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Abstract
In this chapter, we give a comprehensive overview of the research results in the field of

action refinement during the past 12 years. The different approaches that have been followed
are outlined in detail and contrasted to each other in a uniform framework. We use two running
examples to discuss their effects, benefits and disadvantages. The chapter contains results only;
appropriate references are given to the original papers containing the proofs.
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1 Introduction

1.1 What is action refinement about?

A widely accepted approach to specify the behaviour of concurrent systems relies on state/transition
abstract machines, such as labelled transition systems: an activity, supposed to be atomic at a
certain abstraction level, can be represented by a transition, the label of which is the name of
the activity itself. Once these atomic actions are defined, one technique to control the complexity
of a concurrent system specification is by means of (horizontal) modularity: a complex system
can be described as composed of smaller subsystems. Indeed, this is the main achievement of
process algebras: the specification is given as a term whose subterms denotes subcomponents; the
specification, as well as its analysis, can be done component-wise, focussing on few details at a
time.

However, from a software engineering viewpoint, the resulting theory may in many cases still
be unsuitable, as the abstraction level is fixed once and for all by the given set of atomic actions.
In the development of software components, it may be required to compare systems that belong to
conceptually different abstraction levels (where the change of the level is usually accompanied by
a change in the sets of actions they perform) in order to verify if they realise essentially the same
functionality. Once the sets of actions at the different abstraction levels are defined, a technique
(orthogonal to the previous one) for controlling the complexity of concurrent system specifications
is by means of vertical modularity: a complex system can be first described succinctly as a simple,
abstract specification and then refined stepwise to the actual, complex implementation; the specifi-
cation, as well as the analysis on it, can be done level by level, focussing each time on the relevant
details introduced by passing from the previous level to the current one. This well-known approach
is sometimes referred to as hierarchical specification methodology. It has been successfully developed
for sequential systems, yielding, for instance, a technique known as top-down systems design, where
a high-level “instruction” is macro-expanded to a lower level “module” until the implementation
level is reached (see, e.g., [141]).

In the context of process algebra, this refinement strategy amounts to introducing a mechanism
for transforming high-level primitives/actions into lower level processes (i.e., processes built with
lower level actions).

Example 1.1 As a running (toy) example in this chapter, we consider a data base which can be
queried using an operation qry and updated using an operation upd. Both are atomic, i.e., once
invoked their effect is as if they finish immediately, and no concurrently invoked action can interfere
with them. The latter operation is then transformed into a transaction consisting of two phases,
req in which the update is requested and cnf in which it is confirmed. The question addressed in
this chapter is what the behaviour of the data base on the resulting lower level of abstraction should
be.

There are several ways to go about studying this issue, depending on some choices that can be
taken. These are discussed in the following subsections.

1.2 Refinement operator vs. hierarchy of descriptions

In traditional programming languages, there is an operator that supports a hierarchical specification
methodology: the declaration (and call) of a procedure, given by (some syntactical variant of) “let
a = u in t”. This specifies that the abstract name a is declared to equal its body u in the scope
t. So, whenever a is encountered during the execution of t, u is executed in its place. Similarly,

3



one way to support vertical modularity in process algebra is by introducing an explicit operator,
called action refinement and written t[a�u], which plays a role similar to that of procedure call: it
is nothing but a declaration, introducing the name a for its body u in the scope t. The discussion
about the possible meanings of the refinement operator is postponed to Sections 1.3 and 1.4; here
we simply recall that the main problem faced by the advocates of this approach, the so-called
congruence problem, is to find an observational equivalence which respects the refinement operator.
A non-exhaustive list of papers following this approach in process algebra is [8, 9, 13, 19, 31, 37,
38, 48, 50, 69, 89, 110, 121, 126] and in semantic models [22, 42, 52, 62, 63, 93, 130, 131, 132].

Most of this chapter is devoted to a study of the operator for action refinement within process
algebra. However, also another approach to support vertical modularity is discussed in this chap-
ter: a hierarchy of descriptions, equipped with a suitable implementation relation establishing an
ordering among them. Typically, a concurrent system, described at several levels of detail, can be
seen as a collection of different albeit related systems. Each of these systems may be described
in a particular (process algebraic) language. Therefore, in order to relate the various systems, it
is necessary that we are able to correctly relate the different languages. The implementation of a
language into another language may be often seen as the definition of the primitives of the former
as derived operators of the latter. Of course, if we assume that all the systems are described in
the same language (as we do in this chapter, as described in Section 1.7), the task is easier. Any-
way, some work is needed: a suitable partition of the action set by abstraction levels, a refinement
function associating lower level processes to high level actions, and an implementation relation
that states when a low level process implements a high level process, according to the refinement
function. This “vertical” implementation relation is not to be confused with existing “horizontal”
implementation relations, such as trace or testing pre-orders, which rather reflect the idea that
a given system implements another on the same abstraction level, by being closer to an actual
implementation, for instance more deterministic.

Although action refinement as an operator or through a hierarchy of descriptions are solutions to
the same problem, a comparison is not easy. On the one hand, a single language with a mechanism
for hierarchy among its operators is a quite appealing approach, as it permits to define the horizontal
and the vertical modularities in a uniform way. Indeed, this is in the line of the development of
sequential languages: the definition of control abstraction mechanisms, such as procedures and
functions, or of data abstraction mechanisms, such as abstract data types, should be considered a
standard way of “internalising”, in the usual horizontal modularity, concepts that are typical of the
vertical one. On the other hand, this approach has also some disadvantages: no clear separation of
the abstraction levels in the specification (free combination of horizontal and vertical operations)
and no clear distinction of what actions are of what level (confusion may be risky, as we will
discuss in Section 1.4 and, much more extensively, in Section 6). Another major difference between
the two approaches is the following. According to the former approach, given a specification S
and a refinement function, there is only one possible implementation I; hence, there is no need to
develop a notion of correctness of the implementation: the implementation I is what one obtains by
applying the operator of refinement to S. On the contrary, the latter approach may admit several
different implementations for a given specification, namely all those that are correct according to
the vertical implementation relation. See Section 1.7 for a further discussion. For the time being,
we concentrate on the interpretation of action refinement as an operator.
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Figure 1: Atomic and non-atomic refinement of a ||| b

1.3 Atomic vs. non-atomic action refinement

The basic approaches to action refinement can be divided into two main groups. On the one hand,
there is atomic refinement [13, 19, 48, 72, 75, 97], where one takes the point of view that actions
are atomic and their refinements should in some sense preserve this atomicity. On the other hand,
there is a more liberal notion of refinement — called non-atomic — according to which atomicity is
always relative to the current level of abstraction, and may in a sense be destroyed by refinement.

To better explain this issue, let us consider one simple example: a ||| b, representing the parallel
composition of a and b, and the refinement of a by a1; a2. Figure 1 shows the labelled transition
systems for a|||b and (a|||b)[a�a1; a2] when refinement is atomic and non-atomic, respectively. In this
figure, black dots represent abstract observable states (i.e., states that are relevant for observation
and where every atomic action is completed) and white dots denote concrete invisible states (i.e.,
states that represent intermediate execution steps at a lower level of abstraction and that cannot
be seen by an external observer). It is easy to see the difference: if the refinement is atomic, there
is no observable state in between the execution of a1 and a2 (all-or-nothing); moreover, action b
cannot be executed in between their execution (non-interruptible).

The atomic approach seems well-suited in some cases. For instance, when implementing one
language into another one, one needs to implement the primitives of the former as compound
programs of the latter. In this case, keeping atomicity in the implementation may be a vital
feature for correctness. One example of this is [77], where Milner’s CCS is mapped to a finer grained
calculus; each transition of CCS is implemented as a suitable transaction (sequence of transitions
executed atomically) of the latter calculus. Another example supporting atomic refinement is when
mutual exclusion on a shared resource is necessary to prevent faulty behaviour. For instance, when
refining an abstract write operation a on a shared variable x as a complex process u, we would like
to allow further, possibly parallel, reading or writing operations on x only after the completion of
u. Further arguments in favour of atomic refinement may be found in [19].

On the other hand, also the non atomic approach has its own adherents; see [9, 31, 50, 63, 89, 93,
110, 121, 133]. Actually, this approach is on the whole more popular than the former. For instance,
in the example of Figure 1, if b is an action completely independent of a it seems unreasonable
to impose the restriction that b stays idle while executing the sequence a1 a2. In our opinion, the
choice between atomic and non-atomic refinement should be driven by the application at hand.
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1.4 Syntactic vs. semantic action refinement

There are essentially two interpretations of action refinement, which we call syntactic and semantic.
In the syntactic approach, the treatment of action refinement closely resembles the copy rule for
procedure call (i.e., inlining the body for the calling action) in sequential programming. For in-
stance, [110] exploits a static copy rule (syntactic replacement before execution); instead [8] follows
the dynamic copy rule: as soon as a is to occur while executing t, the first action of u is performed
reaching, say, a state u′, after which that occurrence of a in t is syntactically replaced by u′. In
either case, the semantics of t[a�u] is, by definition, the semantics of the term t{u/a}. Among
other things, this implies that the process algebra is to be equipped with an operation of sequential
composition (rather than the more standard action prefix) as studied, for instance, in the context
of ACP [11], since otherwise it would not be closed under the necessary syntactic substitution.

In the semantic interpretation, a substitution operation is defined in the semantic domain used
to interpret terms. Then the semantics of t[a�u] can be defined using this operator. For example,
when using event structures as semantic domains, an event structure E = [[u]], representing the
semantics of u, would be substituted for every a-labelled event d in the event structure [[t]]. The
refinement operation preserves the semantic embedding of events: e.g., if d is in conflict with an
event e, then all the events of E will be in conflict with e, and similarly for the order relation.
Investigations of such refinement operators can be found in e.g. [17, 31, 32, 41, 42, 50, 93, 60, 63,
64, 68, 121, 131, 133] over the semantic domains of Prime, Free, Flow and Stable Event Structures,
Configuration Structures, Families of Posets, Synchronisation Trees, Causal Trees, ST Trees and
Petri Nets. The advocates of the semantic substitution approach (to which the authors of this
chapter belong) claim that the starting point is introducing a notion of semantic refinement as pure
substitution in a semantic model, which, usually, is not very difficult. In contrast, the hard part is
finding the operational definition for the syntactic operator of refinement that correctly implements
semantic substitution, i.e., a concurrent counterpart of the copy rule in the sequential case.

These two approaches are inherently different; simple examples showing this are given in Sec-
tion 6. Essentially, syntactically substituting u for a in t produces a confusion of the abstraction
levels that is not possible with semantic substitution; such a confusion may originate new commu-
nications between processes that were not possible at the higher level, and, conversely, may destroy
at the lower level some communications established at the higher level. Conceptually, this is an
undesirable situation which, in general, prevents the definition of an algebraic theory for action
refinement. Technically, syntactic refinement corresponds to a homomorphism between algebras
whose signature is given by the language (since such a homomorphism is essentially generated by
a mapping from actions to subterms, which is required to distribute over all the operators); on
the other hand, semantic refinement defines an operation on the semantic model which is com-
positional. As the two approaches do not coincide, we cannot expect to be able, in general, to
define compositional homomorphisms. In Section 6, we compare the two approaches with the aim
to identify under which restrictions they yield the same result. That is, we report about conditions
under which the following diagram commutes:

syntactic ref.

[[t{u/a}]]

t{u/a} syntax

semantics[[t]][a�[[u]]]

t[a�u]

semantic ref. (1)

Not only does the result give a clearer understanding of the theory of action refinement, but also
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it is interesting for applications of action refinement to know when semantic refinement can be
implemented by the conceptually simpler syntactic substitution.

It should be mentioned that a dual approach to the one described above is followed in [94]:
they take syntactic refinement as a starting point and adapt the language (using an operator for
self-synchronisation) so that semantic refinement coincides with it.

Concerning atomic refinement, one can observe that this is naturally definable as a form of
semantic refinement on trees labelled on sequences of actions, but can be also represented via
syntactic substitution, provided that the process replacing the action is atomised (see Sections 3
and 6 for more details).

1.5 Interleaving vs. true concurrency

As mentioned above, when action refinement is an operator of the language, a natural key problem
is that of finding a notion of equivalence that is a congruence for such operator. Formally, given a
candidate equivalence notion �, we want to find the coarsest relation ≡, contained in �, that is a
congruence for all the operators of the language; to be precise:

• whenever u1 ≡ u2, then t[a�u1] ≡ t[a�u2];

• whenever t1 ≡ t2, then t1[a�u] ≡ t2[a�u].

The first half of the congruence problem turns out to be easy: the main requirement is that one
makes a clear distinction between deadlock (where a system can do nothing at all) and termination
(where a system can do nothing except terminate, i.e., relinquish control); see also [61]. This
distinction is easily made if one models termination as a special action (in this paper denoted �).
The reason why a congruence has to make this distinction may be understood by considering an
example. Let t = a; b, u1 = c —denoting the execution of c leading to successful termination—
and u2 = c;0 —denoting the execution of c leading to deadlock. u1 and u2 are equivalent when
ignoring termination; however, t[a�u1] can perform b after c, while t[a�u2] cannot.

A solution to the second half of the congruence problem, on the other hand, may either be easy
(in cases where one can stay within interleaving semantics) or rather difficult (in cases where one
is forced to move to truly concurrent semantics), depending on the assumptions and the algebraic
properties one wants to impose on the operator.

• One can define semantic action refinement as an operator on transition systems (e.g., see
Section 2.3 below) that is well-defined up to strong bisimilarity. (For the case where internal
moves are abstracted, the situation is slightly less straightforward: the construction is not
well-defined up to the standard (rooted) weak bisimilarity, instead one has to resort to (rooted)
delay or branching bisimilarity. A detailed discussion can be found in Section 2.4 below.) At
any rate, it should be clear that there is no intrinsic reason why an interleaving relation
cannot be a congruence for action refinement.

• However, the operator referred to above fails to satisfy a very intuitive and important prop-
erty: namely, it does not distribute over parallel composition. If one wants this property to
hold, the easiest way is to adopt atomic refinement instead, as argued in [48] (see above and
Section 3); both strong and weak bisimilarity are congruences for this operator. The price
is that one has either to distinguish concrete and abstract states or to use action sequences
rather than single actions as transition labels.
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• Atomic refinement is not always appropriate. If one requires a non-atomic refinement operator
that distributes over parallel composition, this can still be defined on standard transition
systems, provided that refinement is disallowed for all actions that decide choices, as well as
all actions that occur concurrently with themselves; see [38]. Once more, strong bisimilarity
is a congruence for the resulting operator. As a consequence of the limitations on refinable
actions, this operator no longer distributes over choice. We do not discuss this operator any
further.

• If one wants action refinement to distribute over parallel composition and to be non-atomic
and to be applicable to all actions, irregardless of their position in a term, then it becomes
necessary to use a model that is more expressive than standard transition systems. Among
the earliest observations of this fact are [115, 32]. Since it has received widespread attention
in the literature, we will discuss this issue in more detail.

Let us consider a ||| b and a; b + b; a, which are equivalent in interleaving semantics: the former
represents the concurrent execution of the actions a and b, the latter their execution in either order.
When refining a to a1; a2 (and distributing the refinement over parallel and sequential composition),
the resulting processes become equivalent to, respectively, (a1; a2) ||| b and a1; a2; b + b; a1; a2; these
are no longer equivalent in interleaving semantics, as only the former can execute the sequence
a1 b a2. It follows that the required congruence ≡ cannot equate a ||| b and a; b + b; a.

A solution to this problem, which has received a large amount of attention in the literature
on action refinement, is to move to so-called truly concurrent semantics, i.e., semantic models
that contain more information about the concurrency of the system’s activities than the standard
interleaving semantics. For instance, event-based models (inspired by Winskel’s event structures,
see [139, 140]) have been investigated for this purpose in [42, 50, 63, 64, 121]. In Section 4 we
present an example of an event-based truly concurrent (operational and denotational) semantics
for a language with parallel composition, synchronisation and refinement.

Isomorphism of event-based models gives rise to a congruence; however, it has been argued that
this relation is now too strong (rather than too weak as in the case of the interleaving relations),
in that it makes more distinctions than strictly necessary. This can be repaired by interpreting the
event-based model up to a weaker relation than isomorphism, such as for instance history-preserving
bisimilarity (see [60, 116, 46]); or, alternatively, by considering less distinguishing models such as
causal trees (see [39, 42]). It turns out that the minimal amount of information one must add (giving
rise to the coarsest congruences contained in existing interleaving relations) is to distinguish the
(related) beginnings and endings of all actions. This is called the ST -principle, after the name
chosen by Van Glabbeek and Vaandrager in [65], where it appeared for the first time. In Section 5
we give an overview of truly concurrent observational criteria and the congruence properties to
which they give rise; another, very systematic and detailed summary can be found in [64].

As pointed out by Meyer [105, 106] and Vogler [134], the issue of finding congruences with respect
to action refinement is also relevant to another, quite different area, namely that of completeness
in the presence of process variables. This, too, is briefly discussed in Section 5.

It should be noted that the issue of finding the fully abstract model for action refinement can also be
avoided altogether, by interpreting terms as functions on denotations rather than basic denotations.
Namely, assume Act is the set of actions, Lang the language under consideration and Mflat is the
space of denotational models for the flat (i.e., refinement-free) language fragment Langflat , with
denotational constructions op for all operators op of Langflat . Based on these, one can define a
new denotational model M = (Act →Mflat) →Mflat : i.e., objects of M are functions that yield
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a “flat” model when provided with an arbitrary mapping f :Act →Mflat that “pre-evaluates” (in
fact, refines) all action occurrences.

Denotational constructions op on M are obtained by pointwise extension from Mflat :

op(M1, . . . ,Mn) = λf.op(M1(f), . . . ,Mn(f))

for all Mi ∈M (i = 1, . . . , n), except if op is actually a constant action a (interpreted as a nullary
operator), in which case

op = λf.f(a) .

M allows a straightforward definition of refinement, as an operator [a� ]: (M×M) →M:

M1[a�M2] = λf.M1(f ± (a �→M2(f)))

where f ± (a �→ M) with M ∈ Mflat denotes the function Act → Mflat mapping a to M and all
b �= a to f(b). This immediately gives rise to a corresponding semantic function [[ ]]:Lang →M.

This approach is followed in [83]. An advantage is that, since Mflat is itself not required to
be compositional for refinement, it can still consist of basic interleaving models, such as labelled
transition systems or (in [83]) traces. On the other hand, this interpretation of terms as functions
is intensional: it does not give rise to a concrete representation of behaviour. This is in sharp
contrast to the spirit of the rest of the paper. We will not attempt a further comparison.

1.6 Strict vs. relaxed forms of refinement

Non-atomic refinement is more flexible than atomic refinement, because it allows the concurrent
execution of a process u refining an action a with the actions in t independent of a. For instance,
in (a ||| b)[a�a1; a2], b can be executed in between a1 and a2 only if refinement is non-atomic (see
Figure 1).

Nonetheless, there are other desirable forms of flexibility that non-atomic refinement, as defined
above, is unable to offer. For instance, consider t = (a; b)[a�a1; a2] where actually only a1 is
a necessary precondition (i.e., a cause) for the occurrence of b. According to the definition of
non-atomic refinement, t is equivalent to a1; a2; b, which fails to show that b may be executed
independently of a2. Unfortunately, in the semantic domains usually considered, it happens that
the causal context of actions is tightly preserved, hence enforcing causality in the refined system
also when not strictly necessary. We could say that traditional refinement is too strict : it forces all
abstract causalities to be inherited in the implementation.

A possible solution, proposed by Janssen, Poel and Zwiers [91] and Wehrheim [136, 126] is to
introduce a certain degree of relaxation of the causal ordering during refinement. Technically, this
is achieved by means of a dependency relation over the universe of actions, combined with a weak
form of sequential composition that may allow the execution of actions of the second component
if they are independent of those occurring in the first component. In the example above, one may
declare that only a1 and b are dependent, hence in a1 ·a2 ·b (where · is weak sequential composition),
b can be performed before a2.

A possible relaxation of another kind concerns choice rather than sequential composition. Tra-
ditional action refinement requires that alternative actions, once refined, give rise to strictly alter-
native processes. A different view is taken in [51], where refinement is defined over event structures
and the conflict relation is not respected tightly by refinement, e.g., conflicting events may be re-
fined to processes that are not completely mutually exclusive. The intuitive motivation for this is
that, in a competition, many actions are anyway performed by both processes before the decision
of which will be served is taken.
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Yet another form of relaxation concerning choice requires that not all options specified by a
refinement function must indeed be offered by the refined system. For instance, if we refine a to
a′; b + a′; c, the abstract system a; d is implemented by the concrete system (a′; b + a′; c); d. An
interesting alternative is to take the decision about which option to implement during the refinement
step, hence allowing a′; b; d or a′; c; d as an implementation, or to turn the nondeterministic choice
into a deterministic one, hence allowing a′; (b+c); d as an implementation. This kind of design step
is in line with the sort of transformation allowed by standard implementation relations (such as
trace or failure inclusion). We do not know of any paper dealing with such relaxed forms of action
refinement (see [124] for a discussion on the problems raised by such an approach in presence of
communication).

1.7 Vertical implementation

Another way to obtain a more relaxed notion of action refinement, already briefly mentioned in
Section 1.2, is by abandoning the notion of an operator and regarding action refinement as an
implementation relation instead. There is a long tradition in defining process refinement theories
based on the idea that a process I is an implementation of another process S if I is more directly
executable, in particular more deterministic according to the chosen semantics. Examples can be
found in, for example, [27, 43, 108]; see also [12] for a collection of papers in this line. As these
theories do not take changes in the level of abstraction on which S and I are described into account,
we call such implementation relations horizontal. On the other hand, as also pointed above, almost
no theory has been developed to compare systems that realise essentially the same functionality
but belong to conceptually different abstraction levels. For this purpose, we have introduced the
concept of vertical implementation. Some sensible criteria that any vertical implementation relation
should satisfy are listed below:

1. It is parametric w.r.t. a refinement function r that maps abstract actions of the specification
to concrete processes and thus fixes the implementation of the basic building blocks of the
abstract system.

2. It is flexible enough (i) to offer several possible implementations for any given specification
and (ii) not to require that the ordering of abstract actions is tightly preserved at the level of
their implementing processes, i.e., refinement need not to be strict (as discussed in Section 1.6,
above).

3. It is a generalisation of existing horizontal implementation relations; i.e., if the refinement
function is the identity, then the vertical implementation should collapse to the horizontal
implementation. So, the theory of horizontal and vertical implementations can be integrated
uniformly.

As we have seen in the previous sections, the classic work on action refinement in process algebra,
where it is interpreted as a substitution-like operation on the syntactic or semantic domain, satisfies
few of these requirements. In particular, the consequence of the classic approach is that there is
only one possible implementation for a given specification; in other words, the action refinement
function is used as a prescriptive tool to specify the only way abstract actions are to be implemented.
However, there is no deep motivation for this functional point of view (only one implementation)
in favour of a relational one (more than one implementation). For instance, when considering
(a ||| b)[a�a1; a2], there is no real reason for not accepting also a1; a2; b + b; a1; a2 as a possible, more
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sequential implementation; similarly, for (a; b + b; a)[a�a1; a2] the more parallel implementation
a1; a2 ||| b could be admitted.

The concept of action refinement through vertical implementation has a striking consequence.
The congruence problem (discussed at length in Section 1.5 above) simply disappears: since a spec-
ification may admit non-equivalent implementations, a fortiori two equivalent specifications need
not to have equivalent implementations. Hence, there is no longer a need to move to truly concur-
rent semantics. This has the advantage of allowing to reuse most existing techniques developed for
interleaving semantics. In particular, it is a natural requirement that vertical implementation may
collapse to some horizontal relation, by hiding all the actions that were refined, reminiscent of the
interface refinement principle discussed in [26]. This makes it possible to mix vertical refinement
with established methods for horizontal implementation.

Some of the basic ideas behind this approach were proposed first (in a restrictive setting) in
[72] and later (independently) in [118, 119]. See Section 8, based on [123], for more details.

1.8 Overview of the Chapter

We can classify the choices we have made in the material of this chapter according to the discussion
above.

Operator vs. hierarchy. In all the next sections, except the last one (Section 8), we consider
some process algebra enriched with an operator for action refinement.

Atomic vs. non-atomic. In all the sections that deal with the operator of action refinement
but one, we stick to non-atomic refinement. Atomic refinement is dealt with in Section 3,
where we consider a process algebra with an operator for parallel composition but without
communication, and also (briefly) in Section 7 in the context of action dependencies.

Syntactic vs. semantic. Throughout the chapter we use semantic refinement, as the operation
of action refinement is always defined on a semantic domain (trees or event structures), with
the exception of Section 6, where we report sufficient conditions to guarantee that the two
approaches are the same.

Interleaving vs. true concurrency. We discuss the simplest cases (sequential systems in Sec-
tion 2 and atomic refinement in Section 3) using interleaving semantics; then, when parallel
composition comes into play and refinement is non-atomic, we move to truly concurrent se-
mantics (Sections 4 and 5).

Strict vs. relaxed. All the sections on the operation deal with strict refinement, except Sec-
tion 7, where we discuss other approaches using a dependency relation to ensure some form
of relaxation of the causality relation.

Vertical implementation is covered in Section 8.

The chapter is organised as follows: Section 2 studies non-atomic refinement for the class of se-
quential systems. We introduce many concepts that will be used throughout the paper, such as
well-formedness conditions on admissible terms, allowable refinements and some standard inter-
leaving behavioural equivalences. Section 3 deals with a larger language with parallel composition
(but without communication) under the assumption that refinement is atomic. The operational
semantics is not standard, making use of concrete invisible states; the denotational semantics uses
trees labelled on sequences. Section 4 deals with non-atomic refinement for a full-fledged process
algebra. The denotational semantics is given in terms of stable event structures and the operational
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semantics is very concrete: process terms and transitions are tagged by event annotations. Then,
observational semantics and congruence issues for the full language are discussed in Section 5. In
Section 6 we present some conditions ensuring that syntactic and semantic action refinement coin-
cide. Relaxed forms of refinement are recalled in Section 7, while Section 8 reports on the issue of
vertical implementation relations.

As much as possible, we have presented all the results of this chapter in a single format, by
using a common underlying process algebraic language in which the different approaches have been
formulated. Predictably, however, various theories come with their own specific concepts, operators
and limitations, making a fully integrated presentation impossible. To enable the reader to find
his way among the different language fragments and well-formedness conditions used in the various
sections, Table 16 (Page 85) gives an overview.

Note that in this chapter, we have limited ourselves to a process algebraic understanding of
action refinement. Thus, we have not included a comparison with methods addressing the same
concerns in other fields of theoretical computer science, such as logic-based, state-based or stream-
based refinement; e.g., [10, 28, 29, 54, 96, 98].

1.9 Whither action refinement?

After enjoying a broad interest in the years 1989–1995 and thereabouts (as evidenced by the sheer
number of papers quoted above, as well as the PhD theses [2, 33, 36, 53, 56, 71, 90, 92, 118, 128,
137]), the subject of action refinement has left the central stage of research in process algebra. Yet
we feel that the basic principle underlying action refinement, concerning changes in the level of
abstraction and the grain of atomicity at which a system is described, is not less relevant now than
it was a decade ago. Indeed, the same principle is very fundamental in, for instance, object-based
systems, where the method interface of an object on the one hand and its implementation on the
other are prime candidates for a description in terms of action refinement.

If we analyse the kind of work that has received the most attention during the aforementioned
period, it can be seen that the main issue that has been studied, almost to the exclusion of everything
else, is the congruence question for the refinement operator. This has greatly enhanced the insight
in the relative advantages of various truly concurrent semantics, some of which are now also being
used in other contexts (e.g., ST -semantics for stochastic process algebras, see [23, 25]); and similar
for variations on weak (interleaving) bisimulation (see, for instance, [68]). Nevertheless, with the
benefit of hindsight, the concentration on this one subject can also be seen to have had some
disadvantages: on the one hand, the refinement operator itself has not found much practical use,
whereas on the other, this singular focus has prevented the development of alternative approaches,
such as the use of action refinement as a correctness criterion rather than an operator. This is what
we are currently trying to remedy with the concept of vertical implementation.

Having realised this change in perspective, it becomes clear that there is an enormous amount of
work yet to be done. In particular, no attention at all has yet been paid to the extremely important
question of how to integrate data refinement and action refinement. Similarly, the only aspect of
atomicity addressed so far is the (non-)interference of atomic actions; at least as important is their
all-or-nothing nature, in particular the possibility to abort an atomic action that (on a concrete
level) has already started. Remarkably, in the context of process algebra the latter issue has not
been addressed by any theory of action refinement we know. Furthermore, although we have
begun to explore some of the possible variations on vertical bisimulation, similar studies should
be initiated for vertical testing, since the lack of atomicity of test primitives is causing hitherto
unexplored problems. Finally, the most challenging task is to apply the emerging theory to realistic
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applications, be it in the form of case studies of any size or by integrating it with the design phase
of some software engineering lifecycle.

Acknowledgements. We wish to thank Mario Bravetti, Pierpaolo Degano, Thomas Firley, Wal-
ter Vogler and Heike Wehrheim for their comments on preliminary versions of this chapter.

2 Sequential Systems

We start our technical presentation by addressing the simplest case: a process algebra without
parallelism and communication. In this case, we can easily accommodate the new construct of
action refinement within interleaving semantics.

2.1 The sequential language

We assume the existence of a universe Act of visible actions, ranged over by a, b, . . . , and an
invisible action τ /∈ Act ; we write Actτ = Act ∪ {τ}, ranged over by α. Furthermore, we assume
a set Var of process variables, ranged over by x, y, z. The language of sequential processes (or
agents), denoted Lang seq and ranged over by t, u, v, is the set of well-formed terms generated by
the following grammar:

T ::= 0 | 1 | α | V + V | T;V | T/A | T[a�V] | x | μx.V ,

where a ∈ Act , α ∈ Actτ , A ⊆ Act and x ∈ Var are arbitrary. In this grammar, T is an arbitrary
term whereas V stands for a so-called virgin operand, on which we impose the condition that it may
not contain an auxiliary operator —where the constant 1 is the only auxiliary operator of Lang seq .
These matters are discussed below in more detail.

We first go into the intuitive meaning of the operators, at the same time informally introducing
the concepts of well-formedness and guardedness.

• 0 is a deadlocked process that cannot proceed.

• 1 is a terminated process, that is, a process that immediately terminates with a transition
labelled � /∈ Actτ , expressed by 1 −�−→ 0.

1 is an auxiliary operator, in the sense that we expect the “user” of the language to write
down terms not containing 1. Rather, it will be needed to express the semantics of other
operators (notably, sequential composition). The fact that an operator is auxiliary influences
the well-formedness of terms; see below.

• α can execute action α, and then terminates, i.e., α −α→ 1 ( −�−→ 0).

• t + u indicates a CCS-like choice between the behaviours described by the sub-terms t and
u. The choice is decided by the first action that occurs from either sub-term, after which the
other sub-term is discarded.

We call the operands t and u virgin, because (due to the semantics of choice) it is clear that
they are untouched, in the sense of not having participated in any transition —otherwise the
choice would have been resolved. An important general well-formedness condition on terms is
that virgin operands may not contain auxiliary operators. Specifically, in this case, we require
that t and u contain no occurrence of 1. (The technical consequence of this condition is that
neither operand can be terminated, and hence no �-transition can resolve a choice. This
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circumvents some intricate technical problems, for instance in the definition of a denotational
event-based model; see, e.g., [118, Example 3.7]. A different solution with essentially the
same consequence was chosen in [7, 49], where a choice may terminate only if both operands
can do so.)

• t;u is the sequential composition of t and u, i.e., t proceeds until it terminates properly, after
which u takes over; if t does not terminate properly, u is not enabled. This semantics is in the
line of ACP [11], and differs from the one in, e.g., [109], where u starts after t is deadlocked.
We have chosen the former as it is the only one distinguishing correctly between deadlock
and termination.

Again, u is a virgin operand : once it participates in a transition, t is discarded from the term.

The two main motivations for using sequential composition instead of CCS action prefixing
are as follows. On the one hand, the operational (sometimes also the denotational) semantics
for action refinement can be naturally defined only by means of a sequential composition
operator, as we will see later on; on the other hand, syntactic substitution, which is the way
action refinement is implemented in many papers, is naturally defined by means of such an
operator.

• t/A behaves as t, except that the actions in A are hidden, i.e., turned into the internal action
τ that cannot be observed by any external observer.

• t[a�u] is a process t where a is refined to u. The operand u is virgin. Since, by well-formedness,
virgin operands may not contain auxiliary operators, it is certain that the refinement of an
action is an agent that is not terminated; this prevents the so-called forgetful refinement (the
implementation of an action by 1), which is not only technically difficult, as discussed, e.g.,
in [31, 118], but also counter-intuitive.

Apart from forbidding forgetful refinements, we are still rather generous in allowing some
types of refining agents that are rather questionable, such as deadlocked or never-ending
ones. Intuitively, it seems natural to require that an action, which by itself cannot deadlock,
is implemented by a process that cannot deadlock either, since otherwise refinement would
introduce deadlocks. However, imposing such a semantic restriction is an unnecessary burden;
on the one hand, there is no technical problem in managing deadlocked refining agents; on the
other hand, it is not easy to characterise syntactically a large class of deadlock-free processes
(while, semantically, the problem is even undecidable).

Similar arguments hold for infinite refinement: intuitively, an action is certainly accomplished
in a finite amount of time; therefore its refinement should eventually terminate, as required
e.g. in [48, 90]. A typical term satisfying this requirement under a suitable fairness assump-
tion is μx.a;x + b. Again, however, allowing arbitrary recursion in refining agents does not
complicate matters, whereas restricting it to some special cases would.

• x ∈ Var is a process variable, presumably bound by some encompassing recursive operator
(see next item), or to be replaced by substitution. The variables of t that are not bound are
called free: we write fv(t) for the free variables of a term t and fv(t, u) for fv(t) ∪ fv(u). A
term t is called closed if fv(t) = ∅. The free variables can be instantiated by substitution:
t{u/x} denotes the substitution within the term t of every free occurrence of x by the term
u. The free variables and their instantiation are formally defined in Table 1.

• μx.t with x ∈ Var is a recursive term. It can be understood through its unfolding, t{μx.t/x}.
The variable x is considered to be bound in μx.t, meaning that it cannot be affected by
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Table 1: Free variables and syntactic substitution (where op is an arbitrary operator)

t fv(t) t{u/x}
op(t1, . . . , tn)

⋃
1≤i≤n fv(ti) op(t1{u/x}, . . . , tn{v/x})

y {y}
{

u if y = x
y otherwise

μy.t1 fv(t1) \ {y} μz.(t1{z/y}{u/x}) where z �∈ {x} ∪ fv(t, u)

substitution. Therefore, the identity of bound variables is considered irrelevant; in fact, we
apply the standard technique of identifying all terms up to renaming of the bound variables,
meaning that if y is a fresh variable not occurring free in t, then μx.t and μy.t{y/x} are
identified in all contexts. As a further well-formedness condition, we require that all recursion
variables are guarded, in the sense defined below.

In μx.t, the recursion body t is considered to be a virgin operand, and hence by well-formedness
may not contain the auxiliary operator 1.

We will use Lang seq ,fin to denote the recursion-free fragment of Lang seq .

Guardedness. The notion of guardedness is used to simplify the proof of correspondence of
various kinds of operational and denotational semantics developed in this chapter for different
fragments of Lang . As usual, the idea is that the semantic model of a recursive term corresponds
to a fixpoint of the denotational function generated by its body, and this fixpoint is unique if the
variable is guarded in the term; see for instance [108]. Therefore, if one defines the denotational
semantics as the fixpoint, and on the other hand, proves that the operational semantics also gives
rise to a fixpoint, then the two must coincide.

Definition 2.1 We first define what it means for a term to be a guard.

• 1 and x are not guards;

• 0, α and t + u are guards;

• t[a�u] is a guard if t is a guard;

• For all other operators op, op(t1, . . . , tn) is a guard if one of the ti is a guard.

Next, we define what it means for a variable to be guarded in a term.

• x is guarded in y (∈ Proc) if x �= y;

• x is guarded in t;u if x is guarded in t and either t is a guard or x is guarded in u;

• x is guarded in μy.t if either x = y or x is guarded in t;

• For all other operators op, x is guarded in op(t1, . . . , tn) if x is guarded in all ti.

(Note that the last clause “for all operators op” includes the case where op is a constant, i.e., 0, 1 or
α.) A typical example of guarded recursion is μx.(1; a);x, and of non-guarded recursion, μx.x ||| a.
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Table 2: Transition rules for Lang seq .

1 −�−→ 0 α −α→ 1

t −α→ t′

t + u −α→ t′
u −α→ u′

t + u −α→ u′

t −α→ t′

t;u −α→ t′;u

t −�−→ t′ u −α→ u′

t;u −α→ u′

t −λ→ t′ λ /∈ A

t/A −λ→ t′/A

t −a→ t′ a ∈ A

t/A −τ→ t′/A

t −a→ t′ u −α→ u′

t[a�u] −α→ u′; (t′[a�u])

t −λ→ t′ λ �= a

t[a�u] −λ→ t′[a�u]

t{μx.t/x} −α→ t′

μx.t −α→ t′

Well-formedness. To summarise the well-formedness conditions on Lang seq :

• A virgin operand may contain no auxiliary operators. (The virgin operands are the ones
denoted V in the grammar of Lang seq ; the only auxiliary operator in Langseq is 1.)

• Recursion is allowed on guarded variables only.

2.2 Operational semantics

A labelled transition system (lts, for short) is a tuple 〈Lab, N,−→〉, where Lab is a set of labels
(ranged over by λ), N a set of nodes (ranged over by n) and −→ ⊆ N × Lab × N a (labelled)
transition relation. (n, λ, n′) ∈ −→ is more often denoted n −λ→ n′. Sometimes we use transition
systems with initial states, 〈Lab, N,−→, ι〉, where ι ∈ N . Unless explicitly stated otherwise, Lab
will equal Actτ� = Actτ ∪ {�} in this chapter; we usually omit it. N will often correspond to the
terms of a language —for instance, Lang seq . Furthermore, the transition systems we use in this
chapter all satisfy the following special properties regarding �-labelled transitions:

Termination is deterministic. If n −�−→ n′ and n −λ→ n′′, then λ = � and n′′ = n′.

Termination is final. If n −�−→ n′, then there is no λ ∈ Lab such that n′ −λ→.

Finally, some more terminology regarding transition systems:

• n ∈ N is called terminated if n −�−→;

• n ∈ N is called deadlocked if there is no λ ∈ Lab such that n −λ→;

• n ∈ N is called potentially deadlocking if either n is deadlocked or there is a n −λ→ n′ with
λ �= � such that n′ is potentially deadlocking.

One of the main uses of lts’s in this chapter is to provide operational semantics. The definition
of the transition relation is according to Plotkin’s SOS approach [114], meaning that it is the least
relation generated by a set of axioms and rules concerning the transition predicate. For Lang seq ,
the operational rules are given in Table 2. Most operational rules are standard; the only unusual
ones are those for refinement. If the action to be refined is executed by t, then the first action of
the refinement u is executed instead, followed by the whole residual u′; only when u′ is terminated,
the computation will proceed with t′ subject to the refinement.
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Note that, due to the well-formedness of terms (especially the condition that 1 does not occur
in the operands of choice), termination is indeed deterministic and final.

The essential consequence of guardedness can be expressed in terms of its operational semantics
if we apply the operational rules also on open terms, as follows:

Proposition 2.2 Assume x to be guarded in t.

1. t{u/x} −λ→ t′ if and only if t −λ→ t′′ for some t′′ with t′ = t′′{u/x}.
2. μx.t −α→ t′ if and only if t −α→ t′′ for some t′′ with t′ = t′′{μx.t/x}.

2.3 Denotational Semantics

We now present a denotational semantics for Lang seq , using edge-labelled trees as a model. An
edge-labelled tree T is an lts with initial state 〈N,−→, ι〉, which is connected, acyclic, has no −→-
predecessor for ι and precisely one −→-predecessor for all other nodes. The trees that are used to
refine actions are always non-terminated. The class of all trees is denoted T.

A tree can be easily obtained from an lts with initial state through the unfolding operation. The
nodes of the unfolding correspond to paths through T , starting from the initial state and including
all intermediate nodes and labels. Formally, given the lts T = 〈N,−→, ι〉, its unfolding, Unf T is
the tree 〈N ′,−→′, ι〉, where:

• N ′ = {n1λ1n2λ2 . . . λk−1nk ∈ (N Lab)∗N | n1 = ι,∀1 ≤ i ≤ k:ni −λi−→ ni+1}
• −→′ = {(�n n1, λ, �n λn′

1) | n1 −λ→ n′
1}.

We are now ready to define the operations on trees.

Deadlock. T⊥ = 〈{0}, ∅,0〉.

Termination. T� = 〈{1,0}, {(1,�,0)},1〉.

Single action. Tα = 〈{α,1,0}, {(α,α,1), (1,�,0)}, α〉.

Sequential composition. T1;T2 = Unf 〈N,−→, ι〉, where

• N = N1 ∪ {(n, n′) | n −�−→1, n
′ ∈ N2};

• −→ = {(n, α, n′) | n −α→1 n′ �−�−→1}
∪ {(n, α, (n′, ι2)) | n −α→1 n′ −�−→1 }
∪ {((n, n′), λ, (n, n′′)) | n −�−→1, n

′ −λ→2 n′′};
• ι = ι1 if ι1 �−�−→1, otherwise ι = (ι1, ι2) (i.e., when T1 is isomorphic to T�).

Choice. If ιi �−�−→i for i = 1, 2 and N1 ∩N2 = ∅, then T1 + T2 = Unf 〈N,−→, ι〉, where

• N = N1 ∪N2 ∪ {(ι1, ι2)};
• −→ = −→1 ∪−→2 ∪ {((ι1, ι2), α, n) | ι1 −α→1 n} ∪ {((ι1, ι2), α, n) | ι2 −α→2 n};
• ι = (ι1, ι2).

Hiding. T /A = 〈N,−→′, ι〉, where

• −→′ = {(n, λ, n′) | n −λ→ n′, λ /∈ A} ∪ {(n, τ, n′) | n −α→ n′, α ∈ A}.

Refinement. If ι2 �−�−→2, then T1[a�T2] = Unf 〈N,−→, ι〉, where
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• N = {(n1, n2) | n1 ∈ N1, n2 ∈ NR(n1)};
• −→ = {((n1, n2), μ, (n′

1, n
′
2)) | n1 −λ→1 n′

1, n2 −�−→R(n1) , ιR(n′
1) −μ→R(n′

1) n′
2}

∪ {((n1, n2), α, (n1, n
′
2)) | n2 −α→R(n1) n′

2};
• ι = (ι1, ιR(ι1)).

and R:N1 → T is defined as follows:

R: n �→

⎧⎨
⎩
T� if n = ι1
Tλ if n′ −λ→ n for λ �= a
T2 if n′ −a→ n

Some comments on the operations above are mandatory. In the operation of sequential composition,
the second argument is “reproduced” in as many copies as the number of the nodes that are
terminated. The choice operation is nothing but a coalesced sum of trees. Note that these operations
are both defined with the help of the unfold operation on trees; this simplifies the presentation.
The refinement operation is rather unusual, but it holds also when the two trees are infinite as
well as when the second tree is potentially deadlocking. A function R is defined, associating to
each node n of T1 a tree depending on the label λ of its incoming transition (which is uniquely
determined since T1 is a tree): R(n) equals Tλ if λ is anything but the action to be refined, T2 if λ
is the action to be refined, and T� if there is no incoming transition (n is the initial state). Then
each edge n −λ→1 n′ of T1 is replaced by the tree R(n′).

Example 2.3 Consider the following trees (where the node identities are made explicit):

T1 = A−a→B−�−→C
b↘

D−a→E

T� = 0−�−→1 Tb = 2−b→3−�−→4 T2 = 5−b→6−�−→7
c↘

8−d→ 9

Note that T1 is a model of a + b; a;0 and T2 is a model of b + c; d;0. The refinement T1[a�T2] is
then given by the tree

B6−�−→C1
b↗

A0−c→B8−d→B9
b↘

D3−b→E6
c↘

E8−d→E9

The first thing to make sure of is that the above constructions indeed yield trees, satisfying all the
conditions listed above. Since we have defined them through unfolding, for all the operators the
proof is straightforward.

Proposition 2.4 Each of the operators above applied to trees, when defined, again yields a tree.

In order to deal with recursion, we use an approximation ordering over the class T, which is
essentially the one used in [138]. We assume that Ti = 〈Ni,−→i, ιi〉 for i = 1, 2.

T1 � T2 :⇔ N1 ⊆ N2, −→1 = −→2 ∩ (N1 × Lab ×N1), ι1 = ι2

(where the symbol “ :⇔ ” stands for “is defined to hold if and only if”.) Then the following
property states that this gives rise to an appropriate semantic domain, namely a (bottom-less)
complete partial order, containing a least upper bound for all �-chains. The proof is omitted as it
is a variation of the one in [138, Theorem 3.4].
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Table 3: Denotational tree semantics; op is the semantic counterpart of op

[[0]] = T⊥
[[1]] = T�
[[α]] = Tα

[[op(t1, . . . , tn)]] = op([[t1]], . . . , [[tn]]) (op any non-nullary operator)
[[μx.t]] =

⋃
i∈N

[[μix.t]]

Proposition 2.5 〈T,�〉 is a complete partial order with minimal elements 〈{n}, ∅, n〉 for all n and
least upper bounds

⊔
i Ti = 〈

⋃
i Ni,

⋃
i−→i, ι〉 for all �-directed sets {Ti}i ⊆ T (with ιi = ι for all i).

The absence of a bottom element is not deleterious, since the minimal elements do just as well as
the starting point of approximation; in particular, note that T⊥ is a minimal element of T. The
next observation is that all the operations defined above are �-continuous functions on T. Indeed,
as termination and deadlock are dealt with properly, also the operations of sequential composition
(notably on its first argument) and refinement are continuous. Hence, recursion can be computed
as the limit of the chain of its approximations. We define approximations of recursive terms, μix.t
for all i ∈ N, in the standard way (see [138]):

μ0x.t = 0

μi+ix.t = t{μix.t/x}

The denotational tree semantics of Langseq is then given in Table 3. In order to express in what
sense the operational and denotational semantics coincide, we first have to go into the issue of
semantic relations among transition systems.

2.4 Behavioural semantics and congruences

In an interleaving operational semantics such as the above, a widely accepted equivalence relation
on processes is strong bisimilarity ; see [108]. Here we recall its definition.

Definition 2.6 Let T be a transition system.

• A bisimulation over T is a symmetric relation ρ ⊆ N × N such that for all n1 ρ n2 and
n1 −λ→ n′

1, there exists n′
2 such that n2 −λ→ n′

2 and n′
1 ρ n′

2;

• Strong bisimilarity over T , denoted ∼, is the largest bisimulation over T .

Moreover, we can also compare states from different transition systems by taking the (disjoint)
union of the transition systems and then applying the above definition. A standard proof (cf.
[11, 108]) shows that bisimulation is a congruence over Lang seq . Alternatively, one can use the
“SOS format” theory (e.g., [18, 44, 81]; see [6] for an overview) for this purpose (the rules in
Table 2 are in fact in the De Simone format of [44]).

Proposition 2.7 ∼ is a congruence over Lang seq .

Since our operational rules are in the De Simone format, [4] guarantees there is a complete axioma-
tisation for Lang seq ,fin , notably also for the operator of action refinement. It turns out that the set
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of axioms is nothing but the usual set for ACP (see [11]), together with some axioms stating that
refinement distributes over the other operators (see Section 6).

Furthermore, an inductive argument very similar to the one used to prove Proposition 2.7
establishes the compatibility of the operational and denotational semantics.

Proposition 2.8 t ∼ [[t]] for all t ∈ Langseq .

Proof sketch. By induction on the structure of t. In fact, for those tree constructions that make
use of the unfolding operator (choice, sequential composition and refinement) the induction step
can already be proved on the transition system obtained before unfolding. Since (it is easily shown
that) Unf T ∼ T for every lts T , this suffices.

As an example, we will sketch the case for refinement. Let Ti = [[ti]] for i = 1, 2, and assume
ti ∼ Ti. Now t1[a�t2] is proved by the fact (of which we omit the proof) that the following relation
is a bisimulation:

ρ = {(t1[a�t2], (ι1, ιT� ))} ∪ {(u2;u1[a�t2], (n1, n2)) | u1 ∼ n1, u2 ∼ n2} .

For the case of recursion, the proof relies on well-formedness, in particular guardedness of recursion:
using Proposition 2.2 and also Proposition 2.7, it can be proved that t{u/x} ∼ u implies u ∼ μx.t
for every guarded recursive term μx.t. Since by construction, [[μx.t]] is a fixpoint of the semantic
function that maps all [[u]] to [[t{u/x}]], we are done. �

τ-abstracting equivalences. The action τ represents an internal activity that should be consid-
ered invisible to some extent. In the literature, the most widely adopted τ -insensitive equivalence
is (rooted) weak bisimilarity ; see, e.g., [108]. To recall the definition, let ⇒ = −τ→∗.

Definition 2.9 Let T be a labelled transition system.

• A weak bisimulation over T is a symmetric relation ρ ⊆ N ×N such that for all n1 ρ n2 and
n1 −λ→ n′

1, one of the following holds:

– λ = τ and n′
1 ρ n2;

– there exists n′
2 such that n2 ⇒−λ→⇒ n′

2 and n′
1 ρ n′

2.

• A root of a binary relation ρ ⊆ N ×N is a relation ρ̂ ⊆ ρ such that for all n1 ρ̂ n2

– if n1 −τ→ n′
1, then there exists n′

2 such that n2 ⇒−τ→⇒ n′
2 and n′

1 ρ n′
2;

– if n2 −τ→ n′
2, then there exists n′

1 such that n1 ⇒−τ→⇒ n′
1 and n′

1 ρ n′
2.

• Weak bisimilarity over T , denoted ≈w, is the largest weak bisimulation over T , and rooted
weak bisimilarity, denoted �w, is the largest root of ≈w.

Unfortunately, (weak and) rooted bisimilarity are not congruences for action refinement, as illus-
trated by the following example, originally due to [67] (subsumed by [68]), which essentially shows
that the third τ -law of [87] does not hold in presence of refinement.

Example 2.10 Consider t = a; (b+τ) and t′ = a; (b+τ)+a. It is not difficult to observe that t �w t′

(in fact, this is an instance of the third τ -law of [108]). Unfortunately, t[a�a1; a2] ��w t′[a�a1; a2]
because t′[a�a1; a2] −a1−→ a2; (1[a�a1; a2]), hence reaching a state where b is no longer possible, while
no bisimilar state can be reached from t[a�a1; a2] with a transition labelled a1.
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This example shows that �w is not preserved by refinement, because the branching structure of
processes is not preserved enough by rooted weak bisimilarity. For this reason, Van Glabbeek and
Weijland proposed in [67] a finer equivalence, called branching bisimilarity, which is a congruence
for action refinement. However, the natural question is to single out the coarsest congruence for
action refinement inside (rooted) weak bisimilarity. The answer is not branching bisimilarity, but
rather (rooted) delay bisimilarity, based on an equivalence in [107] and provided with this name in
[68]. We recall the definitions and the precise results.

Definition 2.11 Let T be a labelled transition system.

• A delay [branching] bisimulation over T is a symmetric relation ρ ⊆ N ×N such that for all
n1 ρ n2 and n1 −λ→ n′

1, one of the following conditions holds:

– λ = τ and n′
1 ρ n2;

– there exist n′
2, n

′′
2 such that n2 ⇒ n′′

2 −λ→ n′
2 such that n′

1 ρ n′
2 [and n1 ρ n′′

2].

• A delay [branching] root of a binary relation ρ ⊆ N ×N is a relation ρ̂ ⊆ ρ such that for all
n1 ρ̂ n2

– if n1 −τ→ n′
1, then there exist n′

2, n
′′
2 such that n2 ⇒ n′′

2 −τ→ n′
2 and n′

1 ρ n′
2 [and n1 ρ n′′

2];
– if n2 −τ→ n′

2, then there exist n′
1, n

′′
1 such that n1 ⇒ n′′

1 −τ→ n′
1 and n′

1 ρ n′
2 [and n′′

1 ρ n2].

• Delay [branching] bisimilarity over T , denoted ≈d [≈b], is the largest delay [branching] bisim-
ulation over T , and rooted delay [branching] bisimilarity, denoted �d [�b], is the largest
delay [branching] root of ≈d [≈b].

Proposition 2.12

1. �d is the coarsest congruence over Lang seq contained in �w;

2. �b is a congruence over Lang seq contained in �d.

The proof of congruence of Clause 1 is originally due to [52], while the proof that it is the coarsest
congruence is due to [34]. Walker in [135] proved that the specific axioms of delay bisimilarity are
the first and the second τ -laws of rooted weak bisimilarity. Finally, the proof of Clause 2 can be
found in [41, 68], whereas the transitivity of �b is separately addressed in [15].

2.5 Application: A very simple data base

We now give a very simple example of the use of action refinement. In this and similar examples
further on, for the sake of readability we use an alternative representation of recursion: instead
of writing recursion operators within terms, we write process invocations, where the processes are
defined elsewhere as part of the terms’ global context. Thus, instead of μx.t we may invoke a
process X, provided X := t{X/x} is a process definition. See also Milner [108]. Moreover, every
semantics we discuss in this chapter equates the terms 1; t and t for arbitrary terms t; for that
reason, it is always safe to treat the two terms as equal, and in examples we will usually do so.

Consider a distributed data base that can be queried and updated. We first deal with the case
where the state of the data base is completely abstracted away from. The behaviour of the system
is given by Data1

S , defined by

Data1
S := (qry + upd);Data1

S .
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Figure 2: Specification and refinement of a data base with 1 state (above) and 2 states (below)

The operational semantics of Data1
S is depicted in Figure 2. Now suppose that updating is refined so

that it consists of two separate stages, in which the update is requested and confirmed, respectively.
In our setting, this can be expressed by refining action upd to req ; cnf , thus obtaining the process
Data1

I := Data1
S [upd�req ; cnf ], also depicted in Figure 2. Note that in Data1

I , the query operation
cannot be performed in between the two stages of the update operation.

If we make this slightly more realistic by taking into consideration that the state of the data base
can take different values, say from 1 up to n (with initial state 1), we arrive at the following
specification:

Datan
S := State1

State i := qry i;State i +
∑n

k=1 updk;Statek (for i = 1, . . . , n) .

Hence Datan
S specifies that after an update action, where a value is written, any number of con-

secutive queries can be performed, each of which reads the value just written. The behaviour of
Datan

S for n = 2 is again depicted in Figure 2. Refining the actions upd i to req i; cnf results in

Data2
I := Data2

S [upd1�req1; cnf ][upd2�req2; cnf ] .

Like in the case of Data1
I , between request and confirmation querying the data base is disabled. If

it is desired that querying be enabled at that point (for instance because the confirmation action
does not change the data base state, so it is safe to read it), this requires a more flexible notion of
action refinement; see Sections 7 and 8.

3 Atomic Refinement

The basic idea underlying atomic action refinement is the following. An abstract specification
describes a system in terms of executions of basic actions, that —by their nature— are intrinsically
atomic; hence, when a specification is made more detailed via action refinement, the atomicity of
an abstract action should be preserved by the concrete process implementing that abstract action.
The atomic execution of a process means that it enjoys the following two properties:

All-or-nothing: the concrete process is either executed completely, or not at all; this implies that
the process is not observable during its execution, but only before and after.
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Non-interruptible: no other process can interrupt its execution; this implies that the atomic
process is never interleaved with others.

Observe that action refinement in Section 2 is not atomic: the problem described in Example 2.10
simply disappears if we assume that a1; a2 is executed atomically, as the intermediate state where
only a1 has been performed is not observable. (Hence, as we will see, rooted weak bisimilarity
is a congruence for atomic refinement.) There are many real problems where the assumption of
atomicity is vital, e.g., when mutual exclusion on a shared resource is necessary to prevent faulty
behaviour. For more discussion see also Section 1.3.

In order to understand atomic action refinement, it is useful to enhance the language with a
mechanism for making the execution of processes atomic. For this purpose, we add an atomiser
construct. The operational model has to be extended accordingly: it is necessary to divide the
set of states into the abstract (or observable) ones, in which no atomic process is running, and
the concrete (or unobservable) ones, which correspond to the intermediate states of some atomic
process. With these extensions, we can easily accommodate atomic action refinement within inter-
leaving semantics. Papers following this approach include [13, 19, 72, 75, 97]. Moreover, [48] takes
an intermediate position where action refinement is non-interruptible but not all-or-nothing; that
is, the concrete states are observable. Other papers dealing with some (weaker) form of atomicity
in process algebra are [16, 111].

In the above discussion, we have implicitly assumed that it is possible to put processes in paral-
lel; otherwise, the notion of interruption would not be meaningful. To make the assumption valid,
we enlarge the process algebra of the previous section with an operator for parallel composition;
however, for the sake of simplicity, we ignore communication for now. The problems due to com-
munication are treated extensively in Section 4, and are not essentially different for atomic and
non-atomic refinement.

3.1 Parallel composition and atomiser

The language we consider in this section, denoted Langatom , extends Lang seq of the previous section
(Page 13) with several new operators (underlined):

T ::= 0 | 1 | α | V + V | T;V | T ||| T | 〈V〉 | ∗T | T/A | T[a�V] | x | μx.V .

See also Table 16 (Page 85) for a complete overview of the different languages used in this chap-
ter. The definitions of free variables and syntactic substitution (Table 1) and of guardedness
(Definition 2.1) extend directly to the new operators. Their intuitive meaning and associated
well-formedness conditions are as follows:

• t ||| u is the parallel composition of the behaviours described by t and u, where all the actions
can be done by either sub-term in isolation (no communication), except for the termination
action � on which t and u have to synchronise. We impose as a well-formedness condition
that either t or u (or both) are abstract (where the notion of an abstract state is defined
below).

• 〈t〉 behaves like t, except that the intermediate states of the execution are not observable.
In particular, if t has no path ending in a �-transition, 〈t〉 does not offer any observable
behaviour. The operand of 〈t〉 is virgin, and hence may contain no auxiliary operator (either
1 or ∗).
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Figure 3: Two representations for 〈a1; a2〉 ||| b

• ∗t is an auxiliary operator expressing the residual of some atomised process; its meaning
differs from that of t only in that the former is considered to be a concrete term (unless it is
terminated), while the latter is an abstract term (provided it contains no more occurrences
of ∗). Being an auxiliary operator, due to well-formedness ∗ may not occur in any virgin
operand.

The operational semantics for 〈t〉 can be given at two different description levels. For illustration,
in Figure 3 we depict two alternative semantics for 〈a1; a2〉|||b. One possible semantics describes the
intermediate states of the execution; this requires to distinguish observable states and unobservable
ones (depicted as white circles) in the labelled transition system, as only the former states should
be considered when defining behavioural semantics. This line has been followed in, e.g., [75] and
also in [76, 72] where an axiomatisation of the low level operator used for the atomiser (called strong
prefixing) is given. The alternative semantics is more abstract, as the intermediate states are not
described in the operational model, at the price of labelling transitions with action sequences.
This line has been proposed in, e.g., [72]. Here we follow the former approach in the operational
semantics (although the atomiser construct presented here is more general than in the papers cited
above) and the second approach in the denotational semantics, where we use trees labelled on
sequences.

Abstract terms. In the well-formedness condition imposed above on parallel composition as
well as in the operational rules for parallel composition introduced below, we use the concept of an
abstract term. The set of abstract terms is defined inductively by the following rules:

• 0, 1, any variable x ∈ Var and any action α ∈ Act� are abstract;

• if t −�−→, then ∗t is abstract;

• if t and u are abstract, then t + u, t;u, t/A, t ||| u, 〈t〉, t[a�u] and μx.t are abstract.

All the terms in Langatom that are not abstract are called concrete. As we will see, if ∗t is abstract,
which is the case if and only if t −�−→, then both ∗t and t are bisimilar to 1. It follows that the
abstract states are roughly (namely, up to bisimilarity) given by the ∗-less fragment of Langatom .
On the other hand, concrete states are terms with some non-terminated subterm in the scope of a
∗-operator.

Well-formedness. To summarise the well-formedness conditions on Langatom :
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Table 4: Transition rules.

t −α→ t′ u abstract

t ||| u −α→ t′ ||| u
u −α→ u′ t abstract

t ||| u −α→ t ||| u′
t −�−→ t′ u −�−→ u′

t ||| u −�−→ t′ ||| u′

t −α→ t′

〈t〉 −α→ ∗t′
t −λ→ t′

∗t −λ→ ∗t′

t −λ→ t′ λ �= a

t[a�u] −λ→ t′[a�u]

t −a→ t′ u −α→ u′

t[a�u] −α→ (∗u′); t′[a�u]

• No virgin operand (V in the grammar) contains an auxiliary operator (1 or ∗);
• At least one of the operands of parallel composition must be abstract;

• Recursion is allowed on guarded variables only.

Operational semantics. The labelled transition system is 〈Langatom ,−→〉, where −→ is the tran-
sition relation defined by the rules in Table 4 (only the rules for the new operators and the two rules
for refinement are reported). Let us comment on the rules. The rules for parallel composition give
priority to the concrete component, if any: if only one of the two components is abstract, this has
to remain idle. Observe that there is no way to reach a state where both components are concrete,
starting from an initial abstract state (in fact, such a state would not be well-formed). Moreover,
if both components are abstract, the rules allow both to proceed. The rule for the atomiser is
simple: 〈t〉 does what t does, but the reached state is concrete (if not properly terminated). A
concrete state ∗t does what t does; the only difference is that the reached state is still concrete (if
not properly terminated). The rules for sequential composition are responsible for the ∗ clean-up,
when reaching an abstract state. The rule for refinement shows that the residual u′ is not only to
be non-interruptible (as in the corresponding rule of the previous section), but that the execution
is to be all-or-nothing (by making the intermediate states concrete).

Example 3.1 Consider t = 〈a〉; b and u = 〈a; b〉. It is easy to see that t −a→ (∗1); b −b→ 1 where all
the states are abstract, while u −a→ ∗(1; b) −b→ ∗1, where the intermediate state ∗(1; b) is concrete.
So, t ||| c will allow the execution of c in between a and b, while u ||| c will forbid this behaviour.

3.2 Denotational Semantics

We present a denotational semantics for the ∗-less fragment of Langatom , using trees (see Section 2.3
for the precise definition of a tree) labelled on Act+

τ ∪ {�} as a model. We use w to range over
Act+

τ .
The definitions for the basic operations are the same as in Section 2.3, except that sequential

composition and choice have to be adapted to sequences. Here we report only the definitions for
the two new operations (parallel composition and the atomiser) and for refinement. (Note that ∗
is not modelled denotationally.)

Parallel. If N1 ∩N2 = ∅, then T1 ||| T2 = Unf 〈N,−→, ι〉 where:
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Figure 4: Atomic trees denoting t = a; b; (c + d;0), 〈t〉, t[b�d ||| e] and 〈t〉[b�d ||| e].

• N = N1 ×N2;
• −→ = {((n1, n2), w, (n′

1, n2)) | n1 −w→1 n′
1} ∪ {((n1, n2), w, (n1, n

′
2)) | n2 −w→2 n′

2};
• ι = (ι1, ι2).

Atomiser. 〈T 〉 = Unf 〈N,−→′, ι〉 where:

• −→′ = {(ι, w1 · · ·wk, n) | k ≥ 1, ι −w1−→ · · · −wk−→ n −�−→ } ∪ {(n,�, n′) | n −�−→ n′}.

Action Refinement. If ι2 �−�−→2 , then T1[a�T2] = Unf 〈N1,−→, ι1〉 where:

• −→ = {(n,w′, n′) | n −w→1 n′, w′ ∈ R(w)} ∪ {(n,�, n′) | n −�−→ n′}

in which R(w) is the set of expansions of w, defined as follows:

R: ε �→ {ε}
αw �→ {α} ·R(w) if a �= α

aw �→ {w′ | ι2 −w
′�−−→2 } ·R(w)

and · is the concatenation operation on sets of strings.

The operation of parallel composition is nothing but the unfolding of the lts obtained by making
the (asynchronous) product of the two trees. The operation of atomising a tree yields a tree that
is of depth two (counting �). This indeed ensures that the resulting behaviour is atomic, as it is
performed in one single step (followed by �). Moreover, all the paths in T that do not reach a
terminated node are simply omitted; if all paths are so, then 〈T 〉 is isomorphic to T⊥ (the tree
modelling the deadlock constant 0). Finally, the refinement operation is a sort of relabelling: an
arc labelled w is replaced by possibly many arcs, connecting the same two end nodes, each one
with a label obtained by macro-expansion of w where every occurrence of a in w is replaced by
one of the possible terminated sequences of T (i.e., the steps of 〈T 〉); subsequently, the resulting
transition system is unfolded. The denotational semantics for the ∗-less fragment of Langatom is
obtained as a direct extension of Table 3 to the new operators. An example is given in Figure 4.

3.3 Congruences and axiomatisations

As done in the previous section, strong bisimulation equivalence is used to compare the two se-
mantics. However, the operational semantics is quite different, as states may be also concrete. So,
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Table 5: Some typical axioms for 〈 〉, sound modulo ∼ (above the line) and �w (all).

〈t;0〉 = 0

〈α〉 = α

〈〈t1〉; 〈t2〉〉 = 〈t1; t2〉

〈t1; (t2 + t3)〉 = 〈t1; t2〉+ 〈t1; t3〉

〈τ ; t〉 = 〈t〉

we first need to define which long steps are to be used in the definition of bisimulation for the
operational semantics.

To this aim, from the transition relation defined operationally over Langatom (Tables 2 and 4),
we derive a “long step” transition relation over the abstract terms in Langatom , denoted −→ as
well but labelled by Act+

τ ∪ {�}. Long step transitions relate a pair of abstract states as follows:
t −w→ t′ iff t −α1−→ t1 −α2−→ t2 · · · −αk−→ t′, where all ti are concrete (i = 1, . . . , k − 1) and w = α1 · · ·αk.
Bisimulation equivalence is thus defined by setting Lab = Act+

τ ∪ {�} in Definition 2.6; it relates
only those abstract states that are able to match their long steps. Under this interpretation, the
following holds:

Proposition 3.2

1. t ∼ [[t]] for all ∗-less t ∈ Langatom ;

2. ∼ is a congruence over the ∗-less fragment of Langatom .

In order to prove the first clause, for each long step of the operational semantics one finds a
corresponding single step in the denotational semantics, and vice versa; the correspondence is set
by an inductive argument on the term structure (taking into account the guardedness of recursive
terms), much like for Proposition 2.8.

As strong bisimilarity is a congruence, it is natural to look for axioms for the atomiser and
refinement operators. Some typical axioms for the atomiser are reported in Table 5; the axiomatic
treatment of refinement is deferred to Section 6. Another axiom system for a language with atomiser
is presented in [97]; since the assumptions there are quite different, it is no surprise that also the
axioms are quite different.

Passing to τ -insensitive equivalence, we need to abstract the observable behaviour of a one-step
sequence w, by removing all the occurrences of τ in it. Let w \ τ denote the resulting sequence;
e.g., aτb \ τ = ab \ τ = abτ \ τ = ab and τττ \ τ = ε. Then we define the relation =⇒ as follows:

t =⇒ u :⇔ t −w1−→ t1 · · · −wn−→ u

where wi \ τ = ε for 1 ≤ i ≤ n. Rooted weak bisimilarity (see Definition 2.9), in our setting of
transition labelled on sequences, is defined modulo the removal of τs; that is, u has to simulate a
transition t −w→ t′ in one of the following ways:

• either w \ τ = ε and (t′, u) is in the relation;

• or u =⇒−w
′
−→=⇒ u′ with w′ \ τ = w \ τ and (t′, u′) is in the relation.
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Figure 5: Critical sections and their refinement: SysI = SysS [cs1�a1; b1][cs2�b2 + c2]

We observe that �w is a congruence for atomic refinement. In fact, the counterexample reported
in Example 2.10 simply disappears if refinement is atomic.

Example 3.3 Consider again t = a; (b + τ) and t′ = a; (b + τ) + a such that t �w t′. According
to the rules for atomic refinement and rooted weak bisimilarity, t[a�a1; a2] �w 〈a1; a2〉; (b + τ) �w

〈a1; a2〉; (b + τ) + 〈a1; a2〉 �w t′[a�a1; a2].

Summarising, we have the following result:

Proposition 3.4 �w is a congruence over the ∗-less fragment of Langatom .

Table 5 contains a typical axiom for Langatom up to �w.

3.4 Application: Critical sections

Consider two processes repeatedly entering a critical section. Abstractly, the activities in the
critical section are modelled as a single action, cs i for i = 1, 2, and the system is specified by
SysS = Proc1 ||| Proc2 where the processes Proci are given by

Proci := csi;Proci .

Now suppose cs1 is refined into a1; b1 and cs2 into b2+c2; that is, the abstract system is refined into
SysI = SysS [cs1�a1; b1][cs2�b2 + c2]. Due to the nature of atomic refinement, the refined critical
sections do not overlap: in particular, b2 and c2 cannot occur in between a1 and b1. The behaviour
of the abstract and refined systems are given in Figure 5.

Unfortunately, the atomicity of the refinement can also affect actions for which it was not
intended. This can be seen by considering extensions of the above processes that also have a
non-critical section, ncsi:

Proc ′i := ncs i; cs i;Proci .

If we refine the csi-actions in Proc ′1 ||| Proc ′2 in the same way as above, then it turns out that not
only the critical section (cs2) but also the non-critical section (ncs2) of Proc ′2 is prevented from
proceeding during the critical section of Proc ′1 (between a1 and b1). This may not be the intended
behaviour. However, in order to avoid it, more information regarding the dependencies between
actions is needed than the current framework provides: in particular, it must be made clear that,
in contrast to cs1 and cs2, ncs1 and cs2 are independent and may safely overlap. In Section 7.2 we
show how one can use action dependencies to solve this type of problem.

4 Non-atomic refinement: An event-based model

In this and the next section, we consider refinement in a fully general language, comparable with
CCS, CSP or ACP. Compared to Section 3, we extend parallel composition with synchronisation,
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Table 6: Transition rules for synchronisation.

t −α→ t′ α /∈ A

t ||A u −λ→ t′ ||A u

u −α→ u′ α /∈ A

t ||A u −λ→ t ||A u′
t −λ→ t′ u −λ→ u′ λ ∈ A�

t ||A u −λ→ t′ ||A u′

resulting in terms t ||A u where A ⊆ Act is the synchronisation set ; t ||| u is a special case where
A = ∅. On the other hand, we drop the atomiser construct. The resulting language, Lang , is
thus generated by the following grammar (where the new operator w.r.t. Langseq of Section 2 is
underlined):

T ::= 0 | 1 | α | V + V | T;V | T ||A T | T/A | T[a�V] | x | μx.V .

See also Table 16 (Page 85) for a complete overview of the different languages used in this chapter.
As before, well-formedness implies that the auxiliary operator 1 does not occur in virgin operands
(V in the grammar) and that recursion is guarded. A more extensive discussion of Lang follows
below. In this section, we develop an event-based operational and denotational semantics for Lang ;
in the next section, we review the relevant congruence questions studied over the last decade. Note
that, except for the refinement operator, Lang essentially corresponds to a fragment of ACP [11]; in
particular, the parallel composition (which is based on TCSP, see [113]) has a standard operational
semantics given in Table 6.

It is clear from the discussion in the introduction that the standard lts semantics is not dis-
criminating enough to provide a compositional model for non-atomic refinement in the general
setting of Lang . To amend this, we add information in the form of events. Events serve to give a
closer identification of which occurrence of an action is being executed; as a consequence, the same
occurrence can be recognised among different transitions or different runs.

For the purpose of formalisation, we assume the existence of a global universe of events, Evt , with
∗ /∈ Evt (∗ being a special event used to model synchronisation and refinement of event structures),
which is closed under pairing, also with ∗; i.e., (Evt∗×Evt∗)\ (∗, ∗) ⊆ Evt where Evt∗ = Evt ∪{∗}.
The set of singular (i.e., non-paired) events is denoted Evt• = Evt \ (Evt∗ × Evt∗); this set is
assumed to be countably infinite. Evt∗ is ranged over by d, e; subsets of Evt∗ are denoted E,F,G.

In the operational semantics, events are used to enrich the transition labels: these are now taken
from ActEvt

τ� = (Evt×Actτ )∪{�} rather than just Actτ�; i.e., the non-termination transitions have
associated event identities. This allows us to distinguish the independent execution of actions from
their interleaving. Denotationally, we capture the behaviour of processes through event structures.

4.1 Event annotations and operational semantics

An immediate technical question is how event identities are generated and kept distinct for differ-
ent occurrences within a given model, given the fact that the terms of Lang do not contain any
information to this purpose. There are several possible answers:

• By interpreting models up to isomorphism, and implicitly or explicitly selecting isomorphic
representatives to guarantee distinctness of events; see, e.g., Winskel [140].

• By generating event identities automatically from the term structure, as in [47, 21]; see also
[78, 23] for an application of the same principle in a timed semantics for process algebras.
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• By adding information about event identities explicitly to the terms, through their annotation
at “compile time”, i.e., before evaluating them; see Langerak [100].

The first method is less suitable for operational semantics, since there not all event identities
are known beforehand; hence we do not follow this approach. For event-based semantics, the
third method is mathematically less sophisticated but gives rise to an (in our opinion) simpler
presentation. For that reason, instead of studying Lang directly, we consider the annotated language
Lang(Evt) generated by the following grammar (new or adapted operators are underlined):

t ::= 0 | 1 | eα | V + V | T;V | T ||A T | T/A | T[a�V, �e��T] | ex | e[T] | μx.V

where e ∈ Evt•. As an additional well-formedness condition, we require that the event annotations
are compatible. To make this precise, we introduce a set Et ⊆ Evt• of events syntactically occurring
within t, which is only defined if the annotations are compatible.

• 0 and 1 are the deadlock, resp. termination constants as before. We define E0 = E1 = ∅.
• eα denotes the action α ∈ Actτ annotated with the event e ∈ Evt• used to model its occur-

rence. We define Eeα = {e}.
• t + u denotes choice; we require Et ∩Eu = ∅ and define Et+u = Et ∪Eu.

• t;u denotes sequential composition; we require Et ∩Eu = ∅ and define Et;u = Et ∪ Eu.

• t ||A u denotes the parallel composition of t and u with synchronisation over A, meaning
that actions in A (and also the termination action �) may only be executed by t and u
simultaneously, and all others independently by either operand. We use t ||| u = t ||∅ u as
a special case. As for the previous binary operators, we require Et ∩ Eu = ∅ and define
Et||Au = Et ∪Eu.

• t/A denotes hiding; we define Et/A = Et.

• t[a�u,�e��v] denotes the refinement of the actions a occurring in t by u; the latter may not
contain the termination constant 1. Moreover, �e��v denotes a vector of pending refinements
e1�v1, . . . , en�vn (with n = |�e| = |�v|), where the ei identify distinct occurrences of a in t (i.e.,
ei = ej implies i = j) that are currently being executed, or actually refined; the vi represent
the corresponding non-terminated states reached during the execution of the refinement body
u. We require Et ∩Eu = ∅ and Evi ⊆ Eu for all 1 ≤ i ≤ n, and define Et[a�u,�e��v] = Et ∪ Eu.

In the sequel, we write {�e} = {e1, . . . , en} for the set of events in �e.

• ex denotes the process variable x ∈ Var , annotated with an event e ∈ Evt•. This annotation
is used in order to prevent the re-occurrence of event identities in recursive unfoldings. We
define Eex = {e}.

• e[t], with e ∈ Evt•, models the unfolding of the process invocation ex within the body of a
recursive definition μx.t; its effect is the “relocation” of the events in t to the fresh range
{e} × Evt . We require t to be well-formed (in particular, Et should be defined) and define
E

e[t] = {e}. The notion of syntactic substitution is adapted accordingly; see below.

• μx.t denotes the recursive binding of the (guarded) process variable x in t. We let Eμx.t = Et.

The definition of the free variables and substitution is extended to Lang(Evt) (see Table 1); the
only interesting new case is ex, for which fv(ex) = {x} and ex{t/x} = e[t]. The latter preserves the
event annotation of process variables, and shows the reason why we need terms of the form e[t] at
all. For instance, the first three approximations of the annotated term μx.0a; 1x (according to the
definition in Section 2.3) are given by 0, 0a; 1[0] and 0a; 1[0a; 1[0]].
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Well-formedness. To summarise the well-formedness conditions on Lang(Evt):

• No virgin operand (V in the grammar) contains an occurrence of an auxiliary operator (1);

• Recursion is allowed on guarded variables only;

• The set Et of event annotations is defined.

We then have the following property (which is straightforward to prove):

Proposition 4.1 For all well-formed t, u ∈ Lang(Evt), t{u/x} is well-formed and Et{u/x} = Et.

Annotating and stripping. Annotated terms are no more than an auxiliary device to give
an event-based semantics for Lang . To make the connection between Lang and Lang(Evt) more
explicit, consider a partial function strip:Lang(Evt) → Lang that is undefined on terms e[t] and on
t[a�u,�e��v] for nonempty �e, and otherwise removes all event annotations. It should be clear that
strip is surjective, meaning that there is an annotated term for any t ∈ Lang ; however, it is far
from injective, since there are many ways to annotate t in a well-formed manner. For instance,
one particularly simple method is to assume N ⊆ Evt• and consecutively number the subterms to
be annotated, from left to right; e.g., (a; b ||a c; a)[a�μx.d;x] is annotated according to this method
as (0a; 1b ||a 2c; 3a)[a�μx.4d; 5x]. When defining the semantics, we will make sure that the chosen
annotation of a term makes no difference; that is, if strip(t) = strip(u) for t, u ∈ Lang(Evt) then t
and u will be equivalent.

4.2 Operational event-based semantics

A major advantage of annotated terms is that their operational semantics is a straightforward
extension of the standard operational semantics (given in Tables 2 and 4), except for the refinement
operator, which now has to be treated in full generality. The presentation below is based on [121].

Event transition systems. As stated above, in order to model the behaviour of Lang(Evt) we
take transition labels from ActEvt

τ� (= (Evt ×Actτ ) ∪ {�}) rather than Actτ�. The idea is that the
event identifier uniquely identifies the action occurrence; in other words, on the level of events the
transition system is deterministic. Furthermore, if two events can be executed in either order (in
a given state), we call them independent (in that state); the state reached is independent of the
ordering, and moreover, any set of pairwise independent events will remain independent if one of
them is executed. Formally:

Definition 4.2 An event transition system is an ActEvt
τ�-labelled transition system such that for all

n ∈ N

• If n −e,α1−−→ n′
1 and n −e,α2−−→ n′

2, then α1 = α2 and n′
1 = n′

2.

• e1 and e2 are called n-independent if n −e1,α1−−−→−e2,α2−−−→ n′ and n −e2,α2−−−→−e1,α1−−−→ n′′; if e1 and e2

are n-independent, then n′ = n′′.

• If e1, e2, e3 are pairwise n-independent and n −e1,α1−−−→ n′, then e2 and e3 are n′-independent.

It follows that if a set of events F is pairwise n-independent for some node n, then starting in n,
the events in F can be executed in arbitrary order, and the state reached is independent of the
order of execution. We use n −F→ to denote that F is pairwise n-independent. For instance, we will
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see that 0a ||| 1b −{(0,∗),(∗,1)}−−−−−−−→, signalling the independence of a and b, but t = 0a; 1b + 2b; 3a �−{0,2}−−−−→
although t −0,a−→ and t −2,b−→, since here the actions a and b are not independent.

To compare the behaviour of event transition systems, we define an extension of strong bisim-
ulation which allows events to be converted bijectively between the behaviours under comparison,
in order to abstract away sufficiently from the precise occurrence identifiers.

Definition 4.3 Let 〈ActEvt
τ�, N,→〉 be an event transition system.

• For any bijective φ:Evt → Evt, a φ-simulation is a relation ρ ⊆ N × N such that for all
n1 ρ n2:

– if n1 −e,α−→ n′
1 then n2 −φ(e),α−−−→ n′

2 with n′
1 ρ n′

2.

– if n1 −�−→ n′
1 then n2 −�−→ n′

2 with n′
1 ρ n′

2.

• n1 and n2 are called event bisimilar, denoted n1 ∼ev n2, if there is a φ-simulation ρ (for some
φ) such that ρ−1 is a φ−1-simulation.

Note that, in contrast to more sophisticated relations such as history-preserving bisimilarity (cf.
[60]), in the above definition there is a single mapping φ establishing a static, one-to-one relation
between the events of the transition systems under comparison. This makes for a very discriminating
equivalence: for instance, for event transition systems generated by stable event structures, event
bisimilarity coincides with isomorphism of the event structures’ configurations (see the discussion
after Proposition 4.15). Indeed, we will have 1a + 2a �∼ev 3a, even though both 1a ∼ev 3a and
2a ∼ev 3a.

The event-based operational semantics of Lang(Evt) is given in Table 7. For the fragment
without refinement (the part of the table above the line), the semantics is unoriginal; see [99] for a
very similar set of rules.

Extended refinement functions. The definition of the operational semantics of refinement
requires some care. During the execution of a refined action, the remainder of the refinement must
be “stored” somewhere in the term. For that purpose, we have extended refinements from terms
t[a�u] to terms t[a�u, e1�v1, . . . , ek�vk] for arbitrary finite k; for all 1 ≤ i ≤ k, ei is an event of t
under refinement, and vi is the current remainder. The events in {�e} are called busy. The remainder
is kept only as long as it is not terminated; furthermore, during the same period, the event ei is
not actually executed, i.e., it is kept in the term t. The latter is necessary to make sure that events
that causally follow ei are not executed prematurely, before the refinement of ei is terminated.

Note that the ei may very well resolve choices within t. Since we do not let t execute the ei

as long as the corresponding vi is not terminated, there is the danger that an event that actually
conflicts with one of the busy events, say ei, is executed as well, despite the fact that the choice
has actually been resolved in favour of ei. In order to prevent this from happening, only events of
t that are independent of all the ei may occur.

Some notation: for all 1 ≤ i ≤ k, (�e��v) ± (ei�v′) denotes the replacement of the residual ei�vi

by ei�v′, and (�e��v) \ ei denotes the removal of the residual ei�vi from the vector.
The rules in Table 7 (below the line) can be understood as follows:

• The first rule concerns the execution of a non-refined action; the premise t′ −{�e}−→ in this rule
and others makes sure that the event d is not in conflict with any of events ei currently under
refinement. The event identity is changed from d to (d, ∗), for uniformity with events that
are properly refined.
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Table 7: Operational event-based semantics; λ ∈ ActEvt
τ� arbitrary

1 −�−→ 0 eα −e,α−→ 1

t −α→ t′

t + u −α→ t′
u −α→ u′

t + u −α→ u′
t −λ→ t′ λ �= �

t;u −λ→ t′;u

t −�−→ t′ u −α→ u′

t;u −α→ u′

t −e,α−→ t′ α /∈ A

t ||A u −(e,∗),α−−−−→ t′ ||A u

u −e,α−→ u′ α /∈ A

t ||A u −(∗,e),α−−−−→ t ||A u′

t −d,α−→ t′ u −e,α−→ u′ α ∈ A

t ||A u −(d,e),α−−−−→ t′ ||A u′

t −�−→ t′ u −�−→ u′

t ||A u −�−→ t′ ||A u′
t −λ→ t′ λ /∈ Evt ×A

t/A −λ→ t′/A

t −e,a−→ t′ a ∈ A

t/A −e,τ−→ t′/A

t −d,α−→ t′

e[t] −(e,d),α−−−−→ e[t′]

t −�−→ t′

e[t] −�−→ e[t′]

t{μx.t/x} −α→ t′

μx.t −α→ t′

t −d,α−→ t′ −{�e}−→ α �= a

t[a�u, �e��v] −(d,∗),α−−−−→ t′[a�u, �e��v]

t −�−→ t′

t[a�u] −�−→ t′[a�u]

t −d,a−→ t′ −{�e}−→ u −e
′,α−−→ u′ �−�−→

t[a�u, �e��v] −(d,e′),α−−−−→ t[a�u, �e��v, d�u′]

t −d,a−→ t′ −{�e}−→ u −e
′,α−−→ u′ −�−→

t[a�u, �e��v] −(d,e′),α−−−−→ t′[a�u, �e��v]

vi −e
′,α−−→ v′ �−�−→

t[a�u, �e��v] −(ei,e
′),α−−−−→ t[a�u, (�e��v)± (ei�v′)]

t −ei,a−−→ t′ vi −e
′,α−−→ v′ −�−→

t[a�u, �e��v] −(ei,e
′),α−−−−→ t′[a�u, (�e��v) \ ei]

• The second rule concerns termination; note that there can be no remaining refinements.

• The third and fourth rules concern the start of a new refinement instance; the latter deals
with the case where the refinement immediately terminates again (i.e., it consisted of a single
action only).

• The last two rules deal with the continuation of a busy event, which either remains busy
(if the remainder is still not terminated) or disappears from the scene (if the remainder is
terminated).

Example 4.4 Consider the derivable transitions of the term t = (0b; 1a ||a (2c + 3a))[a�4d; 5d].

• The parallel composition gives rise to

0b; 1a ||a (2c + 3a) −(0,∗),b−−−→ 1; 1a ||a (2c + 3a) −(1,3),a−−−→ 1 ||a 1 −�−→ 0 ||a 0

(∗,2),c
⏐⏐⏐
 (∗,2),c

⏐⏐⏐

0b; 1a ||a 1 −(0,∗),b−−−→ 1; 1a ||a 1
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• Taking the refinement into account, we get

(0b; 1a ||a (2c + 3a))[a�4d; 5d] −((0,∗),∗),b−−−−−→ (1; 1a ||a (2c + 3a))[a�4d; 5d] −((1,3),4),d−−−−−−→ · · ·
((∗,2),∗),c

⏐⏐⏐
 ((∗,2),∗),c
⏐⏐⏐


(0b; 1a ||a 1)[a�4d; 5d] −((0,∗),∗),b−−−−−→ (1; 1a ||a 1)[a�4d; 5d]

where the upper right hand transition leads to

(1; 1a ||a (2c + 3a))[a�4d; 5d] −((1,3),4),d−−−−−−→ (1; 1a ||a (2c + 3a))[a�4d; 5d, (1, 3)�1; 5d]

−((1,3),5),d−−−−−−→ (1 ||a 1)[a�4d; 5d] −�−→ (0 ||a 0)[a�4d; 5d]

In particular, note that (1; 1a ||a (2c + 3a))[a�4d; 5d, (1, 3)�1; 5d] �− ((∗,2),∗),c−−−−−−→.

The first property to be proved is that the operational semantics indeed gives rise to an event
transition system as defined in Definition 4.2. Furthermore, it is important to show that the asso-
ciated equivalence (in this case, event bisimilarity) is a congruence. The proof is a straightforward
variation on the standard case (modified by the fact that event identities may be converted).

Proposition 4.5 ∼ev is a congruence over Lang(Evt).

Moreover, it can be shown that all annotations of a given term in Lang are event bisimilar; i.e., the
following holds (proved by induction on term structure):

Proposition 4.6 For all t, u ∈ Lang(Evt), if strip(t) = strip(u) then t ∼ev u.

4.3 Stable event structures

The denotational semantics for Lang(Evt) we present here is based on the stable event structures
of Winskel [140], extended with a termination predicate as in [64].

Definition 4.7 A stable event structure is a tuple E = 〈E,#,�,Ter , �〉, where

• E ⊆ Evt∗ is a set of events;

• # ⊆ E × E is an irreflexive and symmetric conflict relation. The reflexive closure of # is
denoted #=. The set of finite, consistent (i.e., conflict-free) subsets of E will be denoted
Con = {F ⊆fin E | �d, e ∈ F : d # e}.

• � ⊆ Con × E is an enabling relation, which satisfies

Saturation: If F � e and F ⊆ G ∈ Con, then G � e;

Stability: If F � e, G � e and F ∪G ∪ {e} ∈ Con, then F ∩G � e.

The set of initial events will be denoted Ini = {e ∈ E | ∅ � e}.

• Ter ⊆ Con is a termination predicate on sets of events, which satisfies

Completeness: If F ∈ Ter and F ⊆ G ∈ Con, then F = G.

• �:E → Actτ is a labelling function.
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The class of stable event structures is denoted ES. In the sequel, we drop the qualifier “stable” and
just talk about event structures. We sometimes write EE , #E etc. for the components of an event
structure E and Ei, #i etc. for the components of an event structure Ei. As a further notational
convention, we write e1, . . . , en � e for {e1, . . . , en} � e and � e for ∅ � e. Two event structures
E1, E2 are said to be isomorphic, denoted E1

∼= E2, if there is a bijection φ:E1 → E2 (called an
isomorphism) such that d #1 e iff φ(d) #2 φ2(e), F �1 e iff φ(F ) �2 φ(e), F ∈ Ter1 iff φ(F ) ∈ Ter2

and �1 = �2 ◦ φ.
The intuition behind stable event structures is that an action a may occur if an event e ∈ E with

�(e) = a is enabled, meaning that F � e for the set F of events that have occurred previously. If
two events are enabled simultaneously, i.e., F � d and F � e, then either d # e, meaning that after
d or e has occured, the other is ruled out; or d and e are independent. A more formal definition of
the meaning is given through the configurations of an event structure; see further below.

With respect to the standard definition in [140], the only modification is the extension with the
termination predicate. For this, we have used a solution due to [64]: termination is modelled by a
predicate on sets of events that may hold only for the complete consistent sets (i.e., those that are
maximal w.r.t. ⊆). Note that this completeness condition implies an analogy to the conditions for
the enabling relation:

Saturation: If F ∈ Ter and F ⊆ G ∈ Con , then G ∈ Ter ;

Stability: If F,G ∈ Ter and F ∪G ∈ Con, then F ∩G ∈ Ter .

In fact, F ∈ Ter can also be interpreted as F � e� for some special termination event e� signalling
termination —where, however, we do not really model e� explicitly. As a consequence of the
completeness of Ter , the following holds:

Lemma 4.8 If E ∈ ES such that ∅ ∈ Ter, then E = 〈∅, ∅, ∅, {∅}, ∅〉.

In order to deal with recursion, just as for the tree semantics in the previous sections we use an
approximation ordering over the class of models, in this case ES. It is essentially the one used in
[140].

E1 � E2 :⇔ E1 ⊆ E2,
#1 = #2 ∩ (E1 × E1),
�1 = �2 ∩ (Con1 × E1),
Ter1 = Ter2 ∩ Con1,
�1 = �2 � E1

Moreover, for an arbitrary set {Ei}i∈I ⊆ ES, the component-wise union of the Ei is written
⊔

i∈I Ei.
We then recall the following property (see [140, Theorem 4.4]):

Proposition 4.9 〈ES,�〉 is a complete partial order, with bottom element 〈∅, ∅, ∅, ∅, ∅〉 and least
upper bounds

⊔
i Ei = 〈

⋃
i Ei,

⋃
i #i,

⋃
i �i,

⋃
i Ter i,

⋃
i �i〉 for all �-directed sets {Ei}i ⊆ ES.

4.4 Denotational event-based semantics

We now define a number of partial operations on ES, corresponding to the operators of Lang(Evt).
By relying on the annotation of terms, we will make sure that the operations are only applied where
they are defined. For arbitrary F ⊆ Evt∗ × Evt∗, we use the following notation:

πi(F ) = {ei | (e1, e2) ∈ F} (i = 1, 2)
F (d) = {e | (d, e) ∈ F}
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Thus πi projects onto the i’th component, and F (d) is a function-like use of F (albeit set-valued,
since F is actually a relation). The definition of the constructions is inspired by [30, 64, 140], except
for our treatment of termination. Note especially the construction for refinement, E [R]: this relies
on a function R mapping all the events of E (and not just the a-labelled ones as in the operational
semantics) to (non-terminated) event structures.

Definition 4.10 We use the following constructions on event structures:

Deadlock. E⊥ = 〈∅, ∅, ∅, ∅, ∅〉.
Termination. E� = 〈∅, ∅, ∅, {∅}, ∅〉.
Single action. Ee,α = 〈{e}, ∅, {(∅, e), ({e}, e)}, {{e}}, {(e, α)}〉 for arbitrary e ∈ Evt∗.

Sequential composition. If E1 ∩ E2 = ∅, then E1; E2 = 〈E,#,�,Ter , �〉 such that

• E = E1 ∪E2;
• # = #1 ∪#2;
• � = {(F, e) | F ∩ E1 �1 e, F ∩ E2 ∈ Con2} ∪ {(F, e) | F ∩ E1 ∈ Ter1, F ∩ E2 �2 e};
• Ter = {F ⊆ E | F ∩E1 ∈ Ter1, F ∩ E2 ∈ Ter2};
• � = �1 ∪ �2.

Choice. If E1 ∩ E2 = ∅ and ∅ /∈ Ter1 ∪ Ter2, then E1 + E2 = 〈E,#,�,Ter , �〉 such that

• E = E1 ∪E2;
• # = #1 ∪#2 ∪ (E1 × E2) ∪ (E2 × E1);
• � = �1 ∪ �2 ∪ (Con1 × Ini2) ∪ (Con2 × Ini1);
• Ter = Ter1 ∪ Ter2;
• � = �1 ∪ �2.

Parallel composition. E1 ||A E2 = 〈E,#,�,Ter , �〉 such that

• E = (
⋃

a∈A �−1
1 (a)× �−1

2 (a)) ∪ (�−1
1 (Actτ \ A)× {∗}) ∪ ({∗} × �−1

2 (Actτ \ A));
• #= = {((d1, d2), (e1, e2)) ∈ E × E | d1 #=

1 e1 �= ∗ ∨ d2 #=
2 e2 �= ∗};

• � = {(F, (e1, e2)) ∈ Con × E | ∀i ∈ {1, 2}: ei = ∗ ∨ πi(F ) \ ∗ �i ei};
• Ter = {F ∈ Con | ∀i ∈ {1, 2}:πi(F ) \ ∗ ∈ Ter i};
• � = {((e1, e2), α) ∈ E × Actτ | α = �1(e1) ∨ α = �2(e2)}.

Hiding. E1/A = 〈E1,#1,�1,Ter1, �〉, where �(e) = τ if e ∈ �−1
1 (A) and �(e) = �1(e) otherwise.

Refinement. If R:E1 → (ES \ E�), then E1[R] = 〈E,#,�,Ter , �〉 such that

• E =
⋃

e∈E1
({e} × ER(e));

• # = {((d1, d2), (e1, e2)) ∈ E × E | d1 #1 e1 ∨ (d1 = e1 ∧ d2 #R(d1) e2)};
• � = {(F, (e1, e2)) ∈ Con × E | ready(F ) �1 e1, F (e1) �R(e1) e2};
• Ter = {F ∈ Con | ready(F ) ∈ Ter1};
• � = {((e1, e2), α) ∈ E × Actτ | α = �R(e1)(e2)}.

where for all F ∈ Con, ready(F ) = {d ∈ π1(F ) | F (d) ∈ TerR(d)} is the set of events from E1

whose refinement has reached a terminated configuration.

Relocation. e× E1 = 〈E,#,�,Ter , �〉 such that
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• E = {e} × E1;
• # = {((e, d1), (e, e1)) | d1 #1 e1};
• � = {({e} × F, (e, d)) | F �1 d};
• Ter = {{e} × F | F ∈ Ter1};
• � = �1 ◦ π2.

Example 4.11 Consider again the term t = (0b; 1a ||a (2c + 3a))[a�4d; 5d] of Example 4.4.

• The subterm 0b; 1a is modelled by the structure E1 = E0,b; E1,a with E1 = {0, 1}, no conflicts,
enablings �1 0 and 0 �1 1, termination predicate {{0, 1}} and labelling 0�b, 1�a. Analogous
for 4d; 5d.

• The subterm 2c + 3a is modelled by the structure E2 = E2,c + E3,a with E2 = {2, 3}, conflict
2 #2 3, enablings �2 2 and �2 3, termination predicate {{2}, {3}} and labelling 2�c, 3�a.

• The parallel composition yields E3 = E1 ||a E2 with E3 = {(0, ∗), (∗, 2), (1, 3)}, conflict (∗, 2) #3

(1, 3), enablings �3 (0, ∗), (0, ∗) �3 (1, 3) and �3 (∗, 2), termination predicate {{(0, ∗), (1, 3)}}
and labelling (0, ∗)�b, (∗, 2)�c, (a, 3)�a.

• The refinement in t gives rise to R:E3 → ES with R(0, ∗) = E(0,∗),b, R(∗, 2) = E(∗,2),c and
E(1,3) = E4,d; E5,d. t is then modelled by E = E3[R] with E = {e1, e2, e3, e4} where

e1 = ((0, ∗), ∗) e2 = ((∗, 2), ∗) e3 = ((1, 3), 4) e4 = ((1, 3), 5)

and with conflicts e2 # e3 and e2 # e4, enablings � e1, e1 � e3, e3 � e4 and � e2, termination
predicate {{e1, e3, e4}} and labelling e1�b, e2�c, e3�d, e4�d.

The first thing to make sure of is that the above constructions indeed yield event structures, and
moreover, that an isomorphic argument gives rise to an isomorphic result.

Proposition 4.12 Each of the operators in Definition 4.10 maps into ES and is well-defined up
to isomorphism.

For refinement, this was proved in [64]; for the other operators except sequential composition, see
[30] (except for the termination predicate, whose construction, however, is very similar to that of
enabling). For sequential composition, finally, the proof is straightforward.

The denotational event structure semantics of Lang(Evt) is given in Table 8. It should be
noted that the disjointness requirements in the denotational constructions for choice and sequential
composition are guaranteed to be satisfied due to the well-formedness of annotated terms. The
most interesting definition is that for refinement: in principle, the semantic refinement function
maps the events of the term being refined to the event structures obtained as the denotational
semantics of the syntactic refinement function; however, the events that are in conflict with some
busy event of the refinement are mapped to the deadlocked structure instead, to model the fact
that, even if such events have not yet been removed from t (as we have seen in Example 4.4, choices
in t are not resolved syntactically until the refinement has terminated), they nevertheless play no
further role in the overall behaviour.

The following is the denotational counterpart to Proposition 4.6, namely that two annotations
of the same basic term give rise to isomorphic event structures:

Proposition 4.13 For all t, u ∈ Lang(Evt), if strip(t) = strip(u) then [[t]] ∼= [[u]].
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Table 8: Denotational event structure semantics; op is the semantic counterpart of op

[[0]] = E⊥
[[1]] = E�

[[eα]] = Ee,α

[[t[a�u,�e��v]]] = [[t]][R] , where R(d) =

⎧⎪⎪⎨
⎪⎪⎩
E∗,b if �[[t]](d) = b �= a and �ei ∈ {�e}: d #[[t]] ei

[[u]] if �[[t]](d) = a and �ei ∈ {�e}: d #=
[[t]] ei

[[vi]] if d = ei

E⊥ otherwise
[[e[t]]] = e× [[t]]

[[μx.t]] =
⋃

i∈N
[[μix.t]]

[[op(t1, . . . , tn)]] = op([[t1]], . . . , [[tn]]) for all other operators op

4.5 Compatibility of the semantics

In order to compare the event-based operational and denotational semantics, we must first decide on
a relation up to which we wish them to be compatible. Isomorphism of the denotational semantics is
certainly much stronger than (event) bisimilarity of the operational semantics; in fact, this was also
already true for the sequential language in Section 2. We therefore choose event bisimilarity as the
compatibility criterion. (Similar compatibility results of event-based operational and denotational
semantics, albeit not including refinement, were given in [45, 102].

This means that we have to generate event transition systems from event structures. The
most natural way to do this is to regard the event structure’s configurations as states and define
transitions from each configuration to all its direct ⊂-successors. Formally:

Definition 4.14 Let E ∈ ES.

• An event trace of E is a sequence e1 · · · en ∈ E∗ such that ¬(ei #= ej) for all 1 ≤ i < j ≤ n
(it is duplication- and conflict-free) and e1, . . . , ei � ei+1 for all 1 ≤ i < n (it is secured).

• A configuration of E is a set F ⊆ E such that F = {e1, . . . , en} for some event trace e1 · · · en.

• An event transition between configurations, F −e,α−→ G, holds iff e /∈ F , G = F ∪ {e} and
α = �(e). Furthermore, there is a transition F −�−→ • for each F ∈ Ter, where • is a special
state introduced only for this purpose.

For arbitrary E , we denote T (E) = 〈C(E) ∪ {•},−→, ∅〉 (where C(E) is the set of configurations of E
and −→ the transition relation defined above). Note that T (E) is indeed an event transition system
in the sense of Definition 4.2. For instance, the event structure E developed in Example 4.11 gives
rise to the following transition system T (E):

∅ −e1,b−−→ {e1} −e3,d−−→ {e1, e3} −e4,d−−→ {e1, e3, e4} −�−→ •
e2,c

⏐
 e2,c
⏐


{e2} −e1,b−−→ {e1, e2}

It is easy to see that this is event bisimilar to the transition system generated by the operational
semantics (Example 4.4). Since information is lost in the generation of configurations from event
structures, one can expect event bisimilarity to be strictly weaker than event structure isomorphism.
The following proposition states that it is indeed weaker.
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Proposition 4.15 If E1
∼= E2 then T (E1) ∼ev T (E2).

To see that the reverse implication does not hold, consider the event structure semantics of the terms
1a; 2b; 3c and 1a; (2b ||| 3c) ||b,c 4b; 5c. In the first of these, the third, c-labelled event (with identity 3)
is enabled by the b-labelled event 2 only; i.e., 2 � 3. In the second, on the other hand, the c-labelled
event (here (3, 5)) is enabled by the combination of a- and b-events; i.e., (1, ∗), (2, 4) � (3, 5). (In
fact, event bisimilarity of event structures coincides with isomorphism of the sets of configurations
of those event structures.)

We can now state the compatibility result of the event-based operational and denotational
semantics of Lang .

Proposition 4.16 For any t ∈ Lang(Evt), t ∼ev T ([[t]]).

4.6 Application: A simple data base

To show the potential of non-atomic refinement of synchronising actions, we consider a variation
on the data base example of Section 2.5. Namely, we assume that, in addition to updating and
querying the data base, one may also make a backup copy of it. We abstract away from the state of
the data base; extending it to the n-state version (see Section 2.5) makes no essential difference to
the current example (except for making the transition system more complicated). The behaviour
of the date base is specified by DataS , defined by

DataS := State ||upd Backup
State := (qry + upd);State

Backup := (copy + upd);Backup .

Now suppose that on a more concrete level, both the update and the copy operations are split
into two phases: upd�req ; cnf (as in Section 2.5) and copy�back ; copy (where back is a request to
make a backup copy and copy is re-used on the concrete level to stand for the actual operation of
copying). Thus, the refined behaviour is specified by

DataI := DataS [upd�req ; cnf ][copy�back ; copy ]

The abstract and refined behaviour are shown in Figure 6. Note that qry and copy in DataS are
independent (which is evident from the fact that these actions give rise to a diamond in the event
transition system). As a consequence of this independence, in DataI qry may occur while the
(refined) backup operation is in progress, i.e., between back and the concrete copy , whereas req is
disabled at that time; on the other hand, qry is not enabled while the (refined) update operation is
in progress, i.e., between req and cnf . In fact, DataI is (both interleaving and event) bisimilar to
the process where the refinements are interpreted syntactically, given by Stateflat ||req ,cnf Backupflat

where

Stateflat := (qry + req ; cnf );Stateflat

Backupflat := (back ; copy + req ; cnf );Backupflat .

The relation between semantic and syntactic refinement is discussed extensively in Section 6. A
final observation is that DataS is interleaving bisimilar (but not event bisimilar) to a process where
all actions are specified sequentially, given by Dataseq

S with the following definition:

Dataseq
S := (qry + copy + upd);Dataseq

S .
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Figure 6: An initial fragment of the event-based operational semantics of DataS and DataI (event
identities omitted)

If we refine Dataseq
S in the same way as DataS, the resulting behaviour is not interleaving bisimilar

to DataI : in the refinement of Dataseq
S , qry cannot occur between back and copy . Once again, this

is evidence of the fact that interleaving bisimilarity is not a congruence for the refinement operator.

5 Non-atomic refinement: Other observational congruences

In the previous section, we have chosen a particular modelling principle (namely, action occurrences
are events) and shown that this can be used to give semantics to a process algebra with action
refinement; moreover, the corresponding notion of (event) bisimulation is a congruence. However,
one may wonder if this congruence is the most suitable one. For instance, event bisimilarity
distinguishes between the terms “(a + b); c” and “a; c + b; c”; for most purposes this distinction is
not relevant.

A large part of the literature on action refinement is devoted to the quest for alternative congru-
ences, in particular ones that are weaker (less distinguishing) than event bisimilarity. As a special
instance, one can search for the coarsest congruence for action refinement contained within a given
interleaving relation. There are two ways to go about this quest: to define equivalences over event
structures that are weaker than isomorphism and investigate the induced relation on terms, or to
develop alternative models altogether. An impressive overview based on the first of these methods
has been drawn up by Van Glabbeek and Goltz in [64].

In this section, we review three possible bases for alternative models: pomsets (Section 5.1),
causal links (Section 5.2) and splitting (Section 5.3). Pomsets give rise to a congruence on the level
of traces but not when combined with bisimilarity. In contrast, causal links can be combined with
bisimilarity into a congruence. Finally, with some care, splitting can be used to obtain coarsest
congruences. In fact, in Section 5.4 we present an operational semantics directly based on the idea
of splitting.

The material in this section is based on the language Lang introduced in the previous section
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(Page 29); the semantics in Section 5.4 uses an extension of it, denoted LangST .

5.1 Pomsets

The use of pomsets for the modelling of distributed system behaviour has been proposed first
by Grabowski [79] (who, among other things, introduces the special class of so-called N-free or
series-parallel pomsets, also investigated by Aceto in [1], as an auxiliary device to study Petri nets)
and strongly advocated by Pratt [115] (who introduced the term “pomset”); other references are
Jónsson [95] (who investigates pomsets from a more mathematical perspective), Gischer [55] (who
works out Pratt’s framework in more detail) and Rensink [122]. Furthermore, also Mazurkiewicz
traces (see [103, 104]) are tightly connected to a certain class of pomsets.

Mathematically, a pomset is an isomorphism class of labelled partial orders. For the current
purpose, the elements of the partial orders are events and their labels are action names. The basic
definitions are listed below.

• A labelled partial order (lpo) is a tuple p = 〈E,<, �〉, where E ⊆ Evt is a set of events causally
ordered by the irreflexive and transitive relation < ⊆ E ×E, and �:E → Actτ� is a labelling
function.

• If pi = 〈Ei, <i, �i〉 is an lpo for i = 1, 2, then p1 and p2 are called isomorphic if there is a
bijection f :E1 → E2 such that d <1 e iff f(d) <2 f(e) for all d, e ∈ E1 and �1 = �2 ◦ f .

• The isomorphism class of a poset 〈E,<, �〉 is called a pomset. The class of all pomsets is
denoted Pom.

By taking isomorphism classes of posets, the precise identities of events are abstracted away from
before they can be used to pinpoint the exact moment at which choices are resolved. Consequently,
a pomset-based model is more abstract than an event-based model and thus induces a weaker
equivalence over Lang .

Pomset transitions from event transitions. In fact, from the event transition systems used
for the operational semantics in the previous section (Definition 4.2), one can generate pomset-
labelled transition systems, in the following fashion:

• Each sequence of event-action-pairs, say (e1, α1) (e2, α2) · · · (en, αn) ∈ (Evt × Actτ )∗, can
be regarded as an lpo that happens to be totally ordered: namely p = 〈E,<, �〉 where
E = {e1, . . . , en}, ei < ej iff i < j and �(ei) = αi for all 1 ≤ i, j ≤ n.

• For each pair of states s, s′ between which there is a path not containing a �-labelled tran-
sition, one can generate an lpo by considering all paths from s to s′ and intersecting their
ordering. That is, let p1, . . . , pn with pi = 〈Ei, <i, �i〉 be the set of totally ordered lpo’s gen-
erated from transition paths between s and s′ in the fashion described above; then Ei = Ej

and �i = �j for all 1 ≤ i, j ≤ n due to the properties of the transition system. This gives rise
to another lpo q = 〈E,<, �〉 with E = E1, < =

⋂
1≤i≤n <i and � = �1; we let s −q→ s′.

• �-labelled transitions are left unchanged.

• Each lpo thus obtained can be turned into a pomset by taking its isomorphism class.

The idea is that in the event-based view, each sequence of transitions corresponds to the execution
of a causally ordered set of labelled events; hence an lpo. Due to the construction of the transition
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system, there is an exact correspondence between the paths between the states and the linearisations
of this lpo. The original lpo can therefore be reconstructed through the intersection of all these
linearisations.

Pomset-labelled transition systems can be compared in a number of ways; for instance, one may
look only at the pomset traces, or one may apply the natural notion of bisimilarity.

Pomset traces. The pomset traces of a term of Lang are given by the outgoing pomset transitions
of the initial state. There is a distinguished class of terminated pomset traces, which are the ones
leading to a state with an outgoing �-transition. We call two terms pomset trace equivalent if they
give rise to equal sets of terminated and non-terminated pomsets.

As an alternative to this roundabout construction, one can directly define an algebra of (sets
of) pomsets; in fact, this is the subject of most of the pomset papers cited above. For the
synchronisation-free fragment of Langfin (i.e., containing ||A only for A = ∅, but including
refinement), such an algebra is for instance defined in [110]. The extension to recursion is straight-
forward; the extension to synchronisation, although technically awkward, is also unproblematic
—see for instance [116]. (The awkwardness is due to that fact that the synchronisation of two

pomsets is in general not a single-valued operation: for instance, the synchronisation of
a

a→b
and

a→a on a yields
a

↗
a→b

and a→a→b as two possible outcomes.)

We do not go into detail here concerning the definition of the operators, except to remark
that the refinement operator on sets of pomsets crucially depends on the ability to distinguish
the terminated pomsets from the non-terminated ones (see also Section 1.5). For instance, if one
ignores this distinction then a;0 and a give rise to the same sets of pomsets, and yet (b; c)[b�a;0]
and (b; c)[b�a] should not be pomset trace equivalent. Since in the restricted setting of [110], the
terminated pomsets coincide with the maximal ones, the distinction is easy there.

It follows from the existence of an algebraic operator on the semantic model that pomset trace
equivalence is a congruence for refinement. This fact was first stated in [32]. As a consequence of
the construction of pomsets from event transition systems and the existence of a full Lang -algebra
over sets of pomsets, this can be extended to the following result.

Theorem 5.1 Pomset trace equivalence is a congruence over Lang that is coarser than ∼ev.

Pomset bisimilarity. The above construction of pomsets from event transition systems actually
gives rise to a much richer model than just pomset traces: namely, a transition system labelled on
Pom ∪{�}. Having a transition system, we can once more apply the principles of bisimulation. We
call two terms pomset bisimilar if their associated pomset-labelled transition systems are strongly
bisimilar (see also Boudol and Castellani [20]). Surprisingly (as first observed by Van Glabbeek and
Goltz in [60]), pomset bisimilarity is not a congruence for refinement. A simple counter-example
is given by the pomset bisimilar terms t = a; (b + c) + a ||| b and u = t + a; b, whose refinements
t[a�a1; a2] and u[a�a1; a2] are not pomset bisimilar: after the execution of a1 there is a behaviour
that only u[a�a1; a2] may show, namely a state where a2 and b are executable only sequentially and
c is not executable at all. For more details see [64]; an extensive discussion can also be found in
[133].

As an alternative to the indirect construction of pomset transition systems from event transition
systems, [20] presents an operational semantics directly on pomset transition systems, albeit only
for the synchronisation- and refinement-free fragment of Langfin . The extension to synchronisation
and recursion is once more straightforward; however, from the fact that pomset bisimilarity is not
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a congruence for refinement, it follows that an operational semantics for refinement will be difficult
to find.

5.2 Causal links

A different modelling principle is obtained if one takes not the events themselves but the causality
between them as the essential notion. Operationally, this can be done by adding a set of causal
links to each transition that point back to those previous transitions on which the current one
depends. This idea was first worked out in the causal trees of Darondeau and Degano [39]. They
use a particular simple way to implement the causal links: namely, the links are given as positive
natural numbers corresponding to the number of transitions one must count back from the current
one. Note that for this to work, it is essential that each state have a unique predecessor, i.e., that
the model be a tree. In our setting, there is an additional class of �-labelled transitions. Thus, a
causal tree is a tree-shaped transition system labelled on (2N

>0 ×Actτ ) ∪ {�} (where N>0 denotes
the set of positive natural numbers).

Causal transitions from event transitions. The event transition systems of the previous
section (Definition 4.2) give rise to causal trees in the following way. Let T be an arbitrary event
transition system.

• The states of the causal tree derived from T are vectors of events �e = e1 · · · ek (with ei ∈ Evt
for 1 ≤ i < k and ek ∈ Evt ∪ {�}) corresponding to traces of t. To be precise, �e is a state
iff ι −e1,α1−−−→ · · · −ek−1,αn−1−−−−−−→ n′ for some n′ and either n′ −ek,αk−−−→ n′′ (if ek ∈ Evt) or n′ −�−→ n′′ (if
ek = �) for some n′′. Note that if n′′ exists, then it is uniquely determined by �e; we denote
n′′ = ι�e.

• The outgoing non-termination transitions of �e are defined by induction on |�e|. Each event
transition ι�e −e

′,α−−→ n′ gives rise to a causal transition �e −K,α−−→ �e e′, where the set K of causal
links is determined in one of the following two ways.

– If ιe1···ek−1 −
e′,α−−→ (i.e., e′ was already enabled in the direct ek-predecessor of ι�e) then (due

to the inductive definition) we already had derived the causal transition

e1 · · · ek−1 −K
′,α−−→ e1 · · · ek−1e

′

for some set K ′ ⊆ N>0. We let K = K ′ + 1 (= {i + 1 | i ∈ K ′}).
– If ιe1···ek−1

�−e′,α−−−→, then we had already derived the causal transition

e1 · · · ek−1 −K
′,α−−→ �e

for some K ′ ⊆ N>0. We let K = (K ′ + 1) ∪ {1}.

• Termination transitions are given by �e −�−→ �e� whenever ι�e −�−→.

Having obtained causal trees from terms of Lang , one can again study induced relations over Lang ,
generated by different interpretations of causal trees. For instance, we call two terms causally
bisimilar if their respective causal trees are bisimilar. It was first observed in [42] that causal
bisimilarity is a congruence for action refinement. This can again be generalised to the following
result:
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Proposition 5.2 Causal bisimilarity is a congruence over Lang, which is weaker than ∼ev.

A similar property holds for causal traces (the linear-time counterpart of causal trees), which in
fact constitute an alternative representation for pomset traces, studied in [120].

Instead of recovering the causal links from a more concrete semantic model, as we have done
here, it is possible to define a Lang -algebra of causal trees (see [40, 42]) or to use causal trees as an
operational model. With respect to the latter, see [50] for a structural operational semantics for
(essentially) Langfin , which can easily be extended to deal with recursion. Since the semantics is
given in SOS style, that paper also reports a set of axioms for the calculus.

As a final remark, we recall that there are several alternative (indeed historically preceding)
characterisations of causal bisimilarity. Rabinovich and Trakhtenbrot first introduced the relation
in [116] as behaviour structure bisimilarity. In [60], the same relation is characterised as history
preserving bisimilarity over event structures. Finally, the mixed ordering bisimilarity of [46] also
gives rise to the same equivalence. See [3, 64] for further details concerning these correspondences.

5.3 Splitting actions

Having found (in causal bisimilarity) a bisimulation-based equivalence that is a congruence with
respect to action refinement, a natural question is if this is the coarsest of its kind, i.e., the coarsest
congruence for action refinement contained in (standard) interleaving bisimilarity. An analogous
question can be posed for pomset trace or causal trace equivalence. It turns out that the answer
to either question is “no”: in order to obtain coarsest congruences, one needs to add information
to the interleaving model in a way that is different from either pomsets or causal links.

Example 5.3 There exist processes with distinct causal structures that yet cannot be distinguished
up to bisimilarity by any refinement context. For instance, consider the bisimilar (but not causally
bisimilar) terms a ||| b;0 (where a and b are causally independent) and (a; b ||| b) ||b b (where there is
alternative way to perform b, causally following a). It is not difficult to convince oneself that there
is no way to make them non-bisimilar (in the interleaving sense) by refining their actions.

So, what is the coarsest congruence within strong bisimilarity? Intuitively, by refining an action
we are implicitly assuming that such an action is no longer non-interruptible, as the execution of
its refinement can be interleaved with the execution of other concurrent processes. In the example
above, after refining a into a1; a2, the existence of the sequence a1 b a2 shows the interruptability of
the refined a. Hence, a natural question is whether the actions could not a priori be described as
split into phases: for instance, a+ for the beginning and a− for the ending of an arbitrary action a.
If one interprets the resulting transition systems up to strong bisimilarity, a |||b;0 and a; b;0+b; a;0
(for example) are distinguished whereas a ||| b;0 and (a; b ||| b) ||b b are not (see Figure 7).

This is the basic idea behind the so-called split semantics, probably introduced for the first
time in [84] (although the principle is already mentioned by Hoare in [88]). Actions can be split
in any number of phases, say n, giving rise to a family of splitn-equivalences for every interleaving
equivalence. In fact, splitting into n phases can be seen as a restricted form of action refinement
where the refinement body can only consist of sequences of length n.

Split bisimilarity. For (essentially) the synchronisation-free fragment of Lang (or alternatively a
language with CCS-like communication but without restriction), Aceto and Hennessy [8] established
that strong split2-bisimilarity is the coarsest congruence for action refinement contained in strong
bisimilarity. Actually, in this language, splitn-bisimilarity coincides with splitn+1-bisimilarity for
any n ≥ 2.
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Figure 7: Three split2 transition systems.

However, as soon as synchronisation is included, split2-bisimilarity is no longer a congruence:
splitting actions in more and more phases yields more and more discriminating equivalences.
Van Glabbeek and Vaandrager [66] present an example, parametric in n, to show that the split -
bisimilarities form a strict chain. The example is based on confusion on identity of auto-concurrent
actions (i.e., multiple occurrences of the same action, concurrently executed) that splitn semantics
may bring to light when there are more than n−1 such actions. A simplified example that clarifies
the difference between split2 and split3 is the so-called owl example, originally proposed by Van
Glabbeek in 1991.

Example 5.4 Consider t = (t1 ||S t2)[φ], where S = {c′, c′′, d, d′, e, e′} and φ relabels c′ and c′′ into
c, d′ into d and e′ into e (leaving all the other labels fixed).

t1 = a; ((c; (c′; e′ ||| d′ + e) + c′′; d′ ||| e′) ||| d;0)
t2 = b; ((c; (c′′; d′ ||| e′ + d) + c′; e′ ||| d′) ||| e;0)

Symmetrically, we define u = (u1 ||S u2)[φ], where

u1 = a; ((c; (c′; d′ ||| e′ + d) + c′′; e′ ||| d′) ||| e;0)
u2 = b; ((c; (c′′; e′ ||| d′ + e) + c′; d′ ||| e′) ||| d;0)

The two interleaving transition systems are shown in Figure 8. The labels of the inner transitions
are omitted for improving readability: they can be assigned by looking at the label of the parallel
outer transitions. It is not difficult to see that the two transition systems are interleaving bisimilar.
For instance, the sequence b a c leads to bisimilar states in both systems: the “wing” of t is simulated
by the “body” of u, and vice versa.

The split2 transition systems for t and u can be guessed by considering that all the “diamonds”
in the graph are divided into four sub-diamonds. The two resulting graphs are bisimilar (so t and
u are split2 bisimilar) by following an argument similar to the above. The crucial point is reached
after the sequence a1 a2 c1 b1 b2 c1. In that state (which is the same in both graphs), the c2 executed
by t is matched by the ‘symmetric’ c2 in the graph for u. This means that whenever t completes the
c causally dependent of, let say, a then u completes the c caused by b.

The same game cannot be played when splitting actions into three phases; indeed, it is always
possible to recognise observationally in which of the two directions we are moving, i.e., which of the
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Figure 8: The “owl” example.

two c’s we are going to complete. This informal consideration is illustrated by the sequence

a c1 b c2 c1 c3 e

which can be executed by t but not by u (unsplit actions stand for the consecutive execution of their
three phases).

Two natural questions then arise:

• What is the limit of this chain of splitn-bisimulation equivalences?

• How does the chain limit relate to the coarsest congruence problem?

It turns out (see Gorrieri and Laneve [73, 74]) that the limit of strong splitn-bisimilarity is an
equivalence known in the literature as strong ST -bisimilarity, originally due to Van Glabbeek and
Vaandrager [65]. The ST -principle improves over split by including a mechanism for reconstructing
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the individuality of each action occurrence. Typically, this is done by associating to each action
one unique identifier that is used when it is necessary to know the right beginning for the currently
executed ending. By the limit theorem of [74], it follows that strong ST -bisimilarity is the coarsest
congruence for splitting of actions; and in fact, the result extends to general refinement (see [57, 133]
for a more general congruence result, [30] for a coarsest congruence result for any form of refinement
in the model of stable event structures and the survey paper [64] for another proof of coarsest
congruence on several event-based models). Hence, strong ST -bisimilarity is the required coarsest
congruence contained in strong bisimilarity.

It has also been proved in [9] that rooted weak ST -bisimilarity (called refine equivalence in
that paper) is the coarsest congruence for (syntactic) action refinement contained in rooted weak
bisimilarity.

Split traces. If one starts the investigation by considering trace semantics [88] instead of bisim-
ulation, then the answers to the two questions above are slightly different. In the full language
Lang , splitn-trace equivalence again gives rise to a strict chain of equivalences. However, as shown
in [101], the limit of the chain in this case is not ST -trace equivalence.

Example 5.5 Consider t = a; b ||| b; c;0 and u = (a; b; c ||| b; c) ||c c. The only pomset trace of t is
a→b

b→c
, whereas u additionally has a→b→c

b
. However, t and u cannot be distinguished on the basis

of their splitn-traces. To see this, first note that the only possible difference can be that u has a

trace that t cannot match; in particular, a trace that is a linearisation of a→b→c
b

. Thus, such a

distinguishing trace must reflect the fact that c is caused by the upper b (the one following a) rather
than the lower b. However, no matter in how many phases we split b, this distinction cannot be
made: in particular, any splitn-trace b1 · · · bi a1 · · · an b1 · · · bn c1 of u can be matched by t because
the bi+1 · · · bn-subsequence might belong to the first b-occurrence as well as the second.

On the other hand, t and u are not ST-trace equivalent. For instance, although both processes
can perform the split2-trace b1 a1 a2 b1 b2 c1, in t the b2 must be the end of the first b1 whereas in u
it may also be the end of the second b1.

The limit of splitn-trace semantics has been characterised in [134] and called swap-equivalence. It
turns out that swap-equivalence is not a congruence for general action refinement. For instance,
although (as we argued) t and u in Example 5.5 are swap-equivalent, refining b into v = b1; b2 + b3

shows up their difference, since u[b�v] has trace b1 a b3 c which t[b�v] cannot match. Vogler has
proved in [131, 132] that the coarsest congruence for action refinement contained in trace equivalence
is ST -trace equivalence.

Further split semantics. In the linear time – branching time spectrum [59], in between bisimi-
larity and trace equivalence there are many other equivalences, among which failure [27] (or testing
[43]) equivalence is the most relevant. The issues above have been investigated for this case as well:
Vogler in [131, 132] proves that ST -failure semantics is a congruence for action refinement, and in
[134] conjectures that it is also the coarsest congruence.

Most of the work mentioned above has been developed on semantic models rather than process
algebra. In addition to the work already cited above, papers dealing with operational split- and
ST -semantics include [31, 37]. Characterisations of ST -failure (or testing) semantics in process
algebra are reported in [5] on a simple process algebra, and in [85] on CCS.
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5.4 ST-semantics

We go somewhat deeper into the ST -semantics of terms. Below, we present a conversion from event
transition systems into ST -transition systems as well as a (compatible) operational ST -semantics
for Lang —including, of course, the refinement operator.

ST -transition systems. It is clear from the above discussion that the main idea in ST -semantics
is to distinguish the start and end of actions, in such a way that there is an unambiguous association
between the two. There are several different ways to encode this association.

• The most straightforward method is to associate with the start of the action a unique fresh
identifier, much like the event annotation, and annotate the end of the action with the same
identifier. The disadvantage of this method is that the choice of identifier is free, and therefore
it cannot be guaranteed that the same identifier is used in bisimilar states; one therefore needs
a more elaborate, indexed version of bisimulation like we already had for event bisimilarity
(Definition 4.3); see, for instance, [57, 9, 23].

• The above method can be improved by somehow fixing the choice of the fresh identifier so
that it depends uniquely on the set of identifiers currently in use for “outstanding” action
occurrences, i.e., actions that have started but not finished. This can be done for instance by
imposing a total ordering on the set of all identifiers. One can then safely assume that the
choice of identifier is always the same in bisimilar states. For an example, see [24].

• Alternatively, one can assume a tree-like structure and let the end of the action point back
to the start through a natural number indicating the number of transitions one has to count
back to find the associated start. This idea was used, e.g., in [73, 74, 31]. The disadvantage
(which in fact also holds for causal transition systems as defined in Section 5.2) is that the
resulting transition systems are necessarily infinite state for all recursive behaviours.

• Here we use yet another principle, developed more recently in [24], which is in some sense
a mixture of the above: the end actions indeed carry counters, but instead of transitions
it is the number of outstanding occurrences (of the same action) that is counted. As a
consequence, ordinary bisimulation can be used to compare ST -transition systems. Moreover,
the operational semantics not only generates finite state transition systems for the refinement-
free fragment of Lang whenever the standard interleaving semantics does (which is also the
case for the semantics of [23]), but also provides finite state models for action refinement.

As labels in the ST -semantics, for all a ∈ Act we use a+ to denote the start of a fresh occurrence
of a, and a−i with i ∈ N>0 to denote the end of the i’th occurrence of a that was still outstanding
(counting backwards, that is, the most recent occurrence is numbered 1). We denote ActST =
{a+ | a ∈ Act} ∪ {a−i | a ∈ Act , i ∈ N>0} and ActST

τ� = ActST ∪ {τ,�}.

Definition 5.6 An ST-transition system is an ActST
τ�-labelled transition system, such that for all

states n ∈ N and action a ∈ Act there is a number O(n, a) of outstanding occurrences where

• O(ι, a) = 0 for all a ∈ Act;

• If n −a
+

−→ n′ then O(n′, a) = O(n, a) + 1 and O(n′, b) = O(n, b) for all a �= b;

• If n−a
−
i−→ n′ then i ≤ O(n, a), O(n′, a) = O(n, a)− 1 and O(n′, b) = O(n, b) for all a �= b;

• If n −τ→ n′ then O(n′, a) = O(n, a) for all a ∈ Act;
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• n−a
−
i−→ for all a ∈ Act and 1 ≤ i ≤ O(n, a).

(Note that this uniquely determines O(n, a) for all reachable states.) As stated above, to compare
ST -transition systems we will use ordinary bisimulation.

ST -transitions from event transitions. The event transition systems used in the previous
section (Definition 4.2) give rise to ST -transition systems in the following way. Let T be an
arbitrary event transition system.

• The states of the ST -transition system derived from T are tuples (n,�e) for some node n ∈ N
and finite vector of events �e = e1 · · · ek such that n −e1,α1−−−→ · · · −ek,αk−−−→ n′ for some n′ and
n −ei,αi−−→ for all 1 ≤ i ≤ k. (In other words, the events in �e are all enabled in n and can also be
executed serially; this means that they are pairwise independent.) Due to the properties of
event transition systems, the node n′ is uniquely determined by n and �e; we denote n′ = n�e.
It follows that also n′ = n�d

for an arbitrary permutation �d of �e.

• The outgoing transitions of (n,�e) are the following (where for all 1 ≤ i ≤ k, αi is the action
associated with ei, and �e \ i denotes the removal of the i’th element of �e):

– If n�e −e
′,a−−→ such that e′ is independent, in n, of all ei, then (n, �e) −a

+

−→ (n, �e e′);

– If n�e −e
′,τ−−→ such that e′ is independent, in n, of all ei, then (n, �e) −τ→ (n, �e e′);

– For all 1 ≤ i ≤ k, if αi ∈ Act then let a = αi and m = |{i ≤ j ≤ k | αj = a}|; then
(n, �e)−a

−
m−→ (nei , �e \ i).

– For all 1 ≤ i ≤ k, if αi = τ then (n, �e) −τ→ (nei , �e \ i).
– If �e = ε and n −�−→ n′, then (n, �e) −�−→ (n′, ε).

The number of outstanding a-occurrences of an ST -transition system constructed in this way equals
the number of a’s in the �e: that is, O((n,�e), a) = |{1 ≤ j ≤ k | αj = a}| for all states (n,�e). It is
not difficult to check that this construction indeed gives rise to an ST -transition system in the
sense of Definition 5.6.

Operational ST -semantics. In addition to the indirect construction of ST -transition systems
through the event-based operational semantics, presented above, we will also give a direct ST -
operational semantics for Lang . To be precise, we use a language LangST with the following
grammar (changes with respect to Lang are underlined; see also Table 16 (Page 85) for a complete
overview of the different languages used in this chapter).

T ::= 0 | 1 | α | α− | V + V | T;V | T ||A,M T | T/A | T[a�V, �T]M | x | μx.V .

We briefly discuss the new operators.

• α− is an auxiliary operator denoting the intermediate state reached by α after it has started;
depending on whether α is visible or not, it performs the corresponding end action or another
τ -action. (That is to say, τ ’s are split as well, mainly to preserve some intuitive axioms up
to bisimilarity.) As usual with auxiliary operators, α− is not allowed in virgin operands (V
in the grammar).

• t ||A,M u denotes parallel composition extended with a mapping M :Act → {0, 1}∗ to be
discussed below.
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• t[a�u,�v]M denotes refinement, extended with a vector �v consisting of pending (or busy) re-
finements, entirely analogous to the busy refinements used in the previous section, except
that here we do not need the identities of the events being refined. (In fact, those identities
are encoded in the position of the pending refinement within the vector �v.) We use �v \ i to
denote the removal of the i’th element of the vector, and �v± (i, v′) to denote the replacement
of the i’th element by v′. Again, M is a mapping, this time from Act to {0, . . . , |�v|}∗, whose
purpose is explained below.

In the last two operators, M may be omitted if it maps all a ∈ Act to the empty string; thus, Lang
is embedded in LangST . The well-formedness conditions on LangST thus come down to the usual:

• No virgin operand (V in the grammar) contains an auxiliary operator (1 or α−);

• Recursion is allowed on guarded variables only.

The challenge in the definition of the operational semantics of LangST is to adjust the counters in
the a−i -labels of the operands’ transitions in such a way that they always point to the correct start
action. For the flat, sequential fragment of Lang this presents no particular problem, since there
the order in which new actions are started and old ones are finished is directly derived from the
operands. In the case of synchronisation and refinement, however, we are faced with the problem
that there is more than one operand that is active, i.e., may have outstanding action occurrences:
in the case of parallel composition, both operands are active, and in the case of refinement, both the
term being refined and all pending refinements are active. This means that the numbering of the
outstanding action occurrences in the combined behaviour changes with respect to the numbering
in the individual (active) operands. For instance, in a term a ||| a, the left hand side may do a+ and
be ready to do a−1 , after which the right hand side may also do a+ and be ready to do a−1 ; however,
in the combined behaviour the a−1 -actions should be distinguished since they refer to different start
actions. We use a reverse numbering of outstanding actions in which the last action started is
numbered 1, etc. This means that in the above example, the left hand side’s a−1 -transition should
be renumbered, in the combined behaviour, to a−2 .

To do this kind of renumbering systematically, we append a mapping M to the synchronisation
and refinement operators, which to every action a associates a string w of active operand positions:
the i’th element of w equals p precisely if the i’th outstanding a-occurrence in the combined
behaviour originated from the active operand in position p. For instance, in the behaviour a ||| a
considered above, after an a+-transition of the left hand side (operand 0) the associated string is
“0” whereupon after the a+-transition of the right hand side (operand 1), the associated string
becomes “10” (note that the “1” is inserted in front of the string; this is in order to implement the
reverse numbering of outstanding actions, mentioned above).

As is apparent from this example, we use natural numbers to identify active operand positions,
starting with 0. Thus, the active operand positions of t ||A u are {0, 1}, and those of t[a�u,�v]
are {0, . . . , |�v|}. The association string for each action is given by a string w of active operand
positions. We use w[i] to denote the i’th element of w, w \ i to denote the removal of the i’th
element from w (where 1 ≤ i ≤ |w| in both cases) and p · w to denote the insertion of the operand
position p ∈ N in front of w. Furthermore, we use mappings M :Act → N∗ (with only finitely many
non-empty images) to associate such strings to actions, and use the following operations to adjust
such mappings:

[a, p] ·M : b �→
{

p ·M(a) if b = a
M(b) otherwise
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Table 9: Operational ST -semantics for simple actions and synchronisation

a −a
+

−→ a− a− −a
−
1−→ 1 τ −τ→ τ− τ− −τ→ 1

t −a
+

−→ t′ a /∈ A

t ||A,M u −a
+

−→ t′ ||A,[a,0]·M u

u −a
+

−→ u′ a /∈ A

t ||A,M u −a
+

−→ t ||A,[a,1]·M u′

t −a
−
i−→ t′ a /∈ A m = M̂(0, a−i )

t ||A,M u −a
−
m−→ t′ ||A,M\(a,m) u

u −a
−
i−→ u′ a /∈ A m = M̂(1, a−i )

t ||A,M u −a
−
m−→ t ||A,M\(a,m) u′

t −τ→ t′

t ||A,M u −τ→ t′ ||A,M u

u −τ→ u′

t ||A,M u −τ→ t ||A,M u′

t −λ→ t′ u −λ→ u′ type(λ) ∈ A ∪ {�}
t ||A,M u −λ→ t′ ||A,M u′

M \ (a, i) : b �→
{

M(a) \ i if b = a
M(b) otherwise.

The purpose of M is to determine the renumbering of action occurrences. We use M̂(p, a−i ) to
denote the number that the i’th outstanding a-action of the p’th operand gets according to M .
To determine this number, one must count the p’s in M(a): the index of the i’th occurrence of p
in M(a) is the number we are looking for. Formally: M̂ (p, a−i ) = m such that M(a)[m] = p and
|{j ≤ m |M(a)[j] = p}| = i. For instance, if M(a) = 2 1 0 2, then M̂(2, a−1 ) = 1 and M̂(2, a−2 ) = 4.

The operational rules for termination, choice, hiding and recursion are as before (see Table 2)
and omitted here. The operational rules for simple actions and synchronisation are presented in
Table 9. The meaning of the operational rules for “t ||A,M u” is the following. When t performs
a+ (a /∈ A), M(a) is extended to reflect the renumbering of this new outstanding occurrence;
on the other hand, when t (operand 0) performs a−i , the occurrence i is renumbered according
to M(a) and the occurrence is subsequently removed from M(a). This removal automatically
adjusts the renumbering scheme so that the remaining outstanding occurrences are always numbered
consecutively, as required in Definition 5.6.

The number of rules for synchronisation has grown from 3 to 7; this is because we have to
distinguish start actions, end actions and τ -actions. For the case of refinement we even have 10
rules, given in Table 10. There are four groups of rules concerning terms of the form t[a�u,�v]M
(compare also the event-based rules in Table 7):

• The first group deals with non-a-transitions of t; these are analogous to the non-synchronising
transitions of parallel composition.

• The second group deals with a+-transitions of t. This starts a new refinement; the initial
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Table 10: Operational ST -semantics for the refinement operator

t −b
+

−→ t′ b �= a

t[a�u, �v]M −b
+

−→ t′[a�u, �v][b,0]·M

t −b
−
i−→ t′ b �= a m = M̂(0, a−i )

t[a�u, �v]M −b
−
m−→ t′[a�u, �v]M\(b,m)

t −λ→ t′ λ ∈ {τ,�}
t[a�u, �v]M −λ→ t′[a�u, �v]M

t −a
+

−→ t′ u −b
+

−→ u′

t[a�u, �v]M −b
+

−→ t′[a�u, �v u′][b,|�v|+1]·M

t −a
+

−→ t′ u −τ→ u′

t[a�u, �v]M −τ→ t′[a�u, �v u′]M

vp −b
+

−→ v′

t[a�u, �v]M −b
+

−→ t[a�u, �v ± (p, v′)][b,p]·M

vp −b
−
i−→ v′ �−�−→ m = M̂(p, b−i )

t[a�u, �v]M −b
−
m−→ t[a�u, �v ± (p, v′)]M\(b,m)

vp −τ→ v′ �−�−→
t[a�u, �v]M −τ→ t[a�u, �v ± (p, v′)]M

t −a
−
p−→ t′ vp −b

−
i−→ v′p −�−→ m = M̂ (p, b−i )

t[a�u, �v]M −b
−
m−→ t′[a�u, �v \ p]M\(b,m)

t −a
−
p−→ t′ vp −τ→ v′p −�−→

t[a�u, �v]M −τ→ t′[a�u, �v \ p]M
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action of u is either a start action or an internal action. The list of pending refinements is
extended, creating a new active operand position.

• The third group deals with transitions of a pending refinement vp in �v (where the index p
corresponds to the active operand positions) that do not lead to a terminated state. These
are also comparable to the non-synchronising transitions of parallel composition.

• The fourth group deals with transitions of a pending refinement vp that do lead to a terminated
state. Such a transition can only be labelled by an end action or an internal action. The
corresponding end action of t can now also occur, and the remainder of the pending refinement
can be discarded.

A careful investigation of the operational semantics reveals that it yields an ST-transition system
in the sense of Definition 5.6. Moreover, (standard) bisimilarity, applied to the ST -semantics,
is a congruence over LangST . For an independent proof of this property as well as a complete
axiomatisation of ST -bisimilarity over a large class of recursive processes see [24]. Furthermore,
the semantics satisfies the finiteness properties claimed above. Let [[t]]opST denote the operational
ST -semantics of t.

Theorem 5.7 (see [24]) Let t, u ∈ Lang be arbitrary.

(i) If t is a refinement-free term with finite state interleaving semantics, then [[t]]opST is finite state.

(ii) If [[t]]opST and [[u]]opST are finite state, then [[t[a�u]]]opST is finite state.

As a final result of this section, we have that the indirect and direct ST -semantics of Lang coincide.
To be precise: if we denote the event-based operational semantics of a term t ∈ Lang(Evt) by [[t]]opev
and the conversion of an event transition system T into an ST -transition system by ST (T ), the
following can be proved by induction on the structure of t:

Theorem 5.8 For arbitrary (well-formed) t ∈ Lang(Evt), ST ([[t]]opev ) ∼ [[strip(t)]]opST .

Proof sketch. A state (n,�e) from ST ([[t]]opev ) corresponds to a term of Lang(Evt) (n is a derivative
of t) plus a sequence �e of initial events of n that are considered to have started but not yet finished.
The events in �e are thus independent in the sense of Definition 4.2. (n,�e) can therefore

• start a new action, say α, precisely if n −d,α−→ n′ for some d and n′ such that n′ −{�e}−→
• finish any of the actions corresponding to events in {�e}; the index is derived from the ordering

in �e

• terminate if n is terminated and �e is empty.

The correspondence with derivatives of strip(t) in the ST -semantics is intricate especially for syn-
chronisation and refinement terms: the mapping M used in the ST -semantics is obtained by un-
raveling the vector �e in order to determine the source of each event (and vice versa to reconstruct
the events from the mapping M). �

5.5 Application: A simple data base

To show the advantages of the above ST -semantics, both in providing a congruence for refinement
and in yielding finite state systems, we return to the example of Section 4.6. Figure 9 shows the
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Figure 9: Operational ST -semantics of DataS and DataI

ST -semantics of the abstract system DataS := State ||upd Backup and the refinement DataI :=
DataS [upd�req ; cnf ][copy�back ; copy ], where

State := (qry + upd);State
Backup := (copy + upd);Backup .

The independence of the qry- and copy-actions, noted before in Section 4.6, is apparent from the
ST -transition system by the fact that qry may be started during copy , i.e., between copy+ and
copy−

1 (and vice versa); on the other hand, qry may not be started during upd . As a consequence, in
DataI qry may interrupt the refinement of copy at any time, but may not interrupt the refinement
of upd .

5.6 ω-completeness

As pointed out by Meyer in [105, 106], the issue of coarsest congruences is relevant to another,
quite different subject as well, namely that of ω-completeness of equational theories. To explain
this, we first recall the syntactic interpretation of action refinement discussed in Section 1.4 above,
and note that the syntactic substitution of an action by a term is quite similar to the syntactic
substitution of a process variable by a term. Also recall that (in the standard interpretation) two
open terms (i.e., with free process variables) are considered equivalent iff their instantiations are
equivalent; in other words, if the equivalence cannot be invalidated by some substitution of terms
for process variables. But this in turn corresponds precisely (given the similarity between action
substitution and variable substitution just pointed out) to the second congruence property listed
at the beginning of this sub-section.

An equational theory is called ω-complete if any valid equation between open terms is derivable.
We have seen just now that an equation between open terms is valid iff all instantiations are valid;
this in turn is the case (interpreting variables as actions) iff the terms are equivalent under all
action refinements, i.e., iff they are equivalent in the coarsest congruence. Summarising, we have:

In a setting where syntactic and semantic action refinement coincide, a complete ax-
iomatisation of the coarsest refinement congruence contained in � gives rise to an ω-
complete axiomatisation of �, when interpreting all actions as variables.

A similar idea is pursued in [134]: if we consider expressions built with variables (which stand for
languages) and the operations of concatenation, choice (union) and parallel composition (shuffle),
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then substitution of languages for variables can be seen as action refinement; validity of equations
of such expressions can be checked using ST trace semantics. Analogously, if variables take values
on words, validity of equations can be checked using swap-equivalence.

6 Semantic versus Syntactic Substitution

We have stated in the introduction that there are two fundamentally different ways to regard action
refinement: as an operator in the signature, or as a homomorphism (in fact, an automorphism) of
the algebra establishing a transformation of terms. Since the semantic effect of the action refinement
operator t[a�u] is understood as the substitution, in some sense, of the action a by the behaviour of
u in the semantic model of t, whereas a homomorphism effectively replaces a by u syntactically in
t, the two interpretations are actually quite close; yet they do not always coincide. In the previous
sections, we have considered the semantic interpretation of action refinement; below, we study the
syntactic interpretation and investigate the difference between the two. The material of this section
is mainly based on [69].

Note that if the two interpretations coincide, we automatically have an axiomatisation for the
action refinement operator: namely, it distributes over all other operators. In fact, this distribution
property is a strong point in favour of the syntactic interpretation. On the other hand, the precise
notion of syntactic substitution has to be considered carefully, as it may depend on the operators
available in the language and on the kind of refinement we are interested in (atomic or non-atomic).

In the above discussion, we first relied on the algebraic notion of an automorphism and then
stated that this corresponds to the syntactic substitution of actions by terms. The connection
between the concepts of automorphism and syntactic substitution is established by regarding the
term algebra generated by the signature as the algebra over which the automorphism is defined.
However, there are several respects in which this algebraic concept does not quite cover the notion
of syntactic substitution we need.

• It does not tell us how to deal with recursion, which is not an operator in the usual algebraic
sense but rather a fixpoint constructor, i.e., a higher-order operator. As it turns out, the
straightforward syntactic substitution within the body of the recursion (which does not affect
the process variables bound by recursion) gives rise to a satisfactory solution.

• It does not take operators into account that bind actions, such as hiding and (to some degree)
synchronisation. Strictly speaking, an automorphism f on the term algebra would transform
each term t/A into op(f(t)), where op is the f -image of the unary operator /A; the natural
choice of op is /A′ for some A′. As we will see below, in some cases this is not an appropriate
way to model action refinement.

Hence, although the intuition of an automorphism is initially helpful to understand action refine-
ment algebraically, it is actually only an approximation. In the remainder of this section we will
no longer appeal to this intuition.

6.1 Finite sequential systems

Let us first consider again the simple sequential language of Section 2, restricted, moreover, to
closed, finite terms (i.e., containing no process variables or recursion operators). We call a term
flat if it contains no occurrence of the refinement operator. In defining the syntactic substitution
of a term for an action in Lang seq ,fin , we already encounter the problem with respect to the hiding
operator, mentioned above.
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Table 11: Sort and action substitution

t S(t) t{u/a}

α

{
∅ if α = τ
{α} otherwise

{
u if α = a
α otherwise

t1/A S(t1) \ A t1{u/a}/A if a /∈ A and S(u) ∩A = ∅

t1[b�t2]
{
S(t1) if b /∈ S(t1)
(S(t1) \ b) ∪ S(t2) otherwise

t1{u/a}[b�t2{u/a}] if a �= b and b /∈ S(u)

op(t1, . . . , tn) S(t1) ∪ · · · ∪ S(tn) op(t1{u/a}, . . . , tn{u/a}) (other operators)

x Sx x

μx.t1 Sx μx.(t1{u/a})

Example 6.1 Suppose we want to substitute the action a by the term b; c within t.

1. If t = a/{a} (specifying an invisible action), then a naive substitution gives rise to (b; c)/{a}.
Hence, after refinement we suddenly obtain visible behaviour where before there was none.

2. A slightly more sophisticated refinement of t = a/{a} would yield (b; c)/{b, c} (i.e., the set of
hidden actions is adapted as well). This is still unexpected, since the refined system has two
invisible steps instead of just one (and thus the refinement is not well-defined up to strong
bisimilarity). Worse yet, using this principle (a; b)/{a} would give rise to (b; c; b)/{b, c}, where
the abstract b-action disappears even though it is not refined itself.

3. If t = a/{b} (specifying the execution of a), then a naive substitution gives rise to (b; c)/{b}.
This starts with an invisible action rather than the expected execution of b.

Technically, these problems all have to do with the fact that, in our semantics, hiding acts like a
binder of the hidden actions, just like restriction does in CCS (see [9]). Moreover, precisely the
same problem occurs for action substitution within non-flat terms, since the refinement operator
is a binder, too: in the term t[a�u], all occurrences of a in t are bound by the refinement. By
analogy with the syntactic substitution of free variables within the body of recursion, defined in
Table 1, here we have to make sure that there is no confusion of “free” and “bound” actions during
substitution. For that purpose, we first have to have a clear notion of the “free actions” of a term.
In the terminology of Milner [108], these are given by the sort (called the alphabet in [11, 88]).
The term sort is defined in Table 11. The sort is somewhat comparable to the type of a term
in functional languages. It is an upper bound to the actions that the process will do during its
lifetime. This is expressed by the following key proposition (in the type analogy corresponding to
subject reduction):

Proposition 6.2 If t −α→ t′ then S(t′) ∪ {α | α �= τ} ⊆ S(t).

To guarantee the necessary absence of confusion, we take a rather drastic solution: the syntactic
substitution of a term for an action will be undefined whenever a “bound action”, i.e., a hidden
action or an action being refined, either equals the action being replaced by substitution or is
contained in the sort of the term substituted for it. The definition of action substitution is given
in Table 11; see also [9].
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The partiality of action substitution is subsequently smoothed out of existence as follows. Let
≡ be the smallest congruence over Lang seq such that

t/(A � {a}) ≡ t{b/a}/(A � {b}) (b /∈ S(t))
t[a�u] ≡ t{b/a}[b�u] (b /∈ S(t))

for an arbitrary b such that the substitutions on the right hand side are defined. It is not difficult
to prove that, given a large enough universe of actions Act , for all t{u/a} there is a t′ ≡ t such
that t′{u/a} is defined; moreover, as a consequence of the fact that ≡ is a congruence, if t ≡ t′

then t{u/a} ≡ t′{u/a} whenever both are defined. In other words, action substitution is total and
well-defined modulo ≡. Since ≡ is finer than ∼ and in fact finer than any semantic equivalence we
consider in this chapter, it follows that we may always pick an appropriate ≡-representative such
that action substitution is defined. In the sequel, we implicitly assume that such a representative
has been chosen, and proceed as if action substitution is total. (A similar assumption concerning
free variables is made in [14] and elsewhere in the literature on functional programming.)1

We now set out to show that (with the definition of action substitution developed above),
in Lang seq ,fin there is no difference between the semantic interpretation of the action refinement
operator (see Table 2) and its interpretation as action substitution (see Table 11).

To formulate the result we are after, we define a flattening function over sequential terms, which
removes all refinement operators from a given process expression by performing the corresponding
syntactic substitution.

Definition 6.3 The flattening of a term t ∈ Lang seq,fin , denoted flat(t), is defined inductively on
the structure of t as follows:

flat(op(t1, . . . , tn)) := op(flat(t1), . . . ,flat(tn))
flat(t[a�u]) := flat(t){flat (u)/a} .

The coincidence of syntactic and semantic substitution is then concisely stated by the equation
t = flat(t). The first result of this kind is the following:

Theorem 6.4 t ∼ flat(t) for any t ∈ Lang seq ,fin .

Proof sketch. The idea is to prove that refinement satisfies the defining equations of substitution
(Table 11) except for that for refinement (and recursion); that is, to show that the following
equations hold up to ∼:

α[a�u] =
{

u if α = a
α otherwise

(t/A)[a�u] = t[a�u]/A if a /∈ A and S(u) ∩A = ∅
op(t1, t2)[a�u] = op(t1[a�u], t2[a�u]) for other operators op .

(These equations in fact hold up to ∼ev.) Using these equations, it is straightforward to show that
for all flat terms t ∈ Langseq ,fin the following holds up to ∼ (resp. ∼ev):

t[a�u] = t{u/a}

(by induction over the structure of t). The actual theorem then follows by the definition of flat
and the fact that ∼ is a congruence (using a further induction over the structure of t). �

1An alternative solution would have been to build the necessary conversion of bound actions into the definition
of action substitution, as we have done for variable substitution in Table 1. However, we find the present definition
somewhat clearer.
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6.2 Recursive sequential systems

In extending Theorem 6.4 the full sequential language Langseq , we encounter several problems.
The major one of these is that it is in general not possible to flatten terms of Lang seq in which
refinement and recursion are arbitrarily mixed.

Example 6.5 Consider the term t = μx.(a;x[a�a; b]). This specifies a process having as partial
runs all prefixes of the infinite string a b0 a b1 a b2 a b3 · · ·. This set of partial runs is not context-free;
it follows that the behaviour of t cannot be specified in the flat fragment of Lang seq , not even modulo
trace equivalence, let alone modulo any stronger semantics. In other words, t admits no flattening
within Lang seq .

A similar situation occurs with t = μx.a[a�a; (b + x)], where recursion and refinement are mixed
in a different way but to much the same effect.

In order to avoid problems of this kind, for the purpose of this section we restrict ourselves to
instances of the refinement operator in which both operands of refinement are closed terms.2

Another, more technical issue is that the notions of sort and syntactic action substitution have
yet to be defined for process variables and recursive terms.

• To define the sort of open terms, we impose the requirement that all process variables are
implicitly sorted; i.e., there is a pre-defined sort Sx ⊆ Act for all x ∈ Var . Furthermore,
S(μx.t) is set to Sx. We then impose the following well-sortedness condition on recursive
terms (in addition to the existing well-formedness conditions): μx.t is well-sorted only if
S(t) ⊆ Sx.

• With respect to action substitution, the natural solution is to define (μx.t){u/a} to equal
μx.t{u/a} and x{u/a} to equal x. At first sight, this invalidates the correspondence between
action refinement and action substitution, since it gives rise to μx.(a;x{b/a}) = μx.a;x which
clearly does not have the same behaviour as μx.(a;x[a�b]). However, we are saved by the
new requirement that the operands of refinement must be closed terms; this precisely rules
out terms of the form x[a�b].

The resulting definitions of the sort and action substitution for process variables and recursive
terms were already given in Table 11.

Well-formedness. To summarise the well-formedness conditions in this section:

• No virgin operand contains an occurrence of an auxiliary operator;

• The operands of refinement must be closed terms;

• Recursion is allowed on guarded variables only;

• Recursion must be well-sorted.

The “correctness criterion” for the sort of recursive terms is that Proposition 6.2 now also holds
for all closed terms of Lang seq . As for action substitution, to prove the corresponding extension of

2This is essentially the same restriction we used in [69], except that there we worked with process environments
rather than recursion operators. In that paper, we justified the restriction by another well-formedness condition,
namely that the sorts of t and u in t[a�u] have to be disjoint.
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Theorem 6.4 we have to adapt the notion of flattening to process variables and recursive terms as
well:

flat(x) = x

flat(μx.t) = μx.flat(t) .

We now come to the correspondence result for the full sequential language.

Theorem 6.6 t ∼ flat(t) for any t ∈ Langfin .

Proof sketch. We have seen that Theorem 6.4 essentially consisted of proving t[a�u] ∼ t{u/a}
by induction on the structure of t. Since t is bound to be closed, for the purpose of the current
theorem we only have to extend the existing proof with the case for t = μx.t1; i.e., we show

(μx.t1)[a�u] ∼ μx.t1[a�u] .

The proof consists of showing that

ρ = {(u1{μx.t1/x}[a�u], u1{μx.t1[a�u]/x}) | fv(u1) ⊆ {x}}

is a bisimulation. The proof obligation follows as a special case (taking u1 = x). �

6.3 Atomic refinement

We now consider the language Langatom with atomic refinement, discussed in Section 3 (Page 23).
This entails taking two new operators into account: parallel composition (without synchronisation)
and the atomiser. The definition of the sort and action substitution for these new operators follows
from the “other operators”-clause of Table 11.

The definition of flattening in Langatom is a variation on the one we had before: the difference
is that the effect of atomically refining an action a by u is not the straight execution of u but rather
the atomic execution of u, i.e., the execution of 〈u〉. This gives rise to a function flatatom , whose
definition for the flat fragment of Langatom is analogous to the definition of flat (Definition 6.3)
but for the refinement operator is given by

flatatom(t[a�u]) := flatatom(t){〈flatatom(u)〉/a} .

This is actually the key point distinguishing atomic and non-atomic refinement. We obtain the
analogous result to Theorem 6.6; the proof is also analogous, and hence omitted.

Theorem 6.7 t ∼ flatatom(t) for any t ∈ Langatom

6.4 Synchronisation

In the full language with non-atomic refinement, we encounter the operator for parallel composition
with synchronisation, indexed by the set of synchronising actions. When we do action substitution
in such a term, this explicit occurrence of action names gives rise to the same type of confusion as
for hiding (see Example 6.1).

Example 6.8 Consider the replacement of a by b; c in the term t ∈ Lang.
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Table 12: Sort and action substitution for parallel composition with synchronisation

t S(t) t{u/a}

t1 ||A t2 S(t1) ∪ S(t2)

{
t1{u/a} ||(A\{a})∪S(u) t2{u/a} if a ∈ A and S(u) ∩ S(t) ⊆ A

t1{u/a} ||A t2{u/a} if a /∈ A and S(u) ∩A = ∅

1. If t = a||aa, specifying a single execution of a, then a naive substitution gives rise to t{b; c/a} =
b; c ||a b; c, which can do two times b; c in parallel and hence is not an intuitively correct
refinement of t.

2. A slightly more sophisticated substitution in t above yields b; c||b,cb; c, which is more reasonable;
however, according to the same principle, c; a ||a a, which can perform c, gives rise to c; b; c ||b,c
b; c, which is deadlocked.

3. If t = a; c||b,cc, then the substitution gives rise to t{b; c/a} = b; c; c||b,cc; this is not a reasonable
refinement since the former can do a; c whereas the latter is deadlocked.

However, in contrast to hiding, in the case of synchronisation the actions are not bound; rather,
our operational semantics (Section 4) specifies that actions remain visible after synchronisation,
and are therefore still available for further synchronisation or, indeed, refinement. For this reason,
although action substitution for parallel composition needs a side condition that is comparable to
the one for hiding in Table 11, we cannot argue (as we did before) that substitution is still totally
defined modulo ≡. Sort and action substitution for synchronisation are defined in Table 12. Note
that when replacing a synchronising action, the synchronisation set is adapted accordingly; this
corresponds to the “more sophisticated” solution pointed out in Example 6.8.2.

However, our problems are not yet over. Consider t = t1 ||A t2. As long as we do not substitute
actions in A, and moreover take care that A and S(u) are disjoint, the desired distributivity property
t[a�u] = t1[a�u] ||A t2[a�u] holds up to ∼ev; hence everything goes smoothly (see the proof sketch
of Theorem 6.4). However, when a occurs in A, then t{u/a} and t[a�u] may be different.

Example 6.9 We show some t and u such that t[a�u] �∼ t{u/a}.
• Consider t = a ||a a and u = b + b; c. t always terminates after having performed a, and so

t[a�u] terminates after either b or b c, but t{u/a} does not always terminate:

t{u/a} = (b + b; c) ||b,c (b + b; c) −b→ 1 ||b,c c

where the right hand term is deadlocked.

• Consider t = (a ||| a; b) ||a (a ||| a; b) and u = c; d. In t[a�u], there is a c-transition after which
in every state reachable by c d, either no b or two consecutive b’s are enabled:

t[a�u] = ((0a ||| 1a) ||a (2a ||| 3a; 4b))[a�5c; 6d] −(e,5),c−−−→ ((0a ||| 1a) ||a (2a ||| 3a; 4b))[a�5c; 6d, e�6d]

where e = ((0, ∗), (2, ∗)). On the other hand, for all t{u/a} −c→ t′ there is a t′ −c→−d→−b→ t′′ such
that t′′ �− b−→: in particular, after t{u/a} −a→ (d ||| c; d; b) ||c,d (d ||| c; d; b) (= t′), which intuitively
corresponds to the transition above, we can continue with

t′ −c→ (d ||| d; b) ||c,d (d ||| d; b) −d→ (1 ||| d; b) ||c,d (d ||| b) −b→ (1 ||| d; b) ||c,d (d ||| 1) (= t′′)

such that t′′ �− b−→.
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Table 13: Auto-concurrent actions and determinism

t C(t) D(t)
0 ∅ true

1 ∅ true

α {α | α �= τ} α �= τ

t1 + t2 C(t1) ∪ C(t2) D(t1) ∧ D(t2) ∧ �a: (t1 −a→) ∧ (t2 −a→)
t1; t2 C(t1) ∪ C(t2) D(t1) ∧ D(t2)
t1 ||A t2 C(t1) ∩ C(t2)

∪ (C(t1) ∪ C(t2)) \A
∪ (S(t1) ∩ S(t2)) \ A

D(t1) ∧ D(t2) ∧ (S(t1) ∩ S(t2) ⊆ A)

t1/A C(t1) \A D(t1) ∧ (S(t1) ∩A = ∅)

t1[a�t2]

⎧⎪⎨
⎪⎩

(C(t1) \ a) ∪ S(t2) if a ∈ C(t1)
C(t1) ∪ C(t2) if a ∈ S(t1) \ C(t1)
C(t1) otherwise

D(t1) ∧ (a /∈ S(t1) ∨ D(t2))

x Cx Dx

μx.t2 Cx Dx

In [69] we discussed necessary and sufficient conditions under which refinement and substitution
of a synchronising action give rise to event bisimilar models. (To be precise, in [69] we considered
isomorphism of configurations; as we stated before, however, this actually coincides with event
bisimilarity.) The crucial part is to find conditions for the following distributivity property (which
is analogous to the rule for action substitution in Table 12):

(t1 ||A	{a} t2)[a�u] ∼ev t1[a�u] ||A	S(u) t2[a�u] .

This is indeed precisely the property that fails to be satisfied in both instances of Example 6.9. The
solution given in [69] consists of a number of fairly involved semantic constraints, which are in gen-
eral undecidable; rather than repeating the constraints here, we give a decidable “approximation”
or “estimate”, which is a simplification of the one in [69].

The decidable approximations, which are given in Table 13 in the form of functions over Lang ,
provide sufficient conditions for the actual semantic constraints; the idea is the same as for the
sort of a term (see Tables 11 and 12), which provides an approximation of the actions that may be
performed by the term (see Proposition 6.2). The intention of the functions defined in Table 13 is
as follows:

• C(t) ⊆ Act approximates the set of auto-concurrent actions of t, i.e., the ones that are executed
in more than one parallel component without being synchronised. This is an over-estimate,
due to the fact that one or more occurrences of an action may fail to be executed (as for a in
a ||b b; a) or are serialised (as for a in a; b ||b b; a).

• D(t) ∈ B is a boolean indicating whether t is deterministic and contains no internal actions.
This is an under-estimate: terms for which D(t) does not hold may yet be deterministic —for
example, a ||b b; a.
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For recursive terms, the definition of these functions relies on pre-defined sets Cx and predicates
Dx for all x ∈ Var , just as the definition of the sort in Table 11. We extend the well-sortedness
condition to imply that these sets and predicates are in correspondence with the recursion body:

Extended well-sortedness. t is well-sorted if for all subterms μx.u, in addition to S(u) ⊆ Sx we
also have C(u) ⊆ Cx and Dx ⇒ D(u).

In the remainder of this section, we only consider terms that are well-sorted in this extended sense.
The following proposition expresses the semantic properties that are guaranteed by the functions
in Table 13.

Proposition 6.10 Let t ∈ Lang be arbitrary.

• a ∈ C(t) if there exists a t′ reachable from t such that t′ −e1,a−−→−e2,a−−→ and t′ −e2,a−−→−e1,a−−→ (in the
event-based semantics of Section 4).

• D(t) implies that for all t′ reachable from t, t′ �− τ−→ and if t′ −a→ t′′1 and t′ −a→ t′′2 then t′′1 = t′′2.

For the proof see [69]. An important further property of these functions is that they are insensitive
to the flattening of terms, in the following sense:

Proposition 6.11 If t ∈ Lang such that flat(t) is defined, then S(t) = S(flat(t)), C(t) = C(flat(t))
and D(t)⇔ D(flat(t)).

For the proof see [69]. We now define the concept of u/a-compatibility over the flat fragment of
Lang , which establishes a sufficient condition guaranteeing that the refinement of a by u and the
substitution of a by u coincide.

1. t/A is u/a-compatible if a /∈ A, S(u) ∩A = ∅ and t is u/a-compatible;

2. t = t1 ||A t2 is u/a-compatible if t1 and t2 are u/a-compatible and one of the following holds:

(a) a /∈ A and S(u) ∩A = ∅;
(b) a ∈ A \ S(t) and S(u) ∩ S(t) = ∅;
(c) a ∈ A \ C(t), S(u) ∩ S(t) = ∅ and D(u);
(d) a ∈ A and u =

∑n
i=1 ai such that S(u) ∩ S(t) = ∅;

3. μx.t is u/a-compatible if t is u/a-compatible;

4. For all other operators op, op(t1, . . . , tn) is u/a-compatible if all ti are u/a-compatible.

The interesting part is the requirement for parallel composition. This consists of the case where
the substituted action is not in the synchronisation set (Clause 3(a)), or, if it is in the synchro-
nisation set, the case where it is never performed (Clause 3(b)), where it is performed but not
auto-concurrent, and the refinement is deterministic (Clause 3(c)) and where it is auto-concurrent
and the refinement is a choice of atomic actions (Clause 3(d)). As a consequence of the main
theorem of [69], we have the following property:

Proposition 6.12 If t ∈ Lang is flat and u/a-compatible, then t{u/a} is defined and t[a�u] ∼ev

t{u/a}.

Building on substitution compatibility, we now define the property of reducibility of terms, which
establishes a sufficient condition guaranteeing that every action refinement operator in a term can
be converted into an action substitution (i.e., the term can be flattened) without changing its
semantics.
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• μx.t is reducible if t is reducible;

• t[a�u] is reducible if t and u are reducible and flat(t) is u/a-compatible.

• For all other operators op, op(t1, . . . , tn) is reducible if all ti are reducible.

Here, the interesting case is that of refinement. The following theorem extends Theorem 6.6 to
Lang : a term and its flattening coincide if the term is reducible. The proof is by induction on the
term structure, using Proposition 6.12.

Theorem 6.13 If t ∈ Lang is reducible, then flat(t) is defined and t ∼ev flat(t).

By “tuning” the functions S, C and D, it is, of course, possible to come to an improved characterisa-
tion of reducibility, i.e., one which provides a better estimate of the underlying semantic property;
however, as mentioned above, decidable necessary and sufficient criteria for the coincidence of
syntactic and semantic refinement do not exist.

6.5 Application: A simple data base

We apply Theorem 6.13 to the example of Sections 4.6 and 5.5. This consists of a process DataS :=
State ||upd Backup, where

State := (qry + upd);State
Backup := (copy + upd);Backup .

We then refine upd and copy , resulting in DataI := DataS [upd�req ; cnf ][copy�back ; copy ]. We
show DataI to be reducible, in the sense defined above. For this purpose, we must check that
the terms DataS [upd�req ; cnf ] and back ; copy are reducible and that flat(DataS[upd�req ; cnf ]) is
(back ; copy)/copy -compatible.

• To see that DataS [upd�req ; cnf ] is reducible, we must check that DataS and req ; cnf are
reducible (which is trivially true, since both are already flat) and that flat(DataS) (= DataS)
is (req ; cnf )/upd -compatible. The latter comes down to checking that State ||upd Backup (the
body of DataS) is (req ; cnf )/upd -compatible.

For this purpose, we must check that State and Backup are (req ; cnf )/upd -compatible (which
is trivially true, since neither contains parallel composition) and that upd and req ; cnf are com-
patible with the synchronisation set. This is indeed the case, since C(State ||upd Backup) = ∅
and hence upd ∈ {upd} \ C(State ||upd Backup), and furthermore, D(req ; cnf ); hence compat-
ibility clause 3(c) holds.

• back ; copy is trivially reducible, since it is a flat term.

• flat(DataS [upd�req ; cnf ]) = Data ′ where

Data ′ := State ′ ||req ,cnf Backup′

State ′ := (qry + req ; cnf );State ′

Backup′ := (back ; copy + req ; cnf );Backup ′ .

To see that this is (back ; copy)/copy -compatible, the main point is checking that State ′ ||req ,cnf

Backup′ is so. This is indeed the case, since copy /∈ {upd}; hence compatibility clause 3(a)
holds.
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According to Theorem 6.13, since DataI is reducible it can be flattened, i.e., it is equivalent (event
bisimilar, and hence also ST -bisimilar and interleaving bisimilar) to the process obtained by car-
rying out the refinements syntactically, given by Dataflat

I := Stateflat ||req ,cnf Backupflat where

Stateflat := (qry + req ; cnf );Stateflat

Backupflat := (back ; copy + req ; cnf );Backupflat .

This can be verified by comparing the behaviour of Dataflat
I with that of DataI as depicted in

Figure 6 (taking the event-based semantics modulo event bisimilarity) and Figure 9 (taking the
ST -semantics modulo standard bisimilarity).

7 Dependency-based action refinement

Although intuitively, action refinement is closely connected to the concept of top-down design, in
practice the steps one would like to make in top-down design do not always correspond completely
to the constructions allowed by action refinement. An example is the sequential ordering of tasks at
different levels of abstraction. On an abstract level of design, one may specify that two activities,
which on that level are regarded as atomic, are causally ordered —for instance because one of them
produces an output that is consumed by the other. When one refines this specification in a top-
down fashion, taking into account, among other things, that the previously atomic actions actually
consist of several sub-activities, then the causal dependency does not necessarily hold between
all respective sub-activities; rather, it may be the case that the output is produced somewhere
during the refinement of the first action (not necessarily at the very end), and consumed during
the refinement of the second (not necessarily at the very beginning).

Motivating example As a clarifying example (originally inspired by [99]), consider a buffer of
capacity 1, which allows the alternating put and get of a data value. In fact, consider the case where
only a single put and get occur. Abstractly, it is clear that a causal dependency exists between
put and get , induced by the flow of data. Now consider a design step driven by the fact that the
data values are too large for a single buffer cell, and consequently it is decided to use two buffers
in parallel: data values are split in two and a piece is put in either (implementation-level) buffer.
This comes down to refining put by put1 ||| put2 and get by get1 ||| get2.

If we treat this design step through the application of the refinement operator to the original
specification, put ; get , we arrive at the behaviour

(put ; get)[put�put1 ||| put2][get�get1 ||| get2] ∼ev (put1 ||| put2); (get1 ||| get2) .

This, however, is not necessarily the intended implementation-level behaviour: there is an ordering
between put1 and get2 and between put2 and get1, whereas the data flow only imposes a causal
ordering between put i and get i for i = 1, 2.

In this section, we review the solutions that have been proposed for this problem, first by
Janssen, Poel and Zwiers [91] in a linear time setting and later in [89, 90, 136, 126] for branching
time. These solutions are based on an idea taken from Mazurkiewicz traces [103, 104], namely to
recognise explicit dependencies between actions. That is, rather than working with actions that are
(from the point of view of the formalism) completely uninterpreted, as before, now we assume some
further knowledge about them, in the form of a (reflexive and symmetric) dependency relation over
the action universe Act . Action refinement takes dependencies into account by imposing causal
ordering only between dependent actions, regardless of the ordering specified on the abstract level.
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For instance, in the example above, put i and get i are dependent (for i = 1, 2) but put1 and
get2 as well as put2 and get1 are independent. Thus, the behaviour of the refinement, given by the
term (put1 ||| get1); (put 2 ||| get2), would be equivalent to put1; get1 ||| put2; get2, which, in view of
the assumptions, is a reasonable design. On the other hand, if the more complete ordering above
was actually intended (for whatever reason), this can still be obtained by explicitly specifying that
all get i-actions are dependent on all put j-actions.

7.1 Dependencies in linear time

The idea of action dependencies was transferred to a process-algebraic setting by Janssen, Poel and
Zwiers [91], using an approach again advocated in [142]. We can reconstruct the basic elements of
the setup of [91] as follows.

• They assume a global dependency relation D ⊆ Act × Act , which is reflexive and symmetric
but not necessarily transitive. The underlying intuition is that a D b if a and b share resources,
and so the order in which they are executed may influence the outcome of the computation.
We also write a D A if ∃b ∈ A: a D b.

The complement of D is given by I ⊆ Act × Act . It follows that a I b only if a and b can
be executed independently (or in either order). We also write a I A if ¬(a D A), i.e., if
∀b ∈ A: a I b.

• They define the weak sequential composition of two processes t and u, denoted t·u, in such
a way that only the dependent actions from first and second component are ordered. As a
special case, if a I b for all a ∈ S(t) and b ∈ S(u), then the semantics of t·u and t |||u coincide;
or more generally, if the sorts of t1 and u2, respectively u1 and t2 are independent then the
following communication closed layers law holds:

(t1 ||| u2)·(t2 ||| u2) = (t1·t2) ||| (u1·u2) .

In fact, in [91, 142] strong and weak sequential composition are both present within the same
formalism; since the novelty is in the latter, we ignore the former in this section.

• They require that refinement preserves independencies, in the sense that if a is refined into
u and a I b for some b, then also b I S(u). (This requirement is not explicitly stated in [91],
but it is necessary for the theory to be sound.)

• They do not consider invisible actions or hiding. The technical reason for this is that the
information added by the dependency relation would be lost upon hiding. Although one can
envisage an approach in which there is a family of invisible actions in which the dependency
relation is somehow retained, this has not been worked out. In the remainder of this section,
we therefore ignore hiding and invisible actions.

This results in a semantics where refinement distributes over weak sequential composition:

(t1·t2)[a�u] = t1[a�u]·t2[a�u] .

Taking the example at the beginning of this section and interpreting the abstract sequential com-
position put ; get as the weak put ·get instead, and assuming put i I getj for i �= j, it follows that
refinement does not impose more ordering than necessary:

(put ·get)[put�put1 ||| put2][get�get1 ||| get2] = (put1 ||| put2)·(get1 ||| get2) = put1·get1 ||| put2·get2 .
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Janssen et al. [91] use a compositional, linear-time semantics. The linear time nature has to do with
the fact that they consider sets of traces as their semantic model, in which the moment of choice is
not recorded. The traces are partially ordered (hence pomsets, see Section 5.1) in a special manner,
closely related to Mazurkiewicz traces: two occurrences are ordered if and only if the associated
actions are dependent. This means that even if parallel execution is specified, dependent actions in
different operands are interleaved; thus, the traces of a ||| b with a D b are given by a→b and b→a

and not by
a

b
. As usual in a trace-based semantics, the choice operator is modelled by taking the

union of trace sets.

Atomic refinement. The above informal discussion of the refinement operator does not precisely
correspond to the solution of [91]. Namely, within the setting of action dependencies, one has once
more the choice between atomic and non-atomic refinement, discussed at length earlier in this
chapter (Sections 1.3 and 3). It is the former that has been worked out in [91]; in particular, they
also include the atomiser 〈t〉 we discussed in Section 3. This gives rise to a language Lang lin

D with
weak sequential composition and atomiser, generated by the following grammar:3

T ::= 0 | 1 | a | T + T | T·T | T ||| T | 〈T〉 | T[a�T] | x | μx.T .

See also Table 16 (Page 85) for a complete overview of the different languages used in this chapter.
In the linear-time setting of [91], there is no need to forbid termination in choice or refinement terms;
correspondingly, we have not distinguished “virgin operands” in the above grammar. Instead, as
stated above, the theory is sound only if we impose as a well-formedness condition that refinement
has to be D-compatible:

Definition 7.1 t[a�u] is said to be D-compatible if a I b implies S(u) I b for all b ∈ Act.

In this setting, the atomic execution of a term t comes down to the following. In a term of the
form 〈t〉 ||| u, those actions a of u that are dependent on some action (in the sort) of t are scheduled
either weakly before or weakly after t, where the adjective “weakly” implies that a can still overlap
with any initial or final fragment of t of which it is completely independent; but not in the middle
(that is, after one action b of t with a D b but before another action c of t with a D c). On the
other hand, if a is independent of t, i.e., a I S(t), then it may be executed at any time during the
execution of 〈t〉.4

Example 7.2 If b D ai for i = 1, 2, then a1 b a2 is not an allowed execution sequence of either
〈a1·a2〉 ||| b or 〈a1 ||| a2〉 ||| b; if furthermore b I a3 then a1 a2 b a3 is an allowed trace of 〈a1·a2·a3〉 ||| b.
Finally, if c I ai for i = 1, 2, 3 then 〈a1·a2·a3〉 ||| c puts no constraints whatsoever on the moment of
execution of c with respect to the ai.

The main motivation given in [91] for choosing atomic over non-atomic action refinement is to make
refinement distribute over parallel composition, i.e., to satisfy

(t1 ||| t2)[a�u] = t1[a�u] ||| t2[a�u] .

3In fact, only a special case of recursion is considered in [91], namely the Kleene star for weak sequential compo-
sition. We conjecture, however, that the theory carries over to full recursion without a problem.

4Thus, in terms of the discussion in Section 3, here the execution of an atomic process is non-interruptible for
dependent actions but not for independent ones, and in contrast to the operator worked out in Section 3, here the
execution of an atomic process is not all-or-nothing.
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The following example shows why this is incompatible with non-atomic refinement. (Recall also
Section 1.5, where we made exactly the same point in connection with standard interleaving se-
mantics.)

Example 7.3 Consider Act = {a, a1, a2, b} with a D b and ai D b for i = 1, 2. As we saw
above, the semantics of a ||| b is given by { a→b , b→a }; therefore (a ||| b)[a�a1·a2] is modelled by
{ a1→a2→b , b→a1→a2 }. In other words, the semantics satisfies

(a ||| b)[a�a1·a2] = a1·a2·b + b·a1·a2 .

On the other hand, if we interpret action refinement non-atomically (meaning that a[a�t] = t), then
the above distributivity property implies

(a ||| b)[a�a1·a2] = a[a�a1·a2] ||| b[a�a1·a2] = (a1·a2) ||| b .

This contradicts the previous equality, since (a1·a2) ||| b �= a1·a2·b+ b·a1·a2. With atomic refinement
(which satisfies a[a�t] = 〈t〉 instead), we obtain (a ||| b)[a�a1·a2] = 〈a1·a2〉 ||| b, which is fine, since
indeed 〈a1·a2〉 ||| b = a1·a2·b + b·a1·a2.

The details of the semantics of [91] are outside the scope of this paper; suffice it to say that it gives
rise to a pre-order �D

tr⊆ Lang lin
D × Lang lin

D with the following property:

Proposition 7.4 �D
tr is a pre-congruence over Lang lin

D .

Furthermore, just as in the case of Langatom , action refinement distributes over the other operators
(see [91, Theorem 3.2]) and thus corresponds to atomised action substitution; that is, the following
equality holds up to �D

tr = �D
tr ∩  D

tr (compare with [91, Corollary 3.3]):

t[a�u] = t{〈u〉/a} .

This implies that the following also holds (compare with Theorem 6.7):

Theorem 7.5 t �D
tr flatatom(t) for any t ∈ Lang lin

D .

7.2 Application: Critical sections

As an example of the use of action dependencies, consider again the system of Section 3.4: SysS :=
Proc1 ||| Proc2 where for i = 1, 2

Proci := ncs i; cs i;Proci .

The non-critical sections, ncs i, do not depend on any action of the other process; i.e., we have
ncs i I ncsj and ncsi I csj for i �= j. As a consequence, in the semantics of SysS the occurrences of

ncs i are unordered with respect to csj (for i �= j); for instance, a valid trace is
ncs1→ cs1 ↘

ncs2→cs2
.

Now consider the same refinement as in Section 3.4: SysI := SysS[cs1�a1; b1][cs2�b2 + c2]. In
order for the refinements to be D-consistent, we must have ncsi I aj whenever i �= j; moreover,
we assume all actions of the critical sections are mutually dependent. This time, the implemen-
tation does not suffer from the problem discussed in Section 3.4, where we found that the non-
critical sections may not overlap with the critical sections. For instance, a valid trace of SysI

is
ncs1→a1→ b1 ↘

ncs2→b2

, where ncs2 is unordered with respect to a1 and b1 and hence may be

scheduled in between them.
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7.3 Dependencies in branching time

As we have seen above (Example 7.3), the main motivation in [91] for considering atomic refine-
ment was to obtain distributivity over parallel composition. If we abandon this property, there
is no intrinsic difficulty in modelling either non-atomic refinement or parallel composition with
synchronisation in a setting with action dependencies. For this purpose, we define the language
Langbra

D , with the following grammar:

T ::= 0A | a | T + T | T·T | T ||A T | T[�a��T] | x | μx.T .

(Note that internal actions and hiding are again omitted, for reasons discussed above. See also
Table 16 (Page 85) for a complete overview of the different languages used in this chapter.) The
new constant 0A denotes partial termination and generalises both 0 and 1; it is discussed below
in some detail. In contrast to 1, however, 0A is not considered an auxiliary operator; in fact,
Langbra

D has no auxiliary operators and hence the concept of “virgin operand” plays no role in the
well-formedness of terms of Langbra

D . Instead, we impose several well-formedness conditions to do
with the dependency relation; see below. Another new aspect of Langbra

D is that its refinement
operator maps a vector of actions to refining agents, instead of just one: the motivation for this is
also given below.

Operational semantics. Table 14 contains a branching time operational semantics for Langbra
D ,

insofar it deviates from the semantics given before (Tables 2 and 6). The semantics for the flat
fragment of Langbra

D was developed in [125] and extended with refinement in [136]; the solution
presented here is based on an improved version in [126]. We briefly discuss the salient points.

Partial termination. Compared with the linear time case, there are some interesting complica-
tions having to do with the interplay between weak sequential composition and choice.

Example 7.6 Consider actions a, b, c ∈ Act such that a D c and b I c, and consider the process
(a + b)·c. The linear time behaviour of this process consists of a trace where a and c are executed
in sequence, and a trace where b and c are executed independently. The corresponding branching
time behaviour implies that c can be executed initially, but this resolves the choice between a and b.

In capturing these effects operationally, one has to take into account that

• the second operand of weak sequential composition can be active even if the first has not yet
terminated;

• actions performed by the second operand of weak sequential composition may resolve choices
in the first.

For this purpose, we have introduced the concept of partial termination: instead of a deadlock
constant 0 and a termination constant 1, we now have a family of constants 0A, where A stands
for the deadlock alphabet. 0A is deadlocked for all actions a that are dependent on some b ∈ A, and
terminated for all other actions. The notion of “termination for a given action” is captured by a
family of new transition labels �a for a ∈ A: t −�a−→ t′ expresses that t is terminated for a, where
invoking the termination possibly resolves some choices by which the term becomes t′.

For instance, we have that a −�b−→ a if b I a and 0A −�a−→ 0A if a I A. The latter implies
that the deadlock constant 0 of Lang corresponds to 0Act (no termination at all) whereas the
termination constant 1 corresponds to 0∅ (termination for all actions). We continue using 0 and 1
as abbreviations for these special cases.
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Table 14: Transition rules for Langbra
D .

b I a

a −�b−→ a

a I A

0A −�a−→ 0A

t −�a−→ t′ u −�a−→ u′

t + u −�a−→ t′ + u′
t −�a−→ t′ u �−�a−−→

t + u −�a−→ t′
t �−�a−−→ u −�a−→ u′

t + u −�a−→ u′

t −�a−→ t′ u −�a−→ u′

t·u −�a−→ t′·u′
t −�a−→ t′ u −�a−→ u′

t ||A u −�a−→ t′ ||A u′
t −�a−→ t′

t[�a��u] −�a−→ t′[�a��u]

a I Sx

μx.t −�a−→ μx.t

t{μx.t/x} −�a−→ t′ a D Sx

μx.t −�a−→ t′

t −a→ t′

t·u −a→ t′·u
t −�a−→ t′ u −a→ u′

t·u −a→ t′·u′

t −b→ t′ b /∈ {�a}
t[�a��u] −b→ t′[�a��u]

t −ai−→ t′ ui −b→ u′

t[�a��u] −b→ u′·t′[�a��u]
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From the rules in Table 14, it can be seen that partial termination resolves choice if precisely
one of the operands terminates and the other cannot. In Example 7.6, for instance, b −�c−→ b but
a �−�c−−→, and hence a + b −�c−→ b; we obtain the derivation

a �−�c−−→
b I c

b −�c−→ b

a + b −�c−→ b c −c→ 1

(a + b)·c −c→ b·1

which is indeed the expected behaviour. (To avoid generating infinite state spaces for virtually all
recursive terms, one then also has to add a mechanism to get rid of superfluous 1’s, such as in the
target term of the above transition; this can be done for instance by normalising terms with respect
to some structural congruence that includes the axiom t·1 ≡ t.)

Recursion. The termination behaviour of recursion has a problem connected to the negative
premise in two of the rules for choice, if one takes the natural extension of the standard operational
rule for recursion to partial termination:

t{μx.t/x} −�a−→ t′

μx.t −�a−→ t′

Example 7.7 Let a, b, c ∈ Act with a I c and b I c, and consider the process t = μx.(a·x + b) with
Sx = {a, b}. If we assume t �−�c−−→, we obtain a contradiction:

t �−�c−−→
a·t �−�c−−→

b I c

b −�c−→ b

a·t + b −�c−→ b

t −�c−→ b

On the other hand, no transition of the form t −�c−→ t′ can be derived, since this would require an
“infinite unfolding” of the recursion.

Problems due to negative premises have been studied in depth in [80, 58]. A crucial point in our
solution is to take the sort of process variables (see Table 11) into account within the operational
rules:

• A recursive term always terminates, without unfolding, for any action that is independent
of the entire sort of the recursion variable. For instance, for the term t = μx.(a·x + b) in
Example 7.7 we obtain t −�c−→ t.

• The previous rule (in Example 7.7) for the partial termination of recursion is restricted to
�a-transitions with a D Sx, because otherwise we could unfold recursive terms arbitrarily
often in the derivation of a �a-transition; for instance, for the same term t above

t −�c−→ t

a·t −�c−→ a·t
a·t + b −�c−→ a·t + b

t −�c−→ a·t + b
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A related problem is that, due to the changed nature of termination, the standard notion of guard-
edness (Definition 2.1) is not appropriate any more, but needs to be strengthened.

Definition 7.8 We first define what it means for a term to be a D-guard for an action a ∈ Act.

• 0A is a D-guard for a if a D b for some b ∈ A;

• x is a D-guard for a if a D b for some b ∈ Sx;

• b is a D-guard for a if a D b;

• t + u is a D-guard for a if both t and u are D-guards for a;

• t[b�u] is a D-guard for a if t is a D-guard for a;

• For all other operators op, op(t1, . . . , tn) is a D-guard for a if one of the ti is a D-guard for
a.

Next, we define what it means for a variable to be D-guarded in a term.

• x is D-guarded in y (∈ Proc) if x �= y;

• x is D-guarded in t;u if x is D-guarded in t and either t is a D-guard for all a ∈ Sx or x is
D-guarded in u;

• x is D-guarded in μy.t if either x = y or x is D-guarded in t;

• For all other operators op, x is D-guarded in op(t1, . . . , tn) if x is D-guarded in all ti.

For instance, the term μx.(a·x + b) in Example 7.7 is D-guarded if a D b but not if a I b (because
then a −�b−→ a but b D b ∈ Sx). We require D-guardedness as a necessary condition for well-
formedness.

Refinement. The operational rules for refinement in Table 14 are essentially the same as for
the sequential language Langseq (see Table 2), except that we now use weak rather than strong
sequential composition. However, for these rule to make sense, the refinement should be compatible
with the dependency relation, in a stronger sense than in the linear time case (Definition 7.1).

Definition 7.9 t[a�u] is said to be strictly D-compatible if it is D-compatible and, moreover, for
all b ∈ Act, a D b implies (i) u �−�b−−→ and (ii) c D b for all u −c→.

The additional condition expresses that dependencies should be preserved as well as independencies:
if a and b are dependent then u must be deadlocked for b (ensuring that if b has been specified
sequentially after a then b cannot occur before u has started) and b must be deadlocked for all
initial actions of u (implying the dual property, namely that if a is to occur after b then no initial
action of u can occur before b).

The interesting thing about the current setting is that the operational rules remain correct even
in the context of parallel composition with synchronisation: interleaving bisimulation is a congru-
ence for action refinement. (Of course, what we have here is not really the standard interleaving
setting, since the action dependencies provide additional information just like the event annotations
in the event-based semantics of Section 4; however, since here the information is provided globally
rather than locally in each individual transitions, it is less visible.)

Unfortunately, strict D-compatibility is more restrictive than one would like. For instance,
the term t[get�u] where t = (put ·get)[put�put1 ||| put2] and u = get1 ||| get2 is not well-formed:
according to D-compatibility, due to the fact that get2 D put2 we must have get D put2; however,
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since u −get1−−→ but nevertheless get1 I put2, condition (ii) of strong D-compatibility is violated. A
similar violation occurs if we first refine get and then put . In fact, this particular design step can
only be understood if we assume both refinements to take place at the same time. Looking back,
this is in fact what we silently assumed in the discussion.

Thus, rather than considering single-action refinements [a�u], we should allow simultaneous
refinements [a1�u1, . . . , an�un] (with ai �= aj for i �= j), also written in vector notation as [�a��u].
Strict D-compatibility is extended accordingly.

Definition 7.10 t[�a��u] is said to be strictly D-compatible if for all b ∈ Act

1. ai I b implies S(ui) I b;

2. ai D b implies (i) ui �−�b−−→ and (ii) c D b for all ui −c→.

This indeed holds for t = get ; put and the refinement put�put1 ||| put2, get�get1 ||| get2 under con-
sideration; for instance, get D put and indeed for all r(put) −c→ (meaning c = put i for i ∈ {1, 2})
we have r(get) �−�c−−→.

Well-formedness. To summarise the well-formedness conditions on Langbra
D :

• Recursion is required to be D-guarded;

• Refinement is required to be strictly D-compatible.

Behavioural semantics. Strong bisimilarity (Definition 2.6) is once more a congruence; for the
proof see [126].

Proposition 7.11 ∼ is a congruence over Langbra
D .

As an example, consider again the buffer discussed at the start of this section, and let put i I getj

for i �= j. Using the operational rules, we can derive for instance

(put ·get)[put�put1 ||| put2, get�get1 ||| get2]

−put1−−→ (1 ||| put2)·(1; get)[put�put1 ||| put2, get�get1 ||| get2]

−get1−−→ (1 ||| put2)·(1 ||| get2)·(1;1)[put�put1 ||| put2, get�get1 ||| get2] .

This shows that a low-level get i-action can occur directly after the corresponding put i-action,
without having to wait for other put j-actions to be executed as well; thus, the desired flexibility is
achieved.

Another issue reported in [126] is the development of a denotational partial-order model for
Langbra

D , for the purpose of showing that the above interleaving semantics is compatible with ex-
isting interpretations of action refinement. The denotational model is event-based, based on the
families of posets model of [117], extended to take partial termination into account. The details are
beyond the scope of this section; suffice it to say that one can define an isomorphism over the deno-
tational model that is a congruence for Langbra

D and strictly stronger than ∼, and moreover, there
is a straightforward transformation from the denotational model into labelled transition systems
(including �a-transitions).

The fact that in the presence of action dependencies, the interleaving paradigm is strong enough
to give rise to a compositional model for action refinement was discussed separately in [70].
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Figure 10: Refinement of Data2
S using action dependencies: qry i D req j but qry i I cnf

7.4 Application: A simple data base

Once more consider the data base example of Section 2.5 (which does not include the copy-operation
of Section 4.6). The 2-state version of this data base was specified by Data2

S := State1 where for
i = 1, 2

State i := qry i;State i + upd1;State1 + upd2;State2 .

We then refined upd i into req i; cnf for i = 1, 2, where req i is a request to change the state to i
and cnf is the confirmation that this has been done. In the standard setting of Section 2.5 this
automatically implies that qry is disabled in between req i and cnf (see Figure 2). If one wants to
allow qry also at that point (because the change to the state has already been made, so it is safe to
read it), this can be achieved using action dependencies by specifying qry i I cnf for i = 1, 2 (and
all other actions mutually dependent), and setting r = (upd1�req1·cnf , upd2�req2·cnf ) as before.
Note that r is strongly D-consistent: we have qry i D upd j for all i, j, and indeed (i) r(upd j) �−

�qryi−−−−→
and (ii) qry i D aj for all r(upd j) −

aj−→ (namely, aj = req j). The behaviour of the system Data2
S and

its refinement Data2
I := Data2

S [r] is depicted in Figure 10.
It should be noted that the previous solution, which did not allow the overlap, can still be

derived if we set qry i D cnf instead.

7.5 The dual view: localities

Another way to integrate the concept of action dependencies into process algebra is by taking the
dual view of localities. In the context of action refinement, this was worked out by Huhn in [89, 90].
We briefly recapitulate the main points of this approach.

The basic assumption is that a system is described by the parallel composition of a finite,
indexed set of sequential sub-systems, such that all actions performed by any given sub-system are
mutually dependent, and this is the only possible source of dependencies. Actions are refined locally
at each sequential sub-system, possibly differently at each location; refinement has to preserve and
reflect the locality of actions.

More precisely, one considers a finite set of locations Loc and a mapping �:Act → 2Loc defining
at what localities an action may occur; then a D b for a, b ∈ Act if and only if �(a) ∩ �(b) �= ∅. Let
us denote Act l = {a ∈ Act | l ∈ �(a)} for the alphabet of location l. Overall system behaviour is
specified by terms of the form Πl∈Loctl, denoting the parallel composition of sequential processes
tl, where S(tl) ⊆ Act l for all l ∈ Loc, with implicit synchronisation over all common actions. The
semantics of such a parallel composition is given by an ordinary labelled transition system.

Action refinement is interpreted in this context by a family of images for a given abstract
action, namely one for each location that partakes in the action. Thus, in general, an action is
mapped simultaneously to a different concrete process at each location. Operationally, therefore,
the effect of a global action refinement is captured by the local action refinements, which in turn are
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refinements of a sequential system and hence analogous to the treatment in Section 2. In particular,
at each location l ∈ �(a), the essential rule for the behaviour of a refined system is given by

tl −a→ t′l ul −b→ u′
l

tl[a�ul] −b→ u′
l; t

′
l[a�ul]

where the subscript l indicates that we are dealing with the process at location l. There are some
restrictions in [90] on the allowable (families of) refinement functions, which are closely related to
the preservation of (in)dependencies imposed in the previous sub-section.

• Only the locations l ∈ �(a) may refine a, and S(ul) ⊆ Act l for all l ∈ Loc. This implies that
refinement is D-compatible (Definition 7.1).

• None of the local refinements may map onto a terminated process. This goes somewhat in
the direction of strict D-compatibility: If a D b then a and b share a location, say l; since
rl(a) �−�−→ for all such shared l, it follows that b cannot “overtake” r(a).

Refinement on the system level is interpreted by distribution to the local level: that is, one may
specify a global refinement [a��u] where �u is a vector of local images ul; (Πltl)[a��u] is then defined
to correspond to Πl(tl[a�ul]).

If we use Lang loc to denote the resulting locality-based language, then the following result is an
immediate consequence of the format of the operational rules:

Proposition 7.12 ∼ is a congruence over Lang loc .

Furthermore, the fact that action refinement is essentially performed on local, sequential systems
implies that action refinement and action substitution coincide (see Section 6.2):

Theorem 7.13 t ∼ flat(t) for any t ∈ Lang loc .

The motivating example of this section can be dealt with by considering Loc = {1, 2}, i.e., a system
with two localities, and assuming �(put) = �(get) = {1, 2}. The specification is then given by
put ; get ||| put ; get (one sequential term for each location), and the local refinements by put�put l

and get�get l for l = 1, 2. Refinement then yields

(put ; get)[put�put1][get�get1] ||| (put ; get)[put�put2][get�get2]

which is equivalent to the desired solution, put1; get1 ||| put2; get2.

8 Vertical implementation

Finally, we present a different, more radical solution to the lack of flexibility of the action refinement
operator that we noted in the previous section. The presentation is based on [119, 123]. It consists
of re-interpreting action refinement so that it does not take the form of an operator (effectively a
function [a�u]:Lang → Lang for all u) but rather of a relation ≤a�u ⊆ Langflat × Langflat , where
Langflat is the flat fragment of Lang (see Page 29), i.e., without the refinement operator. (See also
Table 16 (Page 85) for a complete overview of the different languages used in this chapter.) That
is, if a system is abstractly specified by a term t1, and a design step is taken that maps an abstract
action a to a term u, the result is not uniquely determined but instead can be any term t2 satisfying
the requirement

t1 ≤a�u t2 .
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≤a�u is called a vertical implementation relation, in analogy with the usual implementation relations
(i.e., pre-orders) such as trace or failure inclusion (see, e.g., [27, 43]). This notion is interesting
especially if we consider simultaneous refinements (see also Section 7.3); thus, actually we will
consider indexed relations of the form ≤�a��u ⊆ Langflat × Langflat where �a��u is a finite list of
refinement mappings. In this section, we will often denote such vectors by r, and occasionally
interpret r as a function r:Act → Langflat that maps all ai onto ui and is the identity everywhere
else.

For instance, consider again the small buffer example used as motivation in the previous sec-
tion. We started with a specification put ; get and a (simultaneous) refinement given by r =
put�put1 ||| put2, get�get1 ||| get2; by fixing a dependency relation, we arrived at a uniquely de-
termined implementation. Using the concept of vertical implementation, on the other hand, there
could be a number of correct implementations; for instance

put ; get ≤r (put1 ||| put2); (get1 ||| get2)
put ; get ≤r (put1; get1 ||| put2); get2

put ; get ≤r put1; get1 ||| put2; get2 .

A major advantage of this approach is that we can stay in the realm of interleaving semantics, just
as in the case of dependency-based refinement. This is due to the fact that the congruence question
simply disappears once we have abandoned the idea of refinement as an operator. For instance, the
following design steps all give rise to perfectly valid vertical implementations (compare Section 1.3):

a ||| b ≤a�a1;a2 a1; a2 ||| b
a ||| b ≤a�a1;a2 a1; a2; b + b; a1; a2

a; b + b; a ≤a�a1;a2 a1; a2 ||| b
a; b + b; a ≤a�a1;a2 a1; a2; b + b; a1; a2 .

As a consequence, it is possible to formulate a single, unified framework in which the standard con-
cept of implementation (which, in contrast, one might call horizontal) and vertical implementation
are integrated. In fact, given that there are many variations on the standard concept of imple-
mentation (based, e.g., on traces, testing or bisimulation), one can imagine analogous variations on
vertical implementation.

Below, we propose a specific vertical implementation relation, based on delay bisimulation
(see Section 2.4). Another vertical implementation relation, based on weak bisimulation, was
worked out in [123, 124]; a testing-based relation was proposed in [118]. We then formulate some
properties that one would naturally expect a vertical implementation relation to satisfy, inspired
by properties of horizontal implementation (e.g., transitivity, monotonicity); we assert that vertical
delay bisimulation indeed satisfies these properties.

8.1 Refinement functions.

Vertical implementation relations are a new area of study, and the results that have been achieved
hold only for a restricted class of refinement functions. For the purpose of this section, we there-
fore impose some strong restrictions on the allowable refinements. See [124] for a more extensive
discussion.

First of all, we only consider refinement images in a restricted sub-language Langref , generated
by the following grammar:

T ::= a | T;T | T + T .
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(Note that this limits actions to a ∈ Act , disallowing invisible actions.) Furthermore, we impose
as a well-formedness condition on Lang ref that terms must be distinct, in the following inductively
defined sense:

• Every action a ∈ Act is said to be distinct;

• t1; t2 and t1 + t2 are said to be distinct if t1 and t2 are distinct and S(t1) ∩ S(t2) = ∅.

Furthermore, given a set of actions A ⊆ Act , a simultaneous refinement r:Act → Lang ref (using
only well-formed terms as images) is called distinct on A if S(r(a)) ∩ S(r(b)) = ∅ for a ∈ A and
b ∈ Act \{a}. This has the consequence that, given a b-transition performed by the r-image of some
action a ∈ A, both the action a and the position in r(a) where b occurs are uniquely determined.
In the remainder of this section, we will implicitly only consider vertical implementation relations
≤r between pairs t1 and t2 such that r is distinct on S(t1).

Note that the image of put�put1 ||| put2 is not in Lang ref (and neither is the image of get); hence
we cannot treat the motivating example in its current form. Below, we consider the somewhat
simpler case of r = (put�put1; put2 and get�get1; get2); we still expect the following valid vertical
implementations.

put ; get ≤r put1; get1; put2; get2

put ; get ≤r put1; (get1 ||| put2); get2 .

We furthermore use the following refinement function-related concepts:

• For every refinement function r, the function Sr:Act → 2Act maps all actions to the alphabet
of their r-images; that is, for all a ∈ A

Sr: a �→ S(r(a)) .

This is also extended to sets of actions A ⊆ Act :

Sr:A �→
⋃

a∈A Sr(a) .

• For every refinement function r and set of actions A, r/A denotes the function that is the
identity on A and coincides with r elsewhere; that is,

r/A: a �→
{

a if a ∈ A
r(a) otherwise.

• For all refinement functions r1 and r2, r1 + r2 denotes the function that maps all a ∈ Act to
the choice between the ri-images:

(r1 + r2): a �→ r1(a) + r2(a) .

8.2 Vertical delay bisimulation

We develop a vertical implementation relation based on a variant of weak bisimulation called delay
bisimulation, which we already introduced in Definition 2.11.5 We actually drop the qualifier
“delay” in the remainder of this section, when this does not give rise to confusion.

5Previously (in [123]), we took weak bisimulation as a basis for vertical extension; in doing so, we encountered some
problems that we conjectured to be related the fact that weak bisimulation is not a congruence for the refinement
operator in the sequential language Langseq (see Section 2). Since delay bisimulation is the coarsest congruence for
refinement contained in weak bisimulation (Proposition 2.12), its vertical extension is smoother than that of weak
bisimulation.
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An important extension with respect to the standard notion of bisimulation is that we have to
take into account that in any given state of the implementation, there may be associated refined
actions whose execution has not yet terminated. These will be collected in a (multi)set of residual
(or pending) refinements and will be used to parameterise the bisimulation. Thus, bisimulations
are not binary but ternary relations.6 Furthermore, in contrast to standard bisimulation, the
simulation directions from specification to implementation and vice versa are no longer symmetric.
To simulate the abstract transitions of the specification by the implementation (with the set of
pending refinements as an intermediary), we define the concept of down-simulation; the other
direction is called an up-simulation. Finally, we also require a residual simulation which captures
how the pending refinements are processed by the implementation.

Residual sets. A residual set for r will be a multiset of non-terminated proper derivatives of
r-images, formally represented by a function R:Lang seq → N. We will write t ∈ R if R(t) > 0. To
be precise, the collection of residual sets for r is defined as follows:

RS (r) = {R:Lang seq → N | ∀u′ ∈ R:∃a ∈ Act , σ ∈ Act+: r(a) =σ⇒ u′ �−�−→} .

We use the following constructions over residual sets:

∅: u �→ 0

[t]: u �→
{ 1 if u = t and t �−�−→

0 otherwise
R1 ⊕R2: u �→ R1(u) + R2(u)
R1 "R2: u �→ max{R1(u)−R2(u), 0}

The behaviour of a residual set corresponds to the synchronisation-free parallel composition of its
elements. Formally:

R −α→ R′ :⇔ ∃t ∈ R:∃(t −α→ t′):R′ = (R" [t])⊕ [t′]

Note that terminated terms do not contribute to the residual set, and α �= τ . The reason why we
can ignore terminated terms is that (due to well-formedness) it is certain that such terms no longer
display any operational behaviour (in terms of Section 2, termination is final).

Notation for ternary relations. In the following, we will often work with ternary relations of
the form ρ ⊆ N ×N ×RS (r). We use the notation n1 ρR n2 to abbreviate (n1, n2, R) ∈ ρ; in other
words, ρR is interpreted as the binary relation {(n1, n2) | (n1, n2, R) ∈ ρ}.

Definition 8.1 Let T be a labelled transition system. A strict down-simulation up to r over T
is a ternary relation ρ ⊆ N × N × RS (r) such that for all n1 ρ∅ n2, if n1 −α→ n′

1 then one of the
following holds:

1. α = τ and n′
1 ρ∅ n2;

2. α ∈ {τ,�} and ∃(n2 =⇒−α→ n′
2) such that n′

1 ρ∅ n′
2;

3. α ∈ Act and ∀(r(α) −c→ u′):∃(n2 =⇒−c→ n′
2) such that n′

1 ρ[u′] n′
2.

6Other ternary bisimulation-based relations are, for instance, history-preserving bisimulation [62], and symbolic
bisimulation [86].
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Note that down-simulation only imposes conditions on triples (n1, n2, R) where R = ∅, i.e., there
are no pending refinements. For such triples, apart for the simulation of internal and termina-
tion transitions (which are standard for delay bisimulation), it is required that any action a of
the specification (n1) is refined into a term r(a) of which all initial actions are simulated by the
implementation (n2), such that the successors of n1 and n2 are again related, with the successor of
r(a) pending. The reason for the additive “strict” will become clear later this section.

Definition 8.2 Let T be a labelled transition system. An up-simulation up to r over T is a ternary
relation ρ ⊆ N ×N ×RS (r) such that for all n1 ρR n2, if n2 −γ→ n′

2 then one of the following holds:

1. γ = τ and n1 ρR n′
2;

2. γ ∈ {τ,�} and ∃(n1 =⇒−γ→ n′
1) such that n′

1 ρR n′
2;

3. ∃a ∈ Act :∃(n1 =⇒−a→ n′
1) and ∃(r(a) −γ→ u′) such that n′

1 ρR⊕[u′] n′
2;

4. ∃(n1 =⇒ n′
1) and ∃(R −γ→ R′) such that n′

1 ρR′
n′

2.

Thus, if the implementation’s move γ is not an internal or termination transition, either it corre-
sponds to the initial concrete action of a refined abstract action a (in which case, since r is distinct,
a is uniquely determined), or it is an action of a residual refinement (which again is uniquely de-
termined), in which case the specification is allowed to move silently. Note that these two cases
(Clauses 3 and 4 in the definition) are mutually exclusive, again due to the distinctness of r.

Definition 8.3 Let T be a labelled transition system. A strict residual simulation over T is a
ternary relation ρ ⊆ N×N×RS (r) such that for all R �= ∅, if n1 ρR n2 then ∀(R −γ→ R′):∃(n2 =⇒−γ→
n′

2) such that n1 ρR′
n′

2.

This specifies that any move of a pending refinement has to be (delay-)simulated by the imple-
mentation, while the specification remains as it is. This implies that pending refinements can be
“worked off” in any possible order, or indeed in parallel, by the implementation. This property
can be construed as an operational formulation of non-interruptability : that which is started can
always be finished (see also Section 3). The combination of down-simulation, up-simulation and
residual simulation gives rise to vertical bisimulation.

Definition 8.4 Let T be a labelled transition system.

• A strict vertical bisimulation up to r over T is a ternary relation ρ ⊆ N × N × RS (r)
that is both a strict down-simulation up to r, an up-simulation up to r and a strict residual
simulation.

• Strict vertical bisimilarity up to r over T , denoted �r
∀, is the largest strict vertical bisimulation

up to r, and rooted strict vertical bisimilarity up to r, denoted #r
∀, is the largest delay root

of �r,∅
∀ .

The subscript “∀” is related to the adjective “strict” and the ∀-quantifiers in the definitions of
strict down- and residual simulation; see also below. The following is an example of an actual strict
vertical bisimulation.

Example 8.5 Let r: a �→ a1; a2. The following figure shows strict vertical bisimulations proving
a; b #r

∀ a1; a2; b and a; b #r
∀ a1; (a2 ||| b), where the dotted lines connect related states and their

78



labelling is the residual set indexing the relation:

b

a2
b

[a2]

[a2]
a2

a1

b

a2

a1

[a2]
a

b

a1; a2; b a; b a1; (a2 ||| b)

�

� �

∅

∅

∅ ∅

∅

∅

∅∅

However, this does not yet quite allow the design step we used in our (modified) motivating example:
that is, put1; (get1 ||| put2); get2 is not a vertical implementation of put ; get . The reason is that the
sequence

put1; (get1 ||| put2); get2 −
put1−−→ (get1 ||| put2); get2 −

get1−−→ (1 ||| put2); get2

of the implementation cannot be strictly bisimulated: the only possibility would be

put ; get −put−→ get −get−→ 1

with residual sets R0 = ∅ (initially), R1 = [put2] (after the first step) and R2 = [put2]⊕ [get2] (after
the second step). Since R2 −get2−−→, strict residual simulation requires that the implementation can
do get2 already, which is not the case.

To improve on this, we formulate a second, weaker notion of down-simulation and residual
simulation, which state that not all transitions of a refinement image, respectively all transitions
of the residual have to be simulated, but rather at least one.

Definition 8.6 Let T be a labelled transition system and assume ρ ⊆ N ×N × RS (r).

• ρ is a lax down-simulation up to r if for all n1 ρ∅ n2 and n1 −α→ n′
1, one of the following

holds:

1. α = τ and n′
1 ρ∅ n2;

2. α ∈ {τ,�} and ∃(n2 =⇒−α→ n′
2) such that n′

1 ρ∅ n′
2;

3. α ∈ Act and ∃(r(α) −c→ u′):∃(n2 =⇒−c→ n′
2) such that n′

1 ρ[u′] n′
2.

• ρ is a lax residual simulation if for all R �= ∅, if n1 ρR n2 then ∃(R −γ→ R′):∃(n2 =⇒−γ→ n′
2)

such that n1 ρR′
n′

2.

• ρ is a lax vertical bisimulation up to r if it is both a lax down-simulation up to r, an up-
simulation up to r and a lax residual simulation.

• Lax vertical bisimilarity up to r, denoted �r
∃, is the largest lax vertical bisimulation up to r,

and rooted lax vertical bisimilarity up to r, denoted #r
∃, is the largest delay root of �r,∅

∃ .

Note that the ∀-quantifiers in Definitions 8.1 and 8.3 have been turned into ∃; this is precisely
what makes #r

∃ weaker than #r
∀. Now we indeed have put ; get #r

∃ put1; (get1 ||| put2); get2 (where
r = (put�put1; put2, get�get1; get2) as before); witness Figure 11.

Due to the nature of our refinement functions, which are distinct and therefore cannot deadlock,
the lax relation is indeed (strictly) weaker than the strong one.

Proposition 8.7 For all distinct r, #r
∀ ⊆ #r

∃.
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Figure 11: A lax vertical bisimulation

8.3 Requirements for vertical implementation

Apart from our one motivating example, one would like to have objective criteria to decide between
the strict and lax versions of vertical bisimulation; and indeed to know whether these relations can
be made part of a larger framework for design, as discussed at the start of this section. To answer
these questions, we formulate a set of general proof rules for vertical implementation, and investigate
to what degree either version of vertical bisimulation satisfies them.

The rules are collected in Table 15. Note that they feature a generic relation symbol �r

standing for any vertical implementation relation, and a generic symbol � standing for a horizontal
implementation relation. In this context, � is called the basis of �r, and �r a vertical extension
of �. We briefly discuss the rules.

• The first group of rules (R1–R3) expresses our basic assumption of working modulo the
horizontal implementation relation. R1 states that every term implements itself as long as no
refinement takes place; R2 says that �id (where id is the identity refinement, mapping each
action to itself) is compatible with the horizontal implementation relation; while R3 explains
the interplay between horizontal and vertical implementation. Note that, as a consequence,
we also have the derived rule

t � u

t �id u

that, in conjunction with R2, ensures that � and �id are indeed the same relation.

Note also that R1 and R2 imply that � is reflexive, whereas R1–R3 together imply that �
is transitive; hence � is a pre-order, which indeed is the standard requirement for horizontal
implementation relations.

• The second group of rules (R4–R10) essentially express congruence of vertical implementation
with respect to the operators of Langflat . For instance, if the refinement functions in these
rules are set to id , then the properties expressed by the rules collapse to the standard pre-
congruence properties of � for the operators of Langflat . (In other words, the horizontal
implementation relation � needs to be a pre-congruence, at least.)

Rules R4 and R5 simply express that deadlock and termination are independent of the ab-
straction level. R6 is the core of the relationship between the refinement function r and the
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Table 15: Proof rules for vertical implementation

t �id t
R1

t �id u

t � u
R2

t � t′ t′ �r u′ u′ � u

t �r u
R3

0 �r 0
R4

1 �r 1
R5

α �r r(α)
R6

t1 �r u1 t2 �r u2

t1 + t2 �r u1 + u2

R7

t1 �r u1 t2 �r u2

t1; t2 �r u1;u2

R8

t �r u

t/A �r/A u/Sr(A)
R9

t1 �r u1 t2 �r u2

t1 ||A t2 �r u1 ||Sr(A) u2

R10

r(a) = u1;u2 t �r v

a; t �r u1; (u2 ||| v)
R11

r(a) = u1;u2 t �r v1; v2

a; t �r u1; (u2 ||| v1); v2

R12

t �r1 u

t �r1+r2 u
R13

vertical implementation relation: it expresses the basic expectation that r(a) should be an
implementation for a. R7–R10 are quite obvious, as they inductively go into the structure of
the components. Note that in R10, the synchronisation set A of the specification is refined in
the implementation.

Rule R9 is similar, with the proviso that the refinement images of the actions that are hidden
is set to the identity. An interesting special case of R9 is given by the following derived rule:

t �r u A = {a | r(a) �= a}
t/A �id u/Sr(A)

Hence, by hiding all the actions that are properly refined, the vertical implementation is
turned back into a horizontal implementation relation.

• The last group of rules (R11–R13) describes design steps that are different from the ones
using the congruence-like rules of the previous group. In fact, these rules capture the gain
over the traditional refinement operator: R11 and R12 allow certain parts of refinement images
to overlap in the implementation, even if the specification imposes an ordering between the
corresponding abstract actions, whereas R13 allows refinements to be implemented partially.

It seems natural to require that a vertical implementation relation satisfies at least rules R1–R10,
and as many of the other rules as possible. In [124], we proved that this is the case for rooted
vertical weak bisimulation; the proof carries over to rooted strict vertical bisimulation (#r

∀).

Theorem 8.8 #r
∀ satisfies the rules in Table 15 except R12 and R13.

Unfortunately, lax vertical bisimilarity (Definition 8.6) does not satisfy the parallel composition
rule.

Example 8.9 Consider r: a �→ a1 + a2; let t = a and ui = a1 for i = 1, 2. We have t #r
∃ u1 and

t #r
∃ u2; however, a1 ||a1,a2

a2 �d 0 and hence t ||a t �d a �#r
∃ 0 �d u1 ||Sr(a) u2.
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The reason lies in the existential nature of the lax down-simulations (and also of the lax residual
simulations, although the above example does not show that): the implementations of the parallel
components both have to have some matching transition, but they need not be the same. However,
this is the only proof rule that is problematic, and then only for synchronisation actions.

Theorem 8.10 #r
∃ satisfies the rules in Table 15, where R10 is replaced by the following special

case:
t1 �r u1 t2 �r u2 r/A = id

t1 ||A t2 �r u1 ||A u2

The situation is not yet very satisfactory: for lax vertical implementation, the failure of R10 is
a grave disadvantage, since synchronisation is the basic interaction mechanism between system
components: if one cannot synchronise on an action after its refinement, the formalism is not very
useful. On the other hand, strong vertical implementation does not allow some design steps that
seem intuitively reasonable and attractive —such as the one of our motivating example.

The situation is alleviated, however, by the fact that strong and lax refinement can be combined
so as to merge the advantages of both to a large degree. Namely, it is possible to implement one
operand of a synchronisation using the lax vertical bisimulation, and the other using the strong
version; the resulting implementation will still be a vertical implementation, in the lax version.
Formally:

Theorem 8.11 Let A ⊆ Act and assume r/A = id. If t1 #r
∀ u1 and t2 #r

∃ u2, then t1 ||A t2 #r
∃

u1 ||Sr(A) u2.

Example 8.12 To see the possible interplay between strict and lax vertical implementation, con-
sider a booking agent, whose function on an abstract level consists of a continuous series of book
actions, and two customers that concurrently invoke this action. Algebraic specifications are given
by

AgentS := book ;AgentS

UsersS := book ||| book .

Now consider a refinement r: book �→ req ; (yes +no), specifying that a booking consists of a request,
which may be granted (yes) or refused (no). A possible implementation that is lax for the agent
and strict for the users is given by

AgentI := req ; (yes ||| req);Empty
Empty := (no ||| req);Empty
UsersI := req ; (yes + no) ||| req ; (yes + no) .

The agent will receive the request of a second customer in parallel with the reply to the first, but
replies yes to the first one only. The customers take either yes or no for an answer. We have
AgentS #r

∃ AgentI and UsersS #r
∀ UsersI ; thus, according to Theorem 8.11, AgentS ||book UsersS #r

∃
AgentI ||req ,yes,no UsersI .

Informally, the reason why this works is that every (down- or residual) simulated transition that
exists on the lax side exists on the strict side as well; hence they can be combined into a simu-
lated transition of the synchronised behaviour. We arrive at the following schema regarding the
synchronisation of vertical implementations:
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• Strict with strict yields strict;

• Strict with lax yields lax;

• Lax with lax does not yield a valid implementation.

8.4 Further developments

We briefly review two issues regarding vertical implementation, worked out in [124] for the strict
case, that have been omitted from the presentation above.

Open terms and recursion. Table 15 contains no proof rule for recursion. Thus, for instance,
we cannot prove the relation AgentS #r

∃ AgentI in Example 8.12 algebraically. Intuitively, a proof
rule would take the form

t �r u

μx.t �r μx.u .

However, here t and u are (in general) open terms; we have not discussed how to interpret vertical
bisimulation over such. In fact, the most natural definition, which says that t �r u iff all closed
instances of t and u are related, is not satisfactory: for then the relation x �r x would be inconsistent
except for r = id . In fact, in t �r u, the occurrences of x in t (on the abstract side) should be
interpreted differently from the occurrences of x in u (the concrete side). The solution developed
for this in [124] (which we will not go into here) consists of adding an environment to the proof
rules which records precisely these differences in interpretation. The above proof rule for recursion,
extended appropriately with such environments, is sound for strict and lax vertical bisimilarity,
provided we restrict ourselves to strongly guarded terms (meaning that any occurrence of the
recursion variable in the body of a recursive term is guarded by a visible action).

Action substitution. When the rules in Table 15 are extended with a rule for recursion as dis-
cussed above, it can be seen that (simultaneous) action substitution in the line of Section 6 will
automatically give rise to a correct implementation (with respect to any vertical implementation
relation that satisfies all these rules). More precisely: let t{�u/�a} denote the simultaneous substitu-
tion of all ai-occurrences in t by ui, defined through a straightforward generalisation of Table 11.
Then for any vertical implementation relation ≤�a��u and any term t ∈ Langflat , we have

t ≤�a��u t{�u/�a} .

This provides a link to the interpretation of action refinement as an operator, since in Section 6 we
have seen that this operator can in many cases also be mimicked by action substitution.

8.5 Application: A simple data base

Let us consider once more the data base example of Section 2.5 (not including the copy operation
considered in Section 4.6). We will show that, under lax vertical refinement, the n-state version
of the data base, Datan

S , is an implementation of the state-less (or 1-state) version, Data1
S. The

specifications are

Data1
S := (qry + upd);Data1

S

Datan
S := State1

State i := qry i;State i +
∑n

k=1 updk;Statek (for i = 1, . . . , n) .
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Figure 12: Lax vertical implementation of a state-less as a 2-state data base, while refining upd

Let r map qry to
∑n

i=1 qry i and upd to
∑n

i=1 upd i; then it follows that Data1
S #r

∃ Datan
S . In fact,

this implementation relation can be proved algebraically, using the rules of Table 15 extended to
cope with recursion as in [124] (briefly discussed above). The main point is that (in lax refinement)
qry #r

∃ qry i for arbitrary i, i.e., it is not necessary to implement all qry-actions whenever qry is
specified on the abstract level.

If we also consider a user of the data base who actually queries it, this can be modelled by a
process UserS synchronising with Data1

S over qry . Since Datan
S is a lax vertical implementation of

Data1
S , in order to refine the interaction with the user, we have to implement UserS in the strong

sense, meaning that whenever UserS specifies a query, this must be implemented as the choice
between all possible qry i-actions. In fact, this is a reasonable requirement: since the user does not
know the state of the data base at the moment he issues the query, he must accept all possible
answers.

In a sense, the above example is not a case of proper action refinement, since all r-images terminate
after a single action. Alternatively, also the refined n-state database can be derived as an imple-
mentation of Data1

S . For instance, for the case where n = 2, both the implementation Data2,seq
I

obtained in Section 2.5 (see Figure 2) and Data2,D
I obtained in Section 7.4 (see Figure 10) are valid

lax implementations of Data1
S under the refinement r defined by

upd �→ (req1 + req2); cnf
qry �→ qry1 + qry2 .

For instance, Figure 12 shows the lax vertical bisimulation proving Data1
S #r

∃ Data2,D
I .
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