
Appears in Machine Learning: Proceedings of the Eighth International Workshop,
Birnbaum, L., and Collins, G. (eds.), Morgan Kaufmann, San Mateo, CA., 1991.

Refining Domain Theories Expressed as Finite-State Automata
���

Richard Maclin Jude W. Shavlik
Computer Science Dept.
University of Wisconsin

Madison, WI 53706
email: maclin@cs.wisc.edu

Abstract
The KBANN system uses neural networks to
refine domain theories. Currently, domain
knowledge in KBANN is expressed as non-
recursive, propositional rules. We extend
KBANN to domain theories expressed as
finite-state automata. We apply finite-state
KBANN to the task of predicting how proteins
fold, producing a small but statistically
significant gain in accuracy over both a
standard neural network approach and a
non-learning algorithm from the biological
literature. Our method shows promise at
solving this and other real-world problems
that can be described in terms of state-
dependent decisions.

1 INTRODUCTION
Research in artificial neural networks (ANNs) has until
recently largely ignored preexisting knowledge about the
task at hand. One recent effort, the KBANN system [14],
addresses this problem by using domain knowledge to
select a promising configuration for a neural network.
This approach uses the domain knowledge to determine
the topology of the network and biases the network so
that it will start with a "good" set of weights. This
approach has been effective in complex domains, such as
gene recognition [9, 14], even when the initial domain
theory is not particularly correct. In this paper we
discuss how KBANN’s domain theory vocabulary is
extended. Application to the problem of protein folding
demonstrates the promise of this approach.

At present, the KBANN algorithm is limited in the types of
domain theories that can be represented. Domain
theories are written using simple non-recursive
propositional rules. This limitation means that many
domain theories are too complex for the standard KBANN
algorithm. This research extends KBANN to include
domain theories represented as finite-state automata. The
result is that KBANN can be applied to more complex

problems, including ones requiring state-dependent
knowledge.

The sample task we examine is predicting the folding of
globular proteins. There are a number of reasons we
chose this domain. One, it is a real-world problem; at
present no simple solution exists that produces highly
accurate predictions. Two, there have been a number of
attempts to apply standard neural network methods [4,
10], which can be used for comparison purposes. Finally,
there are a number of domain theories [1, 7, 11], most
notably the Chou-Fasman [1] method, which can not be
naturally expressed in simple propositional rules, but
which can be expressed as a finite-state automaton.

The next section presents the KBANN method and how it
is extended for finite-state automata. This is followed by
an experiment involving protein folding. The paper
finishes with a short discussion and conclusions.

2 FINITE-STATE DOMAIN THEORIES
This section reviews the basic KBANN algorithm and
presents our method for extending it to finite-state
automata. We show examples of standard and finite-state
KBANN.

2.1 STANDARD KBANN

Standard KBANN [14] takes a domain theory expressed as
simple rules and translates it into a corresponding
network with initial weights. For example, consider the
pair of rules in Figure 1(a).

A:− B,C.

A:− B,not D.

(a) (b)

B D

A

C

Figure 1: (a) A set of propositional rules and
(b) a KBANN translation of these rules.

KBANN translates these rules into the network shown in
Figure 1(b). Positive links are solid lines, negative links
are dashed lines. B, C, and D are binary input units. The
hidden units correspond to the rules; the first is active if B
and C are active, the second is active if B is active and D
is not active. Unit A is active if either hidden unit is
active.

After the domain theory is translated into a network, each
unit is connected to the unconnected units at the next
lower level using a small weight link. These connections
allow the system to learn new antecedents to rules that
might not have been part of the original domain theory.
The resulting network is trained using backpropagation
[12]. Backpropagation refines the domain theory to
correctly classify any training examples not already
covered.

2.2 FINITE-STATE KBANN

A finite-state automaton (FSA) is represented by a set of
nodes and arcs. Each node is a state. Each arc is a
transition from one state to another. The FSA, beginning
in its start state, scans a series of input values. For each
input value, the automaton transitions to a new state by
examining the arcs from the present state and following
the arcs labeled with the input value. The problems with
representing an FSA in KBANN are (1) how to represent
the concepts of "scanning" a series of input values and
(2) keeping track of the state.

A solution to problem 1 is to "scan" the input as done in
the NETtalk system [13]. The input is a window of
values around the central value, and the next input is
obtained by advancing the window one place.

To solve problem 2, the current state of the system is an
input to the network at each step, as suggested by Jordan
[5] and Elman [3]. After each step, when the window
advances, the state from the last step is copied back as
the next state. This copied-back state makes translation
of an FSA a simple extension to the KBANN method.
Each arc in the FSA is viewed as a rule where the
antecedents are the source state and the input value; the
consequent is the destination state. This representation of
an FSA in a neural network is very similar to that of
Cleeremanns et al. [2].

2.3 A FINITE-STATE KBANN EXAMPLE

As an example of translating an FSA, consider the
automaton in Figure 2(a) for recognizing numbers
divisible by three. The FSA is translated into a set of
rules with current state and input as antecedents and
resulting state as consequent.

Finite-state KBANN translates the FSA from Figure 2(a)
into rules; examples are shown in Figure 2(b). Applying
KBANN to these rules produces the network shown in
Figure 2(c). In this network the hidden units act like
AND-gates and the output units like OR-gates.

Note that the domain theory in Figure 2 is correct.
However, in an imperfect domain theory, the transition
rules may be incorrect or there may be missing
transitions. Finite-state KBANN uses example sequences
to correct these errors. Also, in finite-state KBANN we
have generalized the notion of input to a window of input
including not only the present input value, but also some
number of input values before and after the present input.

0 1

2

0,3,6,9

1,4,7

2,5,8

2,5,8

2,5,8

1,4,7

1,4,7

0,3,6,90,3,6,9

(a) An FSA to recognize numbers divisible by three.

If Present State = 0 And Current Input = 0

Then Next State = 0

If Present State = 0 And Current Input = 1

Then Next State = 1

If Present State = 1 And Current Input = 0

Then Next State = 1

...

(b) Rules derived from (a).

....

State=0 State=2State=1

Input=1Input=0State=0 State=2State=1

(c) KBANN translation of rules from (b).

Figure 2: Example of the translation process for an FSA.

3 A CASE STUDY IN THE DOMAIN OF
PROTEIN FOLDING

This section defines the problem of predicting protein
folding and examines standard neural network
approaches to this problem. This is followed by a
discussion of the Chou-Fasman domain theory used in
our approach to this problem. We then report
experiments performed to evaluate our approach.

3.1 PROTEIN FOLDING

Proteins are long strings of amino acids. There are
twenty amino acids in all (represented by capital letters).
The amino acids in a protein are the primary structure of
the protein. Once a protein forms, it folds into a three-

dimensional shape; the location of the amino acids in
this shape is the tertiary structure of the protein. Tertiary
structure is important because the shape of the protein
determines its function.

At present, few means exist to predict tertiary structure of
a protein. There are X-ray crystallography and magnetic
resonance processes; both are costly and time consuming.
An alternative solution is to determine the secondary
structure of proteins as an approximation to the tertiary
structure. Secondary structure is a description of the
local structure for each amino acid. A prevalent
description of secondary structure divides a protein into
three types of structures: (1) α-helix regions, (2) β-sheet
regions, and (3) random coils (all other regions). A
sample mapping between a protein’s primary and
secondary structure is shown in Figure 3. A common
method used to solve this problem by biologists, the
Chou-Fasman method [1], was shown to have a
prediction accuracy of 58% for sample protein sequences
[8].

PrimaryVYRNNFKSA....
� ���
Secondaryββcccccαα....

��
�
�

Figure 3: Primary and secondary structures of a
sample protein.

3.2 STANDARD NEURAL NETWORK
APPROACHES TO PREDICTING
SECONDARY STRUCTURE

Several researchers have attempted to use neural
networks to solve this problem [4, 10]. The neural
networks in these efforts had as input a window of amino
acids consisting of the central amino acid being
predicted, plus some number of the amino acids before
and after it in the sequence. The window was used to
predict the secondary structure for the central amino acid.
Output from the network was one unit for each type of
secondary structure. The networks include some number
of hidden units in a single layer between the input and
output units (the number was varied in both studies); a
general picture of this type of network is shown in
Figure 4.

After the output values are determined, the resulting
prediction is obtained. For each amino acid, the unit
having the highest activation is chosen, with some
exceptions made for "short" sequences. "Short"
sequences are sequences of amino acids that
predict helix or sheet, but are less than four or two
amino acids in length, respectively. Since such "short"
sequences do not in general occur in real proteins [6],
these predictions are replaced with coil. The best test
set accuracies reported from these efforts were 63.2% [4]
and 62.7% [10].

3.3 THE CHOU-FASMAN DOMAIN THEORY

A standard approach in the biological literature to
predicting secondary structure is the Chou-Fasman
method [1]. The Chou-Fasman method is similar for
both helix and sheet prediction; we will look at
only helix prediction. The first step is to find helix
nucleation sites. Nucleation sites are small regions of
amino acids that are likely to be part of α-helix
structures, according to the rules reported by Chou-
Fasman. From this small region the structure is extended
forward and backward along the protein as long as the
likelihood of α-helix remains high. After helix
and sheet regions have been predicted, relative
likelihoods of the regions are compared to resolve
overlaps.

I L G D Q F L K Q Q Y V V F D R N G I RD L A P V A.....

Input Units

Input WindowPrimary Structure

Scanning Direction

.....

Output Units

Hidden Units

α−helix
β−sheet
coil

α−helix β−sheet coil

Predicted Secondary Structure

Figure 4: General architecture of networks from [4, 10].

A general picture of the finite-state automaton we used to
represent this domain theory appears in Figure 5. Note
the notion of transition in this automata is more complex.
Each transition is represented by a set of rules applied to
the input window and the current state to determine if the
transition can be followed. Initial state of the FSA
is coil.

sheethelix

coil

init−helix init−sheet

init−sheet

init−helix

break
helix

break
sheet

continue
helix

continue
sheet

otherwise

Figure 5: FSA used to represent the Chou-Fasman
domain theory.

Sample Chou-Fasman rules are shown in Figure 6. Note
the first three rules do not refer to state; these rules are
subrules used by the transition rules (the last rule). The

assumption is that these rules are incomplete, incorrect,
or inconsistent for some input(s). Finite-state KBANN
takes the incorrect transition rules and refines them so
that the correct transition is chosen.

If amino acid = E

Then the amino acid is a helix-former

If amino acid = P

Then terminate helix is true

If center amino acid is a helix former And
3 of 5 following amino acids

are helix formers And
conformation value is > 1.13†

Then initiate helix

If Present State = coil And
initiate helix is true

Then Next State = helix

...

Figure 6: Rules from the Chou-Fasman domain theory.

Recognizing a nucleation site depends only on
information in the input window and can be implemented
in regular KBANN. Extending a sequence, on the other
hand, requires the finite-state capability of the system,
since extending a sequence depends on having
recognized a nucleation site in some previous input
window. Since sequences are extended in both directions
according to the Chou-Fasman method, the system scans
a protein twice when it is presented. One scan proceeds
forward over the protein and the next scan backward,
with the results being combined. In this way the helices
and sheets are extended in both directions. Once both
scans are performed the results are averaged. A general
picture of the type of network used to translate this
domain theory is shown in Figure 7.

3.4 EXPERIMENTAL STUDY

We performed experiments with finite-state KBANN to
determine if it does better than standard ANNs and the
Chou-Fasman method at predicting secondary structure.
Testing was done with the set of proteins used by Qian
and Sejnowski [10]. The data set consists of 128
proteins. The proteins were randomly divided into
training and test sets containing two-thirds (85 proteins)
and one-third (43 proteins) of the original proteins,
respectively. This process was repeated ten times. Each
of the training sets of 85 proteins was further divided into
four training sets: the first contained the first 10 of the 85
proteins; the second contained the first 25 of the 85; the
third contained the first 50 of the 85; and the fourth had
all 85 training proteins.

� ���������������������������

† The original Chou-Fasman domain theory suggests using a
threshold of 1.03. Nishikawa [8] suggested that only the most likely
nucleation sites should be chosen, thus the higher threshold.

I L G D Q F L K Q Q Y V V F D R N G I RD L A P V A.....

.....

Output Units

Hidden Units

Input Units

Input WindowPrimary Structure

Copy of last
output as input

α−helix
β−sheet
coil

α−helix β−sheet coil

Scanning Direction

Predicted Secondary Structure

Figure 7: General structure of networks used to
represent the Chou-Fasman domain theory.

Each network was trained for 60 epochs on its training
set and the percent correctness recorded. The
standard ANN used the same number of hidden units (28)
as the networks used in the KBANN method. The results
averaged over the 10 runs for each training set size are
shown in Figure 8. The reason that the accuracy reported
for the standard ANN is lower than that reported by Qian
and Sejnowski is that they recorded the highest accuracy
achieved by the system through all of the epochs, while
our results only report the accuracy at the end of the 60
epochs.

3.4.1 Empirical Results

In Figure 8, finite-state KBANN shows a small increase in
accuracy over standard ANN. Statistical analysis of the
differences in prediction accuracy using a t-test show that
the differences, while small, are statistically significant at
the 0.5% level (i.e., with 99.5% confidence). For the
largest training sets (the ones with 85 proteins), accuracy
is 61.9% for finite-state KBANN and 59.8% for standard
ANN, these results are also significant at the 0.5% level.

3.4.2 Discussion

While the results presented show improvement over
standard neural network solutions and the Chou-Fasman
method, the gain at this point is still fairly small.
Detailed inspection of the errors made by the neural nets
and the Chou-Fasman method show some similarities and
differences. All three approaches do poorly in cases
where both helix and sheet are predicted. All three
do fairly well at finding the approximate location of α-
helix and β-sheet structures, but less well in determining
exactly how far these structures extend. The neural
network techniques do well at predicting coil, but less
well at helix or sheet prediction. This is not
surprising since 54% of the secondary structure in the
data set is coil, with helix and sheet being roughly
equally split among the remaining instances. The KBANN

54.0

56.0

58.0

60.0

62.0

64.0

0 10 20 30 40 50 60 70 80 90

Number of training proteins

P
er

ce
nt

 C
or

re
ct

ne
ss

Chou-Fasman

Standard ANN

Finite-state KBANN

Figure 8: Average accuracy on test set as a
function of training set size.

solution does a better job of predicting helix
and sheet than the standard ANN solution, accounting
for much of its advantage over the standard ANN
method. This again is not surprising since the Chou-
Fasman domain theory focuses on predicting helix
and sheet, with coil only predicted as a default.

Since the present approach does not achieve high
accuracy, a number of extensions to the approach are
being considered. A better initial representation of the
Chou-Fasman domain theory might raise accuracy since
KBANN is dependent on the quality of its initial domain
theory. Also, combining Chou-Fasman with other
techniques such as the Lim [7] or Robson et al. [11]
algorithms might produce better results.

4 CONCLUSIONS
The finite-state KBANN method provides a useful and
powerful extension to the standard KBANN technique.
Finite-state KBANN represents domain theories expressed
as finite-state automata. The state of the automata is
remembered in the neural network by copying the state
back as input to the network in the next step. The
"scanning" of the input string in an FSA is handled by
having the network scan the input, activating it with the
current input value and the current state to determine the
output state. Finite-state KBANN derives a set of rules
from an FSA which are translated into a neural network.
The state transitions are refined using a set of training
examples so that they will be correct for the training
examples.

By allowing domain theories that include state-dependent
rules, KBANN has been extended to cover additional real-
world applications. The application of finite-state KBANN
to the protein structure-prediction problem demonstrates
that this method may produce improvement on standard

neural network methods and on existing non-learning
algorithms (e.g. Chou-Fasman). However, more work
must be done both in generating better domain theories
and improving the network refinement process.

Acknowledgments

This research was partially supported by National
Science Foundation Grant IRI-9002413 and Office of
Naval Research Grant N00014-90-J-1941. The authors
would like to thank Terrence Sejnowski for providing the
protein data used in testing.

References

1. Chou, P. Y. and Fasman, G. D., "Prediction of the secondary
structure of proteins from their amino acid sequence," Advan.
Enzymol. 47, (1978), 45-148.

2. Cleeremans, A., Servan-Schreiber, D. and McClelland, J. L.,
"Finite state automata and simple recurrent networks," Neural
Computation 1, 3 (1989), 372-381.

3. Elman, J. L., "Finding structure in time," Cog. Sci. 14, 2 (1990),
179-211.

4. Holley, L. H. and Karplus, M., "Protein structure prediction with
a neural network," Proc. Nat. Acad. Sci. 86, (1989), 152-156.

5. Jordan, M. I., "Serial order: a parallel distributed processing
approach," TR 8604, UCal, Inst. for Cog. Sci., San Diego, 1986.

6. Kapsch, W. and Sander, C., Biopolymers 22, (1983), 2577-2637.

7. Lim, V. I., "Algorithms for prediction of α-helical and β-
structural regions in globular proteins," J. Mol. Bio. 88, (1974),
873-894.

8. Nishikawa, K., "Assessment of secondary-structure prediction of
proteins comparison of computerized Chou-Fasman method with
others," Biochim. Biophys. Acta 748, (1983), 285-299.

9. Noordewier, M. O., Towell, G. G. and Shavlik, J. W., "Training
knowledge-based neural networks to recognize genes in DNA
sequences," in Advances in Neural Information Processing
Systems, Vol. 3, Morgan Kaufmann, Denver, CO, 1991.

10. Qian, N. and Sejnowski, T. J., "Predicting the secondary structure
of globular proteins using neural network models.," J. Mol. Bio.
202, (1988), 865-884.

11. Robson, B. and Suzuki, E., "Conformational properties of amino
acid residues in globular proteins," J. Mol. Bio. 107, (1976), 327-
356.

12. Rumelhart, D. E., Hinton, G. E. and Williams, R. J., "Learning
internal representations by error propagation," in Parallel
Distributed Processing: Explorations in the microstructure of
cognition. Volume 1: Foundations, Rumelhart, D. E. and
McClelland, J. L. (ed.), MIT Press, Cambridge, MA, 1986, 318-
363.

13. Sejnowski, T. J. and Rosenberg, C. R., "Parallel Networks that
Learn to Pronounce English Text," Complex Systems 1, (1987),
145-168.

14. Towell, G. G., Shavlik, J. W. and Noordewier, M. O.,
"Refinement of approximate domain theories by knowledge-base
neural networks," AAAI90, 1990, 861-866.

