
for another variable xj has lost its support on a constraint c′ involving both
xi and xj . Hence, all pairs (xj , c′) such that xi, xj ∈ X(c′) must be put again
in Q (line 12). When Q is empty, the algorithm returns true (line 13) as we
are guaranteed that all arcs have been revised and all remaining values of all
variables are consistent with all constraints

Proposition 27 (GAC3). GAC3 is a sound and complete algorithm for
achieving arc consistency that runs in O(er3dr+1) time and O(er) space, where
r is the greatest arity among constraints.

McGregor proposed a different way of propagating constraints in AC3, that
was later named variable-oriented, as opposed to the arc-oriented propagation
policy of AC3 [91]. Instead of putting in Q all arcs that should be revised after
a change in D(xi) (line 12), we simply put xi. Q contains variables for which a
change in their domain has not yet been propagated. When picking a variable xj

from Q, the algorithm revises all arcs (xi, c) that could lead to further deletions
because of xj . The implementation of this version of AC3 is simpler because

15

the elements in Q are just variables. But this less precise information has a
drawback. An arc can be revised several times whereas the classical AC3 would
revise it once. For instance, imagine a network containing a constraint c with
scheme (x1, x2, x3). If a modification occurs on x2 because of a constraint c′,
AC3 puts (x1, c) and (x3, c) in Q. If a modification occurs on x3 because of
another constraint c′′ while the previous arcs have not yet been revised, AC3
adds (x2, c) to Q but not (x1, c) which is already there. The same scenario with
McGregor’s version will put x2 and x3 in Q. Picking them from Q in sequence,
it will revise (x1, c) and (x3, c) because of x2, and (x1, c) and (x2, c) because
of x3. (x1, c) has been revised twice. Boussemart et al. proposed a modified
version of McGregor’s algorithm that solves this problem by storing a counter
for each arc [28].

From now on, I switch to binary normalized networks because most of the
literature used this simplification, and I do not want to make assumptions on
which extension the authors would have chosen. Nevertheless, the ideas always
allow extensions to non normalized binary networks, and most of the time to
networks with non-binary constraints.

Corollary 28 (AC3). AC3 achieves arc consistency on binary networks in
O(ed3) time and O(e) space.

The time complexity of AC3 is not optimal. The fact that function Revise
does not remember anything about its computations to find supports for values
leads AC3 to do and redo many times the same constraint checks.

Example 29. Let x, y and z be three variables linked by the constraints c1 ≡
x ≤ y and c2 ≡ y $= z, with D(x) = D(y) = {1, 2, 3, 4} and D(z) = {3}.
Revise(x, c1) requires 1 constraint check for finding support for (x, 1), 2 checks
for (x, 2), etc., so a total of 1+2+3+4=10 constraint checks to prove that all
values in D(x) are consistent with c1. All these constraint checks are depicted
as arrows in Fig. 3.a. Revise(y, c1) requires 4 additional constraint checks
to prove that y values are all consistent with (x, 1). Revise(y, c2) requires 4
constraint checks to prove that all values are consistent with (z, 3) except (y, 3)
which is removed. Hence, the arc (x, c1) is put in Q. Revise(z, c2) requires 1
single constraint check to prove that (z, 3) is consistent with (y, 1).

When (x, c1) is picked from Q, a new call to Revise(x, c1) is launched (Fig.
3.b). It requires 1+2+3+3=9 checks, among which only ((x, 3), (y, 4)) has not
already been performed at the first call.

4.2.2 AC4

AC3 being non optimal, Mohr and Henderson proposed AC4 to improve the
time complexity [92, 93]. The idea of AC4, as opposed to AC3, is to store a
lot of information. AC3 performs the minimum amount of work inside a call
to Revise, just ensuring that all remaining values of xi are consistent with c
and memorizing nothing. The price to pay is to redo much of the work if the
same Revise is recalled. AC4 stores the maximum amount of information in a

16

1

4

3

2

1

4

3

2
3

Initialisation: Revise (X,c1), (Y,c1), (Y,c2), (Z,c2)

X Y ZY = ZX <= Y

4 + 1 constraint10 + 4 constraint
checks checks

c2:c1:

1

4

3

2
3

1

4

3

2

X Y ZY = ZX <= Y

checks

Propagation: Revise (X,c1)

9 constraint

c1: c2:

(a) (b)

Figure 3: AC3 behavior depicted on Example 29. (Plain arrows represent posi-
tive constraint checks whereas dashed arrows represent negative ones.)

preprocessing step in order to avoid redoing several times the same constraint
check during the propagation of deletions.

AC4 is presented in Algorithm 2. It computes a counter counter[xi, vi, xj]
for each triple (xi, vi, xj) where cij ∈ C and vi ∈ D(xi). This counter will finally
say how many supports vi has on cij . AC4 also builds lists S[xj , vj] containing
all values that are supported by (xj , vj) on cij . In the initialization phase, AC4
performs all possible constraint checks on all constraints. Each time a support
vj ∈ D(xj) is found for (xi, vi) on cij , counter[xi, vi, xj] is incremented, and
(xi, vi) is added to S[xj , vj] (lines 3 and 5). Each time a value is found without
support on a constraint, it is removed from the domain and put in the list Q
for future propagation (line 4). Once the initialization is finished, we enter the
propagation loop (line 7), which consists in propagating the consequences of
the removals of values in Q. For each value (xj , vj) picked from Q (line 8),
we just need to decrement counter[xi, vi, xj] for each value (xi, vi) ∈ S[xj , vj]
to maintain the counters up to date (line 11). If counter[xi, vi, xj] reaches
zero, this means that (xj , vj) was the last support for (xi, vi) on cij . (xi, vi) is
removed and put in the list Q (lines 12 and 13). When Q is empty, we know
that all values remaining in the domains have a non zero counter on all their
constraints, and so are arc consistent.

AC4 is the first algorithm in a category later named ‘fine-grained’ algorithms
[127] because they perform propagations (via list Q) at the level of values.
‘Coarse-grained’ algorithms, such as AC3, propagate at the level of constraints
(or arcs), which is less precise and can involve unnecessary work.

Proposition 30 (AC4). AC4 achieves arc consistency on binary normalized
networks in O(ed2) time and O(ed2) space. Its time complexity is optimal.

Example 31. Take again the network in Example 29 with constraints c1 ≡
x ≤ y and c2 ≡ y $= z, and domains D(x) = D(y) = {1, 2, 3, 4} and D(z) = {3}.
In its initialization phase, AC4 first counts the number of supports of each

17

Algorithm 2: AC4

function AC4(in X: set): Boolean ;
begin

/* initialization */;
Q ← ∅; S[xj , vj] = 0, ∀vj ∈ D(xj),∀xj ∈ X;1

foreach xi ∈ X, cij ∈ C, vi ∈ D(xi) do2

initialize counter[xi, vi, xj] to |{vj ∈ D(xj) | (vi, vj) ∈ cij}|;3

if counter[xi, vi, xj] = 0 then remove vi from D(xi) and add (xi, vi) to4

Q;
add (xi, vi) to each S[xj , vj] s.t. (vi, vj) ∈ cij ;5

if D(xi) = ∅ then return false ;6

/* propagation */;
while Q #= ∅ do7

select and remove (xj , vj) from Q;8

foreach (xi, vi) ∈ S[xj , vj] do9

if vi ∈ D(xi) then10

counter[xi, vi, xj] = counter[xi, vi, xj] − 1;11

if counter[xi, vi, xj] = 0 then12

remove vi from D(xi); add (xi, vi) to Q;13

if D(xi) = ∅ then return false ;14

return true ;15

end

value on each constraint and builds the lists of supported values. Thus, in its
initialization, AC4 performs all possible constraint checks for every value in each
domain, that is, 4 · 4 = 16 constraint checks on c1 and 4 · 1 = 4 on c2.5 At the
end of this phase, the data structures are the following:

counter[x, 1, y] = 4 counter[y, 1, x] = 1 counter[y, 1, z] = 1
counter[x, 2, y] = 3 counter[y, 2, x] = 2 counter[y, 2, z] = 1
counter[x, 3, y] = 2 counter[y, 3, x] = 3 counter[y, 3, z] = 0
counter[x, 4, y] = 1 counter[y, 4, x] = 4 counter[y, 4, z] = 1

counter[z, 3, y] = 3

S[x, 1] = {(y, 1), (y, 2), (y, 3), (y, 4)} S[y, 1] = {(x, 1), (z, 3)}
S[x, 2] = {(y, 2), (y, 3), (y, 4)} S[y, 2] = {(x, 1), (x, 2), (z, 3)}
S[x, 3] = {(y, 3), (y, 4)} S[y, 3] = {(x, 1), (x, 2), (x, 3)}
S[x, 4] = {(y, 4)} S[y, 4] = {(x, 1), (x, 2), (x, 3), (x, 4), (z, 3)}

S[z, 3] = {(y, 1), (y, 2), (y, 4)}

The only counter equal to zero is counter[y, 3, z]. So, (y, 3) is removed and
AC4 enters the propagation loop with (y, 3) in Q. When (y, 3) is picked from
Q, S[y, 3] is traversed and counter[x, 1, y], counter[x, 2, y],counter[x, 3, y] are

5In the original version of AC4 presented in [92], each constraint cij is processed twice
(once for xi and once for xj), which gives 32 constraint checks on c1 and 8 on c2). The
general version presented in [93] processes each constraint only once, updating all relevant
counters and lists at the same time.

18

decremented (because (x, 1), (x, 2), (x, 3) are in S[y, 3]). None of these counters
are equal to zero and no value is removed. We observe that the propagation of
the deletion of (y, 3) did not require any constraint check. It required traversals
of S[..] lists and updates of counters.

While being optimal in time, AC4 does not only suffer from its high space
complexity. Its very expensive initialization phase can be by itself prohibitive
in time. In fact, we can informally say that AC4 has optimal worst-case time
complexity but it almost always reaches this worst-case. Wallace discussed this
issue in [121]. In addition, even when the initialization phase has finished, AC4
maintains a so accurate view of the process that it spends a lot of effort updating
its counters and traversing its lists. This is visible in Example 31, where the
removal of (y, 3) provoked traversal of S[y, 3] and counter updates, whereas all
remaining values had supports.

The non-binary version GAC4, proposed by Mohr and Masini in [93], is in
the optimal O(erdr) time complexity given in Section 4.1, where r is the greatest
arity among all constraints.

4.2.3 AC6

Bessiere and Cordier proposed AC6, a compromise between AC3 laziness and
AC4 eagerness [15, 14]. The motivation behind AC6 is both to keep the optimal
worst-case time complexity of AC4 and to stop the search for support for a value
on a constraint as soon as the first support is found, as done in Revise of AC3.
In addition, AC6 maintains a data structure lighter than AC4. In fact, the idea
in AC6 is not to count all the supports a value has on a constraint, but just to
ensure that it has at least one. AC6 only needs lists S, where S[xj , vj] contains
all values for which (xj , vj) is the current support. That is, (xi, vi) ∈ S[xj , vj]
if and only if vj was the first support found for vi on cij . 6

In Algorithm 3, AC6 looks for one support (the first one or smallest one with
respect to the ordering on integers) for each value (xi, vi) on each constraint cij

(line 3). When (xj , vj) is found as the smallest support of (xi, vi) on cij , (xi, vi)
is added to S[xj , vj], the list of values currently having (xj , vj) as smallest
support (line 4). If no support is found, (xi, vi) is removed and is put in the
list Q for future propagation (line 5). The propagation loop (line 7) consists
in propagating the consequences of the removal of values in Q. When (xj , vj)
is picked from Q, AC6 looks for the next support on cij for each value (xi, vi)
in S[xj , vj]. Instead of starting at minD(xj) as AC3 would do, it starts at the
value of D(xj) following vj (line 11). If a new support v′

j is found, (xi, vi) is
put in S[xj , v′j] (line 12). Otherwise, (xi, vi) is removed and put in Q (line 14).
When Q is empty, we know that all remaining values have a current support on
every constraint.

Like AC4, AC6 is a fine-grained algorithm because it propagates along val-
ues. It does not reconsider constraint cij when the removed value (xj , vj) has no

6A similar technique, called ’watch literals’, has independently been proposed by Moskewicz
et al. for efficient unit propagation in their Chaff solver for SAT [97].

19

Algorithm 3: AC6

function AC6(in X: set): Boolean ;
begin

/* initialization */;
Q ← ∅; S[xj , vj] = 0, ∀vj ∈ D(xj),∀xj ∈ X;1

foreach xi ∈ X, cij ∈ C, vi ∈ D(xi) do2

vj ← smallest value in D(xj) s.t. (vi, vj) ∈ cij ;3

if vj exists then add (xi, vi) to S[xj , vj];4

else remove vi from D(xi) and add (xi, vi) to Q;5

if D(xi) = ∅ then return false ;6

/* propagation */;
while Q #= ∅ do7

select and remove (xj , vj) from Q;8

foreach (xi, vi) ∈ S[xj , vj] do9

if vi ∈ D(xi) then10

v′

j ← smallest value in D(xj) greater than vj s.t. (vi, vj) ∈ cij ;11

if v′

j exists then add (xi, vi) to S[xj , v
′

j];12

else13

remove vi from D(xi); add (xi, vi) to Q;14

if D(xi) = ∅ then return false ;15

return true ;16

end

chance to provoke another removal in D(xi), that is, when D(xi)∩S[xj , vj] = ∅.

Proposition 32 (AC6). AC6 achieves arc consistency on binary normalized
networks in O(ed2) time and O(ed) space.

Example 33. I show what the data structures of AC6 are on the example used
for AC3 (Example 29) and for AC4 (Example 31), i.e., constraints c1 ≡ x ≤ y
and c2 ≡ y $= z and domains D(x) = D(y) = {1, 2, 3, 4} and D(z) = {3}. In
its initialization phase, AC6 looks for one support (the smallest) for each value
on each constraint and stores the fact that a value (xj , vj) has been found as
supporting (xi, vi) by adding (xi, vi) to S[xj , vj]. Thus, in its initialization,
AC6 performs the same number of constraint checks as AC3, namely 10+4 on
c1 and 4+1 on c2. At the end of this phase, the data structures are the following,

S[x, 1] = {(y, 1), (y, 2), (y, 3), (y, 4)} S[y, 1] = {(x, 1), (z, 3)}
S[x, 2] = {} S[y, 2] = {(x, 2)}
S[x, 3] = {} S[y, 3] = {(x, 3)}
S[x, 4] = {} S[y, 4] = {(x, 4)}

S[z, 3] = {(y, 1), (y, 2), (y, 4)}

and the list Q contains (y, 3) which has been removed. When AC6 enters the
propagation loop it pops (y, 3) from Q, S[y, 3] is traversed and a new support
greater than 3 is sought for (x, 3). (3, 4) ∈ c1(x, y), so (x, 3) is added to S[y, 4],
which supports now both (x, 3) and (x, 4). The deletion of (y, 3) required a single

20

Algorithm 4: Function Revise for AC2001

function Revise2001(in xi: variable; cij : constraint): Boolean ;
begin

CHANGE ← false;1

foreach vi ∈ D(xi) s.t. Last(xi, vi, xj) #∈ D(xj) do2

vj ← smallest value in D(xj) greater than Last(xi, vi, xj) s.t.3

(vi, vj) ∈ cij ;
if vj exists then Last(xi, vi, xj) ← vj ;4

else5

remove vi from D(xi);6

CHANGE ← true;7

return CHANGE ;8

end

constraint check and the traversal of list S[y, 3]. Note that S[y, 3] contained less
values than in AC4 because AC6 stores a single support per value.

4.2.4 AC2001

In fine-grained algorithms, such as AC4 or AC6, the propagation is value-
oriented. The deletion of a value (xj , vj) is directly propagated through Q on
values (xi, vi) that had (xj , vj) as support (that is, on values (xi, vi) that are in
S[xj , vj]). Coarse-grained algorithms are arc-oriented. They do not propagate
the consequences of value removals to other values. They propagate changes
in the domain of a variable xj on the other variables xi sharing a constraint c
with xj : List Q contains pairs (xi, c) for which some variable xj in X(c) has
changed. Although coarse-grained algorithms are less precise in the way they
propagate, they have a double advantage. First, the architecture of constraint
solvers (see Section 9) usually supports an arc-oriented propagation and not
a value-oriented one. Second, all fine-grained algorithms require lists S[..] of
supported values as data structure, which is more complex to implement and
maintain. These were the motivations for AC2001, the first (and only) optimal
coarse-grained algorithm [24, 127, 25].

AC2001 follows the same framework as AC3, but achieves optimality by stor-
ing the smallest support for each value on each constraint, like AC6. However,
the way this information is stored and used differs from that in AC6. AC2001
does not use lists S[xj , vj] to store those (xi, vi) that have vj as smallest support
on cij . It uses a pointer Last[xi, vi, xj] that contains vj .

AC2001 differs from AC3 only by its Revise function and by its initialization
phase which needs to initialize the pointers Last[xi, vi, xj] to some dummy value
smaller than minD(xj). In Revise2001 (Algorithm 4), when a value vj in D(xj)
is found to support (xi, vi) on cij , AC2001 assigns vj to Last[xi, vi, xj] (line 4).
The next time (xi, cij) will be revised, supports will be sought for (xi, vi) only
if Last[xi, vi, xj] is no longer in D(xj) (line 2). More importantly, optimality
is obtained because values in D(xj) that are smaller than Last[xi, vi, xj] are

21

not checked again because they were already unsuccessfully checked in previous
calls to Revise2001 (line 3).

Proposition 34 (AC2001). AC2001 achieves arc consistency on binary nor-
malized networks in O(ed2) time and O(ed) space.

Example 35. Again I show the data structures of AC2001 on the example
used for the other algorithms, i.e., constraints c1 ≡ x ≤ y and c2 ≡ y $= z and
domains D(x) = D(y) = {1, 2, 3, 4} and D(z) = {3}. In its initialization phase,
AC2001 looks for the smallest support for each value on each constraint and
stores it in the Last structure. It performs exactly the same constraint checks
as AC3 or AC6. At the end of this phase, the data structures are the following,

Last[x, 1, y] = 1 Last[y, 1, x] = 1 Last[y, 1, z] = 3
Last[x, 2, y] = 2 Last[y, 2, x] = 1 Last[y, 2, z] = 3
Last[x, 3, y] = 3 Last[y, 3, x] = 1 Last[y, 3, z] = nil
Last[x, 4, y] = 4 Last[y, 4, x] = 1 Last[y, 4, z] = 3

Last[z, 3, y] = 1

and the list Q contains (x, c1) because (y, 3) has been removed while revising
c2. When AC2001 enters the propagation loop it pops (x, c1) from Q, and
calls Revise(x, c1). It checks whether Last[x, 1, y], Last[x, 2, y], Last[x, 3, y]
and Last[x, 4, y] are still in D(y). Last[x, 3, y] is no longer in D(y), so a new
support greater than 3 is sought for (x, 3). (3, 4) satisfies c1(x, y), so Last[x, 3, y]
receives value 4. The deletion of (y, 3) required checking if the Last pointers of
values in D(x) were still in D(y), and a single constraint check to find a new
support for (x, 3).

AC2001 can easily be extended to a GAC2001 non-binary version [25].

4.3 Other improvements

I have presented the main techniques to enforce arc consistency on a network.
Other kinds of techniques exist to reduce the cost of arc consistency. They
are usually added to one of the arc consistency algorithms presented above to
improve its performance. I cannot be exhaustive, but here are two of those
types of techniques.

4.3.1 Bidirectionality

Constraints are said to be multidirectional because when a tuple τ is found
to support (xi, vi) on a constraint c, it is also a support for any (xj , vj) ∈
τ on the same constraint. The binary version of multidirectionality is called
bidirectionality. This property, which can seem obvious, is not used as much as
it could be by the algorithms presented so far.

In fact, AC3 partially uses it when it avoids putting (xj , c) in Q after mod-
ifying xi in Revise(xi, c) (line 12 in Algorithm 1): A value vi removed from

22

D(xi) had no support on c, so its removal cannot discard a support for a value
in D(xj).

Gaschnig proposed to use bidirectionality more explicitly. The algorithm
DEE [62] is an extension of AC3 that uses a ‘Revise-both’ procedure to process
Revise(xi, cij) and Revise(xj , cij) in sequence. As a first step, Revise-both
performs the same work as Revise(xi, cij), but in addition, marks every value
in D(xj) which has been found in a support for a value in D(xi). Once all values
of xi are checked, Revise-both revises xj on cij by only looking for support for
unmarked values of D(xj). Values marked during the first phase are guaranteed
to have support. DEE does not store these marks from a call to Revise-both to
another. Besides, in the propagation phase, arcs are often revised in only one
direction at a time, which reduces the gain of DEE.

Van Dongen proposed a heuristic approach of using bidirectionality [115].
The algorithm ACb uses the same idea as DEE, trying to avoid work when both
arcs (xi, cij) and (xj , cij) are in Q. ACb does not check supports in lexicographic
ordering but tries to maximize the number of ‘double-support’ checks. A double-
support check is a constraint check cij(vi, vj) for which neither vi nor vj are
known to be supported on cij . The motivation is that if cij(vi, vj) is true, we
deduce support for two values at the price of a single constraint check.

Bidirectionality was used even more extensively in AC7 [18, 19], an extension
of AC6. Thanks to the lists of supported values of AC6, and additional pointers,
AC7 fully exploits bidirectionality. This means that a constraint check cij(vi, vj)
is performed when looking for support for (xi, vi) on cij only if cji(vj , vi) has
never been checked while looking for supports for (xj , vj) on cji and there does
not exist v′

j ∈ D(xj) such that cji(v′j , vi) has already been successfully checked
as support for (xj , v′j). The non-binary version of AC7 [23] is used in IlogSolver
[71] to propagate general constraints. As for GAC4, it runs in the optimal
O(erdr) time complexity.

Lecoutre et al. proposed several extensions of AC2001 that permit to adapt
the techniques used in AC7 to coarse-grained algorithms [81]. AC3.2 is an
algorithm that partially exploits bidirectionality on positive constraint checks.
AC3.3 fully exploits bidirectionality on positive constraint checks. AC3.2* and
AC3.3* are extensions of AC3.2 and AC3.3 that also exploit bidirectionality on
negative constraint checks, like in AC7. An extensive experimentation suggests
that AC3.3 is the best stand alone arc consistency algorithm, whereas AC3.2 is
the best when maintained during search.

4.3.2 Ordering the propagation list

Another way of improving the time needed to enforce arc consistency is by
revising first the arcs that will prune the most or that will be the cheapest to
revise. In their seminal paper on the subject, Wallace and Freuder proposed
several heuristics to reorder the propagation list in AC3 [122]. Among the
different heuristics they analyzed, the best seemed to be the one selecting first
the arcs (xi, cij) such that the variable xj against which to revise has the smallest
domain.

23

Gent et al. applied to arc consistency the general criterion of ‘constrained-
ness’ defined in [65]. They proposed to select first the arc that minimizes the
constrainedness κac of arc consistency [64]. They show that this heuristic is a
good way to reduce the number of constraint checks but is heavy to compute.
Interestingly, approximations of their criterion give some of the good heuristics
proposed by Wallace and Freuder.

The most comprehensive study on ordering heuristics for coarse-grained arc
consistency algorithms was recently proposed by Boussemart et al. in [28].
They not only studied heuristics to reorder the propagation list Q, but also
the type of information we put in it. Q can be a list of arcs to revise, as in
regular AC3 (arc-oriented revision), a list of variables whose domain has been
modified as in McGregor’s version (variable-oriented revision), or a list of con-
straints which had a variable of their scheme modified. Lists of variables being
much shorter than lists of arcs, they showed that heuristics handling Q are less
time consuming when incorporated in variable-oriented implementations. Since
McGregor’s algorithm suffers from redundant revisions (see Subsection 4.2.1),
Boussemart et al. proposed a modified version that avoids these redundant
revisions while keeping the advantage of variable-oriented revision. As for sav-
ing constraint checks, they found that several heuristics close to that already
proposed by Wallace and Freuder or by van Dongen [122, 114] show good per-
formance. Among all, they recommend a variable-oriented implementation of
coarse-grained algorithms (they experimented with AC3.2) in which the variable
with the smallest domain is picked first from Q.

5 Higher Order Consistencies

In Section 4, we have seen that arc consistency, which is the most natural tech-
nique for tightening a network, has received great attention from the community.
Nevertheless, this is not the only way to tighten a network, and as early as in
the 70’s, several authors proposed techniques that discover more inconsistencies
than arc consistency.

5.1 Path consistency

Path consistency was proposed by Montanari as a necessary condition for the
consistency of pairs of values in binary normalized networks [95]. Roughly
speaking, it says that if for a given pair of values (vi, vj) on a pair of variables
(xi, xj) there exists a sequence of variables from xi to xj such that we cannot
find a sequence of values for these variables starting at vi and finishing at vj , and
satisfying all binary constraints along the sequence, then (vi, vj) is inconsistent.

Definition 36 (Path consistency). Let N = (X, D, C) be a normalized net-
work.

• Given two variables xi and xj in X, the pair of values (vi, vj) ∈ D(xi) ×
D(xj) is path consistent iff for any sequence of variables Y = (xi =

24

xk1 , xk2 , . . . , xkp
= xj) such that for all q ∈ [1..p − 1], ckq,kq+1 ∈ C, there

exists a tuple of values (vi = vk1 , vk2 , . . . , vkp
= vj) ∈ πY (D) such that for

all q ∈ [1..p − 1], (vkq
, vkq+1) ∈ ckq,kq+1 .

• The network N is path consistent (PC) iff for any pair of variables
(xi, xj), i $= j, any locally consistent pair of values on (xi, xj) is path
consistent.

Example 37. Consider the network N with variables x1, x2, x3, domains
D(x1) = D(x2) = D(x3) = {1, 2}, and C = {x1 $= x2, x2 $= x3}. N is
not path consistent because neither ((x1, 1), (x3, 2)) nor ((x1, 2), (x3, 1)) can
be extended to a value of x2 satisfying both c12 and c23. The network
N ′ = (X, D, C ∪ {x1 = x3}) is path consistent.

Montanari observed that it is sufficient to enforce path consistency only on
paths of length 2 to obtain the same level of local consistency as path consistency.

Definition 38 (2-path consistency). Let N = (X, D, C) be a normalized
network.

• Given two variables xi and xj in X, the pair of values (vi, vj) ∈ D(xi) ×
D(xj) is 2-path consistent iff for any third variable xk ∈ X with cik ∈ C
and ckj ∈ C, there exists a value vk ∈ D(xk) such that (vi, vk) ∈ cik and
(vj , vk) ∈ ckj.

• The network N is 2-path consistent iff for any pair of variables (xi, xj), i $=
j, any locally consistent pair of values on (xi, xj) is 2-path consistent.

Proposition 39. Path consistency and 2-path consistency are equivalent.

Path consistency does not reduce domains of variables but removes pairs of
values. As a result, the path consistent closure of a normalized network N is not
in Psol

ND. I define PN2 as the subset of PN where networks are normalized and
differ from N only by adding or tightening binary constraints. The path consis-
tent closure PC(N) of N is the union (according to -N) of all path consistent
networks in PN2. In PN2, there can be several networks nogood-equivalent to
PC(N) because constraints with the same scheme can differ on non valid tuples,
which does not change the set of locally inconsistent instantiations. Neverthe-
less, PC algorithms represent modified constraints extensionally, generating only
embedded constraints. So, if we consider networks where all binary constraints
are embedded, the relation 0 is a partial order on PN2 and PC algorithms are
guaranteed to converge on PC(N).

Several algorithms achieving PC were proposed in the literature. Each time
a new technique was proposed for arc consistency, it was soon applied to path
consistency. PC1 [95, 87] can be seen as the path consistency counterpart of the
brute-force AC1. PC2 is the extension of AC3 to path consistency [87]. PC3
[92] and PC4 [68] use lists of support, like AC4, to reach optimality. PC5 [112]
and PC6 [32] extend AC6. PC7 [31] and PC8 [33] are simplifications of PC6
that perform well in practice. PC5++ [112] applies bidirectionality of AC7.
Finally, PC2001 [127, 25] extends AC2001.

25

A drawback of path consistency is that enforcing it can produce additional
constraints that were not in CN (see Example 37). Furthermore, even when a
constraint c(xi, xj) is already in CN , its refinement by PC can impose to change
its semantics and to represent this new constraint extensionally whereas it was
given as a function.

Example 40. Consider the network with variables x1, x2, x3, domains D(x1) =
D(x2) = D(x3) = {1, 2, 3, 4}, and C = {|x1 − x2| ≥ 2, x2 $= x3, x1 $= x3}. These
three constraints can be given by their arithmetic expression if the constraint
toolkit in use permits them. However, enforcing PC will discard the tuples
(2, 4), and (3, 1) from c13, which probably requires a storage in extension of this
constraint. If c13 had a specific propagation algorithm for enforcing AC on it
(see Section 9), it no longer works on this new constraint.

The last thing we can notice is that even if path consistency is usually
considered in binary normalized networks, nothing in Definition 36 prevents
its use on non-binary normalized networks. Non-binary constraints are just
ignored.

5.2 k-consistencies

A few years after Montanari’s paper, Freuder extended the notion of local consis-
tencies stronger than AC to a whole class of consistencies, called k-consistencies
[53, 54].

Definition 41 (k-consistency). Let N = (X, D, C) be a network.

• Given a set of variables Y ⊆ X with |Y | = k − 1, a locally consistent
instantiation I on Y is k-consistent iff for any kth variable xik

∈ X \
Y there exists a value vik

∈ D(xik
) such that I ∪ {(xik

, vik
)} is locally

consistent.

• The network N is k-consistent iff for any set Y of k − 1 variables, any
locally consistent instantiation on Y is k-consistent.

Given a normalized network N , PNk denotes the subset of PN containing all
normalized networks N ′ in which only constraints of arity k can differ from N .
More formally, N ′ ∈ PNk if and only if N ′ ∈ PN , DN ′ = DN , and any constraint
in CN ′ \ CN has arity k. The k-consistent closure of N is the union (according
to -N) of all k-consistent networks in PN(k−1). (Enforcing k-consistency makes
explicit nogoods of size k − 1.) I restrict to normalized networks because -N

is not defined on arbitrary networks (see Section 3). 0 is a partial order on
PN(k−1) only if all constraints of arity k − 1 are embedded.

As observed by Dechter [46], even if 3-consistency has strong similarities with
(2-)path consistency, it is not equivalent. Indeed, 3-consistency ensures that any
instantiation of length 2 can be extended to an instantiation involving any third
variable without violating any constraint, whereas (2-)path consistency only
guarantees that binary constraints are not violated.

26

Example 42. Suppose a network involving variables x1, x2, x3 with domains
D(x1) = D(x1) = D(x1) = {1, 2}, and a single constraint c(x1, x2, x3) =
{(1, 1, 1), (2, 2, 2)}. This network is path consistent because it does not con-
tain any binary constraint. It is not 3-consistent because the instantiation
(x1 = 1, x2 = 2), which is locally consistent, cannot be extended consistently
to x3. 3-consistency produces the three binary constraints c12 = {(1, 1), (2, 2)},
c23 = {(1, 1), (2, 2)} and c13 = {(1, 1), (2, 2)}.

k-consistency ensures that each time we have a locally consistent instanti-
ation of size k − 1, we can consistently extend it to any kth variable. So, the
question is ’how to build locally consistent instantiations of size k− 1?’. Strong
k-consistencies are properties that guarantee that the network is j-consistent for
1 ≤ j ≤ k. Thus, we can build from scratch a locally consistent instantiation of
size k without any backtrack.

Definition 43 (Strong k-consistency). A network is strongly k-consistent
iff it is j-consistent for all j ≤ k.

Given a normalized network N , P∗
Nk denotes the subset of PN containing

all normalized networks N ′ in which only the domains and constraints of arity
at most k can differ from N . More formally, N ′ ∈ P∗

Nk if and only if N ′ ∈ PN ,
DN ′ ⊆ DN , and any constraint in CN ′ \ CN has arity at most k. The strong
k-consistent closure of N is the union of all strongly k-consistent networks in
P∗

N(k−1). The relation 0 is not a partial order in P∗
N(k−1) even if we restrict

to embedded constraints. As a consequence, an algorithm achieving strong k-
consistency by iteratively enforcing j-consistency, 1 ≤ j ≤ k, is not guaranteed
to terminate on the strong k-consistent closure of N . It may terminate on a
network of P∗

N(k−1) nogood-equivalent to the closure.

Example 44. Consider the network with variables x1, . . . , x6, domains equal
to {1, 2} and C = {c1(x1, x2, x3, x4), c2(x2, x3, x4, x5), x2 = x6, x6 $= x3}, with
c1 = {(1112), (1121), (1211), (2122), (2212), (2221)} and c2 = {(1112), (1211),
(1222), (2112), (2122), (2222)}. If we apply 4-consistency on x2, x3, x4 wrt x1

and x5, we derive the constraint c3(x2, x3, x4) = {(121), (122), (211), (212)}. 3-
consistency on x2, x3 wrt x4 produces the constraint c4(x2, x3) = {(12), (21)}.
By applying first 3-consistency to x2, x3 wrt x6, the constraint c4 would have
been produced before c3. So c3 would have never been generated because all its
tuples are already inconsistent with c4.

The algorithms proposed by Freuder and Cooper in [53, 37] both reach a
fixpoint which is not the strong k-consistent closure. They make all constraints
(up to arity k − 1) as explicit as possible. For instance, if a pair of values
((xi, vi), (xj , vj)) is path inconsistent, they create a constraint on every superset
Y of {xi, xj} with |Y | < k, and this constraint forbids all tuples τ on Y where
τ [(xi, xj)] = (vi, vj). Cooper showed that his algorithm runs in O(nkdk), which
is the optimal time complexity for strong k-consistency. The algorithm proposed
by Cooper requires O(nkdk) space. The optimal space complexity for strong k-
consistency is O(nk−1dk−1) because we must store all the constraints of arity

27

k−1 that k-consistency creates each time an instantiation of size k−1 does not
extend to a kth variable. .

I said in Section 3 that the maximal amount of simplification we can perform
on a network is to reach a globally consistent network, that is, a network on
which all locally consistent instantiations can be extended to solutions. Strong
n-consistency guarantees that.

Proposition 45. If a network is strongly n-consistent then it is globally con-
sistent.

Enforcing global consistency on an arbitrary network is far too space consum-
ing (in O(nn−1dn−1)). Freuder gave conditions on the associated hypergraph
for which strong k-consistency (k < n) is sufficient to allow a backtrack-free
search [54]. In [47], Dechter and Pearl developed adaptive consistency (AdC),
a technique inspired from dynamic programming. Given a total ordering on
the variables, AdC adapts the level of k-consistency enforced on each variable
xi depending on the number of variables that share a constraint with xi and
that precede it in the ordering. The obtained network guarantees backtrack-free
search. (See Chapter 5 in [109].)

In [55], Freuder proposed (i, j)-consistency, a generalization of k-consistency
where we do not guarantee that instantiations of size k − 1 can be extended
to instantiations of size k, but instantiations of size i can be extended to j
additional variables. k-consistency is (k − 1, 1)-consistency. Since the main
drawback of k-consistencies is the huge space they require to store all forbidden
instantiations of size k−1, we can design local consistencies requiring less space
by setting i to a small value in (i, j)-consistency.

5.3 Montanari’s decomposability and minimality

Montanari characterized networks that can be made globally consistent in poly-
nomial space. These are networks for which the set of solutions is a decompos-
able relation [95], also named binary decomposable relation in [46].

Definition 46 (Decomposable in the sense of Montanari).

• A relation ρ with scheme X is binary-representable iff there exists a binary
network N , XN = X, such that sol(N) = ρ.

• A relation ρ with scheme X is decomposable in the sense of Montanari iff
for all Y ⊆ X, πY (ρ) is binary-representable.

• A network N is decomposable in the sense of Montanari iff sol(N) is a
decomposable relation.

Example 47. ([95]) Consider the network N in Fig. 4, with variables x1, x2,
x3, x4, domains D(x1) = {1, 2, 3, 4}, D(x2) = D(x3) = D(x4) = {0, 1}, and
constraints as shown in the boxes on the figure. sol(N) is equal to the relation
R on the top right-hand corner of the figure, which is thus representable by
a binary network. However, R is not decomposable in the sense of Montanari

28

2 1
1 0

4 1
3 1

1

0

1

0

1

0

1
2

3
4

X1 X2 X3 X4

 1 0 0 0
 2 1 0 1
 3 1 1 0
 4 1 1 1

R:

X3

X2

X1
X4

2 1
1 0

4 1
3 0

2 0
1 0

4 1
3 1

c(X1,X4):c(X1,X3):

c(X1,X2):

Figure 4: A relation R that can be represented by a binary network but which
is non decomposable in the sense of Montanari.

because π{x2,x3,x4}(R) = {(000), (101), (110), (111)} = {x2 = x3 ∨ x4} cannot
be represented by a binary network. (Any binary network on x2, x3, x4 that
accepts all tuples in the relation also accepts the tuple (100).)

Proposition 48. If a network N = (X, D, C) is decomposable in the sense
of Montanari then there exists a binary network GN = (X, D, CG), which is
globally consistent and sol(N) = sol(GN).

Decomposability of Montanari is stronger than what is commonly called
‘decomposable constraint’. (See [63] or Section 9.2 for more details.)

Example 47 shows that it is not because a network is binary that it is decom-
posable in the sense of Montanari. For binary networks, Montanari proposed
the concept of minimal network, which is the best approximating binary net-
work for global consistency. This is thus another technique for tightening binary
networks.

Definition 49 (Minimal network). Given a binary network N = (X, D, C),
the minimal network of N is the binary normalized and embedded in D network
MN = (X, D, CM) such that any locally consistent instantiation of length 2 is
globally consistent and sol(MN) = sol(N).

Corollary 50. Given a binary network N , if sol(N) is decomposable in the
sense of Montanari, the minimal network MN is globally consistent.

Minimality on a binary network could be considered as a kind of local consis-
tency. But local consistencies usually refer to properties which are polynomial
to enforce. Building the minimal network is obviously intractable because once
we have the minimal network, it is constant time to decide consistency of the
original network (by checking non emptiness of any constraint).

The question of building the minimal network was called the ‘central prob-
lem’ by Montanari. This led to some confusion as it was sometimes believed
that generating a solution is polynomial if the network is minimal. Dechter
partially fixed the ambiguity by saying that:

29

“it is still not clear, however, whether or not generating a single solu-
tion of a minimal network is hard, even though empirical experience
shows that it is normally easy. Nevertheless, we do speculate that
generating a single solution from the minimal network is hard...”

We can say a little more about this.

Proposition 51 (Generating solutions of a minimal network). Generat-
ing a solution of a minimal network MN is not backtrack-free (unless ΠP

2 = ΣP
2).

Proof. The clause entailment problem is known to be non compilable7 unless
ΠP

2 = ΣP
2 [29]. In [38], Cros reduced the clause entailment problem to the

compilability of the problem of the global consistency of a partial instantiation
in a binary network N . If building solutions in a minimal network was backtrack-
free, it would be polynomial to answer whether a partial instantiation is globally
consistent or not. Furthermore, a minimal network has a size in O(n2d2), which
is polynomial in the size of N . Hence, the problem of the consistency of partial
instantiations would be compilable, and clause entailment as well.

5.4 Consistencies based on constraints

All consistencies I studied until now (except arc consistency) are properties of
partial instantiations of variables wrt other variables. They do not take into ac-
count the network topology, i.e., which sets of variables are linked by a constraint
and which are not. This is a limitation for constraint propagation, which creates
new constraints everywhere in the network. This is also a limitation on non-
binary networks if we want to link the level of consistency and the hypergraph
structure in backtrack-free conditions. In this section, I restrict my attention to
embedded networks because all the works I present used this restriction.

Janssen et al. proposed a first local consistency based on constraints instead
of variables [72]. It was applied from works on relational databases [7].

Definition 52 (Pairwise consistency). Given an embedded network N , a
pair of constraints c1 and c2 in CN is pairwise consistent iff any tuple on
X(c1) (resp. on X(c2)) satisfying c1 (resp. c2) can be extended to an instanti-
ation on X(c1) ∪ X(c2) satisfying c2 (resp. c1), that is, iff πX(c1)∩X(c2)(c1) =
πX(c1)∩X(c2)(c2). N is pairwise consistent iff any pair of constraints in CN is
pairwise consistent.

Example 53. Consider the network with variables x1, x2, x3, x4, domains
D(x1) = D(x2) = D(x3) = D(x4) = {1, 2} and constraints c1(x1, x2, x3) =
{(121), (211), (222)} and c2(x2, x3, x4) = {(111), (222)}. This network is gener-
alized arc consistent. However, it is not pairwise consistent because the tuple
(121) from c1 is not compatible with any tuple in c2.

7The problem of asking queries of a class Q to instances of a class P is said to be compilable
if there exists a polynomial space transformation p′ of any instance p of P (the time for the
transformation should just be finite) such that any query q from Q asked on p can be answered
in polynomial time by using p′ [29].

30

Janssen et al. showed in [72] that pairwise consistency is equivalent to 2-
consistency on the dual encoding of the network, where dual variables represent
constraints of the original network [48].

In a database context, Gyssens proposed k-wise consistency, a direct exten-
sion of pairwise consistency where we consider k constraints at a time instead
of two [67]. Jégou applied this notion to constraint networks [73].

Definition 54 (k-wise consistency). Given an embedded network N , a set of
constraints {c1 . . . , ck} in CN is k-wise consistent iff for any ci, i ∈ [1..k], any

tuple on X(ci) satisfying ci can be extended to an instantiation on
⋃k

j=1 X(cj)

satisfying cj for all j ∈ [1..k], that is, iff ci = πX(ci)(!"
k
j=1 cj). N is k-wise

consistent iff for all {c1 . . . , ck} in CN , {c1 . . . , ck} is k-wise consistent.

k-wise consistency is the constraint-based counterpart of k-inverse consis-
tency (see Section 6). Enforcing k-wise consistency does not alter the associated
hypergraph. It just alters existing constraints.

In [74], Jégou proposed another duality between variables and constraints.
He presents hyper k-consistency. This is the constraint-based counterpart of
k-consistency.

Definition 55 (Hyper k-consistency). Let N be an embedded network. A
set {c1, . . . , ck−1} of k − 1 constraints in CN is hyper k-consistent relative to a
kth constraint ck iff any instantiation on ∪k−1

i=1 X(ci) satisfying c1, . . . , ck−1 has
an extension on the variables in X(ck) that satisfies ck, that is, iff πY (!"k−1

i=1
ci) ⊆ πY (ck), where Y = (∪k−1

i=1 X(ci)) ∩ X(ck). N is hyper k-consistent iff for
all {c1, . . . , ck−1} ⊆ CN , for all ck ∈ CN , {c1, . . . , ck−1} is hyper k-consistent
relative to ck.

Pairwise consistency is both 2-wise consistency and hyper 2-consistency.
Based on definition 55, Jégou characterized some sufficient conditions for a

network to be consistent. These conditions link the level of hyper k-consistency
of the network to the width of its hypergraph. Nevertheless, hyper k-consistency
inherits one of the drawbacks of k-consistencies because enforcing hyper k-
consistency creates new constraints on sets of variables that were not linked
in the original network.

Dechter and van Beek proposed a new form of local consistency which is more
bound to schemes of constraints already in the network than hyper k-consistency
is. They refer to those new types of consistencies as relational consistencies [49].

Definition 56 (Relational arc consistency). Let N be an embedded network.
A constraint c in CN is relationally arc consistent relative to a subset of variables
Y ⊆ X(c) iff any locally consistent instantiation on Y has an extension to a
tuple on X(c) that satisfies c. c is relationally arc consistent iff it is relationally
arc consistent relative to every subset Y of X(c). N is relationally arc consistent
iff every constraint in CN is relationally arc consistent.

An advantage of relational arc consistency is that enforcing it does not create
constraints between variables not linked in the original network. However, it

31

creates subconstraints on subsets of the schemes of the original constraints,
which can be prohibitive on large arity constraints because it can create up to
2|X(c)| subconstraints for a constraint c.

Definition 57 (Relational m-consistency). Let N be an embedded network.
A set {c1, . . . , cm} of m constraints in CN is relationally m-consistent relative
to a subset of variables Y ⊆

⋃m
i=1 X(ci) iff any locally consistent instantiation

on Y has an extension to
⋃m

i=1 X(ci) that satisfies c1, . . . , cm simultaneously. A
set {c1, . . . , cm} of m constraints in CN is relationally m-consistent iff it is rela-
tionally m-consistent relative to every subset Y of

⋃m
i=1 X(ci). N is relationally

m-consistent iff every set of m constraints in CN is relationally m-consistent.

Relational m-consistency has the same drawbacks as hyper k-consistency
because it can create new constraints on any subset of variables involved in one
of m constraints. Dechter and van Beek proposed a bounded version of relational
m-consistency that permits to tackle the space and time explosion.

Definition 58 (Relational (i, m)-consistency). Let N be an embedded net-
work. A set of constraints {c1, . . . , cm} ⊆ CN is relationally (i, m)-consistent
iff it is relationally m-consistent relative to every subset of variables Y ⊆⋃m

i=1 X(ci), |Y | = i. N is relationally (i, m)-consistent iff every subset of m
constraints in CN is relationally (i, m)-consistent. N is strong relational (i, m)-
consistent iff it is relationally (j, m)-consistent for every j ≤ i.

Relational arc consistency corresponds to strong relational (n, 1)-consistency
and relational m-consistency corresponds to strong relational (n, m)-consistency.
Generalized arc consistency is relational (1, 1)-consistency. Relational (1, m)-
consistencies are domain-based consistencies, and so, do not modify the set of
constraints.

As in the case of strong k-consistencies, algorithms enforcing strong rela-
tional (i, m)-consistencies can converge to different networks depending on the
order in which they generate new constraints.

Dechter and van Beek proposed an algorithm enforcing relational (i, m)-
consistency. Its complexity is exponential in i · m. They also proposed an
algorithm for adaptive relational consistency. It is inspired from adaptive con-
sistency ([47]) and applies the right level of relational consistency to guarantee
a backtrack-free search for solutions wrt a given ordering of the variables.

Walsh performed an extensive theoretical comparison of relational consisten-
cies with k-consistencies, k-inverse consistencies and generalized arc consistency
[124].

6 Domain-based Consistencies Stronger than

AC

There exist local consistencies that permit to prune more values than arc con-
sistency while keeping the set of constraints unchanged (as opposed to what is

32

done by k-consistencies and consistencies based on constraints —see Section 5).
The first ones I present are different kinds of reasoning we can apply on triples
of variables. The others involve the whole neighborhood of a variable or check
local consistency of the whole network after a single assignment of a variable.

6.1 Triangle-based local consistencies

The local consistencies defined here are limited to binary normalized networks.
They all deal with ‘triangles’ of constraints, namely triples of variables connected
two-by-two by binary constraints.

The first local consistency following this line of research is Restricted Path
Consistency (RPC), proposed by Berlandier [13]. The motivation for RPC is to
remove more inconsistent values than arc consistency whereas avoiding the cost
of path consistency. Path consistency removes all pairs of values that cannot
be extended to a third variable. The idea of RPC is to try to extend only those
pairs of values that if removed, would lead to arc inconsistency of a value. So,
in addition to arc consistency, RPC guarantees path consistency of the pairs of
values ((xi, vi), (xj , vj)) that are the only support for (xi, vi) on cij . If such a pair
is path inconsistent, its deletion would lead to the arc inconsistency of (xi, vi).
Thus (xi, vi) can be removed. These few additional path consistency checks
allow the detection of more inconsistent values than arc consistency without
having to delete any pair of values, and so leaving the structure of the network
unchanged.

Definition 59 (Restricted path consistency). A binary normalized network
N = (X, D, C) is restricted path consistent (RPC) iff it is arc consistent and
for all xi ∈ X, for all vi ∈ D(xi), for all cij ∈ C such that (xi, vi) has a unique
support ((xi, vi), (xj , vj)) on cij , for all xk ∈ X linked to both xi and xj by a
constraint, there exists vk ∈ D(xk) such that (vi, vk) ∈ cik and (vj , vk) ∈ cjk.

RPC is strictly stronger than AC. An example of a network on which RPC
prunes more values than AC is shown in Figure 5. Berlandier proposed an
algorithm in O(end3). The optimal complexity of achieving RPC on a binary
normalized network is in O(en + ed2 + td2), where t is the number of triples
of variables (x,, xj , xk) with cij , cjk and cik all in C. An algorithm with this
optimal time complexity was presented by Debruyne and Bessiere [42].

In [57], Freuder and Elfe proposed other alternatives to enforce local consis-
tencies stronger than AC whereas modifying only the domains. The idea is to
take the inverse of what is done by k-consistency. k-consistency (or (k − 1, 1)-
consistency) ensures that any locally consistent instantiation of size k − 1 can
be extended to any kth variable in a consistent way. This implies the explicit
removing of all instantiations of size k−1 that cannot fit this property. k-inverse
consistency ensures that any locally consistent instantiation of size 1 can be con-
sistently extended to any k−1 additional variables. This is (1, k−1)-consistency.
Since 2-inverse consistency is the same as 2-consistency, the simplest non triv-
ial such inverse consistency is 3-inverse consistency, or path-inverse consistency
(PIC), as called in [57].

33

(a)

1

2

1

1

2Xj >= Xk

Xi + Xk > 2

Xi >= Xj

Xi Xj

2

Xk

(b)

1

2

3

1

2

1

2

3
1 2

forbidden pair of values:

Xi + Xk > 2

Xj * Xk < 4

Xi + Xj > 2

Xi
Xj

Xk

Figure 5: (a) Network on which RPC prunes more than AC: (xi, 1) is not RPC
whereas the whole network is AC. (b) Network on which PIC prunes more than
RPC: (xi, 1) is not PIC whereas the whole network is RPC.

Definition 60 (Path inverse consistency). A binary normalized network
N = (X, D, C) is path-inverse consistent (PIC) iff for all xi ∈ X, for all
vi ∈ D(xi), for all xj , xk ∈ X, there exists vj ∈ D(xj) and vk ∈ D(xk) such
that ((xi, vi), (xj , vj), (xk, vk)) is locally consistent.

PIC is strictly stronger than RPC. An example of a network on which PIC
prunes more values than RPC is shown in Figure 5. Freuder and Elfe proposed
an algorithm in O(en2d4). In [41], Debruyne proposed some sufficient condi-
tions for the path-inverse consistency of a network. They permit to avoid some
constraint checks. Debruyne presented an optimal algorithm for PIC that runs
in O(en + ed2 + td3).

Following RPC and PIC, Debruyne and Bessiere proposed max-restricted
path consistency (maxRPC) [42]. maxRPC still increases the amount of local
consistency on triangles of variables. Given a value (xi, vi) and a constraint cij ,
maxRPC ensures that (xi, vi) has a support on cij path consistent on any third
variable.

Definition 61 (Max-restricted path consistency). A binary normalized
network N = (X, D, C) is max-restricted-path consistent (macRPC) iff for all
xi ∈ X, for all vi ∈ D(xi), for all cij ∈ C, there exists vj ∈ D(xj) such that
(vi, vj) ∈ cij and for all xk ∈ X there exists vk ∈ D(xk) with ((xi, vi), (xj , vj),
(xk, vk)) locally consistent.

maxRPC is strictly stronger than PIC. An example of a network on which
maxRPC prunes more values than PIC is shown in Figure 6. An optimal algo-
rithm for maxRPC was proposed in [42]. It runs in O(en + ed2 + td3).

6.2 Consistency according to the neighborhood

Since k-inverse consistency is polynomial with the exponent depending on k,
checking k-inverse consistency is prohibitive if k is large. However, if variables
are not uniformly constrained, it can be worthwhile to adapt the level of k-
inverse consistency to the size of their neighborhood, focusing filtering effort

34

(a)

1

2

1

2

3

1

2

1

2

Xj

Xm

Xi

2Xi <> Xj

Xi + Xm >2

Xj >= Xk

Xj * Xm < 6

Xi + Xk > 2

Xk

(b)

1

2

1

2

1

2

1

2 1 2

forbidden pair of values:

XjXi

Xk

Xm

Xi <= Xk

Xk <= Xj

Xj <= Xm

Xi + Xm < 4

Figure 6: (a) Network on which maxRPC prunes more than PIC: (xi, 1) is not
maxRPC whereas the whole network is PIC. (b) Network on which SAC prunes
more than maxRPC: (xi, 2) is not SAC whereas the whole network is maxRPC.

on the most constrained variables (as it is done in Adaptive consistency —
see Section 5.2). This is the basis of neighborhood inverse consistency (NIC,
[57]), which ensures that every value vi in a domain D(xi) can be extended
consistently to all the neighbors of xi.

Definition 62 (Neighborhood inverse consistency). A network N =
(X, D, C) is neighborhood-inverse consistent (NIC) iff for all xi ∈ X, for all
vi ∈ D(xi), the instantiation (xi, vi) can be extended to a locally consistent
instantiation on the set of all variables involved in a constraint with xi.

An algorithm for NIC was proposed in [57]. It runs in O(g2(n + ed)dg+1),
where g is the maximum degree of a variable in the associated hypergraph. It is
not proved optimal. Anyway, it seems difficult to go below the exponential factor
nd · dg because every value of every variable must be proved consistent with its
neighborhood (possibly of size g). NIC is strictly stronger than maxRPC.

NIC networks do not have the good property of backtrack-free search that
adaptive consistent networks have. Although achieving NIC is exponential in
the size of the largest neighborhood, it guarantees neither backtrack-free search
nor consistency of the network. In addition, the behavior of NIC is dependent
on the structure of the network. If two variables xi and xj are not neighbors,
the network obtained by adding a universal constraint allowing all the pairs of
values (vi, vj) ∈ D(xi) × D(xj) between xi and xj is equivalent to the initial
one. However, as opposed to the other local consistencies, NIC is affected by
this change because the neighborhood of xi has changed. NIC can detect more
inconsistent values. Obviously, this process increases time complexity because
the sizes of neighborhoods increase.

35

6.3 Singleton consistencies

A general technique, which has been used in several areas of automated rea-
soning consists in trying in turn different assignments of a value to a variable,
and performing constraint propagation on the subproblem obtained by this as-
signment. If the problem is found to be inconsistent, this means that this value
does not belong to any solution and thus can be pruned. This kind of technique
was used on the bounds of interval domains in scheduling (’shaving’ in [90]) or
on continuous CSPs (3B-consistency in [83]). This technique was also used on
literals as a way to derive better variable ordering heuristics in DPLL for SAT
formulas (by counting the size of the remaining clauses after instantiation of a
literal and unit propagation) in [52, 85]. Finally, it was formalized as a class
of local consistencies in [43, 102, 44] under the name ‘singleton consistencies’.
I give the definition in the case where the amount of propagation applied to
each subproblem is arc consistency. Any other local consistency can be used in
a similar way. In the following, the subnetwork obtained from a network N by
reducing the domain of a variable xi to the singleton {vi} is denoted by N |xi=vi

.

Definition 63 (Singleton arc consistency). A network N = (X, D, C) is
singleton arc consistent (SAC) iff for all xi ∈ X, for all vi ∈ D(xi), the
subproblem N |xi=vi

is not arc inconsistent.

SAC is strictly stronger that maxRPC. An example of a network on which
SAC prunes more values than maxRPC is given in Fig. 6. The first algorithm
for SAC was proposed by Debruyne and Bessiere in [43], and was later named
SAC1. It is a brute-force algorithm that checks SAC of each value by per-
forming AC on each subproblem N |xi=vi

. It removes vi from D(xi) if N |xi=vi

is arc inconsistent. After each change in a domain, it rechecks SAC of every
remaining value. It can then perform AC nd times on each subproblem, and
because there are nd subproblems, it runs in O(en2d4) on binary normalized
networks, where AC is in O(ed2). In [6], Bartàk and Erben proposed SAC2, a
smarter algorithm that avoids unnecessary work by storing lists of supports, a
bit like AC4. Unfortunately, its worst-case time complexity is still O(en2d4).
Recently, Bessiere and Debruyne showed that the complexity of SAC on binary
normalized networks is in O(end3), and they proposed SAC-Opt, an algorithm
with this optimal time complexity [16, 17]. To achieve optimal time, SAC-
Opt stores a lot of information in large data structures that require O(end2)
space. SAC-SDS (Sharing Data Structures) is a lighter version in which less
structures are stored. Its O(end4) time complexity is a compromise between
former SAC algorithms and SAC-Opt, whereas its space complexity is the same
as SAC2, namely, O(n2d2). Lecoutre and Cardon proposed SAC3, a different
technique to enforce SAC [82]. SAC3 incrementally assigns values to variables
in the network until arc consistency wipes out a domain. If the current se-
quence of assignments is I = ((x1, v1), . . . , (xk, vk)), it deduces that the values
(x1, v1), (x2, v2), . . . , (xk−1, vk−1) are currently SAC. This technique permits to
prove SAC of several values in a single arc consistency pass. SAC3 does not
have optimal worst-case time complexity but it works well in practice.

36

Strong PC SAC maxRPC PIC RPC AC

NIC
A B: A and B are incomparable

A B: A is strictly stronger than B

Figure 7: Summary of the comparison between domain-based consistencies lying
between AC and Strong PC. A → B means that local consistency A is strictly
stronger than local consistency B. (The stronger relation is transitive.)

Several extensions of SAC have been proposed. Prosser et al. proposed
restricted-SAC, a weakened version of SAC that checks SAC of each value in
one pass, without propagating removals to values already processed [102]. Some
subtle extensions that are stronger than SAC itself have been proposed in [12,
34, 16]. Their effectiveness and efficiency in practice have not yet been assessed.

Many other singleton consistencies can be constructed because any local con-
sistency can be used to detect the possible inconsistency of the network N |xi=vi

.
If a local consistency can be enforced in polynomial time, the corresponding sin-
gleton consistency also has a polynomial worst-case time complexity. Prosser et
al. analyzed this wider picture. In [102, 123], they theoretically compared the
pruning capabilities of (i, j)-consistencies and singleton (i, j)-consistencies:

Theorem 64. Strong (i + 1, j)-consistency is strictly stronger than singleton
(i, j)-consistency. Singleton (1, j)-consistency is strictly stronger than (1, j+1)-
consistency.

Fig. 7 summarizes the qualitative comparison between the local consistencies
presented in this section. Complete proofs can be found in [44]. Verfaillie et
al. proposed a generic algorithm schema that can enforce most of the local
consistencies presented in this section, plus new ones that are combinations of
existing ones [120].

7 Domain-based Consistencies Weaker than AC

Arc consistency is not the weakest level of consistency we can define on a net-
work. The 80’s and first half of 90’s have seen quite a lot of works trying to
find the amount of filtering that should be performed by a backtrack search
procedure. At that time, even if the studies were mostly interested in binary
constraints, it was the conventional wisdom that AC was too expensive to be
maintained. As a result, several other properties weaker than AC were proposed.
The idea behind these properties is to reduce the number of times arc consis-
tency of variables must be checked against constraints. In other words, these
properties reduce the number of calls to function Revise in a coarse-grained
algorithm. They are presented in Section 7.1.

37

More recently, and essentially because of the cost of arc consistency on non-
binary constraints, other forms of consistency were introduced. These tech-
niques do not try to reduce the number of calls to the Revise procedure, but
instead, they try to reduce the amount of work such a Revise procedure per-
forms. Section 7.2 describes them.

7.1 Reducing the number of times constraints are revised

The filtering techniques that try to reduce the number of times constraints are
revised are based on properties a network must verify according to some addi-
tional parameter such as an ordering on the variables, or a partial instantiation.
This extra parameter permits to specify which variables must be arc consistent
with which constraints.

7.1.1 Directional arc consistency

Dechter and Pearl proposed directional arc consistency in [47]. The idea is
to associate an ordering to the variables in the network and to impose that
constraints are arc consistent in the direction of this ordering.

Definition 65 (Directional arc consistency). A binary network N =
(X, D, C) is directional arc consistent (DAC) according to ordering o =
(xk1 , . . . , xkn

) on X, where (k1, . . . , kn) is a permutation of (1, . . . , n), iff for
all c(xi, xj) ∈ C, if xi <o xj then xi is arc consistent on c(xi, xj).

Directional arc consistency is simpler to enforce than arc consistency. Re-
moving a value vi in D(xi) for some variable xi cannot make a variable xj

directional arc inconsistent on cij if xi <o xj . As a result, there is no need to
use a propagation queue for an algorithm achieving DAC. It is sufficient to pro-
cess the variables from the last in the ordering to the first, revising each variable
preceding the current one on the constraint they share, if any (see Algorithm
5).

Algorithm 5: Algorithm for DAC

procedure DAC (N, o);
for j ← n downto 2 do1

foreach cikj
∈ CN | xi <o xkj

do2

if not Revise(xi, cikj
) then return false3

Example 66. Consider the network with variables X = {x1, x2, x3}, domains
D(x1) = D(x2) = {1..5}, D(x3) = {1..3}, constraints C = {x1 < x2, x2 =
x3, x1 > x3}, and ordering o = (x1, x2, x3). Revising x1 on c13 and x2 on c23

(in whatever order) prunes value 1 from D(x1) and values 4 and 5 from D(x2).
Revising x1 on c12 prunes values 3,4,5 from D(x1). Therefore, N ′ = (X, D′, C)
with D′(x1) = {2}, D′(x2) = D′(x3) = {1, 2, 3} is the DAC closure of N . Note
that arc consistency proves inconsistency.

38

Proposition 67. The algorithm DAC enforces directional arc consistency ac-
cording to ordering o in O(ed2) time.

7.1.2 Forward checking

Even if they are often presented as stand alone preprocessing of a network,
local consistencies are usually intended to be maintained during a backtrack
search. It is thus natural to include in our analysis the filtering techniques that
were only defined as associated with backtrack search. The amount of filtering
performed by the famous forward checking (FC) [66, 69] can be defined as a
local consistency. The FC search procedure guarantees that at each step of
the search, all the constraints between already assigned variables and not yet
assigned variables are arc consistent.

Definition 68 (Forward checking). Let N = (X, D, C) be a binary network
and Y ⊆ X such that |D(xi)| = 1 for all xi ∈ Y . N is forward checking
consistent (FC) according to the instantiation I on Y iff I is locally consistent
and for all xi ∈ Y , for all xj ∈ X \ Y , for all c(xi, xj) ∈ C, xj is arc consistent
on c(xi, xj).

Algorithm 6 presents a procedure that applies FC on a network N according
to a subset of instantiated variables Y ∪ {xi} if N is already FC according to
Y .

Algorithm 6: Algorithm for FC

procedure FC (N, Y, xi);
foreach cij ∈ CN | xj ∈ X \ Y do1

if not Revise(xj , cij) then return false2

Example 69. On the network of Example 66, where X = {x1, x2, x3}, domains
D(x1) = D(x2) = {1..5}, D(x3) = {1..3}, and C = {x1 < x2, x2 = x3, x1 > x3},
applying FC according to {x1} after an instantiation x1 = 3 (i.e., D(x1) = {3})
prunes values 1,2,3 from D(x2) and 3 from D(x3).

FC has the property that once a variable xj is made arc consistent on cij

(|D(xi)| = 1), it remains AC on cij in spite of any future domain reduction,
because xi is singleton. This means that each constraint needs to be revised only
once along a branch of instantiations. As opposed to chronological backtracking,
a procedure maintaining FC does not need to check consistency of values of the
current variable against already instantiated ones. FC is the weakest level of
local consistency with this property.

The complexity of a call to Revise in FC is in O(d) because one of the
domains involved is a singleton. Hence, enforcing FC on a binary network
according to a partial instantiation of arbitrary length is in O(ed).

The definition of FC can be extended to non-binary constraints in several
different ways. Van Hentenryck proposed a basic one in [116]: A network is

39

Algorithm 7: Algorithms for PL and FL

procedure PL(N, Y, xi);
FC(N, Y, xi);1

foreach j ← i + 1 to n do2

foreach k ← j + 1 to n | cjk ∈ CN do3

if not Revise(xj , cjk) then return false4

procedure FL(N, Y, xi);
FC(N, Y, xi);5

foreach j ← i + 1 to n do6

foreach k ← i + 1 to n, k #= j | cjk ∈ CN do7

if not Revise(xj , cjk) then return false8

FC according to a partial instantiation I on a subset Y of X if and only if I is
locally consistent and for all xj ∈ X \Y , for all c ∈ C such that X(c)\Y = {xj},
xj is arc consistent on c. Bessiere et al. presented five additional extensions of
FC to non-binary constraints [22].

7.1.3 Other lookahead filterings

The idea of reducing the amount of filtering of arc consistency to avoid complex
algorithms led to other forms of propagation. In [69], Haralick and Elliott pro-
posed partial lookahead (PL) and full lookahead (FL), two levels of propagation,
stronger that FC. Haralick and Elliott gave operational definitions of PL and
FL in terms of algorithms performing a given amount of filtering. As opposed
to DAC and FC, no clear property on the output of PL or FL can be specified
and thus, no clear fixpoint can be defined.

PL and FL are presented in Algorithm 7. Given a network N , an ordering
o = (x1, . . . , xn), and a current variable xi, PL first performs FC and then takes
the variables xj from xi+1 to xn and calls Revise for xj on each cjk, j < k ≤ n.
FL performs a stronger level of filtering than PL. Given a network N , an ordering
o, and a current variable xi, FL takes the variables xj from xi+1 to xn and calls
Revise for xj on each cjk, i < k ≤ n, k $= j.

PL and FL cannot guarantee any property on the arc consistency of arcs at
the end of the process. After xj has been made arc consistent on cjk, j < k,
values of xk can be removed when making xk arc consistency on arcs leaving
xk. Thus, it is no longer guaranteed that the arc (xj , cjk) is arc consistent at
the end of the process because each arc is revised only once.

The complexity of function Revise is in O(d2) because it is called on con-
straints involving non singleton variables for both PL and FL. Thus, PL and
FL are in O(ed2), like DAC.

In [98, 99], Nadel encapsulated these forms of consistency in a general
schema, going from the consistency maintained by simple backtracking, i.e.,
local consistency of the instantiated variables (noted AC1/5), to arc consistency.
FC is denoted by AC1/4 while PL and FL are denoted by AC1/3 and AC1/2

respectively.

40

In [113], Tsang gave a comparison of the pruning capabilities of these dif-
ferent levels of filtering. He proved that DAC and FL are strictly stronger than
PL, which itself is strictly stronger than FC. FL and DAC are incomparable:
There are cases where DAC prunes values FL does not prune and vice versa.
AC is strictly stronger than all of them.

7.1.4 Selective revision

As a last technique to reduce the number of calls to function Revise in arc
consistency, there is the work by Freuder and Wallace. They proposed to use
criteria to discard arc revisions when they are not likely to be effective [58].

Given a coarse-grained arc consistency algorithm, distance-bounded propa-
gation confines constraint propagation to a fixed distance δ from the variables
at which it began. This is implemented by attaching a stamp to each arc in Q.
Arcs put in Q in the initialization of the arc consistency call are stamped with
zero. Forthcoming arcs are stamped with t + 1 if t is the stamp of the revised
arc that provoked their addition to Q. When an arc is to be stamped with a
value greater than the maximal distance δ, it is not put in Q.

Response-bounded propagation stops subsequent propagations when the
amount of change in a domain falls below a given threshold r. This is im-
plemented by testing if the ratio of values removed by a revision is greater than
r before adding relevant arcs in Q.

7.2 Using the order on the domains to relax Revise

The second form of local consistencies weaker than arc consistency do not try
to reduce the number of arc revisions, but instead, they try to reduce the cost
of revisions to overcome the prohibitive cost of generalized arc consistency on
some constraints. The idea behind these local consistencies is to use the fact that
domains are composed of integers. Integer domains inherit the total ordering
on and by consequence they inherit the two particular values minD(xi) and
maxD(xi), called the bounds of D(xi). I present two ways of relaxing generalized
arc consistency on a constraint c. The first option is to ensure support on c only
for the bounds of the domain of each variable in X(c). The second option is
to look for supports not in πX(c)(D) but in πX(c)(D

I), where DI is the domain
such that for all xi, DI(xi) = {v ∈ | minD(xi) ≤ v ≤ maxD(xi)}. Using the
first option or the second, or combining both, give rise to three relaxed forms
of local consistency.

Definition 70 (Consistencies on bounds). Given a network N = (X, D, C),
given a constraint c, a bound support τ on c is a tuple that satisfies c and such
that for all xi ∈ X(c), minD(xi) ≤ τ [xi] ≤ maxD(xi), that is, τ ∈ c∩πX(c)(D

I).
(A bound support in which each variable is assigned a value in its domain is a
support.)

• A constraint c is bound(Z) consistent (BC(Z)) iff for all xi ∈ X(c),
(xi, minD(xi)) and (xi, maxD(xi)) belong to a bound support on c.

41

X2X1 X3 X4 X5 X6

X2X1 X3 X4 X5 X6

X2X1 X3 X4 X5 X6

X2X1 X3 X4 X5 X6X2X1 X3 X4 X5 X6

after bound(D) consistency

after range consistency

1
2
3
4
5
6
7

after bound(Z) consistency

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

1
2
3
4
5
6
7

value not in D(Xi)

value in D(Xi)

original domains

value pruned from D(Xi)

after generalized arc consistency

Figure 8: Amount of propagation performed by BC(Z), BC(D), RC and GAC
on the constraint alldifferent(x1 . . . , x6) of Example 71.

• A constraint c is range consistent (RC) iff for all xi ∈ X(c), for all
vi ∈ D(xi), (xi, vi) belongs to a bound support on c.

• A constraint c is bound(D) consistent (BC(D)) iff for all xi ∈ X(c),
(xi, minD(xi)) and (xi, maxD(xi)) belong to a support on c.

The network N is bound(Z) / range / bound(D) consistent iff all its constraints
are bound(Z) / range / bound(D) consistent.

Example 71. Consider the network with variables x1, . . . , x6, domains D(x1) =
D(x2) = {1, 2}, D(x3) = D(x4) = {2, 3, 5, 6}, D(x5) = {5}, D(x6) = [3..7] and
C = {alldifferent(x1 . . . , x6)}. These domains are depicted in Fig. 8 after
BC(Z), BC(D), RC, and GAC are applied to the constraint.

The notion of local consistency on bounds comes from works on arithmetic
constraints over real variables (variables taking values in intervals of reals).
The move to integer is not so direct, and the names chosen in Definition 70
are not unanimously used in the literature.8 Collavizza et al. presented a
review of several local consistency notions for continuous domains [36]. One
of these local consistencies is named bound consistency but has no link at all
with those named bound(Z) or bound(D) consistencies in Definition 70. In
[110, 2], Schulte and Stuckey, and Apt gave a definition for bound consistency
on integer variables that is the direct application of the definition on reals. Choi
et al. called it bound(R) consistency [35]. Bound(R) consistency differs from
bound(Z) consistency in that it looks for bound supports composed of real values

8We took the names bound(Z) consistency and bound(D) consistency in [35] and range
consistency in [80].

42

(instead of integer values). For instance, in Fig. 8 the bound (x3, 2), removed
by BC(Z), is bound(R) consistent because it belongs to the tuple (1, 3

2 , 2, 4, 5, 3)
which satisfies the alldifferent constraint and where each variable takes a
real value between its bounds. In [110], Schulte and Stuckey showed that there
exist constraints on which BC(R) is polynomial to enforce whereas BC(Z) is
NP-hard. The bound consistency of Dechter in [46] corresponds to bound(D)
consistency in Definition 70. The local consistency named interval consistency
by Van Hentenryck et al. and by Apt in [119, 2] corresponds to bound(Z)
consistency in Definition 70. In recent papers dealing with integer variables,
it seems that the name bound consistency is uniformly used to refer to BC(Z)
[103, 105]. As seen in Fig. 8, these local consistencies do not all prune the same
amount of values.

Theorem 72. Generalized arc consistency is strictly stronger than range
and bound(D) consistencies, which are themselves strictly stronger than
bound(Z) consistency, which itself is strictly stronger than bound(R) consis-
tency. Bound(D) consistency and range consistency are incomparable.

These local consistencies being all strictly weaker than GAC, the only reason
to use one of them instead of GAC is to have a faster algorithm. BC(D) requires
finding supports, as in GAC. Hence, it only decreases the cost by a factor
d because it seeks supports for 2 values per domain (the bounds) instead of d
values. RC, BC(Z) and BC(R) look for bound supports (on integers or on reals).
Now, looking for bound supports is not necessarily simpler than looking for
supports. To keep things simple, let us focus on BC(Z) but the same reasoning
applies to BC(R) or RC.

Proposition 73 (Complexity of bound(Z) consistency). Deciding
bound(Z) consistency of a constraint can take exponential time, even if the con-
straint is binary, where arc consistency is in O(d2) time, d being the size of the
largest domain.

Proof. Let c be any binary constraint with no particular semantics that could
be used by a propagation algorithm. It is well-known that deciding AC on
such a constraint is in O(d2) time [92]. If X(c) = (xi, xj), deciding BC(Z) is
done by looking for a bound support for the four values minD(xi), minD(xj),
maxD(xi), maxD(xj). Finding a bound support for minD(xi) is done by explor-
ing DI(xj). Suppose c is characterized by a Boolean function requiring constant
space (this is often the case), and suppose D(xi) = {minD(xi), maxD(xi)},
D(xj) = {minD(xj), maxD(xj)}, with maxD(xi) < maxD(xj). The size of the
input is in O(log2(maxD(xj))). The cost of exploring the whole set DI(xj) is
thus exponential in the size of the input.

A direct consequence of Proposition 73 is that deciding BC(Z) is NP-hard.
Suppose ϕ is a set of clauses on the Boolean variables x1, . . . , xn and c(y,z) is
the constraint satisfied by all tuples on (y, z) where y $= 0 if and only if the
bit vector of size n representing z mod 2n in base 2 is a tuple of 0/1 values for

43

x1, . . . , xn that satisfies ϕ. If maxD(z) − minD(z) ≥ 2n, deciding BC(Z) for a
bound of D(y) other than 0 is equivalent to deciding the satisfiability of ϕ.

This shows that bound(Z) consistency is useful only if the constraint we want
to propagate has inherent properties that permit a computation of bound sup-
ports faster than supports. Take for example the constraint sumk(x1, . . . , xn)
that holds if and only if

∑n
i=1 xi = k. Deciding generalized arc consistency

on this constraint is NP-complete because we can easily transform the decision
problem SubsetSum [60] into the problem of deciding whether a sumk con-
straint has support.9 On the contrary, testing bound(Z) consistency on the
sumk constraint is polynomial because it is sufficient to verify that minD(xi) is
at least k −

∑
j &=i maxD(xj) and maxD(xi) is at most k −

∑
j &=i minD(xj), for

all i, 1 ≤ i ≤ n.
Zhang and Yap showed that bound(R) consistency is equivalent to general-

ized arc consistency when constraints are linear [126]. For example, the con-
straint

∑n
i=1 xi ≤ k is bound(R) consistent if and only if it is generalized arc

consistent. Schulte and Stuckey gave other sufficient conditions on constraints
that permit to guarantee that bound(R) consistency is equivalent to general-
ized arc consistency [110]. Even when a constraint does not fit the required
conditions, there are cases where additional properties on the input domains
guarantee that the output of enforcing BC(R) will be GAC. For instance, if all
variables have interval domains, BC(R) on the sumk constraint is equivalent to
GAC. This is a polynomial case for GAC on sumk, which is NP-hard in general.
Interestingly, Schulte and Stuckey showed how to analyze a constraint model
to discover on which constraints generalized arc consistency enforcing can be
replaced by bound(R) consistency whereas preserving the amount of pruning.

8 Constraint Propagation as Iteration of Reduc-

tion Rules

Local consistency is a way to formally define which amount of consistency we
want a network to guarantee, and as a consequence, which network will be pro-
duced by an algorithm enforcing this level of consistency. But nothing is said
about the way the algorithm enforces it. Rules iteration takes the question on
the other side. A reduction rule specifies under which conditions and on which
constraints operations of filtering are performed. The network produced guar-
antees a formal property such as a given level of local consistency only if the
reduction rules and the way they are applied have some good properties. The
rules iteration approach was first formalized by Montanari and Rossi under the
name relaxation rules [96]. Benhamou et al. studied rules iteration via inter-
val arithmetics (that is, reducing only bounds) [10, 11]. Constraint Handling
Rules (CHR) is a programming language based on reduction rules (see [59] and
Chapter 13 in Part II of [109]). In [1, 2], Apt gave a comprehensive presentation

9The constraint sumk(x1, . . . , xn) where D(xi) = {0, ji} has support if and only if there
exists a subset of {j1, . . . , jn} of sum k, which is exactly the SubsetSum problem.

44

of the rules iteration approach. I essentially follow Apt’s presentation of the
concept of reduction rule.

A reduction rule is simply a function that maps a network to another, where
the image is a tightening of the input.

Definition 74 (Reduction rule). Given a network N , a reduction rule is a
function f from PN to PN such that for all N ′ ∈ PN , f(N ′) ∈ PN ′ .

We should bear in mind that PN contains all the networks that are tighten-
ings of N (see Definition 13). In most cases, reduction rules are reduction steps
that reduce a single variable domain according to a single constraint. I name
them propagators.

Definition 75 (Propagator). Given a constraint c in a network Nc =
(X, D, {c}), a propagator f for c is a reduction rule from PNc

to PNc
that

tightens only domains independently of the constraints other than c. That is,
for all N ′ = (X, D′, C′) ∈ PNc

, f(N ′) = (X, D′′, C′), with D′′ ⊆ D′ and
D′′ = Df(X,D′,{c}).

Propagators can verify some properties.

Definition 76 (Properties of propagators). Given a network N =
(X, D, C) and two propagators f and g on PND:

• f is called monotonic if N1 ≤ N2 implies f(N1) ≤ f(N2) for all N1, N2 ∈
PND,

• f is called idempotent if ff(N1) = f(N1) for all N1 ∈ PND,

• we say that f and g commute if fg(N1) = gf(N1) for all N1 ∈ PND,

I give examples of propagators that do not verify these properties.

Example 77. Consider two networks N1 = (X, D1, C) and N2 = (X, D2, C)
with C = {c ≡ (x1 = x2)}, D1(x1) = {1, 2}, D1(x2) = {2}, D2(x1) = {1, 2, 3}
and D2(x2) = {2}. Consider the propagator f that prunes all values from x1

that have no support on c if less than half of them have support. f is not
monotonic because Df(N1) $⊆ Df(N2) whereas DN1 ⊆ DN2 (f reduces D2(x1)
to {2}). Consider the propagator g that prunes one of the values from x1

that have no support on c if such a value exists. g is not idempotent because
Dgg(N2) $= Dg(N2) (g reduces D2(x1) to {1, 2} or {2, 3} whereas gg reduces it to
{2}). f and g do not commute because Dfg(N2) $= Dgf(N2) (fg reduces D2(x1)
to {1, 2} or {2, 3} whereas gf reduces it to {2}).

Most of the propagators used in practice satisfy the properties of Definition
76. Among them, monotonicity is particularly interesting. I first need to define
what I mean by iteration and by stability of a propagator.

Definition 78 (Iteration). Let N = (X, D, C) be a network and F =
{f1, . . . , fk} be a finite set of propagators on PND. An iteration of F on N
is a sequence 〈N0, N1, . . .〉 of elements of PND defined by

N0 = N,

45

Nj = fnj
(Nj−1),

where j > 0 and nj ∈ [1..k]. We say that fnj
is activated at step j.

Definition 79 (Stability). Let N = (X, D, C) be a network and F be a set
of propagators on PND. A network N ′ ∈ PND is stable for F iff for all
f ∈ F, f(N ′) = N ′.

There can be many networks in PND that are stable for a given set of
propagators. But monotonicity of propagators implies that only one of them
will be produced.

Proposition 80 (Least fixpoint). Let N = (X, D, C) be a network and F be
a set of propagators on PND. If S = 〈N0, N1, . . .〉 is an infinite iteration of F
where each f ∈ F is activated infinitely often, then there exists j ≥ 0 such that
Nj is stable for F . If all f in F are monotonic, Nj is unique and is called the
least fixpoint of F on N .

Algorithm 8 is a procedure that takes as input a network N and a set F
of propagators on PND. Thanks to Proposition 80, we are guaranteed that it
terminates. If all f in F are monotonic, the output of Algorithm 8 is the least
fixpoint of F on N .

Algorithm 8: Generic Iteration Algorithm

procedure Generic-Iteration(N, F);
G ← F ;
while G #= ∅ do

select and remove g from G;
if N #= g(N) then

update(G);
N ← g(N);

/* update(G) adds to G at least all functions f in F \ G for which

g(N) #= f(g(N)) */

Sometimes, in addition to monotonicity, propagators can have some other
properties. In those cases, Algorithm 8 can be simplified, while still ensuring to
produce the same result.

Proposition 81 (Direct iteration). Let N = (X, D, C) be a network and
F = {f1, . . . , fk} be a set of monotonic and idempotent propagators on PND

that commute with each other. If an iteration S = 〈N0, N1, . . . , Nk〉 is such that
N = N0 and for all fi ∈ F there exists Nj ∈ S such that Nj = fi(Nj−1), then
Nk is stable for F and is the least fixpoint of F on N .

Proposition 81 guarantees that Algorithm 9 produces the least fixpoint of
F .

By defining the appropriate set of propagators, we can obtain most of the
local consistencies presented in previous sections. For instance, we can enforce

46

Algorithm 9: Direct Iteration Algorithm

procedure Direct-Iteration(N, F);
G ← F ;
while G #= ∅ do

select and remove g from G;
N ← g(N);

arc consistency on a network N = (X, D, C). I first define the propagators fi,j

such that:

∀N1 = (X, D1, C) ∈ PND, ∀xi ∈ X, ∀cj ∈ C, fi,j(N1) = (X, D′
1, C) with

D′
1(xi) = π{xi}(cj ∩ πX(cj)(D1)) and D′

1(xk) = D1(xk), ∀k $= i.

I consider the set of propagators FAC = {fi,j | xi ∈ X, cj ∈ C}. They are all
monotonic. Then, Generic-Iteration(N, FAC) terminates on the least fixpoint
for FAC , which is the arc consistent closure of N .

It is shown in [2] that we can also enforce higher-order consistencies, such as
path consistency, by defining sets of monotonic propagators that involve several
constraints at a time and that alter the set of constraints.

9 Specific Constraints

In previous sections, I presented constraint propagation and local consistencies
in a generic way without saying what should be done when we have some specific
information on the semantics of a constraint. In this section, I develop some of
the available techniques to take into account constraint semantics.

9.1 Specific propagators in solvers

All constraint solvers attach a specific propagation algorithm to the specific
types of constraints they contain. In addition, most of them allow the user to
design her own propagators for the new constraints she incorporates. The fact
that arithmetic constraints are at the core of most constraint solvers influences
the way these solvers are implemented. Not only all basic arithmetic constraints
are present, but the programming possibilities they provide for building new
propagators is arithmetic-oriented. I give a brief overview of what is the common
point to most solvers. The art of designing constraint propagators is not a
mature science yet, and things can differ from one solver to another, and will
most probably evolve in the next years. This topic has been addressed in some
academic publications [79, 94, 118, 119, 78, 111] and in manuals of constraint
solvers. See also Chapter 14 in Part II of [109].

In most arithmetic constraints, it appears that a reduction of a domain does
not produce the same effect on the other variables of the constraint, depending
on if it is the removal of a value in the middle of the domain, if it is the increase

47

Algorithm 10: AC3-like constraint propagation schema

function Constraint-Propag(in X: set): Boolean ;
begin

foreach c ∈ C do perform init-propag on c and update Q with relevant1

events;
while Q #= ∅ do2

select and remove (xi, c, xj , Mtype) from Q;3

if Revise(xi, c, (xj, Mtype),Changes) then4

if D(xi) = ∅ then return false ;5

foreach c′ ∈ ΓC(xi),Mtype ∈ Changes do6

foreach xj ∈ X(c′), j #= i do Q ← Q ∪ {(xj , c
′, xi, Mtype)};7

return true ;8

end

/* ΓC(xi) is the set of constraints with xi in their scheme */

of its minimum value, if it is the decrease of its maximum value, or if it is an
instantiation to a single value. Then, it is worth differentiating these different
types of events to be able to propagate exactly as necessary. The events usually
recognized by constraint solvers are:

• RemValue: when a value v is removed from D(xi)

• IncMin: when the minimum value of D(xi) increases

• DecMax: when the maximum value of D(xi) decreases

• Instantiate: when D(xi) becomes a singleton

The way these events are used in a constraint solver is usually bound to
the type of propagation architecture handled by the solver. The description I
give here is just an illustrative example of how to use those events. If we follow
an AC3 like schema of propagation, the use of event types leads to a modified
version of Algorithm 1 that takes into account the type Mtype of reduction
performed on a domain (see Algorithm 10). The modified function Revise
has parameters (xi, c, (xj , Mtype), Changes) where (xi, c) is the arc to revise
because of an Mtype change in D(xj). In addition to a Boolean indicating if a
domain has been changed, function Revise returns the set Changes of the types
of changes it performed on D(xi) (line 4). Each modification of type Mtype
on domain D(xi) requires the addition of 4-tuples (xj , c′, xi, Mtype) to the list
Q of pending events (lines 6–7). The presence of (xj , c, xi, Mtype) in Q means
that xj should be revised on c because of an Mtype change in D(xi). I suppose
that each constraint is associated with a function init-propag that performs
the very first pass of propagation on the constraint and appends to list Q all
4-tuples relevant to events performed on some domains (line 1).

The benefit of this differentiation between types of events is twofold. First,
it permits to process constraint propagation differently according to the type
of event (line 4). As shown in the following example, this can have a dramatic
effect on the cost of revision.

48

Example 82. Let x1 ≤ x2, with D(x1) = D(x2) = {1..100}. If value 100 is
removed from D(x2), the regular Revise procedure of AC3 takes each of the
100 values in D(x1) one by one, and looks for a support by traversing D(x2).
This requires 1+2+ . . .+99+99 = 100·101

2 −1 constraint checks to discover that
(x1, 100) must be removed. An adapted Revise procedure knowing that 100 is
a DecMax event simply decreases maxD(x1) to the same value as maxD(x2),
i.e., 99. If the value removed from D(x2) is 50, again regular Revise performs
around 5,000 constraint checks whereas a specific Revise knows that removing
50 is a RemValue event for which nothing should be done because the only events
that can alter D(x1) are DecMax and Instantiate. Algorithm 11 is a specific
function Revise for constraints xk1 ≤ xk2 (kl is the index of the lth variable in
the scheme of the constraint).

Algorithm 11: Function Revise for the constraint of Example 82

function revise(inout xi; in c ≡ xk1 ≤ xk2 ; in (xj , Mtype); out Changes):
Boolean ;
Changes ← ∅;
switch Mtype do

case RemValue

nothing;
case IncMin

if j = k1 then remove all v < minD(xj) from D(xi);
case DecMax

if j = k2 then remove all v > maxD(xj) from D(xi);
case Instantiate

if j = k1 then remove all v < minD(xj) from D(xi);
else remove all v > maxD(xj) from D(xi);

Changes ← the types of changes performed on D(xi);

The second advantage of the information on events is that in some cases, we
know that it is useless to propagate a constraint because a given event cannot
alter the other variables of the constraint. For instance, in the constraint x1 ≤ x2

of the example above, RemValue has no effect. Instead of having a set ΓC(xi)
of all constraints involving xi, we can build such a set for each type of event.
ΓC

Mtype(xi) only contains constraints involving xi for which an Mtype event on
xi requires propagation. Line 6 in Algorithm 10 becomes:

6 foreach c′ ∈ ΓC
Mtype(xi), Mtype ∈ Changes do ...

Example 83. Let c ≡ x1 ≤ x2. The only events that require propagation are
IncMin and Instantiate on x1, and DecMax and Instantiate on x2. Thus, c
is only put in ΓC

IncMin(x1), ΓC
Instantiate(x1), ΓC

DecMax(x2), and ΓC
Instantiate(x2).

It avoids not only useless calls to Revise but also insertions and deletions of
useless events in Q.

In the extreme case, the domains have been reduced in such a way that a
constraint c is entailed. That is, c is satisfied for any valid combination of values

49

on X(c). (See [119, 111] or Section 4.1.) c can then be removed from the set of
constraints of the network as long as the domains are not relaxed.

Example 84. Let c ≡ x1 ≤ x2, D(x1) = {1, 2, 4} and D(x2) = {5, 6, 7}. Any
valid instantiation of x1 and x2 satisfies c. So, c can safely be removed from the
network.

There is a third way of saving work during the propagation of changes in
domains. It consists in storing not only the type of change performed on a
domain D(xi) during a call to Revise, but also the set ∆i of values removed.
Function Revise has the extra parameter ∆j of the values removed from D(xj)
that led to this revision. In addition to Changes, Revise returns the set ∆i of
values it removes from D(xi). ∆i is put in Q with the other information. Lines
3–7 in Algorithm 10 become:

3 select and remove (xi, c, xj , Mtype, ∆j) from Q;
4 if Revise(xi, c, (xj , Mtype, ∆j), Changes, ∆i) then
5 if D(xi) = ∅ then return false;
6 foreach c′ ∈ ΓC

Mtype(xi), Mtype ∈ Changes do
7 foreach xj ∈ X(c′), j #= i do Q ← Q ∪ {(xj , c

′, xi, Mtype, ∆i)}

Such a facility was already proposed by Van Hentenryck et al. in the AC5
propagation schema [118]. This notably permits to decrease the complexity of
arc consistency on functional or anti-functional constraints.

Example 85. The functional constraint xk1 = xk2 + m can be propagated by
the function Revise in Algorithm 12.

Algorithm 12: Function Revise for the constraint of Example 85

function revise(inout xi; in c ≡ xk1=xk2 + m; in (xj , Mtype, ∆j);
out Changes; out ∆i): Boolean ;

Changes ← ∅;
switch Mtype do

case RemValue

if j = k1 then foreach v ∈ ∆j do remove (v − m) from D(xi);
else foreach v ∈ ∆j do remove (v + m) from D(xi);

case IncMin

if j = k1 then remove all v < minD(xj) − m from D(xi);
else remove all v < minD(xj) + m from D(xi);

case DecMax

if j = k1 then remove all v > maxD(xj) − m from D(xi);
else remove all v > maxD(xj) + m from D(xi);

case Instantiate

if j = k1 then assign minD(xj) − m to xi;
else assign minD(xj) + m to xi;

Changes ← the types of changes performed;
∆i ← all values removed from D(xi);

50

These four types of events permit to build efficient propagators for elemen-
tary constraints. But as soon as constraints are not arithmetic or do not have
properties such as being functional, antifunctional or others, it is difficult to
implement propagators with this kind of architecture.

9.2 Classes of specific constraints: global constraints

There are ‘constraint patterns’ that are ubiquitous when trying to express real
problems as constraint networks. For example, we often need to say that a set
of variables must all take different values. The size of the pattern is not fixed,
that is, there can be any number of variables in the set. The alldifferent
constraint, as introduced in CHIP [50], is not a single constraint but a whole
class of constraints. Any constraint specifying that its variables must all take
different values is an alldifferent constraint. The conventional wisdom is
to name ‘global constraints’ these classes of constraints defined by a Boolean
function whose domain contains tuples of values of any length. An instance
c of a given global constraint is a constraint with a fixed scheme of variables
which contains all tuples of length |X(c)| accepted by the function defining the
global constraint.10 In the last years, the literature became quite verbose on
this subject. Beldiceanu et al. proposed an extensive list of global constraints
[9].

Example 86. The alldifferent(x1, . . . , xn) global constraint is the class of
constraints that are defined on any sequence of n variables, n ≥ 2, such that
xi $= xj for all i, j, 1 ≤ i, j ≤ n, i $= j. The NValue(y, [x1, . . . , xn]) global
constraint is the class of constraints that are defined on any sequence of n + 1
variables, n ≥ 1, such that |{xi | 1 ≤ i ≤ n}| = y [100, 8].

It is interesting to incorporate global constraints in constraint solvers so
that users can use them to express the corresponding constraint pattern easily.
Because these global constraints can be used with a scheme of any size, it is im-
portant to have a way to propagate them without using generic arc consistency
algorithms. (Remember that optimal generic arc consistency algorithms are in
O(erdr) for constraints involving r variables —see Section 4.1.)

The first alternative to the combinatorial explosion of generic algorithms for
GAC on a global constraint is to decompose it with ‘simpler’ constraints. A
decomposition of a global constraint G is a polynomial time transformation δk

(k being an integer) that, given any network N = (X(c), D, {c}) where c is
an instance of G, returns a network δk(N) such that X(c) ⊆ Xδk(N), for all
xi ∈ X(c), D(xi) = Dδk(N)(xi), for all cj ∈ Cδk(N), |X(cj)| ≤ k, and sol(N) =
πX(c)(sol(δk(N))). That is, transforming N in δk(N) means replacing c by some
new bounded arity constraints (and possibly new variables) whereas preserving

10This definition does not allow constraints defined on several sequences of variables, such
as the disjoint([x1 . . . , xn], [y1 . . . , ym]) constraint [9]. In such a case, we need to extend to
Boolean functions with parameters giving the length of each sequence. This is essentially the
same.

51

the set of tuples allowed on X(c). Note that by definition, the domains of the
additional variables in the decomposition are necessarily of polynomial size.11

Example 87. The global constraint atmostp,v(x1, . . . , xn) holds if and only
if at most p variables in x1, . . . , xn take value v [117]. This constraint can
be decomposed with n + 1 additional variables y0, . . . , yn. The transformation
involves the constraint (xi = v ∧ yi = yi−1 + 1) ∨ (xi $= v ∧ yi = yi−1) for
all i, 1 ≤ i ≤ n, and the domains D(y0) = {0} and D(yi) = {0, . . . , p} for all
i, 1 ≤ i ≤ n.

Some global constraints G admit a decomposition δk that preserves GAC.
That is, given any instance c of G and any domain D on X(c), given any
subdomain D′ ⊆ D, GAC on (X(c), D′, {c}) prunes the same values as GAC
on the network obtained from δk((X(c), D, {c})) by reducing D(xi) to D′(xi)
for all xi ∈ X(c). atmostp,v is a global constraint that admits a decomposition
preserving GAC (see Example 87). But there are some constraints, such as
the alldifferent, for which we do not know any such decomposition.12 For
those constraints, it is sometimes possible to build a specialized algorithm that
enforces GAC in polynomial time on all instances of the global constraint. For
instance, Knuth and Raghunathan, and Régin, made the link between GAC on
the alldifferent constraint and the problem of finding maximal matchings in
a bipartite graph [77, 106], which is polynomial.

In [20], Bessiere et al. relaxed the definition of decomposition. They allow
decompositions using constraints with unbounded arity as long as enforcing
GAC on them is polynomial. The decomposition of a global constraint G is
GAC-polytime if for any instance c of G and any domain on X(c), enforcing GAC
on the decomposition is polynomial. This enlarges the set of global constraints
that can be decomposed. Nevertheless, there are global constraints for which
we do not know any GAC-polytime decomposition that preserves GAC. Tools
of computational complexity help us decide when a given global constraint has
no chance to allow a GAC-polytime decomposition preserving GAC. In fact,
if enforcing GAC on a global constraint G is NP-hard, there does not exist
any GAC-polytime decomposition that preserves GAC (assuming P $= NP). For
instance, enforcing GAC on NValue is NP-hard. This tells us that there is no
way to find a GAC-polytime decomposition on which GAC always removes all
GAC inconsistent values of the original NValue constraint.

Decompositions were limited to transformations in polynomial time, and so
polynomial space. If we remove these restrictions, any global constraint allows
a transformation into a binary network via the hidden variable encoding, where
the unique additional variable has a domain of exponential size [45, 108]. GAC
on this transformation is equivalent to GAC on the original constraint, even if

11Some decompositions depend only on the instance c of the global constraint and not on
the domain. However, in other decompositions, the domain of the new variables depends on
the domain of the variables in X(c).

12In [26], Bessiere and Van Hentenryck characterized three types of globality for global con-
straints, depending on the non existence of decompositions preserving the solutions, preserving
GAC or preserving the complexity of enforcing GAC.

52

enforcing GAC on it is NP-hard.
It is sometimes possible to express a global constraint as a combination of

simpler constraints which is not a conjunction. Disjunctions are not naturally
handled by constraint solvers. Van Hentenryck et al. proposed constructive dis-
junction as a way to partially propagate disjunctions of constraints [70]. Given
a constraint c = c1 ∨ c2 ∨ . . . ∨ ck, constructive disjunction propagates con-
straints ci one by one independently of the others, and finally prunes values
that were inconsistent with all ci. This technique has been refined by Lhomme
[84]. Bacchus and Walsh proposed a constraint algebra in which we can de-
fine meta-constraints as logical expressions composed of simpler constraints [4].
They give ways to propagate them and conditions under which GAC is guaran-
teed.

When enforcing GAC is too expensive on a global constraint, another pos-
sibility is to enforce a weaker level of consistency, such as BC(Z) or RC. BC(Z)
and RC are significantly cheaper than GAC on constraints composed of arith-
metic expressions (especially linear constraints). BC(Z) and RC are also used
on other classes of constraints for which GAC is too expensive. In [80], Leconte
showed that RC can be enforced on the alldifferent constraint at a cost
asymptotically lower than that of Régin’s GAC algorithm ([106]). Puget pro-
posed a BC(Z) algorithm for alldifferentwith an even lower complexity [103].
On the global cardinality constraint (gcc) defined by Régin [107], Quimper et
al. showed that GAC is NP-hard if cardinalities are variables instead of fixed
intervals [104]. Katriel and Thiel proposed a BC(Z) algorithm for gcc that runs
in polynomial time even if cardinalities are variables [75]. In this case, BC(Z)
is a means to propagate the constraint polynomially.

9.3 Creating propagators automatically

As an alternative to specialized algorithms for propagating a specific constraint,
Apt and Montfroy proposed to generate sets of reduction rules [3]. A rule is of
the form “if xi1 takes value in Si1 , . . ., xik

takes value in Sik
then y cannot take

value v”, where xij
’s and y belong to the scheme of the constraint and Sij

’s
are subsets of given domains D(xij

). For any constraint, there exists a set of
rules that simulates arc consistency. However, its size can be exponential in the
number of variables in the scheme of the constraint.

To avoid this combinatorial explosion, Dao et al. proposed to restrict their
attention to rules in which variables xij

take values in intervals Iij
instead of

arbitrary subsets of the domains Sij
[39]. This reduces the space of possibilities

and permits to express the task of generating rules as a linear program to be
solved by a simplex.

Another way to avoid combinatorial explosion when building propagators
for a constraint cadhoc is to take into account the internal structure of the con-
straint to factorize many satisfying tuples under the same rule. Barták proposed
to decompose ad hoc binary constraints cadhoc(xi, xj) into rectangles [5]. The
Cartesian product r = Si × Sj of two sets of integers Si and Sj is a rect-
angle for cadhoc if (vi, vj) ∈ Si × Sj ⇒ (vi, vj) ∈ cadhoc. Given a collection

53

R of rectangles such that
⋃

r∈R r = cadhoc, Barták gives a propagation algo-
rithm that revises cadhoc more efficiently than a generic algorithm. Cheng et
al. extended this technique by proposing to decompose (possibly non-binary)
constraints into ‘triangles’ instead of rectangles [30]. More precisely, they de-
compose a constraint cadhoc(x1, . . . , xk) into a disjunction of ‘box constraints’.
A box is a k-dimensional hypercube [l1..u1] × · · · × [lk..uk] where [li..ui] is an
interval of integers for xi. A box constraint is the conjunction of a box B and a
simple constraint cb, that is, a constraint of the form

∑k
1 aixi ≤ a0 (the set of

allowed tuples looks like a triangle when the constraint is binary). Cheng et al.
proposed an algorithm that generates a representation of the constraint cadhoc

as a disjunction of box constraints. Applying constructive disjunction on this
representation is equivalent to arc consistency on cadhoc.

9.4 Priorities in the propagation list

A simple way to improve the efficiency of propagation in constraint solvers is to
put priorities on the different propagation events of the different constraints. We
saw in Section 4.3 that the propagation list of arc consistency algorithms can be
heuristically ordered. The main criterion in the case of generic AC algorithms
for binary constraints was to put first the constraints that are expected to prune
more. Constraint solvers contain various types of constraints and various types
of propagation events for these constraints which can have different complexities.
Laburthe et al. in [78] and Schulte and Stuckey in [111] proposed to maintain a
propagation list with several levels of priority. The idea is to put a propagation
event in a different level of the list depending on its time complexity. An event
in the ith level is not popped while the (i − 1)th level is not empty. The
instantiation event on a simple arithmetic constraint is the kind of event that
is put at the first level. Propagating GAC on an expensive global constraint is
put at the last level. Propagating BC(Z) on the same constraint will be put in
some intermediate level. The Choco solver uses a propagation list with 7 levels
of priority [78].

Acknowledgements

I would like to thank especially Charlotte Truchet and Peter van Beek for their
careful reading of this report and their many valuable comments. Thanks also
to Eric Bourreau for having checked the section on specific constraints, to Peter
Stuckey for his advice for choosing the names of the different consistencies on
bounds, to Roland Yap for some pointers in the literature, and to Toby Walsh
for interesting discussions on global constraints. Finally, I am very grateful to
E.C. Freuder for the epigraph he kindly gave me for introducing this report.

54

References

[1] K.R. Apt. The essence of constraint propagation. Theoretical Computer
Science, 221(1-2):179–210, 1999.

[2] K.R. Apt. Principles of Constraint Programming. Cambridge University
Press, 2003.

[3] K.R. Apt and E. Montfroy. Automatic generation of constraint propa-
gation algorithms for small finite domains. In Proceedings CP’99, pages
58–72, Alexandria VA, 1999.

[4] F. Bacchus and T. Walsh. Propagating logical combinations of constraints.
In Proceedings IJCAI’05, pages 35–40, Edinburgh, Scotland, 2005.

[5] R. Barták. A general relation constraint: An implementation. In Pro-
ceedings of CP’00 Workshop on Techniques for Implementing Constraint
Programming Systems (TRICS), pages 30–40, Singapore, 2000.

[6] R. Barták and R. Erben. A new algorithm for singleton arc consistency.
In Proceedings FLAIRS’04, Miami Beach FL, 2004. AAAI Press.

[7] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of
acyclic database schemes. Journal of the ACM, 30:479–513, 1983.

[8] N. Beldiceanu. Pruning for the minimum constraint family and for the
number of distinct values constraint family. In Proceedings CP’01, pages
211–224, Paphos, Cyprus, 2001.

[9] N. Beldiceanu, M. Carlsson, and J.X. Rampon. Global constraint catalog.
Technical Report T2005:08, Swedish Institute of Computer Science, Kista,
Sweden, May 2005.

[10] F. Benhamou, D.A. McAllester, and P. Van Hentenryck. Clp(intervals)
revisited. In Proceedings of the International Symposium on Logic Pro-
gramming (ILPS’94), pages 124–138, Ithaca, New York, 1994.

[11] F. Benhamou and W. Older. Appying interval arithmetic to real, integer
and boolean constraints. Journal of Logic Programming, 32:1–24, 1997.

[12] H. Bennaceur and M.S. Affane. Partition-k-ac: an efficient filtering tech-
nique combining domain partition and arc consistency. In Proceedings
CP’01, pages 560–564, Paphos, Cyprus, 2001. Short paper.

[13] P. Berlandier. Improving domain filtering using restricted path consis-
tency. In Proceedings IEEE Conference on Artificial Intelligence and Ap-
plications (CAIA’95), 1995.

[14] C. Bessiere. Arc-consistency and arc-consistency again. Artificial Intelli-
gence, 65:179–190, 1994.

55

[15] C. Bessiere and M.O. Cordier. Arc-consistency and arc-consistency again.
In Proceedings AAAI’93, pages 108–113, Washington D.C., 1993.

[16] C. Bessiere and R. Debruyne. Theoretical analysis of singleton arc consis-
tency. In B. Hnich, editor, Proceedings ECAI’04 Workshop on Modelling
and solving problems with constraints, pages 20–29, Valencia, Spain, 2004.

[17] C. Bessiere and R. Debruyne. Optimal and suboptimal singleton arc con-
sistency algorithms. In Proceedings IJCAI’05, pages 54–59, Edinburgh,
Scotland, 2005.

[18] C. Bessiere, E. C. Freuder, and J. C. Régin. Using inference to reduce
arc consistency computation. In Proceedings IJCAI’95, pages 592–598,
Montréal, Canada, 1995.

[19] C. Bessiere, E.C. Freuder, and J.C. Régin. Using constraint meta-
knowledge to reduce arc consistency computation. Artificial Intelligence,
107:125–148, 1999.

[20] C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. The complexity of global
constraints. In Proceedings AAAI’04, pages 112–117, San Jose CA, 2004.

[21] C. Bessiere, E. Hebrard, B. Hnich, and T. Walsh. The tractability of global
constraints. In Proceedings CP’04, pages 716–720, Toronto, Canada, 2004.
Short paper.

[22] C. Bessiere, P. Meseguer, E.C. Freuder, and J. Larrosa. On forward check-
ing for non-binary constraint satisfaction. Artificial Intelligence, 141:205–
224, 2002.

[23] C. Bessiere and J.C. Régin. Arc consistency for general constraint net-
works: preliminary results. In Proceedings IJCAI’97, pages 398–404,
Nagoya, Japan, 1997.

[24] C. Bessiere and J.C. Régin. Refining the basic constraint propagation
algorithm. In Proceedings IJCAI’01, pages 309–315, Seattle WA, 2001.

[25] C. Bessiere, J.C. Régin, R.H.C. Yap, and Y. Zhang. An optimal coarse-
grained arc consistency algorithm. Artificial Intelligence, 165:165–185,
2005.

[26] C. Bessiere and P. Van Hentenryck. To be or not to be ... a global con-
straint. In Proceedings CP’03, pages 789–794, Kinsale, Ireland, 2003.
Short paper.

[27] A. Borning. The programming language aspects of thinglab, a constraint-
oriented simulation laboratory. ACM Trans. Program. Lang. Syst.,
3(4):353–387, 1981.

56

[28] F. Boussemart, F. Hemery, and C. Lecoutre. Revision ordering heuris-
tics for the constraint satisfaction problem. In Proceedings of the CP’04
Workshop on Constraint Propagation and Implementation, pages 29–43,
Toronto, Canada, 2004.

[29] M. Cadoli and F.M. Donini. A survey on knowledge compilation. AI
Communications, 10(3-4):137–150, 1997.

[30] K.C.K. Cheng, J.H.M. Lee, and P.J. Stuckey. Box constraint collections for
adhoc constraints. In Proceedings CP’03, pages 214–228, Kinsale, Ireland,
2003.

[31] A. Chmeiss and P. Jégou. Path-consistency: when space misses time. In
Proceedings AAAI’96, pages 196–201, Portland OR, 1996.

[32] A. Chmeiss and P. Jégou. Sur la consistance de chemin et ses formes
partielles. In Proceedings RFIA’96, pages 212–219, Rennes, France, 1996.
(in French).

[33] A. Chmeiss and P. Jégou. Efficient path-consistency propagation. Inter-
national Journal on Artificial Intelligence Tools, 7(2):121–142, 1998.

[34] A. Chmeiss and L. Säıs. About the use of local consistency in solving
csps. In Proceedings IEEE-ICTAI’00, pages 104–107, Vancouver, Canada,
2000.

[35] C.W. Choi, W. Harvey, J.H.M. Lee, and P.J. Stuckey. Finite domain
bounds consistency revisited. http://arxiv.org/abs/cs.AI/0412021, De-
cember 2004.

[36] H. Collavizza, F. Delobel, and M. Rueher. A note on partial consistencies
over continuous domains. In Proceedings CP’98, pages 147–161, Pisa,
Italy, 1998.

[37] M.C. Cooper. An optimal k-consistency algorithm. Artificial Intelligence,
41:89–95, 1989/90.

[38] H. Cros. Compilation et apprentissage dans les réseaux de contraintes.
PhD thesis, University Montpellier II, France, 2003. in French.

[39] T.B.H. Dao, A. Lallouet, A. Legtchenko, and L. Martin. Indexical-based
solver learning. In Proceedings CP’02, pages 541–555, Ithaca NY, 2002.

[40] M. Davis and H. Putnam. A computing procedure for quantification the-
ory. Journal of the ACM, 7:201–215, 1960.

[41] R. Debruyne. A property of path inverse consistency leading to an optimal
pic algorithm. In Proceedings ECAI’00, pages 88–92, Berlin, Germany,
2000.

57

[42] R. Debruyne and C. Bessiere. From restricted path consistency to max-
restricted path consistency. In Proceedings CP’97, pages 312–326, Linz,
Austria, 1997.

[43] R. Debruyne and C. Bessiere. Some practicable filtering techniques for the
constraint satisfaction problem. In Proceedings IJCAI’97, pages 412–417,
Nagoya, Japan, 1997.

[44] R. Debruyne and C. Bessiere. Domain filtering consistencies. Journal of
Artificial Intelligence Research, 14:205–230, 2001.

[45] R. Dechter. On the expressiveness of networks with hidden variables. In
Proceedings AAAI’90, pages 556–562, Boston MA, 1990.

[46] R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

[47] R. Dechter and J. Pearl. Network-based heuristics for constraint-
satisfaction problems. Artificial Intelligence, 34:1–38, 1988.

[48] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial
Intelligence, 38:353–366, 1989.

[49] R. Dechter and P. van Beek. Local and global relational consistency.
Theoretical Computer Science, 173(1):283–308, 1997.

[50] M. Dincbas, P. Van Hentenryck, H. Simonis, and A. Aggoun. The con-
straint logic programming language chip. In Proceedings of the Interna-
tional Conference on Fifth Generation Computer Systems, pages 693–702,
Tokyo, Japan, 1988.

[51] R.E. Fikes. REF-ARF: A system for solving problems stated as proce-
dures. Artificial Intelligence, 1:27–120, 1970.

[52] J.W. Freeman. Improvements to propositional satisfiability search algo-
rithms. PhD thesis, University of Pennsylvania, Philadelphia PA, 1995.

[53] E.C. Freuder. Synthesizing constraint expressions. Communications of
the ACM, 21(11):958–966, Nov 1978.

[54] E.C. Freuder. A sufficient condition for backtrack-free search. Journal of
the ACM, 29(1):24–32, Jan. 1982.

[55] E.C. Freuder. A sufficient condition for backtrack-bounded search. Journal
of the ACM, 32(4):755–761, Oct. 1985.

[56] E.C. Freuder. Completable representations of constraint satisfaction prob-
lems. In Proceedings KR’91, pages 186–195, Cambridge MA, 1991.

[57] E.C. Freuder and C.D. Elfe. Neighborhood inverse consistency prepro-
cessing. In Proceedings AAAI’96, pages 202–208, Portland OR, 1996.

58

[58] E.C. Freuder and R.J. Wallace. Selective relaxation for constraint satis-
faction problems. In IEEE-ICTAI’91, pages 332–339, San Jose CA, 1991.

[59] T.W. Frühwirth. Theory and practice of constraint handling rules. Journal
of Logic Programming, 37(1-3):95–138, 1998.

[60] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to
NP-Completeness. Freeman, San Francisco CA, 1979.

[61] J. Gaschnig. A constraint satisfaction method for inference making. In
Proceedings Twelfth Annual Allerton Conference on Circuit and System
Theory, pages 866–874, 1974.

[62] J. Gaschnig. Experimental case studies of backtrack vs waltz-type vs
new algorithms for satisficing assignment problems. In Proceedings CC-
SCSI’78, pages 268–277, 1978.

[63] I. Gent, K. Stergiou, and T. Walsh. Decomposable constraints. Artificial
Intelligence, 123:133–156, 2000.

[64] I.P. Gent, E. MacIntyre, P. Prosser, P. Shaw, and T. Walsh. The con-
strainedness of arc consistency. In Proceedings CP’97, pages 327–340,
Linz, Austria, 1997.

[65] I.P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness
of search. In Proceedings AAAI’96, pages 246–252, Portland OR, 1996.

[66] S.W. Golomb and L.D. Baumert. Backtrack programming. Journal of the
ACM, 12(4):516–524, October 1965.

[67] M. Gyssens. On the complexity of join dependencies. ACM Trans.
Database Syst., 11(1):81–108, 1986.

[68] C.C. Han and C.H. Lee. Comments on mohr and henderson’s path con-
sistency algorithm. Artificial Intelligence, 36:125–130, 1988.

[69] R.M. Haralick and G.L. Elliott. Increasing tree seach efficiency for con-
straint satisfaction problems. Artificial Intelligence, 14:263–313, 1980.

[70] P. Van Hentenryck, V. Saraswat, and Y. Deville. The design, implemen-
tation, and evaluation of the constraint language cc(FD). In Constraint
Programming: Basics and Trends. Springer Verlag, 1995.

[71] ILOG. User’s manual. ILOG Solver 4.4, ILOG S.A., 1999.

[72] P. Janssen, P. Jégou, B. Nouguier, and M. C. Vilarem. A filtering pro-
cess for general constraint-satisfaction problems: Achieving pairewise-
consistency using an associated binary representation. In Proceedings of
the IEEE Workshop on Tools for Artificial Intelligence, pages 420–427,
Fairfax VA, 1989.

59

[73] P. Jégou. Contribution á l’étude des problèmes de satisfaction de con-
traintes: algorithmes de propagation et de résolution; propagation de con-
traintes dans les réseaux dynamiques. PhD thesis, CRIM, University
Montpellier II, 1991. in French.

[74] P. Jégou. On the consistency of general constraint-satisfaction problems.
In Proceedings AAAI’93, pages 114–119, Washington D.C., 1993.

[75] I. Katriel and S. Thiel. Fast bound consistency for the global cardinality
constraint. In Proceedings CP’03, pages 437–451, Kinsale, Ireland, 2003.

[76] D.E. Knuth. Semantics of context-free languages. Mathematical Systems
Theory, 2(2):127–145, 1968.

[77] D.E. Knuth and A. Raghunathan. The problem of compatible represen-
tatives. SIAM Journal of Discrete Mathematics, 5(3):422–427, 1992.

[78] F. Laburthe and Ocre. Choco : implémentation du noyau d’un système de
contraintes. In Proceedings JNPC’00, pages 151–165, Marseilles, France,
2000.

[79] J.L. Laurière. A language and a program for stating and solving combi-
natorial problems. Artificial Intelligence, 10:29–127, 1978.

[80] M. Leconte. A bounds-based reduction scheme for difference constraints.
In Proceedings of the FLAIRS’96 workshop on Constraint-based Reasoning
(Constraint’96), Key West FL, 1996.

[81] C. Lecoutre, F. Boussemart, and F. Hemery. Exploiting multidirection-
ality in coarse-grained arc consistency algorithms. In Proceedings CP’03,
pages 480–494, Kinsale, Ireland, 2003.

[82] C. Lecoutre and S. Cardon. A greedy approach to establish singleton arc
consistency. In Proceedings IJCAI’05, pages 199–204, Edinburgh, Scot-
land, 2005.

[83] O. Lhomme. Consistency techniques for numeric csps. In Proceedings
IJCAI’93, pages 232–238, Chambéry, France, 1993.

[84] O. Lhomme. Efficient filtering algorithm for disjunction of constraints. In
Proceedings CP’03, pages 904–908, Kinsale, Ireland, 2003.

[85] C.M. Li and Anbulagan. Heuristics based on unit propagation for satisfia-
bility problems. In Proceedings IJCAI’97, pages 366–371, Nagoya, Japan,
1997.

[86] A.K. Mackworth. Consistency in networks of relations. Technical Report
75-3, Dept. of Computer Science, Univ. of B.C. Vancouver, 1975. (also in
Artificial Intelligence 8, 99-118, 1977).

60

[87] A.K. Mackworth. Consistency in networks of relations. Artificial Intelli-
gence, 8:99–118, 1977.

[88] A.K. Mackworth. On reading sketch maps. In Proceedings IJCAI’77,
pages 598–606, Cambridge MA, 1977.

[89] A.K. Mackworth and E.C. Freuder. The complexity of some polynomial
network consistency algorithms for constraint satisfaction problems. Ar-
tificial Intelligence, 25:65–74, 1985.

[90] P. Martin and D.B. Shmoys. A new approach to computing optimal
schedules for the job-shop scheduling problem. In Proceedings 5th In-
ternational Conference on Integer Programming and Combinatorial Op-
timization (IPCO’96), volume 1084 of LNCS, pages 389–403, Vancouver,
BC, 1996. Springer–Verlag.

[91] J.J. McGregor. Relational consistency algorithms and their application in
finding subgraph and graph isomorphism. Information Science, 19:229–
250, 1979.

[92] R. Mohr and T.C. Henderson. Arc and path consistency revisited. Arti-
ficial Intelligence, 28:225–233, 1986.

[93] R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings
ECAI’88, pages 651–656, Munchen, FRG, 1988.

[94] R. Mohr and G. Masini. Running efficiently arc consistency. In G. Ferraté
et al., editor, Syntactic and Structural Pattern Recognition, pages 217–231.
Springer–Verlag, Berlin, 1988.

[95] U. Montanari. Networks of constraints: Fundamental properties and ap-
plications to picture processing. Information Science, 7:95–132, 1974.

[96] U. Montanari and F. Rossi. Constraint relaxation may be perfect. Artifi-
cial Intelligence, 48:143–170, 1991.

[97] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
Engineering an efficient sat solver. In Proceedings International Design
Automation Conference (DAC-01), pages 530–535, Las Vegas NV, 2001.

[98] B.A. Nadel. Tree search and arc consistency in constraint satisfaction
algorithms. In L.Kanal and V.Kumar, editors, Search in Artificial Intel-
ligence, pages 287–342. Springer-Verlag, 1988.

[99] B.A. Nadel. Constraint satisfaction algorithms. Computational Intelli-
gence, 5:188–224, 1989.

[100] F. Pachet and P. Roy. Automatic generation of music programs. In Pro-
ceedings CP’99, pages 331–345, Alexandria VA, 1999.

61

[101] C.H. Papadimitriou and M. Yannakakis. The complexity of facets (and
some facets of complexity). J. Comput. System Sci., 28:244–259, 1984.

[102] P. Prosser, K. Stergiou, and T Walsh. Singleton consistencies. In Proceed-
ings CP’00, pages 353–368, Singapore, 2000.

[103] J.F. Puget. A fast algorithm for the bound concictency of alldiff con-
straints. In Proceedings AAAI’98, pages 359–366, Madison WI, 1998.

[104] C.G. Quimper, A. López-Ortiz, P. van Beek, and A. Golynski. Improved
algorithms for the global cardinality constraint. In Proceedings CP’04,
pages 542–556, Toronto, Canada, 2004.

[105] C.G. Quimper, P. van Beek, A. López-Ortiz, A. Golynski, and S.B. Sad-
jad. An efficient bounds consistency algorithm for the global cardinality
constraint. In Proceedings CP’03, pages 600–614, Kinsale, Ireland, 2003.

[106] J.C. Régin. A filtering algorithm for constraints of difference in CSPs. In
Proceedings AAAI’94, pages 362–367, Seattle WA, 1994.

[107] J.C. Régin. Generalized arc consistency for global cardinality constraint.
In Proceedings AAAI’96, pages 209–215, Portland OR, 1996.

[108] F. Rossi, C. Petrie, and V. Dhar. On the equivalence of constraint sat-
isfaction problems. In Proceedings ECAI’90, pages 550–556, Stockholm,
Sweden, 1990.

[109] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint
Programming. Elsevier, 2006.

[110] C. Schulte and P.J. Stuckey. When do bounds and domain propagation
lead to the same search space. In Proceedings of the Third International
Conference on Principles and Practice of Declarative Programming, pages
115–126, Florence, Italy, September 2001. ACM Press.

[111] C. Schulte and P.J. Stuckey. Speeding up constraint propagation. In
Proceedings CP’04, pages 619–633, Toronto, Canada, 2004.

[112] M. Singh. Path consistency revisited. International Journal on Artificial
Intelligence Tools, 5(1-2):127–141, 1996.

[113] E. Tsang. No more ’partial’ and ’full’ looking ahead. Artificial Intelligence,
98:351–361, 1998.

[114] M.R.C. van Dongen. Lightweight arc-consistency algorithms. Technical
Report TR-01-2003, Cork Constraint Computation Center, 2003.

[115] M.R.C. van Dongen and J.A. Bowen. Improving arc-consistency algo-
rithms with double-support checks. In Proceedings of the Eleventh Irish
Conference on Artificial Intelligence and Cognitive Science, pages 140–
149, 2000.

62

[116] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT
Press, Cambridge, MA, 1989.

[117] P. Van Hentenryck and Y. Deville. The cardinality operator: A new logical
connective for constraint logic programming. In Proceedings ICLP’91,
pages 745–759, Paris, France, 1991.

[118] P. Van Hentenryck, Y. Deville, and C.M. Teng. A generic arc-consistency
algorithm and its specializations. Artificial Intelligence, 57:291–321, 1992.

[119] P. Van Hentenryck, V.A. Saraswat, and Y. Deville. Design, implementa-
tion, and evaluation of the constraint language cc(FD). Journal of Logic
Programming, 37(1-3):139–164, 1998.

[120] G. Verfaillie, D. Martinez, and C. Bessiere. A generic customizable frame-
work for inverse local consistency. In Proceedings AAAI’99, pages 169–174,
Orlando FL, 1999.

[121] R.J. Wallace. Why AC-3 is almost always better than AC-4 for estab-
lishing arc consistency in CSPs. In Proceedings IJCAI’93, pages 239–245,
Chambéry, France, 1993.

[122] R.J. Wallace and E.C. Freuder. Ordering heuristics for arc consistency
algorithms. In Proceedings Ninth Canadian Conference on Artificial In-
telligence, pages 163–169, Vancouver, Canada, 1992.

[123] T. Walsh. Errata on singleton consistencies. Private communication,
September 2000.

[124] T. Walsh. Relational consistencies. Technical Report APES report 28-
2001, University of York, 2001.

[125] D.L. Waltz. Generating semantic descriptions from drawings of scenes
with shadows. Tech.Rep. MAC AI-271, MIT, 1972.

[126] Y. Zhang and R.H.C. Yap. Arc consistency on n-ary monotonic and linear
constraints. In Proceedings CP’00, pages 470–483, Singapore, 2000.

[127] Y. Zhang and R.H.C. Yap. Making AC-3 an optimal algorithm. In Pro-
ceedings IJCAI’01, pages 316–321, Seattle WA, 2001.

63

