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Abstract

Designing computer vision algorithms for camera networks requires an understand-
ing of how images of the same scene from different viewpoints are related. This
chapter introduces the basics of multiview geometry in computer vision, includ-
ing image formation and camera matrices, epipolar geometry and the fundamental
matrix, projective transformations, and N-camera geometry. We also discuss fea-
ture detection and matching, and describe basic estimation algorithms for the most
common problems that arise in multiview geometry.
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1 Introduction

Multi-camera networks are emerging as valuable tools for safety and security
applications in environments as diverse as nursing homes, subway stations,
highways, natural disaster sites, and battlefields. While early multi-camera
networks were contained in lab environments and were fundamentally under
the control of a single processor (e.g., [1]), modern multi-camera networks
are composed of many spatially-distributed cameras that may have their own
processors or even power sources. To design computer vision algorithms that
make the best use of these cameras’ data, it is critical to thoroughly under-
stand the imaging process of a single camera, and the geometric relationships
involved among pairs or collections of cameras.

Our overall goal in this chapter is to introduce the basic terminology of mul-
tiview geometry, as well as to describe best practices for several of the most

Preprint submitted to Elsevier 28 September 2008



common and important estimation problems. We begin in Section 2 by dis-
cussing the perspective projection model of image formation and the repre-
sentation of image points, scene points, and camera matrices. In Section 3,
we introduce the important concept of the epipolar geometry that relates a
pair of perspective cameras, and its representation by the fundamental ma-
trix. Section 4 describes projective transformations, which typically arise in
camera networks that observe a common ground plane. In Section 5, we briefly
discuss algorithms for detecting and matching feature points between images,
a prerequisite for many of the estimation algorithms we consider. Section 6
discusses the general geometry of N cameras, and its estimation using fac-
torization and structure-from-motion techniques. Finally, Section 7 concludes
the chapter with pointers to further print and online resources that go into
more detail on the problems introduced here.

2 Image Formation

In this section, we describe the basic perspective image formation model, which
for the most part accurately reflects the phenomena observed in images taken
by real cameras. Throughout the chapter, we denote scene points by X =
(X,Y, Z), image points by u = (z,y), and camera matrices by P.

2.1 Perspective Projection

An idealized “pinhole” camera C is described by:

(1) A center of projection C' € R3
(2) A focal length f € R
(3) An orientation matrix R € SO(3).

The camera’s center and orientation are described with respect to a world
coordinate system on R3. A point X expressed in the world coordinate system
as X = (X,,Y,, Z,) can be expressed in the camera coordinate system of C as

Xec X,
X=|Y.|=R||v,|-C]|. (1)
ZC ZO

The purpose of a camera is to capture a two-dimensional image of a three-
dimensional scene S, i.e., a collection of points in R?. This image is produced by
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Fig. 1. A pinhole camera uses perspective projection to represent a scene point
X € R? as an image point u € R2.

perspective projection as follows. Each camera C has an associated image plane
P, located in the camera coordinate system at Zo = f. As illustrated in Figure
1, the image plane inherits a natural orientation and two-dimensional coordi-
nate system from the camera coordinate system’s XY -plane. It is important
to note that the three-dimensional coordinate systems in this derivation are
left-handed. This is a notational convenience, implying that the image plane
lies between the center of projection and the scene, and that scene points have
positive Z¢ coordinates.

A scene point X = (X, Ye, Z¢) is projected onto the image plane P at the
point u = (z,y) by the perspective projection equations

r=f25  y=10 (2)

The image 7 that is produced is a map from P into some color space. The
color of a point is typically a real-valued (grayscale) intensity or a triplet of
RGB or YUV values. While the entire ray of scene points {A(z,y, f)|A > 0}
is projected to the image coordinate (z,y) by (2), the point on this ray that
gives (z,y) its color in the image Z is the one closest to the image plane (i.e.,
that point with minimal ). This point is said to be visible; any scene point
further along on the same ray is said to be occluded.

For real cameras, the relationship between the color of image points and the
color of scene points is more complicated. To simplify matters, we often assume
that scene points have the same color regardless of the viewing angle (this is
called the Lambertian assumption), and that the color of an image point is
the same as the color of a single corresponding scene point. In practice, the
colors of corresponding image and scene points are different due to a host
of factors in a real imaging system. These include the point spread function,



color space, and dynamic range of the camera, as well as non-Lambertian or
semi-transparent objects in the scene. For more detail on the issues involved
in image formation, see [2,3].

2.2  Camera Matrices

Frequently, an image coordinate (x, y) is represented by the homogeneous coor-
dinate A(z,y, 1), where A # 0. The image coordinate of a homogeneous coordi-
nate (r,y, z) can be recovered as (£, ) when z # 0. Similarly, any scene point
(X,Y,Z) can be represented in homogeneous coordinates as A\(X,Y, Z 1),
where A # 0. We use the symbol ~ to denote the equivalence between a
homogeneous coordinate and a non-homogeneous one.

A camera C with parameters (C, f, R) can be represented by a 3 x 4 matrix P
that multiplies a scene point expressed as a homogeneous coordinate in R* to
produce an image point expressed as a homogeneous coordinate in R?. When
the scene point is expressed in the world coordinate system, the matrix P is
given by

00
Fe=10f0|[R | —RC]. (3)
001

Here, the symbol | denotes the horizontal concatenation of two matrices. Then
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._1_ ) ) _1_
£00 X f00||Xe
—lofo|R||Y]|-C =10 fo0||Ye
001 A 001 Zc
fXe -f&
= | fYe ~ |2
f&
ZC L Ze



We often state this relationship succinctly as

u ~ PX. (4)

2.2.1 Intrinsic and Extrinsic Parameters
We note that the camera matrix can be factored as

P=KRI[ | -0 (5)

The matrix K contains the intrinsic parameters of the camera, while the
variables R and C' comprise the extrinsic parameters of the camera, specifying
its position and orientation in the world coordinate system. While the intrinsic
parameter matrix K in (3) was just a diagonal matrix containing the focal
length, a more general camera can be constructed using a K matrix of the
form

m, [ s/mg pe
K = my, ooyl (6)
1 1

In addition to the focal length of the camera f, this intrinsic parameter ma-
trix includes m, and m,, the number of pixels per x and y unit of image
coordinates, respectively; (p,, py), the coordinates of the principal point of the
image, and s, the skew (deviation from rectangularity) of the pixels. For high-
quality cameras, the pixels are usually square, the skew is typically 0, and the
principal point can often be approximated by the image origin.

A general camera matrix has 11 degrees of freedom (since it is only defined up
to a scale factor). The camera center and the rotation matrix each account for
3 degrees of freedom, leaving 5 degrees of freedom for the intrinsic parameters.

2.2.2  FEztracting Camera Parameters from P

Often, we begin with an estimate of a 3 X 4 camera matrix P and want to
extract the intrinsic and extrinsic parameters from it. The homogeneous coor-
dinates of the camera center C' can be simply extracted as the right-hand null
vector of P (i.e., a vector satisfying PC' = 0). If we denote the left 3 x 3 block
of P as M, then we can factor M = KR where K is upper triangular and R
is orthogonal using a modified version of the QR decomposition [4]. Enforcing



that K has positive values on its diagonal should remove any ambiguity about
the factorization.

2.2.83 More General Cameras

While the perspective model of projection generally matches the image for-
mation process of a real camera, an affine model of projection is sometimes
more computationally appealing. While less mathematically accurate, such an
approximation may be acceptable in cases where the depth of scene points is
fairly uniform, or the field of view is fairly narrow. Common choices for linear
models include orthographic projection, in which the camera matrix has the
form

1000
Rt
P=10100 ; (7)
01
0001

or weak perspective projection, in which the camera matrix has the form

a; 000
Rt
P=10 a,00 : (8)
01
0001

Finally, we note that real cameras frequently exhibit radial lens distortion,
which can be modeled by

=>

— L2+ | (9)

Y

<>

where (z,y) is the result of applying the perspective model (4), and L(-) is
a function of the radial distance from the image center, often modeled as
a fourth-degree polynomial. The parameters of the distortion function are
typically measured off-line using a calibration grid [5].

2.3 Estimating the Camera Matriz

The P matrix for a given camera is typically estimated based on a set of
matched correspondences between image points u; € R? and scene points



X; with known coordinates in R3. That is, the goal is to select the matrix
P € R34 that best matches a given set of point mappings:

Each correspondence (u;, X;) produces two independent linear equations in
the elements of P. Thus, the equations for all the data points can be collected
into a linear system Ap = 0, where A is an 2N x 12 matrix involving the data,
and p = (p11,...,p3s)7 is the vector of unknowns. Since the camera matrix is
unique up to scale, we must fix some scaling (say, ||p|| = 1) to ensure that
Ap cannot become arbitrarily small.

The least-squares minimization problem is then

min ||Ap|ly  s.t. p'p=1. (11)

The solution to this problem is well known; the minimizer is the eigenvec-
tor p € R'2 of AT A corresponding to the minimal eigenvalue, which can be
computed via the singular value decomposition. This eigenvector is then re-
assembled into a 3 X 4 matrix }5, which can be factored into intrinsic and
extrinsic parameters as described above.

To maintain numerical stability, it is critical to normalize the data before
solving the estimation problem. That is, each of the sets {u;} and {X;} should
be translated to have zero mean, and then isotropically scaled so that the
average distance to the origin is /2 for the image points and /3 for the
scene points. These translations and scalings can be represented by similarity
transform matrices T" and U that act on the homogeneous coordinates of the
u; and X;. After the camera matrix for the normalized points P has been
estimated, the estimate of the camera matrix in the original coordinates is
given by

P=T7'PU. (12)

Several more advanced algorithms for camera matrix estimation (also called
resectioning) are discussed in Hartley and Zisserman [6], typically requiring
iterative, nonlinear optimization.

When the datasets contain outliers (i.e., incorrect point correspondences in-
consistent with the underlying projection model), it is necessary to detect
and reject them during the estimation process. Frequently, the robust estima-
tion framework called RANSAC [7] is employed for this purpose. RANSAC is
based on randomly selecting a large number of data subsets, each containing
the minimal number of correspondences that make the estimation problem
solvable. An estimate of the outlier probability is used to select a number



of subsets to guarantee that at least one of the minimal subsets has a high
probability of containing all inliers.

The point correspondences required for camera matrix estimation are typi-
cally generated using images of a calibration grid resembling a high-contrast
checkerboard. Bouguet authored a widely-disseminated camera calibration
toolbox in Matlab that only requires the user to print and acquire several
images of such a calibration grid [8].

3 Two-Camera Geometry

Next, we discuss the image relationships resulting from the same static scene
being imaged by two cameras C and C’, as illustrated in Figure 2. These could
be two physically separate cameras, or a single moving camera at different
points in time. Let the scene coordinates of a point X in the C coordinate
system be (X, Y, Z), and in the C’ coordinate system be (X', Y’ Z’). We denote
the corresponding image coordinates of X in P and P’ by u = (z,y) and
u = (2',y'), respectively. The points u and ' are said to be corresponding
points, and the pair (u,u’) is called a point correspondence.

X=(XY,2)=(X,Y,2)
°

Fig. 2. The rigid motion of a camera introduces a change of coordinates, resulting
in different image coordinates for the same scene point X.

Assuming standard values for the intrinsic parameters, the scene point X
is projected onto the image points u and u’' via the perspective projection
equations (2):

X Y

t=I7 v=17 (13)
X' Y’

x/ = f/Z/ y, = f/Z/' (14)



Here f and f’ are the focal lengths of C and C’, respectively. We assume
that the two cameras are related by a rigid motion, which means that the C’
coordinate system can be expressed as a rotation R of the C coordinate system
followed by a translation [tx ty tz]7. That is,

X' X tx
V' |=R|Y |+ |ty]- (15)
A A ty

In terms of the parameters of the cameras, R = R'R™' and t = R'(C — ().
Alternately, we can write R as

cosa cosy + sinasin Bsiny cos fsiny — sin a cosy + cos a sin 3 sin y
R = | —cosasiny + sinasin 3cos~y cos 3cosy sinasiny + cosasin 3 cosy
sin «c cos (3 —sin 3 cos acos (3

(16)

where «, 3 and 7y are rotation angles around the X, Y, and Z axes, respectively,
of the C coordinate system.

By substituting equation (15) into the perspective projection equations (2),
we obtain a relationship between the two sets of image coordinates:

oA rofe iy 4 riaf + S (17)
xr = _— =

Z! m71$+m72y+7’33+t72
Y rafrtrnfy +raf + 0 (18)
v == = = .

2 %x+%y+r33+%

Here the r;; are the elements of the rotation matrix given in (16). In Section
4 we will consider some special cases of (17)-(18).

3.1 The Epipolar Geometry and its Estimation

We now introduce the fundamental matriz, which encapsulates an important
constraint on point correspondences between two images of the same scene.
For each generic pair of cameras (C,C’), there exists a matrix F' of rank two

Y



such that for all correspondences (u,u') = ((z,y), (¢/,y')) € P x P/,

T

x x

y| Flyl=0 (19)
1 1

The fundamental matrix is unique up to scale provided that there exists no
quadric surface Q containing the line C' C” and every point in the scene S [9].

Given the fundamental matrix F' for a camera pair (C,C’), we obtain a con-
straint on the possible locations of point correspondences between the associ-
ated image pair (Z,Z').

Fig. 3. The relationship between two images of the same scene is encapsulated by
the epipolar geometry. For any scene point X, we construct the plane II containing
X and the two camera centers. This plane intersects the image planes at the two
epipolar lines ¢ and ¢'. Any image point on ¢ in Z must have its correspondence
on /' in Z’. The projections of the camera centers C’ and C onto Z and Z' are the
epipoles e and €, respectively.

The epipolar line corresponding to a point u € P is the set of points:

10



u u
by=3u =, y)F €P F =0;. (20)
1

If u is the image of scene point X in P, the image v’ of X in P’ is constrained
to lie on the epipolar line ¢,. Epipolar lines for points in P’ can be defined
accordingly. Hence, epipolar lines exist in conjugate pairs (¢, ¢'), such that the
match to a point u € £ must lie on ¢/, and vice versa. Conjugate epipolar lines
are generated by intersecting any plane II containing the baseline C" C” with
the pair of image planes (P,P’) (see Figure 3). For a more thorough review
of epipolar geometry, the reader is referred to [10].

The epipoles e € P and € € P’ are the projections of the camera centers
C" and C onto P and P’, respectively. It can be seen from Figure 3 that the
epipolar lines in each image all intersect at the epipole. In fact, the homoge-
neous coordinates of the epipoles e and €’ are the right and left eigenvectors
of F', respectively, corresponding to the eigenvalue 0.

Since corresponding points must appear on conjugate epipolar lines, they form
an important constraint that can be exploited while searching for feature
matches, as illustrated in Figure 4.

Fig. 4. Image pair, with sample epipolar lines. Corresponding points must occur
along conjugate epipolar lines; for example, consider the goalie’s head or the front
corner of the goal area.

3.2 Relating the Fundamental Matriz to the Camera Matrices

The fundamental matrix can easily be constructed from the two camera ma-
trices. If we assume that

P=KII | 0] P =K'[R | (21)
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then the fundamental matrix is given by

F=K"T{RK ' = K" "R[RTt], K, (22)

where [t]« is the skew-symmetric matrix defined by

0 —ts 1y
[t]x = ts3 0 —t1]- (23)
—ty 1 0

In the form of (22), we can see that F' is rank-2 since [t] is rank-2. Since F is
only unique up to scale, the fundamental matrix has 7 degrees of freedom. The
left and right epipoles can also be expressed in terms of the camera matrices
as follows:

e=KR"t e =K't (24)

From the above, the fundamental matrix for a pair of cameras is clearly unique
up to scale. However, there are 4 degrees of freedom in extracting P and P’
from a given F. This ambiguity arises since the camera matrix pairs (P, P’)
and (PH, P'H) have the same fundamental matrix for any 4 x 4 nonsingular
matrix H (e.g., the same rigid motion applied to both cameras). The family
of (P, P') corresponding to a given F' is described by:

P=I[I] 0 P =[[¢|«F+ev" | A, (25)
where v € R? is an arbitrary vector and ) is a non-zero scalar.

In cases where the intrinsic parameter matrix K of the camera is known (e.g.,
estimated offline using a calibration grid), then the homogeneous image coor-
dinates can be transformed using

=K 4o =K (26)
The camera matrices become

P=[I |0 P=[R]|1], (27)
and the fundamental matrix is now called the essential matriz. The advantage
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of the essential matrix is that its factorization in terms of the extrinsic camera
parameters

E=tR= R[RTt]x (28)

is unique up to four possible solutions, the correct of which can be determined
by requiring that all projected points lie in front of both cameras [6].

3.3  Estimating the Fundamental Matriz

The fundamental matrix is typically estimated based on a set of matched
point correspondences (see Section 5). That is, the goal is to select the matrix
F € R®*3 that best matches a given set of point mappings:

{uj —u;eR*j=1,... N} (29)

It is natural to try to minimize a least-squares cost functional such as

T

| (30)

over the class of admissible fundamental matrices. We recall that F' must have
rank two (see Section 3.2). Furthermore, the fundamental matrix is unique up
to scale, so we must fix some scaling (say, || F’|| = 1 for some appropriate norm)
to ensure that J cannot become arbitrarily small. Hence, the class of admissible
estimates has only seven degrees of freedom. Constrained minimizations of
this type are problematic due to the difficulty in parameterizing the class of
admissible F'. Faugeras and Luong [11-13] proposed some solutions in this
regard and analyzed various cost functionals for the estimation problem.

A standard approach to estimating the fundamental matrix was proposed by
Hartley [14]. Ignoring the rank-two constraint for the moment, we minimize
(30) over the class {F € R3*3 | ||[F|| = 1}, where || -|| is the Frobenius norm.

Each correspondence (u;, u;) produces a linear equation in the elements of F":

x50 fi1 A 25y for 4 @5 31 + Y5205 for + Y5y Sz + Y fos + 2 fa1 + Y fsa + faz =0

The equations in all the data points can be collected into a linear system Af =

13



0, where A is an N x 9 matrix involving the data, and f = (fi1, fo1, f31, f12, fo2,
f32, f13, fo3, f33)T is the vector of unknowns. The least-squares minimization
problem is then

min [|[Af]l; st fTf=1 (31)

As in the resectioning estimation problem in Section 2.3, the minimizer is the
eigenvector f € R? of AT A corresponding to the minimal eigenvalue, which
can be computed via the singular value decomposition. This eigenvector is
then reassembled into a 3 x 3 matrix F.

To account for the rank-two constraint, we replace the full-rank estimate F
by F*, the minimizer of

min ||F — F*||p  s.t. rank(F*) = 2. (32)

Given the singular value decomposition F' = UDVT, where D = diag(r, s, t)
with 7 > s > ¢, the solution to (32) is

F*=UDVT, (33)

where D = diag(r, s, 0).

As in Section 2.3, to maintain numerical stability, it is critical to normalize
the data before solving the estimation problem. Each of the sets {u;} and
{u’;} should be translated to have zero mean, and then isotropically scaled so

that the average distance to the origin is v/2. These translations and scalings
can be represented by 3 x 3 matrices 7" and T” that act on the homogeneous
coordinates of the u; and u}. After the fundamental matrix for the normalized
points has been estimated, the estimate of the fundamental matrix in the
original coordinates is given by

F=T7FT. (34)

The overall estimation process is called the normalized eight-point algorithm.
Several more advanced algorithms for fundamental matrix estimation are dis-
cussed in Hartley and Zisserman [6], typically requiring iterative, nonlinear
optimization. As before, outliers (i.e., incorrect point correspondences incon-
sistent with the underlying epipolar geometry) are often detected and rejected
using RANSAC.
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4 Projective Transformations

The fundamental matrix constrains the possible locations of corresponding
points: they must occur along conjugate epipolar lines. However, there are
two special situations in which the fundamental matrix for an image pair is
undefined, and instead point correspondences between the images are related
by an explicit one-to-one mapping.

Let us reconsider equations (17) and (18) that relate the image coordinates
of a point seen by two cameras C and C’. For this relationship to define a
transformation that globally relates the image coordinates, for every scene
point (X, Y, Z) we would require that the dependence on the world coordinate
Z disappears, i.e. that

t
%zalxx—i-agxy—i-bx (35)
t
?Y =a1yT + agyy + by (36)
t
?Z =a1zT + a27Y + bZ (37)

for some set of a’s and b’s. These conditions are satisfied when either:

(1) tX:tyItZIOOI'

In the first case, corresponding to a camera whose optical center undergoes
no translation, we obtain

z,_T11f71’+T12f73/+T13f'

”:“’711’4—7“3723/—1—7”33

/

Y

B 7”21f796 + T22f7y + o3 f

%x—l—%y—i—mg

An example of three such images composed into the same frame of reference
with appropriate projective transformations is illustrated in Figure 5.

In the second case, corresponding to a planar scene, (17) and (18) become:

15



Fig. 5. Images from a non-translating camera, composed into the same frame of
reference by appropriate projective transformations.

, (7“11‘%/ +ixfk)x + (ﬁz? +tx f'k2)y 4 (rsf' +tx f'ks) (38)
x =
(5 + tzki)z + (%2 + tzko)y + (rss + t2ks)

(7”21f7’ +ty f'k)x + (7”22f7’ +ty f'ko)y + (rosf + ty f'ks)
(7“371 + tzkl)x + (T% + tzkg)y + (7”33 + tzkg)

’y:

An example of a pair of images of a planar surface, registered by an appropriate
projective transformation, is illustrated in Figure 6.

Fig. 6. Images of a planar scene, composed into the same frame of reference by
appropriate projective transformations.

In either case, the transformation is of the form

16



o= an + apy + b

39
x4+ coy +d (39)
) an® + axny + by (40)
ar+cy+d
which can be written in homogeneous coordinates as
v = Hu (41)

for a nonsingular 3 x 3 matrix H defined up to scale. This relationship is
called a projective transformation (sometimes also known as a collineation or
a homography). When ¢; = ¢5 = 0, the transformation is known as an affine
transformation.

Projective transformations between images are induced by common camera
configurations such as surveillance cameras that view a common ground plane
or a panning and tilting camera mounted on a tripod. In the next section, we
discuss how to estimate projective transformations relating an image pair.

We note that technically, affine transformations are induced by the motion
of a perspective camera only under quite restrictive conditions. The image
planes must both be parallel to the XY -plane. Furthermore, either the trans-
lation vector ¢ must be identically 0, or Z must be constant for all points in
the scene, i.e., the scene is a planar surface parallel to the image planes P
and P’. However, the affine assumption is often made when the scene is far
from the camera (7 is large) and the rotation angles o and [ are very small.
This assumption has the advantage that the affine parameters can be easily
estimated, usually in closed form.

4.1 Estimating Projective Transformations

The easiest approach to estimating a projective transformation from point
correspondences is called the direct linear transform (DLT). If the point cor-
respondence {u; — u;} corresponds to a projective transformation, then the
homogeneous coordinates u; and Hu; are vectors in the same direction, i.e.,

w; X Huj = 0. (42)

Since (42) gives 2 independent linear equations in the 9 unknowns of H, N
point correspondences give rise to a 2N x 9 linear system

17



Ah =0, (43)

where A is a 2N x 9 matrix involving the data, and h = (ay1, @12, ass, ass, by, ba,
c1,¢2,d)T is the vector of unknowns. We solve the problem in exactly the same
way as (31) using the singular value decomposition (i.e., the solution A is the
singular vector of A corresponding to the smallest singular value).

When the element d is expected to be far from 0, an alternate approach is to
normalize d = 1, in which case the N point correspondences induce a system
of 2N equations in the remaining 8 unknowns, which can be solved as a linear
least-squares problem.

As with the fundamental matrix estimation problem, more accurate estimates
of the projective transformation parameters can be obtained by the iterative
minimization of a nonlinear cost function, such as the symmetric transfer error
given by

N
> s = Hugl[3 + [Jus — H™ M]3 (44)

i=1

The reader is referred to Hartley and Zisserman [6] for more details. We note
that an excellent turnkey approach to estimating projective transformations
for real images is given by the Generalized Dual-Bootstrap ICP algorithm
proposed by Yang et al. [15].

4.2 Rectifying Projective Transformations

We close this section by mentioning a special class of projective transforma-
tions called rectifying projective transformations that often simplify computer
vision problems involving point matching along conjugate epipolar lines.

Since epipolar lines are generally not aligned with one of the coordinate axes
of an image, or are even parallel, the implementation of algorithms that work
with epipolar lines can be complicated. To this end, it is common to apply a
technique called rectification to an image pair before processing, so that the
epipolar lines are parallel and horizontal.

An associated image plane pair (P,P’) is said to be rectified when the funda-
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mental matrix for (P,P’) is the skew-symmetric matrix

000
F.=10 0 1]. (45)
0-10

In homogeneous coordinates, the epipoles corresponding to F, are ey = e; =
[1 0 0], which means the epipolar lines are horizontal and parallel. Fur-
thermore, expanding the fundamental matrix equation for a correspondence
(z,9)", (z',y)T) € P x P’ gives

y| Fly|=0, (46)

which is equivalent to ¢y’ — y = 0. This implies that not only are the epipolar
lines in a rectified image pair horizontal, they are aligned, so that the lines
y=Ain P and 3 = X in P’ are conjugate epipolar lines.

G e

| F el [——————
P P P P

Fig. 7. Rectifying projective transformations G and H transform corresponding
epipolar lines to be horizontal with the same y-value.

A
\
T

A pair of projective transformations (G, H) is called rectifying for an associ-
ated image plane pair (P, P’) with fundamental matrix F' if

HTFG' =F,. (47)

By the above definition, if the projective transformations G and H are applied
to P and P’ to produce warped image planes Py and Py, respectively, then
(Po, Py) is a rectified pair (Figure 7).

The rectifying condition (47) can be expressed as 9 equations in the 16 un-
knowns of the two projective transformations G and H, leading to 7 degrees of
freedom in the choice of a rectifying pair. Seitz [16] and Hartley [17] described
methods for deriving rectifying projective transformations from an estimate of
the fundamental matrix relating an image pair. Isgro and Trucco [18] observed
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that rectifying transformations can be estimated without explicitly estimating
the fundamental matrix as an intermediate step.

5 Feature Detection and Matching

As indicated in the previous sections, many algorithms for multiview geom-
etry parameter estimation problems require a set of image correspondences
as input, i.e., regions of pixels representing scene points that can be reliably,
unambiguously matched in other images of the same scene.

Many indicators of pixel regions that constitute “good” features have been
proposed, including line contours, corners, and junctions. A classical algorithm
for detecting and matching “good” point features was proposed by Shi and
Tomasi [19], described as follows:

(1) Compute the gradients g,(z,y) and g,(x,y) for Z. That is,

(ﬁ,y) —I(LL’— 17y)

9u(2,y) =1
I(x,y) — Z(x,y — 1).

9y(, y)

(2) For every N x N block of pixels T,
(a) Compute the covariance matrix

B— Z(x,y)ef gg(x, y) Z(x,y)ef 9zGy (.1', y)

Z(x,y)er 9z 9y (SL’, y) E(m,y)ef 932/ (.%, y)

(b) Compute the eigenvalues of B, A; and \s.
(c) If Ay and Ay are both greater than some threshold 7, add I" to the
list of features.

(3) For every block of pixels I' in the list of features, find the N x N block of
pixels in 7’ that has the highest normalized cross-correlation, and add the
point correspondence to the feature list if the correlation is sufficiently
high.

A recent focus in the computer vision community has been on different types of
“invariant” detectors that select image regions that can be robustly matched
even between images where the camera perspectives or zooms are quite dif-
ferent. An early approach was the Harris corner detector [20], which uses the
same matrix B as the Shi-Tomasi algorithm, but instead of computing the
eigenvalues of B, the quantity

p = det(B) — & - trace*(2) (48)
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is computed, with s in a recommended range of 0.04-0.15. Blocks with local
positive maxima of p are selected as features. Mikolajczyk and Schmid [21]
later extended Harris corners to a multi-scale setting.

An alternate approach is to filter the image at multiple scales with a Laplacian-
of-Gaussian (LOG) [22] or Difference-of-Gaussian (DOG) [23] filter; scale-
space extrema of the filtered image give the locations of the interest points.
The popular Scale Invariant Feature Transform, or SIFT, detector proposed
by Lowe [23] is based on multiscale DOG filters. Feature points of this type
typically resemble “blobs” at different scales, as opposed to “corners”. Figure
8 illustrates example Harris corners and SIFT features detected for the same

image. A broad survey of modern feature detectors was given by Mikolajczyk
and Schmid [24].

Fig. 8. (a) Original image. (b) Example Harris corners. (¢) Example SIFT features.

Block-matching correspondence approaches begin to fail when the motion of
the camera or of scene objects induces too much of a change in the images.
In this case, the assumption that a rectangular block of pixels in one image
roughly matches a block of the same shape and size in the other breaks down.
Normalized cross-correlation between blocks of pixels is likely to yield poor
matches.

In such cases, it may be more appropriate to apply the SIFT feature descrip-
tor [23], a histogram of gradient orientations designed to be invariant to scale
and rotation of the feature. Typically, the algorithm takes a 16 x 16 grid
of samples from the the gradient map at the feature’s scale, and uses it to
form a 4 x 4 aggregate gradient matrix. Each element of the matrix is quan-
tized into 8 orientations, producing a descriptor of dimension 128. Mikolajczyk
and Schmid [25] showed that the overall SIFT algorithm outperformed most
other detector/descriptor combinations in their experiments, accounting for
its widespread popularity in the computer vision community.
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6 Multi-Camera Geometry

We now proceed to the relationships between M > 2 cameras that observe
the same scene. While there is an entity called the trifocal tensor [26] relating
three cameras’ views that plays an analogous role to the fundamental matrix
for two views, here we concentrate on the geometry of M general cameras.

We assume a camera network that contains M perspective cameras, each de-
scribed by a 3 x 4 matrix P;. Each camera images some subset of a set of
N scene points {Xy, X, ..., Xy} € R% We define an indicator function x;;
where x;; = 1 if camera ¢ images scene point j. The projection of X; onto F;
is given by u;; € R?, denoted

The main problem in multi-camera geometry is called structure from motion
(SFM). That is, given only the observed image projections {u;;}, we want to
estimate the corresponding camera matrices P; and scene points X;. As we
discuss in the next sections, this process typically proceeds in stages to find a
good initial estimate, which is followed by a nonlinear optimization algorithm
called bundle adjustment.

We note that SFM is closely related to a problem in the robotics community
called Simultaneous Localization and Mapping (SLAM) [27], in which mobile
robots must estimate their locations from sensor data as they move through a
scene. SFM also forms the fundamental core of commercial software packages
such as Boujou or SynthEyes for the problems of “matchmoving” or camera
tracking, which are used to insert digital effects into Hollywood movies.

6.1 Affine Reconstruction

Many initialization methods for the SFM problem involve a factorization ap-
proach. The first such approach was proposed by Tomasi and Kanade [28] and
applies only to affine cameras (we generalize it to perspective cameras in the
next section).

For an affine camera, the projection equations take the form

for A; € R?*3 and t; € R?. If we assume that each camera images all of the
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scene points, then a natural formulation of the affine SFM problem is:

M N
{A4;t:,X,} ;; I J ( J i (51)

If we assume that the X; are centered at 0, taking the derivative with respect
to t; reveals that the minimizer

.1 g:
N i=1 ’

Hence, we recenter the image measurements by

1 N
Ui Uy = r D Ui (53)
J J N — J
and are faced with solving
M N
min wi — A X2 54
i, 2 b~ A% 54)

Tomasi and Kanade’s key observation was that if all of the image coordinates
are collected into a measurement matriz defined by

Uy Uiz -+ UIN
U1 Ug2 *++ U2N

W = , (55)
_UM1 Upro v UMN_

then in the ideal (noiseless) case, this matrix factors as

Ay
Ay
W=7 [Xi Xy - Xpl, (56)

Anr

revealing that the 2M x N measurement matrix is ideally rank-3. They showed
that solving (54) is equivalent to finding the best rank-3 approximation to W
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in the Frobenius norm, which can easily be accomplished with the singular
value decomposition. The solution is unique up to an affine transformation
of the world coordinate system, and optimal in the sense of maximum likeli-
hood estimation if the noise in the image projections is isotropic, zero-mean
i.i.d. Gaussian.

6.2 Projective Reconstruction

Unfortunately, for the perspective projection model that more accurately re-
flects the way real cameras image the world, factorization is not as easy. We
can form a similar measurement matrix W and factorize it as follows:

>\11U11 )\12U12 s /\1NU1N P
W= )\21.U21 )\22'U22 >\2N.U2N _ ]?2 <X1 X, --- XN) . (B7)
_)\MIUMI )\m2um2 ce AMNUMN_ Py

Here, both the u;; and X; are represented in homogeneous coordinates. There-
fore, the measurement matrix is of dimension 3M x N and is ideally rank-4.
However, since the scale factors (also called projective depths) \;; multiplying
each projection are different, these must also be estimated.

Sturm and Triggs [29,30] suggested a factorization method that recovers the
projective depths as well as the structure and motion parameters from the
measurement matrix. They used relationships between fundamental matrices
and epipolar lines in order to obtain an initial estimate for the projective
depths \;; (an alternate approach is to simply initialize all A;; = 1). Once the
projective depths are fixed, the rows and columns of the measurement matrix
are rescaled, and the camera matrices and scene point positions are recovered
from the best rank-4 approximation to W obtained using the singular value
decomposition. Given estimates of the camera matrices and scene points, the
scene points can then be reprojected to obtain new estimates of the projective
depths, and the process iterated until the parameter estimates converge.
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6.3 Metric Reconstruction

There is substantial ambiguity in a projective reconstruction as obtained
above, since

(P, ] [ PH |
P, PH 1 1 1

X Xy - Xyl=| | [H'X, H'X, - H'Xy] (58
_PM_ _PMH_

for any 4 x 4 nonsingular matrix H. This means that while some geometric
properties of the reconstructed configuration will be correct compared to the
truth (e.g., the order of 3D points lying along a straight line), others will
not (e.g., the angles between lines/planes or the relative lengths of line seg-
ments). In order to make the reconstruction useful (i.e., to recover the correct
configuration up to an unknown rotation, translation, and scale), we need to
estimate the matrix H that turns the projective factorization into a metric
factorization, so that

PH=KR['l | —C)]. (59)

and K; is in the correct form (e.g., we may force it to be diagonal). This
process is also called auto-calibration.

The auto-calibration process depends fundamentally on several properties of
projective geometry that are subtle and complex. We only give a brief overview
here; see [31,32,6] for more details.

If we let m, =m, = 1in (6), then the form of a camera’s intrinsic parameter
matrix is

ap S«
K=10 a,y]- (60)
0 01

We define a quantity called the dual image of the absolute conic (DIAC) as

o2+ 2 +a? soy +ay x
w'=KKT = sy, + xy a§+y2 Yyl - (61)
T Y 1
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If we put constraints on the camera’s internal parameters, these correspond
to constraints on the DIAC. For example, if we require that the pixels have
zero skew and that the principal point is at the origin, then

a2 00
w'=10 a2 0], (62)
001

and we have introduced 3 constraints on the entries of the DIAC:

Wiy = Wiz = w3 = 0. (63)

If we further constrain that the pixels must be square, then we have a fourth
constraint that wj; = w3,.

The DIAC is related to a second important quantity called the absolute dual
quadric, denoted % . This is a special 4 x 4 symmetric rank-3 matrix that
represents an imaginary surface in the scene that is fixed under similarity
transformations. That is, points on ()%, map to other points on @)% if a rota-
tion, translation, and/or uniform scaling is applied to the scene coordinates.

The DIAC (which is different for each camera) and @7, (which is independent
of the cameras) are connected by the important equation

w* = P'QL P (64)

That is, the two quantities are related through the camera matrices P*. There-
fore, each constraint we impose on each w** (e.g., each of (63)) imposes a linear
constraint on the 10 homogeneous parameters of Q)% , in terms of the camera
matrices P’. Given enough camera matrices, we can thus solve a linear least-
squares problem for the entries of Q7.

Once Q% has been estimated from the { P’} resulting from projective factor-
ization, the correct H matrix in (59) that brings about a metric reconstruction
is extracted using the relationship

Q' = Hdiag(1,1,1,0)H". (65)

The resulting reconstruction is related to the true camera/scene configura-
tion by an unknown similarity transform that cannot be estimated without
additional information about the scene.
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We conclude this section by noting that there exist critical motion sequences
for which auto-calibration is not fully possible [33], including pure translation
or pure rotation of a camera, orbital motion around a fixed point, or motion
confined to a plane.

6.4 Bundle Adjustment

After a good initial metric factorization is obtained, the final step is to per-
form bundle adjustment, i.e., the iterative optimization of the nonlinear cost
function

M N
Do Xl — BX5) S (wi; — PX;). (66)

i=1j=1

Here, ¥;; is the 2 x 2 covariance matrix associated with the noise in the image
point u;;. The quantity inside the sum is called the Mahalanobis distance
between the observed image point and its projection based on the estimated
camera/scene parameters.

The optimization is typically accomplished with the Levenberg-Marquardt
algorithm [34], specifically an implementation that exploits the sparse block
structure of the normal equations characteristic of SEM problems (since each
scene point is typically observed by only a few cameras) [35].

Parameterization of the minimization problem, especially of the cameras, is
a critical issue. If we assume that the skew, aspect ratio, and principal point
of each camera are known prior to deployment, then each camera should be
represented by 7 parameters: 1 for the focal length, 3 for the translation vector,
and 3 for the rotation matrix parameters.

Rotation matrices are often minimally parameterized by 3 parameters (vy, vq, v3)
using the awis-angle parameterization. If we think of v as a vector in R3, then
the rotation matrix R corresponding to v is a rotation through the angle ||v]|
about the axis v, computed by

1 —cos|v]| o

R = cos ||v||I + sinc||v||[v]« + I

(67)

Extracting the v corresponding to a given R is accomplished as follows. The
direction of the rotation axis v is the eigenvector of R corresponding to the
eigenvalue 1. The angle ¢ that defines ||v]| is obtained from the two-argument
arctangent function using
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2 cos(¢) = trace(R) — 1 (68)
2 SlIl(gb) = (Rgg — Rgg, R13 — Rgl, R21 — ng)TU. (69)

Other parameterizations of rotation matrices and rigid motions were discussed
by Chirikjian and Kyatkin [36].

Finally, it is important to remember that the set of cameras and scene points
can only be estimated up to an unknown rotation, translation, and scale of
the world coordinates, so it is common to fix the extrinsic parameters of the
first camera as

P=K [ | 0 (70)

In general, any over-parameterization of the problem or ambiguity in the re-
constructions creates a problem called gauge freedom [37], which can lead to
slower convergence and computational problems. Therefore, it is important to
strive for minimal parameterizations of SFM problems.

7 Further Resources

Multiple view geometry is a rich and complex area of study, and this chapter
only gives an introduction to the main geometric relationships and estimation
algorithms. The best and most comprehensive reference on epipolar geometry;,
structure from motion, and camera calibration is Multiple View Geometry in
Computer Vision, by Richard Hartley and Andrew Zisserman [6], which is
essential reading for further study of the material discussed here.

The collected volume Vision Algorithms: Theory and Practice (Proceedings
of the International Workshop on Vision Algorithms), edited by Bill Triggs,
Andrew Zisserman, and Richard Szeliski [38] contains an excellent, detailed
article on bundle adjustment in addition to important papers on gauges and
parameter uncertainty.

Finally, An Invitation to 3D Vision: From Images to Geometric Models, by Yi
Ma, Stefano Soatto, Jana Kosecka, and Shankar Sastry [39], is an excellent ref-
erence that includes a chapter giving a beginning-to-end recipe for structure-
from-motion. The companion website includes Matlab code for most of the
algorithms described in this chapter [40].

We conclude by noting that the concepts discussed in this chapter are now
viewed as fairly classical in the computer vision community. However, there is
still much interesting research to be done in extending and applying computer
vision algorithms in the context of distributed camera networks; several such
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cutting-edge algorithms are discussed in this book. The key challenges are that

(1)

(2)

A very large number of widely-distributed cameras may be involved in a
realistic camera network. The set-up is fundamentally different in terms
of scale and spatial extent compared to typical multi-camera research
undertaken in a research lab setting.

The information from all cameras is unlikely to be available at a pow-
erful, central processor, an underlying assumption of the multi-camera
calibration algorithms discussed in Section 6. Instead, each camera may
be attached to a power- and computation-constrained local processor that
is unable to execute complex algorithms, and an antenna that is unable
to transmit information across long distances.

These considerations argue for distributed algorithms that operate indepen-
dently at each camera node, exchanging information between local neighbors
to obtain solutions that approximate the best performance of a centralized
algorithm. For example, we recently presented a distributed algorithm for the
calibration of a multi-camera network that was designed with these consider-
ations in mind [41]. We refer the reader to our recent survey on distributed
computer vision algorithms [42] for more information.
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