Color profile: Generic CM
Composite Default screen

YK printer profile

Fifteen

Domain-Independent
Programming by
Demonstration in
Existing Applications

GORDON W. PAYNTER AND IAN H. WITTEN

Department of Computer Science,
University of Waikato

‘t—' LU ‘m

V:\002564\002564.VP

1, 2000 2:04:30 PM
TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 297

Color profile: Generic CMYK printer profile
Composite Default screen

298 Your Wish is My Command

Abstract

This paper describes Familiar, a domain-independent programming by
demonstration system for automating iterative tasks in existing, unmodi-
fied applications on a popular commercial platform. Familiar is domain-
independent in an immediate and practical sense: it requires no domain
knowledge from the developer and works immediately with new appli-
cations as soon as they are installed. Based on the AppleScript language,
the system demonstrates that commercial operating systems are mature
enough to support practical, domain-independent programming by dem-
onstration—but only just, for the work exposes many deficiencies.

Introduction

Our aim is to add programming by demonstration (PBD) to commercial
platforms in a way that is domain-independent and works with existing ap-
plications. Domain independence, if it can be achieved, is of huge benefit
because it eliminates the difficult, time-consuming, and error-prone job of
encoding domain knowledge in a satisfactory way, and it eliminates the
brittleness that is associated with unexpected interactions between differ-
ent pieces of domain knowledge. The ability to work with existing applica-
tion programs is highly desirable for any interface agent because it elimi-
nates the restriction that users can only use selected applications and
removes the need to reimplement applications.

This chapter describes Familiar, a PBD package that operates on a popu-
lar computer platform, the Apple Macintosh. Familiar uses standard soft-
ware (e.g., the Apple Finder, Microsoft Excel, and lesser-known applications
such as JPEGView, Fetch, and GIFConverter) and communicates through
AppleScript, a standard protocol. We have succeeded in achieving true do-
main independence: if you install a completely new recordable application
that Familiar has never before encountered, issue the Begin Recording com-
mand, and start interacting with the application, you will reap the benefits
of PBD right away. Success will depend on how well the application imple-
ments AppleScript, a limitation that we will discuss.

Macro recorders are a rare example of PBD systems that operate on
standard computer platforms—both within application packages, such as
spreadsheet macro recorders, and on a systemwide basis. Yet they have S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:04:31 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 298

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Fifteen: Domain-Independent 299

serious limitations, limitations that have been recognized since the early
days of programming by demonstration. Cypher (1993a) points out that
their main failing is that they are too literal: they replay a sequence of ac-
tions at the keystroke and mouse-click level, without taking any account of
context or attempting any kind of generalization. Most PBD systems aim
higher, recording the user’s actions at a more abstract level and making ex-
plicit attempts to generalize them. However, they have virtually all been
demonstrated only in special, nonstandard, often tailor-made software
environments.

Familiar builds on the functionality and interaction style of the Eager
PBD system (Cypher 1993b). Familiar extends Eager in three important
respects: interface, inference, and domain independence. Eager’s “antici-
pation highlighting” technique presupposes domain knowledge, can only
display one action at a time, and provides no explanation of the predic-
tions—users are forced to trust the system (and do so reluctantly). Its infer-
ence engine does not tolerate mistakes in demonstrations, cannot explain
the predictions it makes, and has a smaller set of generalization techniques
available. Although it is domain independent in principle, Eager requires
changes to the operating system and applications and has been demon-
strated with only one application (HyperCard). Familiar overcomes these
problems by using the AppleScript language to communicate with the user
and other applications, gaining generality at the expense of Eager’s polished
interface.

Other PBD systems have used AppleScript to monitor the user and con-
trol applications, but they do not exploit its domain independence and
high-level application knowledge. Lieberman (1998) has based two sepa-
rate PBD systems on AppleScript that are tailored to specific applications.
ScriptAgent uses inference techniques from Lieberman (1993) to write
scripts for manipulating files in the Finder, and Tatlin seeks similarities be-
tween data in a spreadsheet and a calendar by interrogating them with
AppleScript. Yvon, Piernot, and Cot (1995) use AppleScript as a macro re-
corder without generalization.

This chapter begins by describing interaction with the Familiar system,
from the user’s perspective. Because of space limitations, details of the
implementation are beyond our scope (see Paynter 2000 for full informa-
tion.) Commercial scripting architectures that purport to support agents,
such as AppleScript, have shortcomings that present significant obstacles
to general-purpose systems. One impediment to their development is that
the requirements of PBD are poorly defined because (historically) even
domain-independent systems have been tightly coupled with prototype

S

R

L

V:\002564\002564.VP

Thursday, December 21, 2000 2:04:31 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 299

Color profile: Generic CMYK printer profile

Composite Default screen

300 Your Wish is My Command

applications. We review the requirements of domain-independent pro-
gramming by demonstration and finally discuss how AppleScript meets
these requirements and what its shortcomings are.

What Familiar Does

Familiar’s purpose is to help the user solve iteration problems in their stan-
dard applications and environments. We give three examples of Familiar’s
use. The first, rearranging a set of files into a horizontal row, demonstrates
the ability to iterate over sets and extrapolate sequences. In a variation of
this task, the user asks Familiar to explain its predictions and gives feedback
about their accuracy. The second is to sort a set of files into two folders. Be-
fore it can safely be asked to finish the task, Familiar must learn the sort cri-
teria—and convince the user it has done so. The third is to convert a set of
files from one image format to another. It demonstrates the ability to work
across multiple domains and infer long cycles from noisy demonstrations.
In each example the user first asks the agent to start observing their ac-
tions by selecting “Begin Recording” from the Familiar menu (Fig. 15.1),
which is available in every application. They then proceed to demonstrate
the task and interact with the agent. When they have finished working with

15.1

Begin recording

& Stop recording
2= End task

Status window
& History window
& Prediction window

2 Familiar settings

The Familiar menu.

V:\002564\002564.VP

Thursday, December 21, 2000 2:04:32 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 300

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Fifteen: Domain-Independent 301

Familiar, they signal that the task is complete by choosing “End task” from
the menu. The user can pause a demonstration at any time with the “Stop
recording” command and continue it again with “Begin recording.”

Arranging Files

To rearrange files into a horizontal row, the user begins by moving a conve-
nient file, “plum,” to the top left corner of the folder window (Fig. 15.2[a]).
These actions are recorded by Familiar and displayed in the Familiar His-
tory window (Fig. 15.2[b]). The “activate” command (event 1) indicates that
the user is working in the Finder. The “select” (event 2) and “set” (event 3)
commands describe the positioning of the first file. The user continues the
demonstration by moving the file “peach” (Figure 15.2[c]); again their ac-
tions are recorded and displayed (Figure 15.2[b], events 4 and 5).

Each time it records a user action, Familiar attempts to generalize the
event trace and infer the user’s intent. After event 5 it detects a cycle,

15.2

@ (H=Eo—=—w—eses
b) |0 ==——Familiar history =
1. activate -=- Finder
© === 2. selectfile "plum” of folder “fruit"
3: set position of selection to {16, 29}
4; selectfile "peach” of folder “fruit™
B L, ; 3 set position of selection to {80, 29}
e
plum
(d) |0 =——=Familiarpredictions=—i——————H
Familiar found a cycle of 2 commands
wi6: selectfile "apple” of folder “fruit”
?: set position of selection to {144, 209}
Repeat the cycle: [_1x J_2x [5x j(10x]| 20 times |

Using Familiar to arrange files: (a) a demonstration is recorded; (b) the history window; (¢) a second =~ ——=

demonstration is recorded; (d) a prediction is made.

V:\002564\002564.VP
Thursday, December 21, 2000 2:04:49 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:301

Color profile: Generic CMYK printer profile
Composite Default screen

302 Your Wish is My Command

[= i | ———— =
L il A7 e

SET o £ i 0 el T e 1L 5

Fam il ar provictam
Eﬂﬁf‘:wﬁj LT LR UL H

i weluch e “aa ple™ of Nel fer Srwil”
I: et positos of reoeton ta {1 es, 28

e e e B R I v |

The screen after two demonstrations of the arranging files task.

predicts the next iteration, and presents this prediction to the user in the
Familiar Predictions window (Figure 15.2[d]). In this case, Familiar antici-
pates that the user’s next actions will be to “select file ‘apple’” (event 6) and
set its position (event 7). The user is satisfied with this prediction—the task
involves arranging all the files in a row, irrespective of order, and “apple” has
yet to be moved.

Figure 15.3 shows the entire screen as it appears after the user has dem-
onstrated the first two examples. The fruit window, in which the user is
demonstrating the task, appears on the left. Familiar is a stand-alone appli-
cation, so its two windows remain in the background (right-hand side) until
the user selects one, bringing it to the foreground. They take up only a small
part of the total screen area and can be moved to increase visibility. Note
that a flashing tape recorder icon has been added to the top left corner of
the screen to show that AppleScript recording is active and that the Familiar
menu has been added to the standard Finder menubar.

V:\002564\002564.VP
Thursday, December 21, 2000 2:04:50 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] e Page: 302

Color profile: Generic CMYK printer profile
Composite Default screen

(@

(b)

(©)

Chapter Fifteen: Domain-Independent 303

15.4

= Familiar predictions B
Familiar found a cycle of 2 commands
6: select file "apple® of folder “fruit”

?: set position of selection to {144, 29;

Repeat the cycle: L,!ILJ[AJ[&][MM
O Familiar predictions="i—————H
Familiar found a cycle of 2 commands
¥I8: selectfile "banana” of folder “fruit”

9: set position of selection to {208, 29}

Repeat the cycle: (DO S 1) | € | times |
O =[]

3 items, 537.1 MEB available

plum

peach apple banana breadfruit fruitsalad nectarine

Completing an iterative task: (a) a prediction is executed once; (b) the user requests six more iterations;
(¢) the task is complete.

The Predictions window can be used to perform the task. The “1x,” “2x,”
“5x,” and “10x” buttons execute the corresponding number of complete it-
erations of the cycle (Figure 15.4[a]). The user presses “1x” to tell Familiar to
execute its predictions for events 6 and 7, and it responds by sending the
commands to the Finder, which selects and positions the file “apple.” The
user follows the agent’s progress by observing its actions in the Finder and
watching the Familiar interface. As each command is executed, it is added
to the History window and its color is changed in the Prediction window.
When the entire iteration has been executed, Familiar displays its predic-
tion for the next iteration (Figure 15.4[b]).

The user can instruct Familiar to execute a given number of iterations by
entering the number from the keyboard. In this example the user, knowing
how many files are left to position, replaces the default value of 20 (visible

S

R

L

V:\002564\002564.VP
Thursday, December 21,

2000 2:05:03 PM
TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 303

Color profile: Generic CMYK printer profile
Composite Default screen

304 Your Wish is My Command

in Figure 15.4[a]) with 6 (Figure 15.4[b]), and presses “times.” After each it-
eration, Familiar pauses to redraw the Predictions window and decrement
the number of cycles to go. When six iterations are finished, the task is com-
plete (Figure 15.4[c]).

When Errors Occur

The Predictions window describes Familiar’s predictions and accepts feed-
back about them. The simplest way to correct a mistake is to demonstrate
another example in the standard application interface. Familiar will incor-
porate the new demonstration—and the fact that the old predictions were
incorrect—into subsequent predictions. If the user clicks on the “tick” but-
ton beside any command in the Predictions window, the steps up to this
point are executed. For example, if a cycle of six commands is predicted but
only the first four are correct, the user can click on the fourth and then
demonstrate the remaining two. Familiar will incorporate all six events into
its subsequent predictions.

The “help” button gives feedback about Familiar’s reasoning. The itera-
tive pattern in Figure 15.5(a) is consistent with the two demonstrations of
the task (Figure 15.2[a—c]), but the parameter of the “select” command
(event 6) has not been extrapolated correctly: Familiar has predicted that
the user will select “peach,” but the user already moved this file (events 4
and 5) and wants to move a new one.! To find out why the agent has made
the erroneous prediction, the user clicks on “help.” The Macintosh “balloon
help” feature is activated (Figure 15.5[a]) and used to explain predictions
(Figure 15.5[b—c]). The user is concerned that the “select” parameter is in-
correct, and a balloon explains that Familiar has reasoned that the user is
positioning the same file in every iteration (Figure 15.5[b]). The prediction
can be changed by option-clicking it, whereupon Familiar replaces “peach”
with “apple” (Figure 15.5[c]). The new balloon explains that this prediction
is generated by assuming that the user is iterating over all the file objects in
the folder “fruit.” The agent’s reasoning—and thus its prediction—is cor-
rect, and the task can now be completed.

1. Familiar was artificially constrained to cause this prediction; normally, it would predict
correctly.

V:\002564\002564.VP
Thursday, December 21, 2000 2:05:04 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 304

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Fifteen: Domain-Independent 305

15.5

(a) u EFami"ar predictiﬂnszg
Familiar found a cycle of 2 commands
6: selectfile "peach” of folder "fruit™
?: set position of selection to {144, 29;
Repeat the cycle: [M@@[M@r . I
Click here to turn balloon help

an and off.

Farniliar uses balloon help to
explain how its predictions
are made, and to explain how
the user interface works.

(b) |0 === ramiliar predictions

Familiar found a cycle of 2 commands

6: selectfile TEM&IW
?: set position of selety Constant value.

Repeatthe cycle: EE The parameter 'select’ is always

predicted using the value file
"peach” of folder "fruit™

1)

Option-click to change this
prediction

Familiar predictions

© 1O

Familiar found a cycle of 2 commands

¥l6: selectfile "appl W
?: set position of seiely Set iteration.

Repeatthe cycle: [E[j The parameter 'select’ was

predicted by choosing the nesxt
file from “folder “fruit™.

1

Option-click to change this
prediction

Examining and changing an incorrect prediction: (a) balloon help is activated; (b,c) two predictions
are explained.

V:\002564\002564.VP
Thursday, December 21, 2000 2:05:17 PM
TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 305

Color profile: Generic CMYK printer profile

Composite Default screen

306 Your Wish is My Command

Sorting Files

The second task is to sort a set of files into folders for word processor and
spreadsheet documents. The user selects “Begin recording” (Figure 15.1)
and starts by creating a new folder and renaming it “word processor.” These
commands are recorded and displayed (Figure 15.6[a], events 1-4) but do
not contribute to any iteration—they are once-only initialization steps. The
user then moves “ACCO1.doc,” a word processor document, into the new
folder (Figure 15.6[al], events 5-6). To demonstrate the second iteration, the
user moves “ACC99.doc” into the word processor folder (Figure 15.6[b],
events 7-8). The third file, “Balance sheet,” is a spreadsheet, so the user cre-
ates a folder called “spreadsheets” (Figure 15.6[c], events 9-11) and moves
the file into it (Figure 15.6[c], events 12-13). Three iterations of the task have
been demonstrated, but over half of the recorded events are initialization
commands that do not contribute to the iterations.

Familiar detects an iterative pattern of seven events in the demonstra-
tion and makes a corresponding prediction (Figure 15.6[d]). Unfortunately,
it is completely wrong, and the entire cycle it is predicting is incorrect. Each
iteration includes creating a new folder and renaming it “spreadsheets”;
note that if we permitted Familiar the luxury of domain knowledge, this
prediction could be suppressed because it does not make sense to create
multiple folders with the same name. The user rejects the pattern with the
“Change Cycle” button. Familiar then suggests a two-step pattern that is
correct for the next file (Figure 15.6(e]). The user presses the “one time” but-
ton and watches Familiar executing the commands to move file “Balance
Sheet 1996” to the “spreadsheets” folder.

When Familiar displays its prediction for the next iteration (Figure
15.6[f]), it becomes apparent that there is more teaching to do, for it pre-
dicts that the user will select “Corrections,” a word processor file, and move
it into the “spreadsheets” folder (Figure 15.6[f], event 17). Noticing the
error, the user clicks on “help” and moves the mouse over the “move” com-
mand’s “to” parameter. The help balloon (Figure 15.7[a]) explains that Fa-
miliar predicts the constant “spreadsheets” (the value in the last two itera-
tions) and that the user can change this by giving a new example. Familiar
gives this advice because it has no other suggestions to make: three exam-
ples are insufficient for it to learn this classification task.

The user returns to the Finder and moves “Corrections” into the “word
processor” folder. These actions are recorded (Figure 15.7[b]) and used to
make a prediction for the next file (Figure 15.7[c]). Unfortunately, the pre-
diction is incomplete: the agent correctly anticipates that the user will se-
lect “expenses for 1996” but fails to predict the destination folder, instead

S
__R
_ L

V:\002564\002564.VP

Thursday, December 21, 2000 2:05:18 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 306

Color profile: Generic CMYK printer profile
Composite Default screen

15.6

(@ |O Familiar history =]
1: activate -- Finder =
2: make new folder at folder "Documents™
3 selectfolder "untitled folder” of folder "Documents™
4: setname of selection to word processor
3 selectfile "ACCO1.doc” of folder "Documents™
6: move selection to folder "word processor” of folder "Documents™

(b) |]7: selectfile "ACCI9.doc” of folder "Documents™
8: move selection to folder “word processor” of folder "Documents™

(© |19 make new folder at folder "Documents™
10;: select folder "untitled folder” of folder "Documents™
11: setname of selection to spreadsheets -
12: selectfile "Balance sheet" of folder "Documents™ [|
13: move selection to folder "spreadsheets” of folder "Documents™ 7

(d) |0 =--.=—————"Famiiliar predictions

|

Familiar found a cycle of ¥ commands

14: select file "ACC99.doc” of folder "Documents™

15: move selection to folder “word processor” of folder "Documents™
vl 16: make new folder at folder "Documents”

wl17: select folder "untitled folder"” of folder "Documents”

18: setname of selection to spreadsheets

19: selectfile "Balance sheet 1996" of folder "Documents™

2I]: move selection to folder "spreadsheets” of folder "Documents™

Repeat the cycle: [_Do)(2) Sx J(10x)| 20 | times |

() |0 ==--—————— Familiar predictions

2 |

Familiar found a cycle of 2 commands

14: selectfile "Balance sheet 1996" of folder "Documents”
15: move selection to folder "spreadsheets” of folder "Documents™

Repeat the cycle: [_Do)(2 J(_Sx J(10x)| 20 | times |

(f) | = --———————Famiiliar predictions

L |

Familiar found a cycle of 2 commands

wi16: selectfile "Corrections” of folder "Documents™
17: move selection to folder "spreadsheets” of folder "Documents™

Repeat the cycle: [_Do)(2 J(_Sx J(10x)| 20 | times |

Changing an incorrect cycle: (a,b,c) three iterations are demonstrated and recorded; (d) the fourth
iteration is predicted incorrectly; (e) the fourth iteration is predicted correctly; (f) the fifth iteration
is predicted.

V:\002564\002564.VP
Thursday, December 21, 2000 2:05:44 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 307

Color profile: Generic CMYK printer profile
Composite Default screen

15.7

(@) [0 =———— Famiiliar predictions/—/Wm—m——m—m—m——m— B
Familiar found a cycle of 2 commands

16: selectfile "Corrections” of folder "Documents™

P s PRI
-

17: move selection to folder "spreadsheeﬁs“
Repeat the cycle: (OO0 0)| 20 (timg Constant value. 0

The parameter to' is always
predicted using the value ‘folder
"spreadsheets” of folder
"Docurnents ™

Give another exarple to change
this prediction
LN ”

(b) [|16: selectfile "Corrections” of folder "Documents™
17: move selection to folder "word processor” of folder "Documents™

(0 | ===————=——=——=———=ramiliar predictions

—_———H

Familiar found a cycle of 2 commands
7

=]

18: selectfile "expenses for 1996" of folder "Documents™

19: move selection to <no curreg E—
Repeat the cycle: [(DOCDO)Cm(dibg] Choice of value

The parameter to’ depends on the
wvalue of 'kind' of parameter
‘zelect’ of the previous event.

Option-click to change this
prediction

.,

(d) 0 =—"-————"Famiiliar predictions ————
Familiar found a cycle of 2 commands

%18: select file "expenses for 1996" of folder "Documents™
¥)19: move selection to ¢<no current prediction>

Repeat the cycle: (D2 S J(10x]| 20 [_times

(6 [MEBE———Jhamilagnredietionsy 1=

Familiar found a cycle of 2 commands
19: move selection to folder "spreadshee W
2I]: select file “Letter to Monroe 1998" of fotdel Choice of value

Repeat the cycle: [_]IJ([_]2)([_]5)([_]'l[b(IUI][Ii_tiI‘I‘IE The parameter 'to' depends on the j

value of 'kind' of parameter
‘zelect’ of the previous event.

Option-click to change this
prediction

Changing an incorrect parameter: (a) an incorrect prediction is explained; (b) a new demonstration is

cutes a single command,; (e) a correct prediction is explained, and the user requests 1,000 iterations.

recorded in the History window; (c) an incomplete, but correct, prediction is explained; (d) the user exe-

— =

V:\002564\002564.VP

Thursday, December 21, 2000 2:06:06 PM
TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 308

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Fifteen: Domain-Independent 309

giving “no current prediction.” The user activates “balloon help” and asks
for an explanation. Familiar has found a relationship between the “to” pa-
rameter and the “kind” attribute of the previous event and will only make a
concrete prediction of event 19 after event 18 has been confirmed. To test
the prediction, the user clicks on the “tick” beside event 18. Familiar exe-
cutes it (Fig. 15.7[d]), adds this event to the History window, and displays its
prediction of the next two events (Fig. 15.7[e]).

Familiar correctly anticipates that the next action will be to move the
selected file into the “spreadsheets” folder. Confident that Familiar has
grasped the idea, the user types 1000 into the “number of iterations” field
and presses “times” (Figure 15.7[e]). After 135 iterations no files are left
in the folder. Since Familiar can neither predict nor select the next file, it
stops performing the task and awaits new instructions from the user, who
chooses “Stop recording” from the Familiar menu and continues with his or
her work.

Converting Images

Complex tasks may involve multiple domains, longer demonstrations, and
user errors. The History and Prediction windows in Figure 15.8 were gener-
ated from a demonstration performed by a subject in a user evaluation.
The task (a subtask of a larger task that the subject identified then elected
to complete with Familiar) involves two applications and has a noisy
event trace.

In this example, Familiar is used to convert a set of graphic files from
JPEG format to PICT format. The History window is shown after the first
(Figure 15.8[a]) and second (Figure 15.8[b]) iterations have been demon-
strated. In each iteration of the task, the user selects a JPEG file in the Finder
(events 4, 10), opens it in the GIFConverter image manipulation program
(events 5, 11), saves it as a PICT file (events 7, 13), and then deletes the JPEG
file (events 9, 16). However, these actions are interspersed with others that
are not part of the iterative loop. The first three events of the first iteration
initialize the environment. Event 15 is a singular noise event—it was gener-
ated when the user shifted a window to get a better view and will never be
repeated. In Figure 15.8(c) we see that Familiar has correctly identified a cy-
cle of six significant events and predicted the next full iteration.

V:\002564\002564.VP
Thursday, December 21, 2000 2:06:06 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 309

Color profile: Generic CMYK printer profile
Composite Default screen

310 Your Wish is My Command

15.8

@ (O Familiar history =]
1: activate -- Finder =
2. selectfile "downloads"
3. open selection
4: selectfile “tilel,jpeg” of folder "Internet downloads™ of startup disk
3 open selection
6: activate -- GIFConverter
7. save graphic document “tile1.jpeg™in file "Montana:Internet downloads] .|
8: activate -- Finder [
I9: delete selection |_
b |0 Familiar history =]
10: selectfile "tile2.jpeg™ of folder "Internet downloads" of startup disk
11: open selection
12: activate -- GIFConverter
13: save graphic document "“tile2,jpeqg” in file "Montana:Internet download
14: activate -- Finder
15: set position of container window of folder “Internet downloads" of sta
16: delete selection
o rn=—ssss—,,,seseseseses—
Familiar found a cycle of 6 commands
17: selectfile “tile3.jpeqg” of folder "Internet downloads" of startup disk
lwl18: open selection
19: activate -- GIFConverter
2l]: save graphic document "tile3.jpeqg” in file "Montana:internet downloads:ti
lwl21: activate -- Finder
lwl22: delete selection
Repeat the cycle: (1) 2 S 10x] | 20 times |

Converting image files: (a,b) two noisy demonstrations are recorded; (c) a correct prediction is made.

V:\002564\002564.VP
Thursday, December 21, 2000 2:06:20 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page:310

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Fifteen: Domain-Independent 311

Platform Requirements

Familiar demonstrates that domain-independent PBD can be added to ex-
isting applications but is dependent on many services provided by the soft-
ware architecture. These services are given in Table 15.1, which lists a mini-
mal set of technical and nontechnical platform requirements that must be
satisfied before domain-independent PBD is possible in existing applica-
tions. Three pertain directly to applications: the ability to monitor user ac-
tions, examine application data, and control the application program. Anal-
ogous requirements have been identified for intelligent tutoring systems—
observation, inspection, and scripting (Ritter and Koedinger 1995; Cheikes
et al. 1998). User studies that record user actions (Kay and Thomas 1995;
Linton, Charron, and Joy 1999), animated help systems that require com-
plete and exclusive control of the user interface (Bharat and Sukaviriya
1993; Miura and Tanaka 1998), and attachable, application-independent
tools (Olsen et al. 1999) make similar demands.

* Requirement 1: Users and applications. The principal justification for
adding a demonstrational interface to existing applications and environ-
ments is that end users know them and are disinclined to alter their hab-
its, so the most basic requirements are nontechnical: a set of applica-
tions and a group of existing users. Both are met by any successful
commercial computer platform, but not by prototypes and research sys-
tems. If there is no established user base, it will be easier and more ef-
fective to rewrite an application using an architecture such as Amulet

15.1

Platform requirements of domain-independent programming by
demonstration systems.

Requirement Description
R1 Users and applications
R2 Recordability: the ability to monitor the user’s actions
R3 Controllability: the ability to control application programs
R4 Examinability: the ability to examine application information
R5 A user interface
R6 Consistency

S
__R
_ L

V:\002564\002564.VP

Thursday, December 21, 2000 2:06:20 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:311

Color profile: Generic CMYK printer profile

Composite Default screen

312 Your Wish is My Command

(Myers and Kosbie 1996) or AIDE (Piernot and Yvon 1993) that is de-
signed to support PBD.

Requirement 2: Recordability. Most kinds of PBD monitoring and record-
ing the user’s actions. Each action is recorded, added to the event trace
or command history, and analyzed to infer the user’s intent and predict
subsequent actions. An ideal recording mechanism will be unobtrusive,
so that users can demonstrate tasks under conditions identical to their
standard working environment, and detailed enough to support reason-
ing about the user’s intent.

Requirement 3: Controllability. To carry out tasks on the user’s behalf, a
PBD system must be able to control other applications. This can be ac-
complished either through application programming interfaces or by
emulating the user (Lieberman’s [1998] “marionette strings”). The latter
is a natural choice because it allows a learned task to be performed in
the same way that it was demonstrated by the user.

Requirement 4: Examinability. Information about the application is nec-
essary to infer intent and make predictions. Such information falls into
two categories: class (or type) information and instance information (or
data). The former describes the capabilities of an application, including
the commands and objects it uses, and remains unchanged from one in-
vocation to the next. The latter describes the data the user is working on
and the commands he or she has recently. It differs each time the pro-
gram is run and often changes in response to user actions. PBD systems
require access to the applications’ instance information.

Requirement 5: User interface. Any demonstrational interface must inter-
act with the user. Interaction design is especially challenging for systems
that work with existing applications or with multiple applications. Few
existing applications are designed to have truly extensible interfaces,
and PBD must work around these limitations. Multiple-application sys-
tems face a trade-off between consistency and the benefit obtained from
domain-specific interaction techniques.

Requirement 6: Consistency. In practice, application independence re-
quires that each application satisfies the technical requirements in the
same way, so that a single system can work with every application, rep-
resent tasks that span applications, work with unseen applications, and
present a single interface to the user.

V:\002564\002564.VP

Thursday, December 21, 2000 2:06:20 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page:312

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Fifteen: Domain-Independent 313

AppleScript: A Commercial Platform

AppleScript is an application-independent, high-level scripting language
for the Apple Macintosh (Apple Computer 1993-1999). Familiar uses it to
record the user’s actions and to examine and control target applications.
AppleScript is not the only commercial platform that can support PBD
(see Paynter 2000 for alternatives), but it is one of the most sophisticated
and is consequently an instructive model for future systems. This section
describes AppleScript and its effect on the development of Familiar.

The AppleScript language is composed of control structures (loops, con-
ditionals, statement blocks), common data types (numbers, strings, lists),
and interprocess communication. Applications extend the language by
adding their own commands; every application makes a dictionary of its
commands, object classes, and enumerations available to other programs.
Familiar uses the dictionary to model the application, making new, unseen,
applications compatible immediately and without human intervention.

AppleScript is an attractive platform because it satisfies the previously
noted requirements and provides an English-like feedback language. Appli-
cations that respond to AppleScript commands are called scriptable,
and they satisfy the controllability and examinability requirements. Some
scriptable applications also report what the user does; these are called re-
cordable applications and meet the recordability requirement. Familiar can
only work with applications that are both scriptable and recordable. The
simple syntax of instructions such as “open folder ‘fruit’” or “select file ‘ap-
ple’” allow users to comprehend commands they would be unable to for-
mulate themselves, particularly when the command describes a recently
performed action. This relieves Familiar of the need to implement a second
program representation (e.g., anticipation highlighting or a visual language)
to communicate with the user.

The remainder of this section describes the weaknesses of AppleScript
as a platform for PBD. These can be divided into those that are caused by its
high-level event architecture, those that are problems with the language it-
self, and those that result from poor implementations of the AppleScript
specifications.

High-Level Event Architectures

The high-level events employed by AppleScript characterize user actionsin_S
an abstract form that omits details of how each operation is performed. In__R
L

V:\002564\002564.VP
Thursday, December 21, 2000 2:06:21 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:313

Color profile: Generic CMYK printer profile

Composite Default screen

314 Your Wish is My Command

contrast, low-level events correspond directly to specific machine input, de-
scribing the user’s physical actions rather than their effects. Although high-
level events are easier to interpret and search for repetition, they do have
drawbacks:

Data description: Data description problems arise because application
objects are identified by a description, not accessed directly (e.g., by
pointers to memory). If an object changes so that it no longer matches
its prior description, then it can no longer be accessed by an external
system. Furthermore, the description format is chosen by the applica-
tion developer and may be inappropriate for the purpose of a particular
agent. Generating a data description is a well-known problem in the
PBD literature (Halbert 1993) and is by no means specific to AppleScript.

Mismatch between interaction and a high-level command: Some user ac-
tions do not correspond directly to high-level events. For example, the
Finder allows the user to select and copy part of a file name, but this ac-
tion is not described by an AppleScript command from the Finder dic-
tionary. This deficiency might be addressed by extending the Finder
dictionary to cover selection in text fields, but taken to its logical ex-
treme this solution would add every variation on every command to the
dictionary, exploding its size and sacrificing the abstraction of high-level
events. A further ambiguity is the role of navigation commands that do
not affect data—do they represent significant user actions? Kosbie and
Myers (1993) suggest that high-level events correspond to actions that
the user might wish to undo.

Deficiencies of the Language

AppleScript was designed for human users and has several shortcomings
as an agent communication language—shortcomings that should not be
confused with poor implementations of the language in recordable
applications.

Single-user assumption: Applications treat commands from agents as
though they were user actions, which creates contention when agents
activate applications, make selections, or use the clipboard at the same
time as the user, because such operations involve global variables—the
frontmost application, the selection, the clipboard.

S

R

L

V:\002564\002564.VP

Thursday, December 21, 2000 2:06:21 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:314

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Fifteen: Domain-Independent 315

Examinability: Familiar regularly accesses data in other applications,
but it is hampered by its inability to traverse object hierarchies at run
time and find all the properties of specific objects. The “get every” com-
mand can be used to examine hierarchies, but it is difficult to tell
whether a given application supports it. Inheritance information is op-
tional and often omitted, preventing an agent from finding all the in-
formation relevant to an object. These are arguably implementation
problems, but they are systemic because AppleScript lacks standards of
compliance.

Speed: AppleScript is notoriously slow, although this drawback has been
alleviated by recent versions and machines. The consequences are more
far-reaching than sluggish response: the user operates in real time, and
if the agent does not react quickly, the opportunity for prediction passes.
Familiar can and does fall behind the user’s demonstration without in-
terfering with interaction, although it may offer predictions too late and
retrieve data that are stale.

Timing: High-level events are reported retrospectively, and agents have
no access to data the event has overwritten. Various solutions to this
problem have been proposed, but most introduce new timing problems.
Apple’s Human Interface Guidelines (Apple Computer 1992) recommend
that interaction be structured so that the user first selects an object
(noun) and then applies some action (verb), a style that is reflected in
“select-set” cycles (e.g., Fig. 15.2[d]). An agent, upon recording the “se-
lect” command, can immediately examine the relevant object. In prac-
tice, however, the two events are reported almost simultaneously, so the
agent cannot examine the selection before the subsequent command.
Cypher (1993b) describes an unreleased version of AppleScript that lets
the agent examine the application before and after each event, but this
is incompatible with current software and introduces another potential
timing problem: an agent could fall behind the demonstration, forcing
the application to suspend interaction with the user while it responds to
the agent.

Representing spatial relations: Textual languages are often inadequate
for describing graphical data, one of several shortcomings of English-
like programming languages (Thimbleby, Cockburn, and Jones, 1992).
Given application knowledge, it is possible to represent information
graphically, but this sacrifices domain independence and consistency.

Persistence of objects and references: AppleScript objects used in com-
mands are not required to exist after the command is executed. If you

S
__R
_ L

V:\002564\002564.VP
Thursday, December 21, 20

00 2:06:21 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page: 315

Color profile: Generic CMYK printer profile

Composite Default screen

316 Your Wish is My Command

store a reference, it may be invalid or identify a different object when it
is reused. For example, the Scriptable Text Editor identifies documents
with index numbers, where the frontmost is document 1, the next docu-
ment 2, and so on. The AppleScript command to bring the rearmost
of two open documents to the front is “select document” 2, but as
soon as it is executed the indexes of the two documents are exchanged,
and any future references to “document 2” in fact affect the former
“document 1.”

e Undo: AppleScript has inconsistent support for “Undo” and “Redo” com-
mands. Although many applications support these functions, they do so
inconsistently and cannot be relied on. As a result, agents are unable to
undo their actions.

Deficiencies of AppleScript Implementations

Many problems with AppleScript implementations can be traced to the de-
veloper’s assumption that recording will be used by humans rather than
agents. Others are the inevitable result of ignoring basic design principles
(Simone 1995).

e Syntax: Syntactic items are often chosen confusingly. The Microsoft Ex-
cel (version 5, 98) command to enter the formula =SUM(A1:A50) in cell
Blis

Select Range “RI1C2”
set FormulaRI1Cl of ActiveCell to “=SUM(RC[-1]:R[49]C[-
17)”

This command exemplifies several problems. First, the user selects a sin -
gle Cell, but the recording describes it initially as a Range, then as
ActiveCell. It is not clear what FormulaR1C1 means. The formula itself
is the aspect of this trace most likely to confound the user: every Cel11 has a
FormulaR1C1 property, used in the trace, and a Formula property, which
contains the formula as the user sees it. The latter is simpler and more
closely reflects the user’s actions, but it is not used.

* Recordings not matching actions: The single largest problem with
AppleScript recording is that the recording does not always reflect the
actions the user has performed. This drawback confuses agents that rely

S
__R
_ L

V:\002564\002564.VP

Thursday, December 21, 2000 2:06:22 PM

TNT Job Number: [002564] ¢ Author: [Lieberman] ¢ Page:316

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Fifteen: Domain-Independent 317

on AppleScript recording to monitor the user’s actions, and it misleads
the user about the syntax of the language and the effect of commands.
Two specific problems occur in the applications used with Familiar: re-
cording extraneous commands and failing to record commands. For
example, the formatting commands in Microsoft Excel (version 5, 98)
misrepresent the user’s actions by adding commands, while Netscape
Navigator (versions 3-4.6) does not record the user clicking on a
hyperlink.

Application behavior changing during recording: Some applications be-
have differently when recording than they do normally, which impairs
the user’s ability to demonstrate. For example, Microsoft Word (version
6, 98) disables the mouse when recording is turned on.

Incompletely specified objects: Objects are often described incorrectly in
the application dictionary—particularly with regard to object inheri-
tance. In the Finder (versions 7.5-8.1), for example, alias files are sub-
classes of files, and files are subclasses of ifems, but no inheritance rela-
tionships are specified. Though they may be intuitively obvious to a
person, agents have great difficulties with such omissions.

Errors (often fatal): Many AppleScript implementations contain serious
bugs. For example, the “set” command is missing from the Fetch (ver-
sion 3.0.3) dictionary; the “resize” command recorded in GIFConverter
(version 2.4d18) hangs the machine when replayed.

Lack of recordable applications: Finally, there is a shortage of scriptable
and recordable applications. Adding these features to an application in-
curs extra expense, so not all applications are scriptable. Fewer still are
recordable—a prerequisite for Familiar.

Learning From AppleScript’s Shortcomings

The shortcomings of AppleScript—which, nevertheless, is a usable plat-
form for PBD—provide insight into the design of scripting architectures and
scriptable applications. The three most important steps that application de-
velopers can take to make their scriptable applications cooperate with PBD
systems and other agents are to design well for human users, to implement
recording, and to use sensible data descriptions. Simone’s (1995) “human
scriptability guidelines” explain how to design the scripting implementa-

tion well for users. Syntax that is good for a user is good for an agent, be- _S

cause agents aim to understand and emulate the user.

V:\002564\002564.VP
Thursday, December 21,

2000 2:06:22 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 317

Color profile: Generic CMYK printer profile

Composite Default screen

318 Your Wish is My Command

It is important that AppleScript recording is implemented so that the
agent can monitor the user. The recorded actions should describe the user’s
actions as closely as possible: every significant user action should be in-
cluded, with no “extra” commands. Unfortunately, it is difficult to judge
what might be a significant action, and commands that seem obscure may
prove important to users. Navigation commands are problematic; it is usu-
ally a good idea to merge consecutive navigation commands unless the ap-
plication is some form of browser or the commands have side effects on
data. Recorded commands should both read well and parse easily, so sim-
ple terms are essential. Recordings should not include internal informa-
tion, and the application’s behavior must not change when recording is
activated.

Many AppleScript implementations suffer from data description prob-
lems, preventing an agent from examining their data. Agents have no intu-
ition, so it is important that the dictionary specifies every class completely,
without omitting inheritance relationships. Persistent references are essen-
tial, because references that become stale or expire are of no use to an
agent. Every property of an object should be accessible through the “get”
command (including inherited properties). If a requested property does not
exist, then return a null object, not an error—errors imply a mistake by the
user or agent. The “get every” syntax should be universally supported, and
every containee object of a class should share a superclass, so that it is pos-
sible to retrieve the contents of an object with a single command.

Conclusions

End users can be loosely defined as nonprogrammers who are skilled com-
puter operators. They form the largest group who stand to benefit from
programming by demonstration, but they are unlikely to give up the envi-
ronments and applications they know for new, possibly inferior, research
prototypes. Even if a new product were as polished as an existing equiva-
lent, it is unrealistic to expect end users to abandon the applications they
are familiar with and learn new ones for the sake of unproven demonstra-
tional tools. Instead, PBD must be added to existing applications if it is ever
to be successfully used—or even evaluated—by typical users.

Familiar demonstrates that commercial operating systems are mature
enough to support practical, domain-independent PBD—but only just. As
more architectures support PBD’s the platform requirements—users and
applications, recordability, controllability, examinability, user interface, and

S
__R
_ L

V:\002564\002564.VP

Thursday, December 21, 2000 2:06:23 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page:318

Color profile: Generic CMYK printer profile

Composite Default screen

Chapter Fifteen: Domain-Independent 319

consistency—we anticipate that reliable, intelligent, domain-independent
PBD systems such as Familiar will supersede the humble macro recorder.

Programming by demonstration systems are limited by the environment
in which they operate, which explains why they are invariably implemented
on research platforms. AppleScript is a (barely) adequate platform; it suffers
from a number of deficiencies. Most stem from the fact that it was designed
for end users, not for agents. We urge future designers of scripting lan-
guages to treat agents as first-class citizens.

References

Apple Computer Inc. 1992. Macintosh human interface guidelines. Reading, Mass.:
Addison-Wesley.

. 1993-1999. AppleScript language guide: English Dialect. Apple Computer
Inc., Cupertino, CA.

Bharat K., and P. Sukaviriya. 1993. Animating user interfaces using animation serv-
ers. In Proceedings of UIST '93. Atlanta, GA: ACM Press, New York, NY.

Cheikes B. A., M. Geier, R. Hyland, E Linton, L. Rodi, and H. Schaefer. 1998. Em-
bedded training for complex information systems. In Proceedings of Intelligent
Tutoring Systems, Berlin: Springer.

Cypher, A. 1993a. Bringing programming to end users. Introduction to Watch what
I do: Programming by demonstration, ed. A. Cypher. Cambridge, Mass.: MIT
Press.

. 1993b. Eager: Programming repetitive tasks by demonstration. In Watch
what I do: Programming by demonstration, ed. A. Cypher. Cambridge, Mass.:
MIT Press.

Halbert D. 1993. SmallStar: Programming by Demonstration in the Desktop Meta-
phor. In Watch what I do: Programming by demonstration, ed. A. Cypher. Cam-
bridge, Mass.: MIT Press.

Kay J., and R. C. Thomas. 1995. Studying long-term system use. Communications of
the ACM 38, no. 7: (July): 61-69.

Kosbie, D., and B. Myers. 1993. A system-wide macro facility based on aggregate
events: A proposal.” In Watch what I do: Programming by demonstration, ed. A.
Cypher. Cambridge, Mass.: MIT Press.

Lieberman, H. 1993. Mondrian: A teachable graphical editor. In Watch what I do:
Programming by demonstration, ed. A. Cypher. Cambridge, Mass.: MIT Press.

. 1998. Integrating user interface agents with conventional applications. In

Proceedings of the International Conference on Intelligent User Interfaces, (San __S
Francisco, January). New York, NY: ACM Press. ___ R

V:\002564\002564.VP

Thursday, December 21, 2000 2:06:23 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 319

Color profile: Generic CMYK printer profile

Composite Default screen

320 Your Wish is My Command

Linton E, A. Charron, and D. Joy. 1998. OWL: A recommender system for organisa-
tion-wide learning. Technical report, The MITRE Corporation.

Miura, M., and J. Tanaka. 1998. A framework for event-driven demonstration based
on the Java toolkit. In Proceedings of the Asia Pacific computer human interaction
conference. Kanagawa, Japan: IEEE Computing Society, Los Alamitos, CA.

Myers, B. A., and D. S. Kosbie. 1996. Reusable hierarchical command objects. In Pro-
ceedings of CHI '96, Vancover, Canada: ACM Press, New York, N.Y.

Olsen, D. R, Jr,, S. E. Hudson, T. Verratti, J. M. Heiner, and M. Phelps. 1999. Imple-
menting interface attachments based on surface representations. Proceedings of
CHI '99. Pittsburgh, PA: ACM Press, New York, N.Y.

Paynter, G. 2000. Automating iterative tasks with programming by demonstration.
Ph.D. diss. University of Waikato, New Zealand.

Piernot, P. P, and M. P. Yvon. 1993. The AIDE project: An application-independent
demonstrational environment. In Watch what I do: Programming by demonstra-
tion, ed. A. Cypher. Cambridge, Mass.: MIT Press.

Ritter, S., and K. R. Koedinger. 1995. Towards lightweight tutoring agents. In Proceed-
ings of the World Conference on Artificial Intelligence in Education (AI-ED ’95),
(Washington, D.C., August). (Cited in Cheikes et al. 1998.)

Simone, C. 1995. Designing a scripting implementation. Develop 21 (March): 48-72.

Thimbleby, H., A. Cockburn, and S. Jones. 1992. HyperCard: An object-oriented dis-
appointment. In Building interactive systems: Architectures and tools, ed. P. D.
Gray and R. Took. Berlin: Springer.

Yvon, M., P. Piernot, and N. Cot. 1995. Programming by demonstration: Detect re-
petitive tasks in telecom services. In Proceedings OZCHI '95. Wollongong,
Australia.

V:\002564\002564.VP

Thursday, December 21, 2000 2:06:23 PM

TNT Job Number: [002564] e Author: [Lieberman] ¢ Page: 320

