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Introduction

In the analysis of health sciences disciplines, usually we are interested to understand the type of relationship that exists between
two or more variables. For example, the association between blood pressure and age, height and weight, the concentration of an
injected drug and heart rate or the intensity of a stimulus and reaction time. Generally, the strength of relationship between two
continuous variables is examined by using a statistical technique called correlation analysis. The concept of correlation was
introduced by Sir Francis Galton (1877) in the mid 19th century as the most important contribution to psychological and
methodology theory. In 1896, Karl Pearson published his first rigorous treatment of correlation and regression in the Philoso-
phical Transactions of the Royal Society of London (Pearson, 1930). Here, he developed the Pearson product-moment correlation
coefficient (PPMCC), using an advanced statistical proof based on the Taylor expansion. Today, the term correlation is used in
statistics to indicate an association, connection, or any form of relationship, link or correspondence between two or more random
variables. In particular, the PPMCC is used to study the linear relationship between two sets of numerical data. The correlation is
connected to the concept of covariance that is the natural measure of the joint variability of two random variables. Usually, when
we use measures of correlation or covariance from a set of data, we are interested in the degree of the correlation between them. In
fact, we cannot prove that one variable causes a change in another if there are no connections between the two variables analyzed.
An example is to test if the efficacy of a specific treatment is connected with the dose for the drug in a patient. In this case, a change
in the drug variable changes the treatment variable, then the two variables are correlated. Therefore, correlation analysis provides
information about the strength and the direction (positive or negative) of a relationship between two continuous variables. No
distinction between the explaining variable and the variable to be explained is necessary. On the other hand, regression analysis is
used to model or estimate the linear relationship between a response variable and one or more predictor variables (Gaddis and
Gaddis, 1990). The simplest regression models involve a single response variable (dependent variable) and a single predictor
variable (independent variables). For example, the blood pressure measured at the wrist depends on the dose of some anti-
hypertensive drug administered to the patient.

In this work, our discussion is limited to the exploration of the linear (Person correlation) and non-linear relationship
(Spearman and Kendall correlations) between two quantitative variables. In particular, we first introduce the concepts of covar-
iance and correlation coefficient, then we discuss how these measures are used in statistics for estimating the goodness-of-fit of
linear and non-linear trends and for testing the relationship between two variables. Finally, we explain how the regression analysis
is connected to the correlation one. Simulated and real data sets are also presented for the identification and characterization of
relationship between two or more quantitative variables.

Measures of Correlation Analysis

In this section, we discuss three correlation measures between two quantitative variables X and Y to determine the degree of
association or correlation between them. For example, if we are interested to investigate the association between body mass index
and systolic blood pressure, the first step for studying the relationship between these two quantitative variables is to plot a scatter
diagram of the data. The points are plotted by assigning values of the independent variable X (body mass index) to the horizontal
axis and values of the dependent variable Y (systolic blood pressure) to the vertical axis. The pattern made by the points plotted on
the scatter plot usually suggests the nature and strength of the relationship between two variables. For instance, in Fig. 1, the first
plot (A) shows that there is no relationship between the two variables X and Y, the second one (B) displays that exist a positive
linear relationship between the two variables X and Y, the third one (C) exhibits a negative linear trend between the two variables
X and Y. In the last two cases (B and C) the strength of linear relationship is the same but the direction is different, i.e., in (B) the
values of Y increase as the values of X increase while in (C) the values of Y decrease as the values of X increase. In addition, the
higher the correlation in either direction (positive or negative), the more linear the association between two variables.

Covariance

The covariance quantifies the strength of association between two or more sets of random variables.
Let X and Y be two random variable with the same population size N, we define the covariance as the following expectation

value

CovðX;YÞ ¼ E½ðX � mxÞðY � myÞ� ð1Þ
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where mX¼E[X] and mY¼E[Y] are the population means of X and Y, respectively. We often denote covariance by sXY. The variance
is a special case of the covariance when the two variables X and Y are identical. In fact, let m¼E[X] the population mean of X. Then,
the covariance is given by

sXX ¼CovðX;XÞ ¼ E ðX � mxÞ2
� �¼ VarðXÞ ¼ s2X ð2Þ

Fig. 1 The plot (A) shows that there is no relationship between the two variables X and Y; the plot (B) displays that exist a positive linear
relationship between the two variables X and Y; the plot (C) exhibits a negative linear trend between the two variables X and Y.
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By using the linearity property of expectations, formula (1) can be further simplified as follow

sXY ¼CovðX;YÞ ¼ E ðX � E½X�ÞðY � E½Y �Þ½ �
¼ E½XY � � XE½X� � E½X�Y þ E½X�E½Y �
¼ E½XY � � E½X�E½X� � E½X�E½Y � þ E½X�E½Y � ¼ E½XY � � E½X�E½Y �

In other words, the covariance is the population mean of the pairwise cross-product XY minus the cross-product of the means.
The formula is given by

sXY ¼CovðX; YÞ ¼ mXY � mXmY ð3Þ
where mXY is the joint population mean of X and Y. Given a set of paired variables (x,y) with simple size n, the sample covariance is
given by

sxy ¼Covðx; yÞ ¼ 1
n� 1

Xn
i ¼ 1

xi � xð Þ yi � yð Þ ð4Þ

where

x ¼ 1
n

Xn
i ¼ 1

xi and y ¼ 1
n

Xn
j ¼ 1

yj

are the sample means of variable x and y, respectively. Positive values of covariance, sxy40, means that the variables are positively
related, i.e., the terms ðxi � xÞðyi � yÞ in the sum are more likely to be positive than negative; a negative covariance, sxyo0,
indicates that the variables are inversely related, i.e., the terms ðxi � xÞðyi � yÞ in the sum are more likely to be negative than
positive. If sxy¼0, then the variables x and y are uncorrelated or independent between them. In other words, the sample covariance
is positive if y increases with increasing x, negative if y decreases as x increases, and zero if there is no linear tendency for y to change
with x. An alternative formula of sample covariance is the following formula (similar to that for a sample variance),

sxy ¼Covðx; yÞ ¼ nðxy � xyÞ
n� 1

ð5Þ
where

xy ¼ 1
n

Xn
i ¼ 1

xiyi

is the joint sample mean of x and y. In probability theory, the covariance is a measure of the joint variability of two random
variables. In particular, if X and Y are discrete random variables, with joint support S, then the covariance of X and Y is:

CovðX;YÞ ¼
XX

ðx;yÞAS
ðxi � mxÞðyj � myÞf ðx; yÞ ð6Þ

While on the contrary, if X and Y are continuous random variables with supports S1 and S2, respectively, then the covariance of
X and Y is:

CovðX;YÞ ¼
Z

S1

Z
S2

ðxi � mxÞðyj � myÞf ðx; yÞdxdy ð7Þ

In Eqs. (6) and (7), the function f(x,y) is a joint probability distribution, i.e., a probability distribution that gives the probability
that X and Y fall in any particular range or discrete set of values specified by the two variables. For instance, we consider two
discrete random variable X and Y (bivariate distribution) as illustrated in Table 1. By using the formula (6) the absolute value of
covariance, is equal to 0.005. This value indicates a weak degree of association between X and Y.

Correlation Coefficients

In this section, we discuss the most widely used measures of associations between variables: Pearson’s product moment correlation
coefficient, Spearman’s rank correlation coefficient and Kendall’s correlation coefficient (Chok, 2010). The correct use of corre-
lation coefficient depends on the type of variables. Pearson’s product moment correlation coefficient is used only for continuous
variables while the Spearman’s and Kendall’s correlation coefficients are adopted for either ordinal or continuous variables

Table 1 Joint probability mass function (or bivariate distribution) of two discrete random variables X and Y

x\y 1 2 3 fX(x)

1 0.25 0.00 0.25 0.50
2 0.15 0.10 0.25 0.50
fY(y) 0.40 0.10 0.50 1

Note: The function fX (x) and fY (y) are called marginal distributions. The mean of X and Y are equal to 1.5 and 2, respectively.
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(Mukaka, 2012). In addition, the first correlation coefficient is used to quantify linear relationships, the last two correlation
coefficients are applied for measuring non-linear (or monotonic) associations.

Pearson’s product moment correlation coefficient
Pearson’s product moment correlation coefficient r, called also linear correlation coefficient, measures the linear relationship
between two continuous variables (Pearson, 1930). Let x and y be the quantitative measures of two random variables on the same
sample of n. The formula for computing the sample Pearson’s correlation coefficient r is given by

r ¼
Pn

i ¼ 1ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1ðxi � xÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1ðyi � yÞ2

q ð8Þ

where

x ¼ 1
n

Xn
i ¼ 1

xi and y ¼ 1
n

Xn
j ¼ 1

yj

are the sample means of variable x and y, respectively. In other words, assuming that the sample variances of x and y are positive,
i.e., s2x40 and s2y40, the linear correlation coefficient r can be written as the ratio of the sample covariance of the two variables to
the product of their respective standard deviations sx and sy,

r ¼ Covðx; yÞ
sxsy

ð9Þ

Hence, the correlation coefficient is a scaled version of covariance. The sample correlation measurement r ranges between � 1 and
þ 1. If the linear correlation between x and y is positive (i.e., higher levels of one variable are associated with higher levels of the
other) results r40, while if the linear correlation between x and y is negative (i.e., higher levels of one variable are associated with
lower levels of the other) results ro0. The value r¼0 indicates absence of any association (positive or negative) between x and y.
The sign of the linear correlation coefficient indicates the direction of the association, while the magnitude of the correlation
coefficient denotes the strength of the association. If the correlation coefficient is equal to þ 1 the variables have a perfect linear
positive correlation. This means that if one variable increases, the second increases proportionally in the same direction. If the
correlation coefficient is zero, no relationship exists between the variables. If correlation coefficient is equal to � 1, the variables
are perfectly negatively correlated (or inversely correlated) and move in opposition to each other. If one variable increases, the
other one decreases proportionally. In addition, when two random variables X and Y are normally distributed, the population
Pearson’s product moment correlation coefficient is given by

r¼ CovðX; YÞ
sXsY

ð10Þ

where sx and sy are the population standard deviations of X and Y, respectively. This coefficient is affected by extreme values and it
is therefore not significant when either or both variables are not normally distributed.

Spearman’s rank correlation coefficient
Spearman’s correlation coefficient evaluates the monotonic relationship between two continuous or ordinal variables (Spearman,
1904). In a monotonic relationship, the variables tend to change together, but not necessarily at a constant rate. Given two
random variables x and y, Spearman’s rank correlation coefficient computes the correlation between the rank of the two variables.
The sample Spearman’s rank correlation coefficient rs is given by the following expression

rs ¼
Pn

i ¼ 1ðx
0
i � x

0 Þðy0i � y
0 ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ¼ 1ðx0i � x
0 Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i ¼ 1ðy0i � y

0 Þ2
q ð11Þ

where x0 is the rank of x and y0 is the rank of y. In other words, it is a rank-based version of the Pearson’s correlation
coefficient. It ranges from � 1 to þ 1. A strong monotonically increasing (or decreasing) association between two variables
usually leads to positive (or negative) values of all correlation coefficients simultaneously. Moreover, for weak monotone
associations, different correlation coefficients could also be of a different sign. Similar to the Pearson correlation coefficient,
Spearman’s correlation coefficient is 0 for variables that are correlated in a non-monotonic way. Unlike the Pearson’s
correlation coefficient, rs is equal to þ 1 for both linearly and not linearly correlated variables. In addition, there is no
requirement of normality for the variables. The corresponding population Spearman’s rank correlation coefficient, denoted as
rs, describes the strength of a monotonic relationship. This coefficient is computed when one or both variables are skewed or
ordinal and it is robust when extreme values are present. An alternative formula used to calculate the Spearman rank
correlation is

rs ¼ 1� 6
P2

i ¼ 1di
nðn2 � 1Þ ð12Þ

where di is the difference between the ranks of corresponding values xi and yi.
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Kendall’s correlation coefficient
Kendall’s correlation coefficient t is used to measure the monotonic association between two ordinal (not necessarily continuous)
variables (Kendall, 1970). The formula to compute t is

t¼
Pn

i ¼ 1

Pn
j ¼ 1 sign xi � xj

� �
sign yi � yj

� �
nðn� 1Þ ð13Þ

where

signðxi � xjÞ ¼
1 if sign xi � xj

� �
40

0 if sign xi � xj
� �¼ 0

�1 if sign xi � xj
� �

o0
and signðyi � yjÞ ¼

1 if sign yi � yj
� �

40

0 if sign yi � yj
� �¼ 0

�1 if sign yi � yj
� �

o0

8><
>:

8><
>:

This coefficient measures the discrepancy between the number of concordant and discordant pairs. Any pairs of ranks (xi,yj) and
(xi,yj) are said to be concordant when xioxj and yioyj, or xi4xj and yi4yj, or (xi� xj)(yi� yj)40. Similarly, any pairs of ranks (xi,yj)
and (xi,yj) are said to be discordant when xioxj and yioyj, or xi4xj and yi4yj, or (xi� xj)(yi� yj)o0. As the two previous correlation
coefficients, also t ranges from � 1 to þ 1. It is equal to þ 1 for concordant pairs and � 1 for discordant pairs. Both Kendall and
Spearman coefficients are formulated as special cases of the Person correlation coefficient.

Confidence Intervals and Testing Hypothesis

Suppose that x and y are two normally distributed variables (mean 0 and standard deviation 1), then the joint distribution is still a
normal distribution with probability density

f ðxÞ ¼ 1
2pð1� r2Þ exp

�x2þ2xyþy2

2ð1�r2 Þ

where r is the linear correlation coefficient. This function is called bivariate normal distribution. If the form of the joint dis-
tribution is not normal, or if the form is unknown, inferential procedures are invalid, although descriptive measures may be
computed. Under the assumption of bivariate normality, given a sample correlation coefficient r, estimated from a sample size of
n, we are interested to test if two variables X and Y are linearly correlated, i.e., if ra0. To estimate r (usually unknown), we use the
sample correlation statistic r. In particular, we consider the following test statistics

robs ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n� 2
1� r2

r
BTðn�2Þ ð14Þ

which is a statistics distributed as a Student’s t variable with n� 2 degrees of freedom. To test if ra0, the statistician and biologist
Sir Ronald Aylmer Fisher (1921) developed a transformation of r that tends to become normal quickly as the population size n
increases. Fisher’s z-transformation is a function of r whose sampling distribution of the transformed value is close to normal. It is
also called the r to z transformation and it is defined as

z : ¼ 0:5ln
1þ r
1� r

� �
¼ arctanhðrÞ ð15Þ

where ln is the natural logarithm function and arctanh is the inverse hyperbolic tangent function. Then, z is approximately
normally distributed with mean

z ¼ 0:5ln
1þ r
1� r

� �
ð16Þ

and standard error

sz ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
n� 3

p ð17Þ

where n is the sample size. Fisher’s z-transformation and its inverses

r ¼ expð2zÞ � 1
expð2zÞ þ 1

¼ arctanhðzÞ ð18Þ

can be used to construct a confidence interval for r using standard normal theory and derivations. If the distribution of z is not
strictly normal, it tends to be normal rapidly as the sample size increases for any values of r. A confidence interval gives an
estimated range of r values which is likely to include an unknown population parameter r. Generally, it is calculated at a
confidence level, usually 95% (i.e., the significance level a is equal to 0.05). If the confidence interval includes 0 we can say that the
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Fig. 3 Scatterplot shows a positive strong linear relationship between x and y variables (on the left of panel); while, it shows a weak association
in the other cases; in particular, there is a negative correlation between variables x and z and a positive correlation between variables y and z (on
the right of panel).

Fig. 2 Critical regions of the standard normal distribution.
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Table 2 Vital capacity data

Number Sex Height PEFR vc

1 1 180.6 522.1 4.74
2 1 168 440 3.63
3 1 163 428 3.40
4 1 171 536.6 3.75
5 1 177 513.3 3.81
6 1 169.4 510 2.80
7 1 161 383 2.90
8 1 170 455 3.88
9 1 158 440 2.40
11 1 161 461 2.60
11 1 163 370 2.72
12 1 155 503 2.20
13 1 171 430 3.38
14 1 171.5 442 2.99
15 1 167.6 595 3.06
17 1 166.6 455 3.06
18 1 167 500 3.72
19 1 163 548 2.82
20 1 172 463 2.83
21 1 155.4 475 3.06
22 1 165 485 3.07
23 1 174.2 540 4.27
24 1 167 415 3.80
25 1 162 475 2.88
26 1 172 490 4.47
27 1 161 470 3.40
28 1 155 450 2.65
29 1 162 450 3.12
30 1 174 540 4.02
31 1 161 475 2.80
32 1 166 430 3.69
33 1 166 510 3.66
34 1 161 470 2.56
35 1 168 430 2.78
36 1 167 470 3.48
37 1 166 440 3.03
38 1 164 485 2.90
39 1 162 550 2.96
40 1 176 535 3.77
41 1 166 485 3.50
42 1 160 360 2.30
43 1 161.2 480 3.39
44 1 167.8 480 3.70
45 2 181 580 –

46 2 170 560 –

47 2 171 460 –

48 2 184 611 –

49 2 184 600 –

50 2 188 590 –

51 2 186 650 –

52 2 187 600 –

53 2 181 630 –

54 2 181 670 –

55 2 177 515 –

56 2 167 470 –

57 2 182 550 –

58 2 172 620 –

59 2 190 640 –

60 2 178 680 –

61 2 184 600 –

62 2 170 510 –
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population r is not significantly different from zero, at a given level of confidence a. More precisely, using Fisher’s z transfor-
mation, we calculate the confidence interval at a confidence level a as following:

1. Given the observed correlation r, use Fisher’s z transformation to compute the transformed sample correlation z, formula (15),
the relative mean z, formula (16), and standard deviation sz, formula (17).

2. Calculate the two-sided confidence limits (lower and upper) for z

z� za=2

ffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 3

r
; zþ za=2

ffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 3

r !
ð19Þ

where the critical value za/2 depends on the significance level a. The value a/2, is the area under the two tails of a standard
normal distribution (see Fig. 2).

3. Un-transform the end points of the CI above using the arc tangent transformation, formula (19), in order to derive the
confidence limits for the population correlation r as (rlower,rupper).

Confidence intervals are more informative than the simple results of hypothesis tests since they provide a range of possible
values for the unknown parameter.

Table 2 Continued

Number Sex Height PEFR vc

63 2 174 550 –

64 2 167 530 –

65 2 178 530 –

66 2 182 590 –

67 2 176 480 –

68 2 175 620 –

69 2 181 640 –

70 2 168 510 –

71 2 178 635 –

72 2 174 615.8 –

73 2 180.7 547 –

74 2 168 560 –

75 2 183.7 584.5 –

76 2 188 665 –

77 2 189 540 –

78 2 177 610 –

79 2 182 529 –

80 2 174 550 –

81 2 180 545 –

82 2 178 540 –

83 2 177 792 –

84 2 170 553 –

85 2 177 530 –

86 2 177 532 –

87 2 172 480 –

88 2 176 530 –

89 2 177 550 –

90 2 164 540 –

91 2 181 570 –

92 2 178 430 –

93 2 167 598 –

94 2 171.2 473 –

95 2 177.4 480 –

96 2 171.3 550 –

97 2 183.6 540 –

98 2 183.1 628.3 –

99 2 172 550 –

100 2 181 600 –

101 2 170.4 547 –

102 2 171.2 575 –

Note: The dataset contains the following variables: sex (1¼ female,
2¼male), height, peak flow (PEFR), and vital capacity (vc) for 44
female and 58 male medical students.
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In order to perform hypothesis testing for the population correlation coefficient r, we first formulate the null and alternative
hypothesis as follow

H0 : r¼ 0 X and Y are uncorrelatedð Þ versus H1 : ra0 X and Y are correlatedð Þ:

Then, we use the computed test statistic robs, formula (14), to find the relative p-value and to make a decision. If the p-value is
smaller than the significance level a, then we reject the null hypothesis H0 and accept the alternative H1. In this case, we
conclude that exists a linear relationship in the population between the two variables at the level a. If the p-value is larger than
the significance level a, we accept the null hypothesis H0. In this case, we deduce that there is no linear relationship in the
population between the two variables at the level a. Typically, the significant level a is equal to 0.05 or 0.01. This approach is
called p-value approach. An alternative method to make a decision is the critical value approach. We find the critical value ta,n
using the Student’s t distribution or t-table (where a is the significance level and n is the degree of freedom) and compare it to
the observed r. If the test statistic is more extreme than the critical value, then the null hypothesis is rejected in favor of the
alternative hypothesis. If the test statistic is not as extreme as the critical value, then the null hypothesis is not rejected. In other
words, we reject the null hypothesis H0 at the level a if robsrta/2,n�2 and robsZta/2,n� 2. Vice versa, we accept the null hypothesis
H0 at the level a if � ta/2,n�2rrobsrta/2,n�2. For instance, see Fig. 2.

Note that the Fisher z-transformation and the hypothesis test explains above are mainly associated with the Person correlation
coefficient for bivariate normal observations, but similar consideration can also be applied to Spearman (Bonett and Wright, 2000;
Zar, 2014) and Kendall (Kendall, 1970) correlation coefficients in more general cases.

Fig. 4 Scatterplot between the peak expiratory flow rate (PEFR) and the height of medical students (male and female).
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Fig. 5 Scatterplot between the vital capacity and the peak expiratory flow rate (PEFR) of female medical students.

Table 3 In the table are reported the covariance and the three different correlation coefficients
(Pearson, Spearman and Kendall) for the medical students dataset (female and male). The regression
coefficients are also shown

Height PEFR

Covariance height 69.02 396.20
PEFR 396.20 5467.74

Pearson height 1.00 0.64
Correlation PEFR 0.64 1.00
Spearman height 1.00 0.67
Correlation PEFR 0.67 1.00
Kendall height 1.00 0.48
Correlation PEFR 0.48 1.00
Regression coefficients a¼ � 461.84, b¼5.74
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Correlation and Regression

Regression analysis is used to model the relationship between a response variable (dependent variable) and one or more predictor
variables (independent variables). Denoting by y the dependent variable and by x the independent variable, the simple linear
correlation can be represented using the least squares regression line

y¼ aþ bxþ e ð20Þ

where a is the point where the line crosses the vertical axis y, and b shows the amount by which y changes for each unit change
in x. We refer to a as the y-intercept and b as the slope of the line (or regression coefficient). The value e is the residual error.
Letting ŷ¼ âþ xb̂ be the value of y predicted by the model, then the residual error is the deviation between observed and the
predicted values of the outcome y, i.e., e¼ y � ŷ. The aim of linear regression analysis is to estimate the model parameters a
and b, in order to give the best fit for the joint distribution of x and y. The mathematical method of least-squares linear
regression provides the best-fit solutions. Without making any assumptions about the true joint distribution of x and y, the
least-squares linear regression minimizes the average value of the squared deviations of the observed y from the values
predicted by the regression line ŷ. That is, the least-squares solution yields the values of a and b that minimize the mean
squared residual, i.e., e2 ¼ ðy � ŷÞ2. The residual is the vertical distances of the data points. The least-squares regression line
equation is obtained from sample data by simple arithmetic calculations. In particular, the estimations of a and b that

Fig. 6 Scatterplot between the height and the estimated vital capacity of female medical students.
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minimizes the mean squared residual e2 ¼ ðy � ŷÞ2 are given by

b̂¼
Pn

i ¼ 1ðxi � xÞðyi � yÞPn
i ¼ 1 ðxi � xÞ2 ; â¼ y � bx ð21Þ

where xi and yi are the corresponding values of each data point (X, Y), x and y are the sample means of the X and Y,
respectively, and n the sample size. In other words, the estimate of intercept â and slope b̂ are

b̂ ¼ Covðx; yÞ
VarðxÞ ; â ¼ y � bx ð22Þ

Thus, the least-squares estimators for the intercept a and slope b of a linear regression are simple functions of the
covariances, variances and observed means and define the straight line that minimizes the amount of variation in y explained
by a linear regression on x. In addition, the residual errors around the least squares regression are uncorrelated with the
predictor variable x. Unlike the correlation analysis, that involves the relationship between two random variables, in the
linear regression only the dependent variable is required to be random, while the independent variable is fixed (nonrandom
or mathematical). In addition, as for the linear regression, in the correlation analysis we fit a straight line to the data either by
minimizing

Xn
i ¼ 1

ðxi � x̂iÞ2 or
Xn
i ¼ 1

ðyi � ŷ iÞ2

In other words, we apply a linear regression of X on Y as well as a linear regression of Y on X. These two fitted lines in general
are different. Also in this case we use the scatter diagram to plot the regression line. A negative relationship is represented by a
falling regression line (regression coefficient bo0), a positive one by a rising regression line (b40).

Data Analysis and Results

In this section, simulated and clinical data are presented for the study of correlation and regression analysis.

Simulated Data

We generate three random variables x, y, z from three bivariate normal distribution of 30 observations with means equal to
zero and standard deviations 2, 3 and 4, respectively. For each pairs of variables, we first plot the scatter diagram in order to
visualize the type of correlation that exists among them, and then we compute the covariance and the three correlation
coefficients. Fig. 3 shows that the variables x and y have a positive covariance and a positive correlation, while the variables y
and z have a negative covariance and a negative correlation. In particular, the Person correlation coefficient rxy¼0.94 indicates
that there is a strong positive association between the variables x and y, whereas Person correlation coefficient ryz¼0.03 shows
a weak positive relationship between the variables y and z. These results are confirmed by Spearman correlation coefficients
rsxy ¼ 0:93and rsyz ¼ 0:05 and Kendall correlation coefficients txy¼0.78 and tyz¼0.04. On the contrary, the variables x and z
present a negative covariance and a negative correlation. In fact, Person correlation coefficient is rxz¼ � 0.01 which indicates a

Table 4 In the table are reported the covariance and the three different correlation coefficients (Pearson, Spearman and Kendall) for the female
medical students dataset. The regression coefficients are also shown

Height PEFR Vital capacity

Covariance Height 34.30 100.16 2.50
PEFR 100.16 2407.32 9.62
Vital capacity 2.50 9.62 0.33

Pearson Height 1.00 0.35 0.74
Correlation PEFR 0.35 1.00 0.34

Vital capacity 0.74 0.34 1.00

Spearman Height 1.00 0.34 0.70
Correlation PEFR 0.34 1.00 0.33

Vital capacity 0.70 0.33 1.00

Kendall Height 1.00 0.23 0.54
Correlation PEFR 0.23 1.00 0.24

Vital capacity 0.54 0.24 1.00

Regression PEFR vs. vital capacity a¼380.10, b¼28.87
coefficients Vital capacity vs. height a¼ � 8.81, b¼0.07
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weak negative correlation. This result is validated by Spearman correlation coefficient rsxz ¼ � 0:02 and Kendall correlation
coefficient rxz¼ � 0.02. Finally, we test if these three correlation coefficients are statistically significant. Using parametric
assumptions (Pearson, dividing the coefficient by its standard error, giving a value that follow a t-distribution), for the pair
(x,y) the confidence interval at level 95% (a¼0.05) is (0.88,0.97). In other words, we reject the null hypothesis H0. In fact, the
p-value¼1.118e� 14 is statistically significant, since it is less than 0.05. Similar results are obtained when data violate
parametric assumptions (Spearman and Kendall). Also in these cases the p-value is statistically significant (p-
value¼5.562e� 08 and p-value¼1.953e� 12). On the contrary, for the pairs (x,z) and (y,z); we accept the null hypothesis H0

for the three type of correlation coefficients (Person, Spearman and Kendall) take into account. In fact, the three tests are not
statistically significant (p-value40.05) (Table 2).

Clinical Data

The clinical data is downloaded (See Section Relevant Websites). The data is composed by 44 female and 58 male medical
students. It contains information about the peak expiratory flow rate (PEFR, measured in litre/min), which is a form of pulmonary
function test used to measure how fast a person can exhale, the height of students and the vital capacity (vc), which is the
maximum amount of air a person can expel from the lungs after a maximum inhalation (measured in litre). In particular, the vital
capacity (vc) is reported only for female students. The scatter plot in Fig. 4 shows a positive correlation between the peak expiratory

Fig. 7 Least squares line between the variables PEFR and height of the medical students (female and male).
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flow rate (PEFR) and the height of all students (male and female). This result is confirmed by the computation of covariance and
correlation coefficients (Person, Spearman and Kendall) as shown in Table 3. The Person and Spearman correlation coefficients
indicate a moderate positive relationship (r¼0.64 and rs¼0.67), while the Kendall correlation coefficient indicates a weak positive
relationship (t¼0.48). In particular, for the female group of medical students, Figs. 5 and 6 show a positive association for the
variables (vc, PEFR) and (height, vc), respectively. Also in this case the positive relationship is validated by the computation of
covariance and correlation coefficients (Person, Spearman and Kendall) as shown in Table 4. In particular, the three correlation
coefficients indicate a weak positive relationship (r¼0.34, rs¼0.33 and t¼0.24) for the variables (vc, PEFR), while they indicate a
strong positive relationship (r¼0.74, rs¼0.70 and t¼0.54) for the variables (height, vc). Finally, the regression analysis is also
performed. In Fig. 7, we plot the least-squares line between the dependent variable PEFR and the independent variable height
when female and male are considered together. The least-squares equation is ŷ¼ � 461:84þ 5:74x̂. On the other hand, in Figs. 8
and 9, the least-squares line between PEFR and vital capacity (vc) and vital capacity and height are plotted, respectively. The least-
squares equations are ŷ¼ 380:10þ 28:87x̂ and ŷ¼ � 8:81þ 0:07x̂.

Software

We use the R statistical software (see Relevant Website section) to elaborate the strength of correlation and to analyze the
regression relationship between the variables under investigated in both cases studies. In particular, we apply the common used
statistical packages in R.

Fig. 8 Least squares line between the variables PEFR and vital capacity of the female medical students.
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Conclusions

Correlation analysis is an important statistical method for the analysis of medical data. It is used to investigate the relationship
between two quantitative continuous variables. In particular, a correlation coefficient measures the strength of the relationship
(magnitude) between two variables and the direction of the relationship (sign). We analyzed three different type of correlation
coefficient. Pearson correlation coefficient quantifies the strength of a linear relationship between two variables. Spearman and
Kendall correlation coefficients are two rank-based (or non-parametric) version of the Pearson coefficient. When two variables are
normally distributed we use Pearson coefficient, otherwise, we apply Spearman or Kendall coefficient. Moreover, Spearman
coefficient is more robust to outliers than is Pearson coefficient. Finally, since the correlation analysis does not establish if one
variable is dependent and the other is independent, we introduce the regression analysis which is another statistical method used
to describe a linear relationship between a depend variable (response or outcome) and one or more independent variables
(predictors or explanatory variables). Therefore, the correlation analysis can be defined as a double linear regression of X on Y and
of Y on X.

See also: Deep Learning. Introduction to Biostatistics. Natural Language Processing Approaches in Bioinformatics

Fig. 9 Least squares line between the variables vital capacity and height of the female medical students.
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