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Abstract 

One of the issues in creating any search tech- 
nique is balancing the need for diverse 
exploration with the desire for efficient 
focusing. This paper explores a genetic algo- 
rithm (GA) architecture which is more resil- 
ient to local optima than other recently 
introduced GA models. and which provides 
the ability to focus search quickly. The GA 
uses a fine-grain parallel architecture to sim- 
ulate evolution more closely than previous 
models. In order to motivate the need for 
fine-grain parallelism, this paper will provide 
an overview of the two preceding phases of 
development: the traditional genetic algo- 
rithm, and the coarse-grain parallel GA. A 
test set of 15 problems is used to compare 
the effectiveness of a fine-grain parallel GA 
with that of a coarse-grain parallel GA. 

1 INTRODUCTION 

The effectiveness of heuristic techniques used in machine 
learning, search, and function optimization, resides in the 
heuristic’s ability to balance the need for a diverse set of 
sampling points with the ability to focus search quickly 
upon potential solutions. Genetic algorithms (GAS) are 
general purpose optimization tools designed to search 
irregular. poorly characterized search spaces. GAS are 
baxd upon the ideas of natural selection and genetic 
recombination. GAS combine the principles of survival of 
the fittest with a randomized information gxchange. 
Although the information exchange is randomized, GAS 
are far different than simple random walks. having the 
ability to recognize trends toward optimal solutions, and to 
exploit such information by guiding the search toward 
them. 

Genetic algorithms have evolved through three phases, 
their development motivated by the goal of balancing 
exploration with focusing. Each of these phases will be 
individually discussed in the next three sections. The first 
phase presented the traditional genetic algorithm. A single 
population of potential solutions is evolved through a 
series of generations. The second phase introduced the 
concept of parallel subpopulations. Only a limited amount 
of swapping of potential solutions is allowed between sub- 
populations. Each subpopulation evolves independently, 
with swapping at infrequent intervals. This has been 
termed coarse-grain parallelism. or the “island” model. 
The third phase, an extension of the second, introduced 
fine-grain parallelism. The GAS in this category differ 
from the previous by relaxing the boundaries between sub- 
populations. Swapping between subpopulations occurs 
frtquently, and significantly contributes to the effective- 
ness of this form of genetic algorithm. This phase also dif- 
fers from the previous two by evolving numerous small 
subpopulations; in the previous two phases, only a few 
large subpopulations are evolved. 

2 TRADITIONAL GAS 

Traditional genetic algorithms maintain a single popula- 
tion of potential solutions for the objective function being 
optimized. Although a large portion of GA research has 
been conducted with potential solutions encoded in binary 
notation, any encoding scheme can be used. The initial 
group of potential solutions is randomly selected. These 
potential solutions, termed “chromosomes”, arc allowed to 
evolve over a number of generations. At every generation, 
the fitness of each potential solution in terms of the objec- 
tive function is calculated, and pairs of solutions are 
recombined to create the subsequent generation. Recombi- 
nation is the method by which the parent chromosomes of 
the cumnt generation donate parts of their potential solu- 
tions to the “children” chromosomes which appear in the 
subsequent generation. The probability that a solution will 
participate in this recombination increases with its fitness. 
Thus, although “good” chromosomes are more likely to be 
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chosen for recombination, they arc not guaranteed to be 
chosen. Further, the “children” chromosomes produced 
are not necessarily better than their parents. Nevertheless. 
because of the selective pressure applied through a number 
of generations, the overall trend is towad better chromo- 
somes. 

In order to perform expansive search. genetic diversity 
must be maintained. When diversity is lost. it is possible 
for the GA to settle into a local optimum. There arc two 
fundamental mechanisms which the traditional GA uses to 
maintain diversity. The first, mentioned above, is a proba- 
bilistic scheme of selecting chromosomes for rtcombina- 
tion. This-insures that schemata, or common recurring 
paaerns. other than those represented in the best chromo- 
somes, appear in subsequent generations. Exclusively 
recombining good chromosomes will quickly converge the 
population without extensive exploration, thereby increas- 
ing the possibility of settling into a local optimum. The 
second mechanism, mutation, is a random change. For 
example, in binary encoded chromosomes, it is usually a 
random bit flip. In the traditional GA. the mutation rate is 
kept at a very small constant. 

This algorithm is typically allowed to continue for an arbi- 
trary number of generations. Upon completion, the best 
chromosome in the final population. or the best chromo- 
some ever found, is returned. 

Unlike the majority of other optimization heuristics, 
genetic algorithms do not work from a single point in the 
search space. Methods which only use a single point are 
susceptible to local optima. GAS continually maintain a 
population of points from which the scarch space is 
explored. This aids in searching multidimensional spaces, 
in which many variables must be optimized, and in locat- 
ing global optima. 

3 COARSE-GRAIN PARALLEL GAS 

A coarse-grain parallel genetic algorithm (cgpGA) is 
based upon the theory of punctuated equilibria. In the 
paper Disrribured Genetic Algorithm for rhe Floor Plan 
Design Problem, Cohoon et. al. describe the theory 
[Cohoon, 19881: 

Punctuated Equilibria is based upon two princi- 
ples: allopatric speciation and stasis. Allopamc 
speciation involves the rapid evolution of new 
species after a small set of members of species. 
peripheral isolates. becomes segregated into a 
new environment. Stasis. or stability, of a spe- 
cies, is simply the notion of lack of change. It 
implies that after equilibria is reached in an envi- 
ronment, there is very little drift away from the 
genetic composition of species. Ideally, a species 
would persist until its environment changes (or 
the species would drift very little). Punctuated 
Equilibria stresses that a powerful method for 

generating new species is to thrust an old species 
into a new environment, where change is benefi- 
cial and rewarded. For this reason we should 
expect a genetic algorithm approach based upon 
punctuated equilibria to perform better than the 
typical single environment scheme. 

By implication, after some period of evolution, a large 
portion of the chromosomes in a single population will 
represent very similar schema. The children chromosomes 
produced thereafter will be similar to each other and to 
their parents, thereby rendering recombination operators 
largely ineffective for further search space exploration, 
One method of resolving this problem is to partition a sin- 
gle large population into separate subpopulations, each 
evolving its chromosomes independently from others. The 
fitness used to determine the probability of selection for 
recombination is measured relative only to the other mem- 
bers within the subpopulation. Independent evolutions, in 
separate subpopulations, should yield closely competitive, 
yet possibly unique results. In the context of a single sub- 
population, in order to continue evolution after conver- 
gence has started, members of species from outside 
subpopulations can periodically be introduced. To ensure 
thorough mixing of chromosomes throughout the popula- 
tion, the swapping does not always occur between the 
same subpopulations. 

Although the sudden injection of new material is an 
important aspect of these simulations, it is not always 
effective. It is possible that the subpopulation into which 
new material is introduced is entirely settled into an qui-  
librium state. If this is the case. new infomation may not 
be incorporated because of its incompatibility with the 
existing information. 

Despite the problems associated with the sudden introduc- 
tion of new material, parallel subpopulations have proven 
their effectiveness in two arcas. The first is, as mentioned 
above, to preserve diversity and to ensure perpetual nov- 
elty in the population’s “gene pool”. Through the use of 
parallel subpopulations, GAS have been able to solve 
problems which could not be solved in a reasonable 
amount of time by single population GAS W t l e y  & 
Starkweather, 19901 [Liepins & Baluja, 19911 [Muhlen- 
bien, 19891. The second use of the subpopulation structure 
is to emphasize various characteristics in the chromosome. 
For example, in multi-objective functions, the evaluations 
in each subpopulation can be used to emphasize different 
objectives: When members of separate subpopulations are 
mixed, the genetic information may be combmed to reveal 
chromosomes which are swng with respect to more than a 
single objective. An exploration of multi-objective func- 
tion optimization with parallel subpopulations can be 
found in [Husbands. 1991). An interesting method of 
multi-objective optimization using only a single popula- 
tion with multiple fitness measures can be found in [Schaf- 
fer & Grefensteae. 19851. 



4 FINE-GRAIN PARALLEL GAS 

4.1 OVERVIEW & MOTlVATION 

Unlike cgpGAs, the fine-grain parallel genetic algorithms 
(fgpGAs) examined here evolve numerous small, con- 
stantly interacting subpopulations. Variants of fgpGAs 
have been explored by Pavidor, 1991). [Spiessens and 
Manderick. 19911, muhlenbein. 19891 and [Schleuter, 
19901. One way in which to view the modified form of 
parallelism in fgpGAs is to conceptualize the populations 
as overlapping, as shown in Figure 1. 

Figure 1: Overlapping Populations in a Fine Grain 
Parallel Genetic Algorithm. 

The fine-grain population architecture offers three benefits 
which the other two models do not. First, the transfer of 
genetic information from one population to another is 
inherent in the architecture. In the traditional GA, there is 
no flow of information because there is only one popula- 
tion. In the cgpGA. the information is shared between sub- 
populations by swapping potential solutions at infrequent 
intervals. As pointed out earlier. the effectiveness of sud- 
den infrqucnt swapping between subpopulations is lim- 
ited because each subpopulation has the potential to 
evolve to incompatible local optima. The assimilation of 
genetic information across subpopulations is easier in the 
fine-grain parallel architecture as the exchange of informa- 
tion between subpopulations is continuous. A subpopula- 
tion cannot exist in a state of equilibrium until each 
subpopulation reaches equilibrium. 

Second, the fine-grain model provides a more accurate 
representation of evolution. Instead of maintaining a large 
population from which any two chromosomes may recom- 
bine. recombination must be between two chromosomes 
from within the same neighborhood. This feature reveals a 
similarity to biological natural selection. in which a popu- 
lation is typically composed of relatively independent sub- 
populations which interact. Although the similarity with 
natural selection may not be important directly within the 
context GAS are used, the constant interaction can signifi- 
cantly help subpopulations escape from local minima. 

The third benefit is a gain of speed. In the traditional 
genetic algorithm each potential solution must be assigned 
a fitness value with respect to all other potential solutions 
within the current population. This value is used to deter- 

mine probabilistically which chromosomes will be chosen 
for recombination. Global ranking slows the GA consider- 
ably. Although the c@A does not require a global rank- 
ing of each potential solution, it requires a ranking within 
each individual subpopulation. In the fine-grain parallel 
model. the ranking required is local; ranking is relative to 
the other chromosomes within the neighborhood. As the 
population and neighborhood size can be kept small. the 
time required to perform local ranking is not as severe as 
in the two earlier models. 

The fine-grain parallel organization and the cgpGA orga- 
nization share the advantages of the model presented in the 
theory of punctuated equilibria: subpopulations which are 
a iarge distance apart will evolve comparatively unique 
chromosomes in a manner similar to simple. disjoint, par- 
allel subpopulations. However, the fgpGA's higher con- 
nectivity allows all subpopulations within a close 
proximity to each other to have a greater influence on each 
other than those a large distance apart. As with cgpGAs, 
the larger the number of subpopulations. the greater the 
potential diversity in individual evolutions. 

The danger of reaching a suboptimal state in fine-grain 
parallel genetic algorithms can be greater than that in cgp- 
GAs for two reasons. First, the fgpGA structure employs a 
greater d e p  of swapping between subpopulations than 
the cgpGA's. Therefore, strong local optima can quickly 
spread throughout the entire population. Stcond, because 
thm are significantly fewer chromosomes per subpopula- 
tion in the fgpGA model than in the cgpGA model, the 
diversity of infomation within subpopulations is more 
limited. In order to address this problem, fgpGAs rely 
upon the size of the group of genetic algorithms and the 
controlled dtgret of overlap to allow unique evolutions in 
different portions of the total population. 

One question which must be answered under the fppGA 
model is the extent and nature of overlap between subpop- 
ulations muhlenbein, 19891 [Schleuter, 19901 [Baluja, 
19921. If the overlap spans many subpopulations. good 
chromosomes could rapidly flow throughout the GA smc- 
mre. However. with a fast flow, the advantages of punctu- 
ated equilibria may be lost, and niche formation may be 
hindered. Many different issues regarding topology need 
to be addressed, such as whether the subpopulations 
should be connected in a linear manner or whether the 
overlapping subpopulations should be virtual, almost sim- 
ulating neural network connections. Furthermore, should 
the connections between subpopulations be fixed, or time- 
varying? These topics are among those to be addressed by 
future m h  within this area. 

4.2 fgpGA: POPULATION ARCHITECTURE 

As described in the previous section. there arc many possi- 
ble population topologies. The fgpGA examined through- 
out the remainder of this paper uses a two dimensional 
toroidal array of subpopulations. See Figure 2. Each sub 



population evolves only 2 chromosomes per generation. 
The 2 parent chromosomes are chosen from a group of 10 
chromosomes. The group of 10 is comprised of 1 chromo- 
some from each of the 8 surrounding neighbors and the 2 
chromosomes which were evolved in the previous genera- 
tion. The chromosome selected from a neighbor is chosen 
randomly from the 2 evolved at the neighbor. The fitness 
of each chromosome is determined relative to the other 
chromosomes in the group of 10. Two chromosomes from 
this set of 10 arc probabilistically chosen for recombina- 
tion based upon their fitness; the other 8 arc discarded. In 
the subsequent generation, the 2 “children” chromosomes 
produced, through crossover and mutation (described in 
the next section) of the selected parents, are available for 
recombination. either within the population in which they 
are located, or by its neighbors. 

(O.YMW 

0 0 ... I7 

. .  
... . . 

SUBPOPULATION (X.Y) 

chrom.subpop. (x+l.y) chmmsubpop. (x.y+ 1) 
chrom.subpop. (x+l.y-I) chrom.subpop. (x+l,y+l) 
chrom.subpop. (x-1.y-I) chmmsubpop. (x.y-I) 
chrom.subpop. (x-1.y) chrom.subpop. (x,y) 
chrom.subpop. (x-l,y+l) chrom.subpop. (x.y) 

Figure 2: Each subpopulation contributes 
one of its two chromosomes to each of its 8 
nearest neighbors. The composition of 
subpopulation (x,y) is shown. Both of the 
chromosomes evolved at population(x,y) 
arc included. The subpopulations form a 
toroid. 

4.3 fgpGA: IMPLEMENTATION SPECIFICS 

This section describes the recornbination. mutation, and 
elitist selection mechanisms used. The recombination 
operator used for testing this algorithm is a standard two 
point crossover, in which a randomly chosen subsection of 
one parent chromosome is swapped with the comspond- 

ing subsection of the second parent chromosome. This is a 
general crossover operator that has been shown to be 
effective in GA literature. For a discussion of the merits 
and drawbacks of two point crossover, the reader is 
referred to [DcTong. 19901 [Syswerda 19901. Mutation is 
implemented as a simple random bit flip which OCCUIS in 
the “children” chromosomes after the crossover has taken 
place with the parents, and before the chromosome is eval- 
uated. The mutation rate is kept at a constant 1%. 

Elitist selection is a commonly employed tool to ensure 
that the progress made by a GA is not lost due to random 
chance. Because a GA’s selection of parent chromosomes 
is probabilistic, it is not guarantetd that the best chromo- 
some in a particular generation will survive to the subse- 
quent generation. It is also possible that if the chromosome 
is selected for recombination. some of the good genetic 
material may not survive through the crossover and muta- 
tion operators. A modest form of elitist selection is used to 
address this problem. Elitist selection carries the best chro- 
mosome, from the population of 10 candidates for mom- 
bination, from generation g to g+l. This does not imply 
that the best chromosome will be selected for recombina- 
tion; rather, it means that the chromosome will be in the 
population of 10 which are candidates for recombination. 
Since the population size is limited to 10, the best chromo- 
some from the previous generation replaces the chromo- 
some with the lowest relative fitness in the cumnt 
generation. Although this aids in preventing repetitive 
search, it may be detrimental when the GA is caught in a 
local optima, as elitist selection may preserve the local 
optima in the population’s candidates for recombination. 

5 FINE VS. COARSE-GRAIN 
PARALLELISM 

The remainder of this paper is devoted to comparing fine- 
grain and coarse-grain parallel GAS. This paper does not 
compare results with traditional GAS since a large amount 
of work has already been conducted towards quantifying 
the differences in structure and performance between cgp- 
GAS and traditional GAS [Pettey et. a]. 19871 [Cohoon et. 
al. 19881 [Whitley & Starkweather, 19901 [Tanese, 19871. 

5.1 ALCORITHMSTESTED 

nkro GAS were tested, the fgpGA described in the previ- 
ous section and the cgpGA described below. The cgpGA 
was very loosely based upon the cgpGA described in 
(Whitley & Starkweather, 19901. Two point crossover and 
a 1% mutation rate were used. Like the fgpGA described 
above, the cgpGA employed modest elitist selection, in 
which the single best chromosome from each generation 
was carried to the subsequent generation. The best chro- 
mosome replaced the worst chromosome in the subsequent 
generation. Forty subpopulations were evolved. Each sub  
population contained 100 chromosomes. for a total of 
4ooo chromosomes evaluated simultaneously. 



The cgpGA implemented a small amount of communica- 
tion between the subpopulations. Assuming a circular 
ordering of subpopulations, after every 100 generations, 
the best chromosome from each subpopulation migrated to 
a subpopulation e subpopulations away, where e is defined 
to be the number of generations divided by 100 that have 
passed. Because the population was a set size, the migrat- 
ing chromosome replaced the worst chromosome in the 
target subpopulation. 

Although the parameters for both the cgpGA and the 
fgpGA were not optimized for any single problem, they 
were chosen to work satisfactorily on a variety of different 
problems. When comparing results, it should be consid- 
ered that the fgpGA evaluated 8192 chromosomes per 
generation, and the cgpGA evaluated 4000. The discrepan- 
cies in the number of evaluations per generation can be 
attributed to the mapping of the algorithm onto the hard- 
ware architecture on which these tests were attempted. 

5.2 TEST PROBLEMS 

This section presents the test problems which are used to 
compare the effectiveness of fine and coarse-grain parallel 
genetic algorithms. Fifteen test problems were attempted: 
DeJong’s five function test suite, three subset-sum prob- 
lems, two orderings of fully and partially deceptive order 4 
problems, and three versions of all-ones problems. 

5.2.1 DeJong’s Test Suite 

DeJong’s test suite is comprised of five minimization 
problems commonly used to test the effectiveness of GAs 
[DeJong, 19751. The test suite was designed to incorporate 
functi,ons with the following characteristics: continuous1 
discontinuous, convexhonconvex, unimodal/multimodal, 
quadratidnonquadratic, low dimensionalityhigh dimen- 
sionality, and deterministic/stochastic [Goldberg, 19891. 
The functions were encoded in standard binary notation. 

5.22 Subset-Sum 

The problems can be stated as follows: given S elements, 
each of a possibly unique weight, is there a subset of S that 
adds up exactly to an arbitrary number, T. The subset sum 
problems are NP-complete. This problem was imple- 
mented as a 120 bit chromosome. Each bit represented a 
unique object, with weight randomly assigned between 1 
& 200. The weight T was selected to be either 1/4. 1/20, or 
1/40 of the sum of the weights of the objects. The only 
addition to the problem was that the sum of the weights 
was guaranteed to be divisible by 4.20 & 40, respectively. 

5.23 Fully and Partially Deceptive Order 4 

The fully deceptive problem is a 40 bit maximization 
problem. The problem was defined in Whitley & Stark- 
weather’s paper GENITOR II [Whitley & Starkweather, 
1990). The problem is comprised of 10 subproblems, each 

4 bits long. The subproblems use the lookup table shown 
in Table 1. The partially deceptive problem uses the same 
evaluations. with the exceptions of the evaluations corre- 
sponding to 1111 and 0101, which are reversed. 

Table 1: Order 4 Fully Deceptive Problem 

Both the fully deceptive and partially deceptive problems 
were attempted using two orderings of bits. The first 
encoding is block encoding; the placement of the 4 bits 
which comprise a subproblem are located next to each 
other. The second encoding is interleaved; the bits which 
comprise each subproblem are uniformly spread through- 
out the chromosome.Wlth the use of two point crossover, 
the first encoding is much easier for the GA to solve than 
the second. The encodings are shown in Figure 3. 

Block Ending: aaaabbbbccccddddcteeffffgggghhhhiiiijjii 

Intaleaved: abcdefghijabcdefghijabcdcfghijabcdefghtj 

Figure 3: Two encodings of the order 4 deceptive 
problem Bi partially deceptive problems. 

5.24 Three “AU-Ones” Problems 

Three versions of the all-ones problem were tried 
[Syswerda, 19901. The first version was the straight all- 
ones problem. The objective of this problem is to find the 
chromosome which contains a 1 in each bit position. . 

The second version of the all-ones problem contains bits 
which are meaningless. This problem was encoded as a 
180 bit problem, but only the first 120 bits were counted 
toward the evaluation. 

The third all-ones problem is the contiguous bits problem. 
In evaluating the chromosome, points are only given for 1s 
which also have at least one other neighbor which has a 
value of 1. If there exists a 1 which has zeros as its two 
neighbors, no points are given for the bit. 



53 RESULTS & DISCUSSION 

The results arc shown for the I5 test problems in Table 2. 
They are the average of 10 runs per problem for each algo- 
rithm. Each run was started with a different randomly cho- 
sen initial population of chromosomes. The maximum 
number of allowed generations for the cgpGA is 3000; 
after 3000 the attempt is considered a failure. The maxi- 
mum number of generations before failure for the fgpGA 
is 1400. 

For many problems, especially the all-ones problem, on 
which the cgpGA did comparatively poorly, cgpGAs can 
do significantly better if the population size, mutation rate, 
and swap interval parameters are tuned for the problem. 
For example, because the all-ones problem is relatively 
“easy” for the GA to solve, it can be solved very effi- 
ciently using a population size of 10 rather than 100. How- 
ever, to measure the ability of the algorithms to perform on 
a variety of problems without parameter tuning, the 
parameters were held constant throughout all of the test 
runs. 

Table 2: Results for the 15 test problems. Each entry 
represents the average number of generations before the 
optimal solution was found. The fgpGA evaluated 8192 
chromosomes per generation, the cgpGA 4000. 

Size fgpGA @A I TestFunction I (Bits) I I 40subpop. I 
I I I 

DeJong FunctionUl [ 30 I 29.8 I 79.0 1 
I Wong Function $2 

1 Subset Sum ( I i O )  ~ 

Subset Sum (1/40) 

Partially Deccptive (A) 

111.8 

seCFigurc4 

18.0 18.0 

76.8 629.0 

40 32.0 95.1 

40 53.0 252.5 

40 5 7 5  305.9 

40 742.5 1634.7 

90.8 609.1 

The stopping criterion for Ddong’s F3 was an evaluation of -30. 
** nK stopping criterion for DeJong’s F5 was an evaluation of 
0.998004. 

*** Due to memory restrictions. this problem was utcmped with 90 
significant bits, and 30 extm bits (cgpGA only). The fgpGA was 
e m p a l  with 120 significant bits and 60 extra, 

++ fgpGA 

- cgpGA 

G e n a a t i O n S  

Figure 4: Average evaluations for 10 runs of 
the cgpGA and fgpGA on DeJong’s F4. Due 
to memory restrictions, the cgpGA was run 
with 80 subpopulations with 50 chromosomes 
per population. F4 is shown graphically to aid 
in quantifying performance in the presence of 
the random gaussian factor [DeJong, 19751, 
pngber, 19921. Note that generations 200-700 
yield only very small improvements. 
(Samples taken at every 10 generations.) 

One of the reasons the fgpGA performed better than the 
cgpGA is the ability of good chromosomes to spread rap  
idly through the population. A large portion of the popula- 
tion has access to the best chromosome very shortly after 
it is found. A sample run. shown in Figure 5, displays the 
number of populations which “have seen” the best chro- 
mosome found in each generation. The term “has seen” 
does not imply that the populations have selected the chro- 
mosome for recombination, rather that the chromosome is 
a candidate for selection. The sudden drops of the number 
of populations, in Figure 5, represent generations in which 
a better chromosome is found. 

The fgpGA implementation allows a good chromosome to 
be accessed immediately by the 8 surrounding subpopula- 
tions. In order for more than the original 9 populations to 
incorporate the chromosome, it must again be selected for 
recombination. Assuming that it is selected, valuable sche- 
mata must not be destroyed by crossover or mutation oper- 
ators. Although the populations which surround the 
original 9 will incorporate the resultant chromosomes into 
their population, for it to spread further, they must also 
select them for recombination based upon their evaluation, 
which may not be as good as their parents. Further, if the 
crossover and mutation operations have destroyed valu- 
able schemata, the children produced may not be pre- 
served by elitist selection. If the important schemata are a 
small part of the total chromosome, the chances of the 
chromosomes spreading throughout the population with 
the schemata intact is much greater, since in this case, 
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Generations 
Figure 5: The Number of populations which 
contain the best chromosome using the 
fgpGA to optimize the order 4 fully deceptive 
problem, interleaved. Also plotted is the best 
value 10. for comparison. The sudden drops 
in the number of populations correspond to a 
new best solution found in one of the 
populations. 

crossover and mutation operators have a smaller chance of 
destroying valuable schemata. 

The choice of how subpopulations should overlap plays a 
significant role in how fast the chromosomes spread 
through the subpopulations. For certain classes of prob- 
lems, it may be important to ensure that the flow of chro- 
mosomes is slow. in order to allow for extremely different 
evaluations in different portions of the model. However, in 
other applications. in which the search space is not decep- 
tive and does not contain many local minima a fast flow 
may yield good answers quickly, as good chromosomes 
can rapidly dominate the “gene pool”. 

6 SUMMARY & FUTURE DIRECTIONS 

Preliminary results on fifteen test problems have shown 
the fgpGA to be able to solve problems more efficiently 
than a cgpGA. To evaluate fine-grain parallelism further, 
both harder test problems and different population topolo- 
gies should be explored. 

One of the difficulties inherent in comparing parallel 
genetic algorithms with each other. and with traditional 
GAS. is choosing the best criteria. Although the number of 
evaluations is commonly used, parallel evolutions show 
extensive overlap in the evaluations performed. For prob- 
lems which are “easy” for the GA to solve, parallel sub- 
populations may perform too broad a search, as the search 

performed by a traditional. single population GA may be 
enough. However, on harder problems. it often happens 
that parallel populations find solutions both mom often 
and faster than traditional GAS. Another measure, genera- 
tions to find optimal solutions, has a bias in favor of paral- 
lelism because more chromosomes are evaluated per 
generation. Another candidate criterion is cpu-speed; how- 
ever, implementations of different algorithms may use the 
same hardware with varying degrees of effectiveness. In 
this paper, both evaluations and generations were pre- 
sented. Although the results were in favor of the fgpGA. 
the parameters in the cgpGA and the fgpGA were not 
tuned per problem. As stated earlier. it is suspected that 
with a little tuning, both GAs could improve performance. 

Perhaps the most interesting topic for future research is the 
need to design subpopulation topologies which maximally 
exploit the parallelism inherent in these GAS. Two inter- 
esting structures to examine in the future would be one in 
which each population is only connected to 1 of its nearest 
neighbors and a second in which the connections arc made 
randomly, perhaps with a set maximum reaching distance. 

One of the important applications of parallel genetic algo- 
rithms, which was not explored here, is the use of sets of 
populations to optimize different objectives in multi- 
objective functions. For this type of problem, each sub  
population evolves under the pressures of individual sub- 
goals of the complete problem. As stated in [Husbands, 
19911 “...the solution to a complex problem is allowed to 
emerge from the simultaneous solution of a number of 
simpler, related subproblems. Using this variation of 
divide and conquer, the inherent parallelism in a problem 
is brought out and thoroughly exploited.” This method is 
directly applicable to the fgpGA described here: individual 
populations can work towards individual sub-goals. It will 
be interesting to determine the role that the position of 
subgoal assignment to individual populations has on the 
overall effectiveness of the GA. 
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