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Introduction

Hidden Markov models (HMMs), named after the Russian mathematician Andrey Andreyevich Markov, who developed much of
relevant statistical theory, are introduced and studied in the early 1970s. They were first used in speech recognition and have been
successfully applied to the analysis of biological sequences since late 1980s. Nowadays, they are considered as a specific form of
dynamic Bayesian networks, which are based on the theory of Bayes. HMMs are statistical models to capture hidden information
from observable sequential symbols (e.g., a nucleotidic sequence). They have many applications in sequence analysis, in particular
to predict exons and introns in genomic DNA, identify functional motifs (domains) in proteins (profile HMM), align two
sequences (pair HMM). In a HMM, the system being modelled is assumed to be a Markov process with unknown parameters, and
the challenge is to determine the hidden parameters from the observable parameters. A good HMM accurately models the real
world source of the observed real data and has the ability to simulate the source. A lot of Machine Learning techniques are based
on HMMs have been successfully applied to problems including speech recognition, optical character recognition, computational
biology and they have become a fundamental tool in bioinformatics: for their robust statistical foundation, conceptual simplicity
and malleability, they are adapted fit diverse classification problems. In Computational Biology, a hidden Markov model (HMM)
is a statistical approach that is frequently used for modelling biological sequences. In applying it, a sequence is modelled as an
output of a discrete stochastic process, which progresses through a series of states that are ‘hidden’ from the observer. Each such
hidden state emits a symbol representing an elementary unit of the modelled data, for example, in case of a protein sequence, an
amino acid. In the following sections, we first introduce the concepts of Hidden Markov Model as a particular type of probabilistic
model in a Bayesian framework; then, we describe some important aspects of modelling Hidden Markov Models in order to solve
real problems, giving particular emphasis in its use in biological context. To show the potentiality of these statistical approaches,
we present the stochastic modelling of an HMM, defining first the model architecture and then the learning and operating
algorithms. In this work we illustrate, as example, applications in computational biology and bioinformatics and, in particular, the
attention is on the problem to find regions of DNA that are methylated or un-methylated (CpG-islands finding).

Stochastic Process

The basic idea of the process modelling is to construct a model of a process starting from a set of sequences of events typically
generated by the process itself. Subsequently, the model could be also used to discover properties of the process, or to predict
future events on the basis of the past history. From a general point of view, a model can be used for three main purposes:
describing the details of a process, predicting its outcomes, or for classification purposes, i.e., predicting a single variable k, which
takes values in a finite unordered set, given some input data x¼(x1,…, xn). Against the deterministic model, which predicts
outcomes with certainty, with a set of equations that describe the system inputs and outputs exactly, a stochastic model represents
a situation where uncertainty is present. In other words, it’s a model for a process that has some kind of randomness. The word
“stochastic” derives from the Greed and means random or chance. A deterministic model predicts a single outcome from a given set
of circumstances. A stochastic process is a sequence of events, in which the outcome at any stage depends on some probabilities. It
means that a stochastic model predicts a set of possible outcomes weighted by their likelihoods, or probabilities. In modelling
stochastic processes the key role is played by time; in fact, the stochastic model is a tool for predicting probability distributions of
potential outcomes by allowing a random variation in its inputs over time. A stochastic process is defined as a collection of
random variables X¼{Xt:tAT} defined on a common probability space, taking values in a common set S (the state space), and
indexed by a set T, often either N or [0, 1) and thought of as time (discrete or continuous respectively) (Oliver, 2009).

Markov Processes and Markov Chains

Important classes of stochastic processes are Markov processes and Markov chains. A Markov process is a process that satisfies the
Markov property (memoryless), i.e., it does not have any memory: the distribution of the next state (or observation) depends
exclusively on the current state. Formally, a stochastic process X(t) is a Markov process, if it has the following properties:

1. The number of possible outcomes or states is finite.
2. The probabilities are constant over time.
3. It satisfies memoryless property.

P Xðtnþ1Þ ¼ xnþ1jXðtnÞ ¼ xn…::Xðt1Þ ¼ x1f g ¼ P Xðtnþ1Þ ¼ xnþ1jXðtnÞ ¼ xnf g
for any choice of time instants ti, con i¼1,…, n where tj4tk for j4k.
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Markov chain is a specific Markov process with a finite or countable state-space. Considering a set of states, S¼{s1, … ., sr}, we
describe Markov chain as a process that starts in one of these states and moves successively from one state to another. Each move is
called step. If the chain is currently in state si, then it moves to state sj at the next step with a probability denoted by pij; this
probability does not depend upon which states the chain was in before the current state. The probabilities pij are called transition
probabilities and are defined as the probabilities that the Markov chain is at the next time point in state j, given that it is at the
present time point at state i. The matrix P with elements pij is called the transition probability matrix of the Markov chain. Since the
state space is countable (or even finite), we can use the integers Z or a subset such as Zþ (non-negative integers), the natural
numbers N ¼ 1;2;3; :::f g or {0,1,2,..., m} as the state space. We refer to Markov chains as time homogeneous or having stationary
transition probabilities. Then, the probability of the transition from i to j between time point n and nþ 1 is given by conditional
probability function P(Xnþ 1¼ j | Xn¼ i). We will assume that the transition probabilities are the same for all time points so that
there is no time index needed on the left hand side. Given that the process Xn is in a certain state, the corresponding row of the
transition matrix contains the distribution of Xnþ 1, implying that the sum of the probabilities over all possible states equals one.
The transition probability matrix (see Table 1) contains a conditional discrete probability distribution on each of its rows.
Formally,

pij � 0; 8 i; jAS

X
jAS

pij ¼ 1; 8 iAS

In general, we define Markov chain as kth-order Markov model, when the probability of Xjþ k conditioned on all previous
elements in the sequence is identical to the probability of Xjþ k conditioned on the previous k elements only:

P XjþkjX1;…;Xj
� �¼ P XjþkjXjþk�1;…;Xj

� �
In particular, in zeroth-order Markov chain k¼0. It means that the variables Xi are independent, i.e., P(Xj | X1,…,Xj�1)¼P(Xj).
It is always possible to represent a time-homogeneous Markov chain by a transition graph. Then, any transition probability

matrix P (see Table 1) can be visualized by a transition graph, where the circles are nodes and represent possible states si, while
edges between nodes are the transition probabilities pij (see Fig. 1).

Markov chains are probabilistic models, which can be used for the modelling of sequences given a probability distribution and
then, they are also very useful for the characterization of certain parts of a DNA or protein string given, for example, a bias towards
the AT or GC content. DNA sequences consist of one of four possible bases {A, T, C, G} at each position. Each sequence is always
read in a specific direction, from the 50 to the 30 end. Each place in the sequence can be thought of as a state space, which has four

Table 1 Transition probability matrix

  

 
 

 

 

 
 

 

 

 

Fig. 1 Transition probability graph.
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possible states {A, T, C, G}, where each state of the nucleotide is sequentially dependent on the nucleotide adjacent and
immediately upstream of it, and only that nucleotide. Each position in the sequence can be represented with a random variable X0,
X1…,Xn that takes a value of one of the states in the state space for a particular place in the sequence. In a Markov Chain of zero
order, the current state (or nucleotide) is totally independent of the previous state, so it’s no memory and every state is untied. For
the first order Markov Chain the case is different, because the current state actually depends only on the previous state. In the Fig. 2
a first-order Markov chain is shown: the sequence goes in the 50 to 30 direction and X0¼A, X1¼T and so forth. In this case, we can
express the probability of this sequence using the Markov Property as follows:

P X5 ¼ CjX4 ¼ C; X3 ¼G; X2 ¼ T; X1 ¼ T; X0 ¼ Að Þ ¼ P X5 ¼ CjX4 ¼ Cð Þ
and its transition probability matrix is shown in Table 2.

Hidden Markov Model

Now, we can define the Hidden Markov Models as probabilistic models, in which sequences are generated from two coexistent
stochastic processes: the process of moving between states and the process of emitting an output sequence, characterized by
Markov property and the output independence. The first one is a Markov model represents by a finite set of states, which generates
the sequence of states of variables, specified by the initial state probabilities and state transition probabilities between variables;
the second is characterized by the emission of one character of a given alphabet from each state, with a probability distribution
that only depends from the state. The sequence of state transitions is a hidden process; it means that the variable states cannot be
directly observed but they are observed through the sequences of emitted symbols, therefore the name Hidden Markov Model. Then,
an Hidden Markov Model is defined by states, state probabilities, transition probabilities, emission probabilities and initial
probabilities. They constitute the architecture of an HMM. Formalizing the definition, an HMM is a quintuple (S, V, p, A, B),
characterized by the following elements (Rabiner and Juang, 1986a):

• S¼{S1,… . ., SN} is the set of states, where N is the number of states. The triplet (S, p, A) represents a Markov chain; the states
are hidden and we never observe them directly.

• V¼{v1,… . ., vM} is the vocabulary, the set of symbols that may be emitted.

• p:S-[0,1]¼{p1,… . ., pN} is the initial probability distribution on the states. It gives the probability of starting in each state. We
expect that

X
sAS

pðsÞ ¼
XN
i ¼ 1

pi ¼ 1

• A¼(aij)iAS, jAS is the transition probability of moving from stateSi to state Sj. We expect that aijA[0,1] for each Si and Sj, and thatP
iASaij ¼ 1, for each Sj.

• B¼(bij)iAV, jAS is the emission probability that symbol vi is seen when we are in state Si.

HMMs provide great help when there is the need of modelling a process in which there is not a direct knowledge about the
state in which the system is. The key idea is that an HMM is a sequence “generator”. In general, we talk about emission of

Fig. 2 Nucleotide sequence (50 to 30) as a first-order Markov Chain.

Table 2 Transition probability matrix for the ATCG
sequence

A 0:3 0:2 0:2 0:3
T 0:1 0:2 0:4 0:3
C 0:2 0:2 0:2 0:4
G 0:1 0:8 0:1 0

2
6664

3
7775
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observable events because we can think of HMMs as generative models that can be used to generate observation sequences.
Algorithmically, a sequence of observations O¼o1,… . ., oT, with ot AV can be generated by an HMM, described by the algorithm in
Fig. 3 (Rabiner and Juang, 1986a). Two assumptions are made by the model. The first is called the Markov assumption and
represents the memory of the model; it means that the current state is dependent only on the previous state; formally:

P qt jqt�1
1

� �¼ P qt jqt�1ð Þ
The second is the independence assumption, i.e., the output observation at time t is dependent only on the current state and it

is independent of previous observations and states:

P ot jot�1
1 ; qt1

� �¼ P ot jqtð Þ
A simple HMM for generating a DNA sequence is specified in Fig. 4. In this model, state transitions and their associated

probabilities are indicated by arrows; and symbol emission probabilities for A, C, G, T at each state are indicated below the state.
For clarity, we omit the initial and final states as well as the initial probability distribution. For instance, this model can generate
the state sequence given in Fig. 5 and each state emits a nucleotide according to the emission probability distribution. The logical
idea of an HMM suggests the potential ability of this approach for modelling problems in computational biology. In particular,
Baldi and Brunak (1998a) define three main groups of problems in computational biology for which HMMs have been useful. The
first problem is the multiple alignments of DNA sequences, which is more difficult using a dynamic programming approach. The
second is to discover periodic sequences within specific regions of biological data from the knowledge of consensus patterns. The
third is the problem to classify each nucleotide according to which structure it belongs. HMMs have also been used in protein

Fig. 3 Generator algorithm for a sequence of observations by an Hidden Markov Model.

 

 

 

 

  

Fig. 4 A Hidden Markov model generator for DNA sequence.
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profiling to discriminate between different protein families and predict a new protein’s family or subfamily and in the problem of
gene finding in DNA.

Statistical Inference in Hidden Markov Models

Once the architecture of an HMM has been decided, to analyze and describe data in almost all applications of HMMs, three
distinct questions must to be solved:

1. What is the probability of an observed sequence according to a given HMM?
2. How to find the optimal state sequence that the HMM would use to generate the observed sequence?
3. How to find the structure and parameters of the HMM that best accounts for the data?

In general, in order to use the HMMs in application contexts, for example, in computational biology, to solve these questions,
we need to be able to:

1) Evaluate the likelihood of the model given the observations, i.e., to compute the probability of the observation sequence for
a model.

2) Decode the most likely state sequence given the observations, i.e., to find the optimal corresponding state sequence given the
observation sequence and the model.

3) Learning or training to estimate the model parameters (initial probabilities, transition probabilities, and emission probabilities),
that best explains the observation sequences given the model structure, describing the relationships between variables.

Evaluation Problem

Given a sequence of observations and an HMM, to solve the first problem, we would like to be able to compute the probability (or
likelihood), P(O|l), that the observed sequence is produced by the model. This problem could be viewed as one of evaluating how
well a model predicts a given observation sequence and thus allow us to choose the most appropriate model from a set. For this
purpose, the forward-backward algorithm and the result can be used (Rabiner and Juang, 1986a; Stratonovich, 1960a). We
consider the probability of the observations O for a specific state sequence Q

P OjQ; lð Þ ¼ ∏
T

t ¼ 1
P ot jqt ; lð Þ ¼ bq1 o1ð Þ � bq2 o2ð Þ…:bqT oTð Þ

and the probability of the state sequence

P Qjlð Þ ¼ pq1aq1q2aq2q3…:aqT�1qT

The join probability that O and Q occur simultaneously is simply the product of above two terms P(O|Q, l) P(O|Q, l). Then, we
can obtain the probability of the observations given the model by summing this join probability over all possible state sequences

P Ojlð Þ ¼
X
Q

P OjQ; lð ÞP Qjlð Þ ¼ pq1bq1 o1ð Þaq1q2bq2 o2ð Þ…aqT�1qT bqT oTð Þ

To evaluate the last equation the forward-backward approach, that reduced complexity, is used. The key idea is to process a
sequence, consider a forward or backward loop that processes it one element at a time. The sequence X(1 . . . T) is broken into two
parts, a “past” sequence X(1 . . . t) and a “future” sequence X(tþ 1 . . . T). In the Hidden Markov Model, each symbol emission and
each state transition depend only on the current state; there is no memory of what happened before, no lingering effects of the
past. This means that we can work on each half separately. Splitting the sequence into two parts, the inductive calculation on t can
be used: if t advances from 1 towards T, it is called forward calculation, while if t is decremented down from T towards 1, it is called
the backward calculation. In formal terms, the forward algorithm calculates the probability of being in a state i at time t and having
emitted the output o1,…,ot. These probabilities are named the forward variables. By calculating the sum over the last set of forward
variables, one obtains the probability of the model having emitted the given sequence. Both the forward algorithm and the
backward algorithm involve three steps: initialization, recursion (or induction), and termination. We define the forward prob-
ability variable a as the probability of the partial observation sequence o1,…, ot and state si at time t:

at ið Þ ¼ P o1o2…:ot ; qt ¼ sijlð Þ

? 

        

Fig. 5 Scheme for HMM emission probabilities and states.
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The forward algorithm is as follows:

1. Initialization
Calculate the forward probability at the first position a1 ið Þ ¼ pibi o1ð Þ; 1rirN

2. Recursion
Compute the forward probability

atþ1 jð Þ ¼
XN
i ¼ 1

at ið Þaij
" #

bj otþ1ð Þ; 1rtrT � 1; 1rjrN

The recursion step is the key to the forward algorithm (see Fig. 6). For each state si, aj(t) stores the probability of arriving in that
state, having observed the observation sequence up until time t.

3. Termination
When i¼N, the forward recursion stops. Then, the probability of the whole sequence of observations can be found by summing
the forward probabilities over all the states at the final variable

P Ojlð Þ ¼
XN
i ¼ 1

aT ið Þ

This approach reduces the complexity of calculations involved to N2T rather than 2TNT. Similarly, backwards algorithm can be
defined. It is the exact reverse of the forwards algorithm, with the backwards variable

bt ið Þ ¼ P otþ1otþ2…:oT ; qt ¼ sijlð Þ
as the probability of the partial observation sequence from tþ 1 to T , starting in state si.

Decoding Problem

The aim of decoding is to find the optimal state sequence associated with a given observation sequence. There are several possible
ways to solve this problem. One possible optimality solution is proposed by the Viterbi algorithm (Viterbi, 1967a). The Viterbi
algorithm uses a dynamic programming approach to find the most likely sequence of states Q given an observed sequence O and
model l. It works similarly to the forward algorithm. The goal is to get the most likely path through the
HMM for a given observation; then, only the most likely transition from a previous state to the current one is important. Therefore,
the transition probabilities are maximized at each step, instead of summed. To implement this solution, we define the variable

δt ið Þ ¼ max
q1 ;q2 ;…;qt�1

P q1; q2…; qt ¼ si; o1; o2…:ot jlð Þ

It is the probability of the most probable state path for the partial observation sequence. Corresponding to each node, two
storage variables are used to cache the probability of the most likely path for the partial sequence of observations and the state at
the previous variable to lead this path, denoted δt(i) and ct ið Þ, respectively. The Viterbi algorithm consists of four steps: initi-
alization, recursion, termination, and backtracking. It is described as follows:

1. Initialization
Calculate δ1(i)¼pibi(o1), 1rirN and set c1(i)¼0

2. Recursion
Calculate

δt jð Þ ¼ max
1rirN

δt�1 ið Þaij
� �

bj otð Þ; 2rtrT; 1rjrN

 
 

 
 

 
 

 
 

 
 

 

time 

Fig. 6 The recursion step of the forward algorithm.
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and record the state

ct jð Þ ¼ arg max
1rirN

δt�1 ið Þaij
� �

; 2rtrT; 1rjrN

3. Termination
The recursion ends when i¼N. The probability of the most likely path is found by

P� ¼ max
1rirN

δT ið Þ½ �

The state of this path at variable N is found by

q� ¼ arg max
1rirN

δT ið Þ½ �

4. Backtracing
The last observation frame at time T is needed in order to decode the global optimal state path from T back to the first time
index. The state of the optimal path at variable i is found by

qt� ¼ ctþ1 qtþ1
�ð Þ; t ¼ T � 1; T � 2;…; 1

The backtracking allows the best state sequence to be found from the back pointers stored in the recursion step.

Learning Problem

How can we adjust the HMM parameters in a way that a given set of observations, called training set, is represented by the model in
the best way for our purposes? Training involves adjusting the transition and output probabilities until the model sufficiently fits
the process. These adjustments are performed using techniques to optimize P(O|l), the probability of observed sequence o1,…, ot,
given model l over a set of training sequences. How do we learn the parameters of an HMM from observations? Depending on the
application, the “quantity” that should be optimized during the learning process differs. There isn’t known way to analytically
solve this problem. Therefore iterative procedures or gradient techniques for optimization can be used. Here we will only present
the iterative procedure. Therefore, we can choose an HMM such that P(O|l) is locally maximized. In literature, we can find several
optimization criteria for learning. We present an iterative procedure, the Baum-Welch or Expectation Maximization (EM) method
(Rabiner and Juang, 1986a; Baldi and Brunak, 1998a), which adapts the transition and output parameters by continually esti-
mating these parameters until P(O|l) has been locally maximized. The EM algorithm is an iterative method to find the maximum
likelihood estimate (MLE). It will let us train both the transition probabilities A and the emission probabilities B of the HMM. It
works by computing an initial estimate for the probabilities, then using those estimates to compute a better estimate, and so on,
iteratively improving the probabilities that it learns. This iterative algorithm alternates between performing an expectation step (E-
step) and a maximization step (m-step). In an E-step, the expected number of times each transition is computed (the expected log-
likelihood) and emission is used for the training set. In an M-step, the transition and emission parameters, that maximize the
expected log-likelihood in the E-step are updated, using re-estimation formulas. The EM algorithm includes three steps of
initialization, a series of iterations, and termination. In order to describe how to re-estimate HMM parameters, we first define the
probability ξt(i, j) of being in state Si at time t and in state Sj at time tþ 1, as following:

ξt i; jð Þ ¼ P qt ¼ Si; qtþ1 ¼ SjjO; l
� �

1. Iteration
Each cycle of EM iteration involves two steps, an E-step followed by an M-step, alternately optimizing the log-likelihood with
respect to the posterior probabilities and parameters, respectively. In E-step we calculate the posterior probability of latent data
using the current estimate for the parameters (p, a, b) of the model l at time t. To perform the E-step, the expected log-
likelihood function is maximized under the current estimated parameters and is computed, by using the estimated posterior
probabilities of hidden data. In M-step: the new parameters that maximize the expected log-likelihood found in the E-step are
estimated. From the definitions of forward and backward variables, we can calculate ξt(i, j), which represents the posterior state
probabilities of a variable and of the state combinations of two adjacent variables. We can write

ξt i; jð Þ ¼ at ið Þaijbj Otþ1ð Þbtþ1 jð Þ
P Ojlð Þ

where the numerator term is P(qt¼Si, qtþ 1¼Sj|O, l) and P Ojlð Þ ¼ PN
i ¼ 1

PN
j ¼ 1 atðiÞaijbjðOtþ1Þbtþ1ðjÞ is the proper nor

malization factor for ξt(i,j). We need to introduce another auxiliary variable, δt(i)¼P(qt¼ si, O|l). It is the probability of
being in the state Si at time i, given the observation sequence and the model. In forward and backward variables this can be
expressed by

δt ið Þ ¼ atðiÞbtþ1ðiÞPN
i ¼ 1 atðiÞbtðiÞ
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Then, we can see that the relationship between δt(i) and ξt(i, j) is given by

δt ið Þ ¼
XN

j ¼ 1
ξt i; jð Þ; 1rirN; 1rtrT

If we sum over δt(i) over the time index t, we obtain the expected number of transitions from state Si, while, summing ξt(i, j)
over the time, we obtain the expected number of transitions from state Si to state Sj. Then, we can use again the Baum-Welch
method to re-estimate the HMM parameters as follows

pi ¼ expected frequency in state Si at time t ¼ 1

aij ¼ expected number of transitions from state Si to state Sj
expected number of transitions from state Si

biðkÞ ¼ expected number of times in state j and observing symbol vk
expected number of times in state j

2. Termination

If we apply this procedure iteratively, (Baum and Sell, 1968a; Baum et al., 1970a) using l p; a; b
� �

in place of l, and we repeat
the calculation of the parameters, we can improve that the probability of O being observated from the model until convergence
is reached. The final result of this re-estimation procedure is called maximum likelihood estimate of the HMM. The re-
estimation parameters can be derived by maximizing the auxiliary function

Q l; l
� �¼X

Q

P QjO; lð Þlog P OjQ; l
� �� �

over l. The maximization of Q l; l
� �

leads to increased likelihood

max
l

Q l; l
� � ) PðOjlÞ � PðOjlÞ

Case Study

We consider an application of HMMs to the finding problem of the CpG islands in a DNA sequence (Ron, Lecture Notes). For this
purpose, we define CpG islands as regions of DNA with a high frequency of CpG sites, where a cytosine nucleotide is followed by a
guanine nucleotide in the linear sequence of bases along its 50-30 direction. The CG pair of nucleotides is the most infrequent
dinucleotide in many genomes. This is because cytosines C in CpG dinucleotides are vulnerable to a process, called methylation,
that can change with a high chance in mutating to a T. The methylation process is suppressed in areas around genes and hence
these areas contain a relatively high concentration of the CpG dinucleotide. Such regions are called CpG islands, whose length
varies from few hundreds to few thousands bases, with a GC content of greater than 50% and a ratio of observed-to-expected CpG
number above 60%. The presence of a CpG island is often associated with the start of the gene (promoter regions) in the most
mammalian genome and thus the presence of a CpG island is an important signal for gene finding. Then, we consider an HMM for
detecting CpG islands in a DNA sequence. In this case, the model contains eight states corresponding to the four symbols of the
alphabet

P¼{A, C, G, T}, where the states and emitted symbols are shown in Fig. 7 and we consider two possible conditions: a
DNA sequence is a CpG island (labeled þ ) or a DNA sequence is non-CpG island (labeled -). Considering a DNA sequence
X¼(x1,…, xL), the question is to decide whether X is a CpG island.

Results

In the case study we ask if given a short sequence, is it from a CpG island or not. To answer this question, we can estimate the
transition probabilities from statistical data about CpG islands and non-CpG islands and then we can build two Markov chains,
one for each. Then given a sequence, we compute the probability p of obtaining the sequence in the CpG island Markov chain, and
the probability q of obtaining the sequence in the non-CpG island Markov chain. The odds ratio or log-odds ratio of these two

Fig. 7 Hidden Markov Model for identification of CpG islands and non-CpG islands.
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probabilities can be used to determine whether the sequence is coming from a CpG island or not. Then, for the CpG island Markov
chain, we estimate aþij as follows

aþij ¼
cþijP
kc

þ
ik

where cþij is the number of times nucleotide j follows nucleotide i in the sequences labeled þ . For the non-CpG island Markov
chain, a�ij is estimated in a similar way. Now given a sequence X, we can compute p(x) for each Markov chain; denoted these by p
(x|þ ) and p(x|� ), we can use the log-odds ratio log pðxjþÞ

pðxj�Þ to determine if X is coming from a CpG island or not; in fact, if

log pðxjþÞ
pðxj�Þ40, the sequence X is coming from a CpG island. Assuming that the transitions from the start state and to the end state

are the same in both cases, the log-odds ratio can be expressed as following:

log
pðxjþÞ
pðxj�Þ ¼ log

∏n
i ¼ 0a

þ
xixiþ1

∏n
i ¼ 0a

�
xixiþ1

¼
Xn�1

i ¼ 1

log
aþxixiþ1

a�xixiþ1

We consider, as example, the short sequence CGCG; the transition probabilities for each of the two chains shown in Table 3.
From the Table 3, we note that for the ‘þ ’ Markov chain (CpG islands), the transition probabilities to C and G are higher. The log-
odds ratio for this sequence is log 0:27

0:08 þ log 0:34
0:25 þ log 0:27

0:0840. Therefore, in this case, CGCG is coming from a CpG island. Instead,
to verify if given a long sequence, does it contain a CpG island or not, we can incorporate both models (CpG islands and non-CpG
islands) into one model. Then, we build a single Markov model consisting of both chains (þ ) and (� ) described above as sub-
chains, and with small transition probabilities between the two sub-chains. As before, we can estimate the transition probabilities
between the two sub-chains by relying on known annotated sequences with all their transitions between CpG and non-CpG
islands. is that there it not a one-to-one correspondence between the states and the symbols of the sequence. For instance, the
symbol C can be generated by both states Cþ and C�. For our purpose, we use an HMM (see Fig. 7): a sequence X¼(x1,…, xL)
does not uniquely determine the path in the model and the states are hidden in the sense that the sequence itself does not reveal
how it is generated. In this model, we define the probability for staying in a CpG island as p and the probability of staying outside
as q, then the transition probabilities can be described in Table 4, derived from the transition probabilities given in Table 3 under
the assumption that we lose memory when moving from/into a CpG island, and that we ignore background probabilities. In this
particular case, the emission probability of each state Xþ or X� is exactly 1 for the symbol X and 0 for any other symbol.

Table 4 Transition probability matrix in the CpG islands for HMM

api ;piþ1
Aþ Cþ Gþ Tþ A� C� G� T�

Aþ 0.18p 0.27p 0.43p 0.12p 1�p
4

1�p
4

1�p
4

1�p
4

Cþ 0.17p 0.37p 0.27p 0.19p 1�p
4

1�p
4

1�p
4

1�p
4

Gþ 0.16p 0.34p 0.37p 0.13p 1�p
4

1�p
4

1�p
4

1�p
4

Tþ 0.08p 0.36p 0.38p 0.18p 1�p
4

1�p
4

1�p
4

1�p
4

A� 1�q
4

1�q
4

1�q
4

1�q
4 0.30q 0.20q 0.29q 0.21q

C� 1�q
4

1�q
4

1�q
4

1�q
4 0.32q 0.30q 0.08q 0.30q

G� 1�q
4

1�q
4

1�q
4

1�q
4 0.25q 0.25q 0.29q 0.21q

T� 1�q
4

1�q
4

1�q
4

1�q
4 0.18q 0.24q 0.29q 0.29q

Table 3 Transition probability matrix for CpG islands (þ ) and non-CpG islands (� )

pþ ¼

A C G T
A 0:18 0:27 0:43 0:12
C 0:17 0:37 0:27 0:19
G 0:16 0:34 0:37 0:13
T 0:08 0:36 0:38 0:18

2
6666664

3
7777775

p� ¼

A C G T
A 0:30 0:20 0:29 0:21
C 0:32 0:30 0:08 0:30
G 0:25 0:25 0:29 0:21
T 0:18 0:24 0:29 0:29

2
6666664

3
7777775
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Conclusions

HMM methods are used to solve a variety of biological problems, such as, for example, gene prediction, protein secondary
structure prediction; in the last years, HMM-based profiles was applied to the protein-structure prediction and large-scale genome
sequence analysis. In this paper we have presented an introduction to statistical approach of an HMM to show as these methods
provide a conceptual framework for building complex models, just by drawing an intuitive picture. In particular, we have
described the three problems of this theory with applications to the problem of finding specific patterns in biological sequences.

See also: Deep Learning. Introduction to Biostatistics. Natural Language Processing Approaches in Bioinformatics. Nonlinear Regression
Models. Stochastic Processes
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