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Abstract 

Graphical user interfaces (GUIs) enable comfortable interactions of the computer-based systems with 

their environment. Large systems usually require complex GUIs which are commonly fault-prone and 

thus are to be carefully designed, implemented, and tested. As a thorough testing is not feasible, 

techniques are favored to test relevant features of the system under test that will be specifically 

modeled. This chapter summarizes, reviews, and exemplifies conventional and novel techniques for 

model-based GUI testing. 
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1 Introduction – User Interfaces and Their Holistic Testing 

There are two distinct types of construction work while developing software:  

• Design, implementation, and test of the programs.  

• Design, implementation, and test of the user interface (UI).  

We assume that UI might be constructed separately, as it requires different skills, and maybe 

different techniques than construction of common software. The design part of the development 

job requires a good understanding of user requirements; the implementation part requires 
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familiarity with the technical equipment, i.e., programming platform, language, etc. Testing 

requires both: a good understanding of user requirements, and familiarity with the technical 

equipment. This chapter is about UI testing, i.e., testing of the software that realizes the UI, 

taking the design aspects into account. To some extent, also analysis aspects are covered because 

testing and analysis usually belong together. 

Graphical user interfaces (GUIs) have become more and more popular and common UIs in 

computer-based systems. Testing GUIs is, on the other hand, a difficult and challenging task for 

many reasons: First, the input space possesses a great, potentially infinite number of 

combinations of inputs and events that occur as system outputs; external events may interact with 

these inputs. Second, even simple GUIs possess an enormous number of states which are also due 

to interaction with the inputs. Last but not least, many complex dependencies may hold between 

different states of a GUI system, and/or between its states and inputs. 

User inputs are critical for the security, safety, and reliability of software systems. As 

Whittaker [1] indicated, "… data is the lifeblood of software; when it is corrupt, the software is as 

good as dead." According to Whittaker, this is indeed the bottom line for software developers and 

testers. One must consider every single input from every external resource to have confidence in 

the ability of the system under test (SUT) to properly handle malicious attacks and unanticipated 

operating environments. Deciding which inputs to trust and which to validate is a constant 

balancing act. Experiences from safety and security fields [1] have shown that user inputs, mostly 

obtained from GUIs, should be validated thoroughly to prevent attacks ranging from injection to 

denial of service and resulting in intrusion or even in system crashes. The same is true for safety 

violations. 

Nevertheless, nowadays it is taken for granted that most Human-Computer Interfaces (HCI) 

are materialized via GUIs. There exists a vast amount of research work for specification of HCI, 

resulting in an effective testing strategy which is not only easy to apply, but also scalable in sense 

of stepwise increasing the test complexity and accordingly the test coverage and completeness of 

the test process, thus also stepwise increasing the test costs in accordance with the test budget of 

the project. There has been, however, little well known systematic study in this field. This chapter 

presents techniques to systematically test GUIs, being capable of test case enumeration for 

precise test scalability. Aspects of test optimization and rationalization by tools are also covered. 

Test cases generally require the determination of meaningful test inputs and expected system 

outputs for these inputs. Accordingly, to generate test cases for a GUI, one has to identify the test 

objects and test objectives. The test objects are the instruments for the input, e.g. screens, 

windows, icons, menus, pointers, commands, function keys, alphanumerical keys, etc. The 

objective of a test is to generate the expected system behavior (desired event) as an output by 

means of well-defined test input, or inputs. In a broader sense, the test object is the software 

under test (SUT); the objective of the test is to gain confidence in the SUT. Robust systems 

possess also a good exception handling mechanism, i.e., they are responsive not in terms of 
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behaving properly in case of correct, legal inputs, but also by behaving good-natured in case of 

illegal inputs, generating constructive warnings, or tentative correction trials, etc. that help to 

navigate the user to move in the right direction. In order to validate such robust behavior, one 

needs systematically generated erroneous inputs which would usually entail injection of un-

desired events into the SUT. Such events would usually transduce the software under test into an 

illegal state, causing even a system crash, if the program does not possess an appropriate 

exception handling mechanism. This is called “negative testing” and is also subject of this 

chapter. 

Test inputs of a GUI usually represent sequences of GUI-object activities and/or selections 

that operate interactively with the objects (Interaction Sequences – IS, [2], see also [3] and [4]). 

Among these ISs, the ones interesting for testing are externally observable (Event Sequences – 

ES). Such an ES is complete (CES), if and only if it eventually invokes the desired system 

responsibility. From Knowledge Engineering point of the view, the testing of GUI represents a 

typical planning problem that can be solved goal-driven [4]: Given a set of operators, an initial 

state and a goal state, the planner is expected to produce a sequence of operators that change the 

initial state to the goal state. For the GUI test problem described above, this means we have to 

construct the test sequences in dependency of both the desired, correct events (positive testing) 

and the undesired, faulty events (negative testing). A major problem is the unique distinction 

between correct and faulty UI events (Oracle Problem, [5] and [6]). The chapter reviews 

approaches that exploit the concept of ES to elegantly cope with the Oracle Problem. 

GUI testing can be performed using model-based testing (MBT) approach. In MBT, a model 

describing the behavior of SUT is created and this model is used for automatic generation of test 

cases which are then applied to the SUT. The basic idea is to use some coverage criteria to 

generate test cases [4], [5] and [6]. Achieving a proper level of coverage entails the generation of 

test cases and the selection of an optimal number of them. Thus, it ensures the cost-effective 

exercise of a given set of structural or functional features.  

Another tough problem while testing is the decision when to stop testing (Test Termination 

Problem and Testability [5] and [6]). Exercising a set of test cases, the test results can be 

satisfactory, but this is limited to these special test cases. Thus, for the quality judgement of the 

SUT one needs further, rather quantitative arguments, usually materialized by well-defined 

coverage criteria. The most well-known coverage criteria are based either on special, structural 

issues of the software to be tested (implementation orientation/white-box testing), or its 

behavioral, functional description (specification orientation/black-box testing), or both, if both 

implementation and specification are available (hybrid/gray-box testing). 

Putting the different components of the approach together, a holistic way of modeling of 

software development is materialized, with the novelty that the complementary view of the 

desired system behavior enables to obtain the precise and complete description of undesired 

situations, leading to a systematic, scalable, and complete fault modeling.  
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The present chapter summarizes existing work on model- and specification-based, positive and 

negative GUI testing, depicting it by many examples, from simple ones, e.g., copy/cut-paste 

process, to examples lent from public domain Internet, e.g., Real Jukebox (an interactive personal 

music management program), and to examples lent from real projects, e.g., from the automotive 

industry, namely a proactive system to control a marginal strip mower mounted on a truck. 

This chapter prefers graph-based modeling technique as it is widely accepted in the practice. 

Moreover, formal methods, for example graph theory, can be applied to graph-based models for 

achieving algorithms for design, validation & verification, and optimization. All sections use, 

exemplarily, ESG modeling. For enabling quantification of test cases ESG modeling will be 

augmented by decision tables. Moreover, the idea of “model morphology” will be introduced 

from mutation analysis and testing to refine the holistic view. 

Section 2 introduces the notion of finite-state modeling centered mainly on event-based 

models which are most commonly used both for modeling the system and the faults through 

sequence relation between the events. Notions and results from mutation analysis and testing 

have been adopted for test case generation. Cost aspects are discussed in Section 3 that introduces 

an optimization model to solve the test termination problem. Some potentials of test cost 

reduction are discussed. A new approach, GUI testing based on contracts and decision tables, is 

introduced in Section 4. Section 5 reviews existing tools for GUI testing, before Section 6 

concludes the chapter, considering also future research directions. 

Techniques represented in this chapter are to a great extend based on sound mathematical 

methods. Thus, they enable a formal, algorithmic handling, and consequently automatization. 

The authors decided to integrate related work into the relevant sections of the chapter instead 

of having an extra section. This simplifies the work, and avoids multiple referencing, that is, once 

in relevant section(s), and another time in the extra section on related work. 

2 Modeling of GUIs of Interactive Systems 
In terms of behavioral patterns, the relationships between the system under test and its 

environment, i.e., the user, the natural environment, etc., can be described as proactive, reactive 

or interactive. In the case of pro-activity, the system generates the stimuli, which evoke the 

activity of its environment. In the case of reactivity, the system behavior evolves through its 

responses to stimuli generated by its environment. Most human-computer interfaces are 

nowadays interactive in the sense that the user and the system can be both pro- and reactive. In 

this particular kind of system, the user interface (UI) can have another environment, that is, the 

plant, the device or the equipment, which the UI is intended for and embedded in, controlling 

technical processes. Modern UIs will be mostly implemented graphically; therefore, we will 

concentrate on graphical, interactive user interfaces (GUI); UI and GUI will be used 

interchangeably. 
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This section discusses the modeling of GUIs for the purpose of testing. In Section 2.1, 

different GUI modeling techniques are introduced; the discussion is mainly centered around 

event-based models such as, event flow graphs (EFGs), event sequence graphs (ESGs) and k-

sequence right regular grammars (k-Regs). In Section 2.2, Section 2.3, and Section 2.4, the 

discussion is based on a generic event-based modeling methodology using k-Regs. In Section 2.2, 

the basic notions and properties needed for testing purposes and fault-based aspects are analyzed. 

In Section 2.3, the concept of varying model morphology and its benefits are discussed and, in 

Section 2.4, test generation perspectives are demonstrated. Section 2 is concluded by Section 2.5 

by laying out and discussing some issues related to the model-based testing methodologies. 

2.1 Different Techniques for Modeling GUIs 

An event is defined as an externally observable phenomenon, e.g., a user’s, stimulus or a 

response of the GUI, punctuating different stages of the system activity. Event-based modeling 

techniques are commonly used for modeling GUIs. The most well-known event-based techniques 

are centered on the use of event sequence graphs (ESGs) [7], event flow graphs (EFGs) [8], and a 

particular type of regular grammars called k-sequence right regular grammars (k-Regs) [9][10].  

Although we focus on event-based models, state-based or algebraic models can also be used 

for testing of GUIs. FSMs [4][11][12], variable FSMs [13], hierarchical FSMs [14], statecharts 

[15][16] and pushdown automata [17][18] are common examples to state-based models; whereas, 

regular expressions [19] can be considered as algebraic. 

2.1.1 Event Sequence Graphs 

An event sequence graph (ESG) is a 4-tuple (N, A, S, F) where 

• N is a finite set of nodes representing the events. 

• A  N×N is a finite set of directed arcs representing follows relation between events; that 

is, for two events x and y in the graph, x follows y if and only if (y, x) is an arc in the 

graph. 

• S  N is a distinguished nonempty set of events representing start or initial events. 

• F  N is a distinguished nonempty set of events representing finish or final events. 

The above definition suggests that ESG-based modeling employs a very simplistic approach. 

Each node in an ESG is an event whose type or application specific semantics are ignored; and 

each arc represents a sequence of two events. 

An example GUI is given in Figure 1. It contains a total of 11 events (all taskbar and non-

GUI-related events are ignored): “Cut”, “Copy”, “Paste”, “Find…”, “Go To…”, “Find what”, 

“Find Next”, “Cancel (Find)”, “Line Number”, “OK” and “Cancel (GoTo)”. Performing “Go 

To…” and “Find…”events bring forth sub-components of the GUI enabling the execution of 

different events. After “Find…”, “Find what”, “Find next” and “Cancel (Find)” and, after “Go 

To…”, Line Number”, “OK” and “Cancel (GoTo)” events are enabled. 
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. 
(a) “Main” window 

 

 
(b) “Find” window (modeless). 

 

 
(c) “Goto line” window (modal). 

Figure 1. An example GUI (Simplified from Notepad). [20] 

 

Figure 2 is an ESG model of the GUI given in Figure 1. Events are only distinguished as 

simple and composite events: Simple events are shown in ellipses and they correspond to actual 

events. The composite events (“Go To…” and “Find…”), which have their own ESGs, are shown 

in the dotted ellipses. Note that the actual “Go To…” and “Find…” events are in fact in their 

corresponding sub-ESGs. In addition, in all ESGs, pseudo-events “[” and “]” are used to mark 

start and finish events, respectively; that is, start events follow “[“, and “]” follows each finish 

event. 
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(a) “Main” ESG. (b) “Find” sub-ESG. (c) “Goto line” sub-ESG. 

Figure 2. A simplified ESG model of the GUI in Figure 1. [20] 

 

Note that, although not suggested by the definition, some events in the example ESG are 

composite; they represent sub-ESGs. This is a quite commonly employed technique in practice to 

ease the modeling. Such ESGs are actually called structured ESGs [21][22] where certain nodes 

can be refined as long as the refinement is compatible with the notion of event. Similarly, it is 

possible to extend ESGs to enable the modeling of more complex situations as follows [21][22]. 

• Input-output ESGs: Input and output events are distinguished semantically. 

• Communicating ESGs: Two ESGs can communicate with each other to accomplish a task. 

• Quiescent ESGs: A special event to represent the occurrence of no input or output system 

action is also included. 

• Timed ESGs: Event-based behavior is defined with respect to time. 

• Pushdown ESGs: A stack component is included as a special type of memory. 

2.1.2 Event Flow Graphs 

An event flow graph (EFG) [8], on the other hand, takes component-based structure of the 

GUIs into account and distinguishes between different types of events such as menu-open events, 

restricted-focus events, unrestricted focus events, termination events and system-interaction 

events [23]. In this perspective, EFGs can be considered as an extension to ESGs where node 

semantics are augmented using application specific details. An EFG for a GUI component C is a 

4-tuple (V, E, B, I) where 

• V is a set of vertices representing all the events in the component. Each v  V represents 

an event in C where it can be a menu-open, a restricted-focus, a termination or a system-

interaction event. 

• E  N×N is a set of directed edges between vertices. We say that event ei follows ej if and 

only if ej may be performed immediately after ei. An edge (vx, vy)  E if and only if the 

event represented by vy follows the event represented by vx. 

• B  V is a set of vertices representing those events of C that are available to the user when 

the component is first invoked. 

• I  V is the set of restricted-focus events of the component. 

Figure 3 shows an example EFG model of the GUI in Figure 1. The events are distinguished 

based on their types and different shapes are used for such events in modeling. “Edit” is a menu-
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open event (shown in diamond), “Go To…” is a restricted-focus event (shown in double circle), 

and related “OK” and “Cancel (GoTo)” are termination events (shown in rectangles). Also, 

“Find…” is an unrestricted focus event (because “Find” window is modeless) enabling “Find 

what” and “Cancel (Find) events, and “Cut”, “Copy” and “Paste” events are system-interaction 

events (shown in circles). Furthermore, “Edit” is designated as the only start event. 

 

 
Figure 3. A simplified EFG model of the GUI in Figure 1. [20] 

 

EFGs also have different extensions. 

• Event Interaction Graphs (EIGs) [24]: An EIG focuses on system interaction and 

termination events (assuming that other events are not fault-prone), and interactions 

between them. 

• Event Semantic Interaction Graphs (ESIGs) [25]: An ESIG models a subset of follows 

relation between events that are shown to interact at a certain semantic level. 

• Probabilistic EFGs (PEFGs) [26]: In a PEFG, by analyzing usage profiles, weights or 

probabilities are assigned to the events to form Bayesian networks and n-gram Markov 

models. 

2.1.3 k-sequence Right Regular Grammars 

In order to model the relations between sequences of events and single events, a generalized 

family of event-based models is introduced as k-sequence right regular grammars (k-Regs) (k≥1) 

[27][9][10]. Mainly, k-Regs are defined with a general event-based modeling methodology in 

mind (although certain elements in the model can also be regarded as states, and, thus, enables 

adoption of state-based approaches). Therefore, event semantics are not specialized using 

application specific details. Furthermore, certain ESG-based formalization issues are solved 

resulting in improvements in the event-based testing approaches. A k-Reg (k≥1) is a 6-tuple (E, B, 

K, C, S, P) where: 

• E is a finite set of events (or contexted events). 
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• B is a finite set of basis events, which is the set of all visible events under consideration. 

For each event e  E, d(e)  B is the corresponding basis event, which is the 

noncontexted version of e, and d(.) is the decontexting function. 

• K  Ek is a finite set of k-sequences. For each k-sequence r  K, r = r1 … rk and d(r) = 

d(r1) … d(rk)  Bk is the corresponding basis k-sequence. 

• C is a finite set of contexts where S  C is the start context. 

• P is a finite set of productions of the form 

Q   or Q  r c(r) 

where Q  C is a context, r  K is a k-sequence, c(r)  C\{S} is the unique context of r, 

and  is the empty string. If k ≥ 2, for each c(q)  r c(r)  P, the ending (k-1)-sequence 

of q is the beginning (k-1)-sequence of r. 

The semantics of the productions of a k-Reg G is as follows. 

• For each c(q)  r c(r)  P, where q = q1 … qk and r = r1 … rk, r follows q in grammar G, 

and rk follows q in the system modeled by grammar G; that is, q1 … qk rk is a (k+1)-

sequence in the system. 

• For each S  r c(r)  P, r is a start k-sequence. 

• For each c(q)    P, q is a finish k-sequence. 

Figure 4 shows an example 1-Reg model of the GUI in Figure 1. Productions of the form S → 

r c(r) and c(r) →  are used to mark start events and finish events, respectively. Furthermore, 

productions of the form c(q) → r c(r) are used to model the follows relation between single 

events. Therefore, it is possible to represents the productions visually using directed graphs 

(similar to ESGs). 

 
1. S → Edit c(Edit) 

2. c(Edit) →  

3. c(Edit) → Edit c(Edit) 

4. c(Edit) → Cut c(Cut) 

5. c(Edit) → Copy c(Copy) 

6. c(Edit) → Paste c(Paste) 

7. c(Edit) → GoTo... c(GoTo...) 

8. c(Edit) → Find... c(Find...) 

9. c(Cut) →  

10. c(Cut) → Edit c(Edit) 

11. c(Copy) →  

12. c(Copy) → Edit c(Edit) 

13. c(Paste) →  

14. c(Paste) → Edit c(Edit) 

15. c(GoTo...) → LineNumber c(LineNumber) 

16. c(GoTo...) → OK c(OK) 

17. c(GoTo...) → Cancel(GoTo) c(Cancel(GoTo)) 

18. c(LineNumber) → LineNumber c(LineNumber) 

19. c(LineNumber) → OK c(OK) 

20. c(LineNumber) → Cancel(GoTo) c(Cancel(GoTo)) 

21. c(OK) →  

22. c(OK) → Edit c(Edit) 

23. c(Cancel(GoTo)) →  

24. c(Cancel(GoTo)) → Edit c(Edit) 

25. c(Find...) → Edit c(Edit) 

26. c(Find...) → Findwhat c(Findwhat) 

27. c(Find...) → FindNext c(FindNext) 

28. c(Find...) → Cancel(Find) c(Cancel(Find)) 

29. c(Findwhat) → Edit c(Edit) 

30. c(Findwhat) → Findwhat c(Findwhat) 

31. c(Findwhat) → FindNext c(FindNext) 

32. c(Findwhat) → Cancel(Find) c(Cancel(Find)) 

33. c(FindNext) → Edit c(Edit) 

34. c(FindNext) → Findwhat c(Findwhat) 

35. c(FindNext) → FindNext c(FindNext) 

36. c(FindNext) → Cancel(Find) c(Cancel(Find)) 

37. c(Cancel(Find)) → Edit c(Edit) 

Figure 4. A simplified 1-Reg model of the GUI in Figure 1. 
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ESGs, EFGs and k-Regs are all used to define a follows relation by properly identifying start 

and finish events. In case of ESGs and EFGs, this relation is between events; however, in case of 

k-Regs, this relation is between k-sequences and events. From a formal point of view, ESGs, 

EFGs and 1-Regs are similar to FSMs. By loosening the constraints on start and finish events, 

one can convert an ESG, an EFG or a 1-Reg to an FSM by interpreting the formers as Moore-like 

machines [28] and the latter as Mealy-like machine [29], and vice versa. However, the case of 

empty string and the absence of final states should be handled carefully. Furthermore, use of 

indexing (or contexting) [7] may be necessary to assign a unique label to each event. 

2.2 Analysis of Models 

In general, when a model is given, different types of analyses can be carried out. Considering 

the aforementioned event-based models, for event-based testing of GUIs, it is possible to perform 

an analysis to test for legal (valid, desirable, correct or positive) and illegal (invalid, undesirable, 

faulty or negative) system behaviors, that is, the behaviors allowed and not allowed by the 

system, respectively. In this section, in order to represent such behaviors and carry out our 

analysis, the discussion is based on certain notions borrowed from mutation analysis and testing 

[30][31][32]. 

2.2.1 Basic Notions 

Let G be a k-Reg. Event sequences that can and cannot be derived using G are distinguished 

for testing. An event sequence s is said to be in G, if it can be derived using the productions (or 

the follows relation) in G. A nonempty event sequence s in G is a start sequence, if it starts with a 

start event; s in G is a finish sequence, if it ends with a finish event. 

Figure 5 shows an example 1-Reg where c is copy, x is cut and p is paste basis event, and c1, 

x1, p1 and p2 are contexted versions of these events. {c1 x1, c1 p1 p1, p2 x1 p2, p1 p1 p1 c1} is 

an example set which contains some sequences in this 1-Reg; whereas, {c1 p2, x1 p1 p2, p2 p2 x1 

c1} contains some sequences not in it. Note that, in the figure, productions of the form H  T1, 

H  T2, …, H  TN are grouped as H  T1 | T2 | … | TN to save space. 

 

S  c1 c(c1) | x1 c(x1) 

c(c1)  c1 c(c1) | x1 c(x1) | p1 c(p1) 

c(x1)  c1 c(c1) | x1 c(x1) | p2 c(p2) 

c(p1)  c1 c(c1) | x1 c(x1) | p1 c(p1) |  

c(p2)  c1 c(c1) | x1 c(x1) |  

 
(a) Productions. (b) Directed graph visualization. 

Figure 5. A 1-Reg model. [10] 

 

An event sequence in G can be used to exercise some desirable or correct behavior; whereas, 

an event sequence not in G can be used to exercise some undesirable or faulty behavior and it is 

x1

c1

][

p2

p1
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also called as a faulty event sequence (FES). Original model G and its mutants can be used to 

generate positive and negative test cases for these purposes. More precisely, the aim is to reveal 

missing event faults where an event cannot occur after or before a (possibly empty) sequence of 

events and extra event faults where an event can occur after or before a (possibly empty) 

sequence of events. 

An event sequence is a positive test case, if it is a start sequence in G (or it is ). TP(G) 

denotes the set of all positive test cases. A complete event sequence (CES) is a positive test case 

which is both a start and a finish sequence in G (or it is ). TCES(G)  TP(G) denotes the set of all 

CESs. Furthermore, an event sequence is a negative test case, if the first event in it is a nonstart 

event or it contains at least one 2-sequence which is not in M. TN(G) denotes the set of all 

negative test cases. A faulty complete event sequence (FCES) is a negative test case which either 

is composed of only a nonstart event, or contains only one 2-sequence which is not in G and it 

ends with this 2-sequence. TFCES(G)  TN(G) denotes the set of all FCESs. 

2.2.2 Relevant Mutants 

In general, one can create infinitely many mutants modeling multiple missing event or extra 

event faults. For this purpose, marking (mark start, mark finish, mark non-start and mark non-

finish), insertion (insert sequence, insert k-sequence) and omission (omit sequence and omit k-

sequence) operators can be defined [33] by extending the operators defined in [34]. In the light of 

the following assumptions which are generally valid for GUI testing, the types and the numbers 

of mutants can be reduced greatly [9][10]. 

A1. Events in a test case are executed in the given order; therefore, execution of a test case 

stops when a failure is observed. 

A2. The last event of a test sequence can be any event; a test sequence needs not to end with a 

finish event. 

Thus, for a given k-Reg, the following can be stated. 

P1. Missing and extra event faults are limited by considering the k-sequences which precede 

the missing or extra events while ignoring the succeeding k-sequences. Thus, by 

exercising all (k+1)-sequences in the k-Reg, one can test whether an event is missing after 

some k-sequence, and, by exercising all relevant faulty k-sequences, one can test whether 

an event is extra after some k-sequence. (by A1) 

P2. Mark nonstart, mark nonfinish, omit sequence and omit k-sequence mutants are 

discarded; they do not contain any k-sequence that is not contained in the original model. 

(by P1) 

P3. Mark finish and mark nonfinish mutants do not really correspond to fault models, because 

every event can be considered as a finish or nonfinish event during the testing process. (by 

A2) 
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P4. Insert sequence mutants are discarded because extra event faults modeled using insert 

sequence mutants can be modeled using insert k-sequence mutants. (by definition [33]) 

P5. There is no need to continue execution of a negative test case beyond the first faulty 

sequence. Thus, all negative test cases used in testing process are FCES. (by A1) 

Consequently, we do not need to use all types of mutants for test generation; we can use the 

original k-Reg to cover (k+1)-sequences to reveal missing event faults, and mark start and insert 

k-sequence mutants to cover faulty (k+1)-sequences to reveal extra event faults. Basically, the 

purpose of using a mark start operator is to turn a given k-sequence into a start k-sequence. In this 

way, mutant models which have extra start k-sequences can be constructed. These models are 

used to generate test cases to reveal extra event faults where the extra event is a start event in a 

start k-sequence. The operator is defined as follows. 

Given a k-Reg G = (E, B, K, C, S, P) and a k-sequence e  K such that S  e c(e)  P, mark 

start (Ms) operator is defined as 

Ms(G, e) = (E, B, K, C, S, P’) 

where P’ = P  {S  e c(e)}. 

Insert k-sequence operator adds a new k-sequence to a given grammar following an existing 

k-sequence. In this way, mutant models which contain k-sequences with different contexts can be 

created. Such models are used to generate test cases to reveal extra event faults where the extra 

event follows a k-sequence. The operator is defined as follows. 

Given a k-Reg G = (E, B, K, C, S, P), a k-sequence e such that e  K and d(e)  Bk, and an 

existing k-sequence a  K, insert k-sequence (It) operator is defined as 

It(G, e, a) = G’ = (E, B, K’,C’, S, P’), 

where K’ = K  {e}, C’ = C  {c(e)}, and P’ = P  {c(a)  e c(e), c(e) }. 

Figure 6 shows a mark start and an insert 1-sequence mutant of the 1-Reg in Figure 5 (To 

save space, only the directed graph visualizations are included). 

 

  
(a) p1 is marked as start. (b) p3 (a p event) is inserted after p2. 

Figure 6. A mark start and an insert 1-sequence mutant of the 1-Reg in Figure 5. [10] 
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2.2.3 Mutant Selection 

In event-based testing (under assumptions A1 and A2), not all mutants need to be generated. 

Therefore, having defined the relevant mutation operators, two strategies are defined for mark 

start and insert k-sequence mutants to select a subset of all possible mutants in such a way that 

• each selected mutant models a small number of faults which are located at the mutation 

points so that one modeled fault does not interfere with another,  

• there is no need to compare each mutant to the original model to check for equivalence or 

to generate test cases to reveal the faults,  

• the generation of equivalent mutants and multiple mutants modeling the same faults are 

avoided, and  

• a test case to reveal the fault modeled by the mutant can be generated in linear time. 

Given a k-Reg G = (E, B, K, C, S, P), mark start and insert k-sequence mutant selection 

strategies are defined as follows. 

Mark Start Mutant Selection Strategy: For each mark start mutant Ms(G, e) of G, k-sequence 

e is selected as a mutation parameter if the following conditions hold: 

1. There exists no start k-sequence x such that d(x1) = d(e1). 

2. There exists no previously selected mutation parameter y such that d(y1) = d(e1). 

Insert k-sequence Mutant Selection Strategy: For each insert k-sequence mutant It(G, e, a) of 

G, k-sequence e and k-sequence a are selected as a mutation parameter if the following 

conditions hold: 

1. There exists no c(a)  x c(x)  P such that d(xk) = d(ek). 

2. There exists no previously selected mutation parameter (y, a) such that d(yk) = d(ek). 

The algorithms to generate all mark start and insert k-sequence mutants according to the 

above strategies are given in Algorithm 1 and Algorithm 2, respectively. 

 

Algorithm 1. Mark Start Mutant Selection 

 Input: G = (E, B, K, C, S, P) – the input grammar 

 Output: M – the set of selected mark start mutants 

  M =, N =  

  for each b  B do 

   if there is no S  x c(x)  P such that d(x1) = b and 

      there is no y N such that d(y1) = b then 

    Select a k-sequence e  K such that d(e1) = b 

    G’ = G 

    M = M  {Ms(G’, e)} 

    N = N {e} 

   endif 

  endfor 
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Algorithm 2. Insert k-sequence Mutant Selection 

 Input: G = (E, B, K, C, S, P) – the input grammar 

 Output: M – the set of selected insert k-sequence mutants 

  M =, N =  

  for each a  K do 

   N =  

   for each b  B do 

    if there is no c(a)  x c(x)  P such that d(xk) = b and  

       there is no (a, y)  N such that d(yk) = b then 

     b’ = a new contexted version of b, e = a2 … ak b’ 

     G’ = G 

     M = M  {It(G’, e, a)}, 

     N = N {(a, e)} 

    endif 

   endfor 

  endfor 

 

Let G be the 1-Reg in Figure 5. The only selected mark start mutant is Ms(G, p1). Ms(G, c1) 

and Ms(G, x1) are excluded because c1 and x1 are already start events. Furthermore, Ms(G, p2) is 

excluded because it models the same fault as Ms(G, p1). Furthermore, one can only use basis 1-

sequence p to generate insert 1-sequence mutant, because c and x can follow all events. The only 

selected insert 1-sequence mutant is It(G, p3, p2), because only p2 is not followed by a p event. 

2.3 Exploiting Model Morphology for Event-Based Testing 

Varying model morphology can be formalized using k-Regs [9][10]. However, not to bore the 

reader with too much formalism, we keep the discussion semi-formal and skip certain details. 

Interested reader may refer [10][33] for a more complete discussion. 

A (k+1)-Reg model is morphologically different from a k-Reg model, and it can be used to 

model or reveal different or more subtle faults. For this purpose, a transformation to vary k and 

generate models with morphological differences is defined as follows. 

Given a 1-Reg G1 = (E, B, K1, C1, S, P1). 

• The corresponding 1-Reg of G1 is defined as itself: 

G1 = (E, B, K1, C1, S, P1). 

• Let Gk = (E, B, Kk, Ck, S, Pk) be the corresponding k-Reg of G1. The corresponding (k+1)-

Reg of G1 (or Gk) is defined as 

Gk+1 = (E, B, Kk+1, Ck+1, S, Pk+1) where 

o Kk+1 = {q1 … qk rk| c(q)  r c(r)  Pk where q = q1 … qk and r = r1 … rk} is the 

set of all (k+1)-sequences in G1. 

o Ck+1 = {c(r)| r  Kk+1} is the set of contexts. 

o Pk+1 = {S  r e c(r e)| S  r c(r)  Pk and c(rk)  e c(e)  P1}   

{c(q rk)  | c(q)  r c(r)  Pk and c(rk)    P1}   

{c(q rk)  r e c(r e)| c(q)  r c(r)  Pk and c(rk)  e c(e)  P1} is the set of 

productions. 
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The above definition is recursive; it can easily be converted to an iterative algorithm whose 

steps are outlined in Algorithm 3. 

 
Algorithm 3. k-Reg Transformation 

 Input: Gk = (E, B, Kk, Ck, S, Pk) – the input k-Reg (the corresponding k-Reg of G1) 

   G1 = (E, B, K1, C1, S, P1) – the input 1-Reg 

 Output: Gk+1 = (E, B, Kk+1, Ck+1, S, P k+1) – the corresponding (k+1)-Reg 

  Kk+1 =, Ck+1 = {S}, Pk+1 =  

  for each Q  r c(r)  Pk where r = r1 … rk do 

   if Q = c(q) where q = q1 … qk then 

    Kk+1 = Kk+1  {q rk} 

    Ck+1 = Ck+1  {c(q rk)} 

   endif 

   for each c(rk)  R  P1 do 

    if R = e c(e) then 

     if Q = S then 

      Pk+1 = P k+1  {S  r e c(r e)} 

     else if Q = c(q) then 

      Pk+1 = P k+1  {c(q rk)  r e c(r e)} 

     endif 

    else if R =  then 

      Pk+1 = Pk+1  {c(q rk)  } 

    endif 

   endfor 

  endfor 

 

Based on the definition, Algorithm 3 uses a 1-Reg and a k-Reg to obtain a (k+1)-Reg. 

Basically, what happens is as follows. 

• A new (k+1)-sequence q1 … qk rk in G1 is extracted from c(q1 … qk)  r1 … rk c(r1 … rk) 

 Pk using the fact that q1 … qk is a k-sequence in G1 and qk rk is a 2-sequence in G1. 

• To determine the contexts to be used in a new production properly, a production from Gk 

and a production from G1 are selected and used in such a way that (k+1)-sequences that 

are not in G1 does not emerge, and all (k+1)-sequences in G1 are included in new 

productions together with their contexts without invalidating the definition of a k-Reg. 

• k-sequences in G1 which cannot be included in some (k+1)-sequences in G1 are left out. 

Figure 7 is the corresponding 2-Reg transformed from the 1-Reg in Figure 5. 
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S  c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) | x1 c1 c(x1 c1) | x1 x1 c(x1 x1) | x1 p2 c(x1 p2) 

c(c1 c1)  c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) 

c(c1 x1)  x1 c1 c(x1 c1) | x1 x1 c(x1 x1) | x1 p2 c(x1 p2) 

c(c1 p1)  p1 c1 c(p1 c1) | p1 x1 c(p1 x1) | p1 p1 c(p1 p1) |  

c(x1 c1)  c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) 

c(x1 x1)  x1 c1 c(x1 c1) | x1 x1 c(x1 x1) | x1 p2 c(x1 p2) 

c(x1 p2)  p2 c1 c(p2 c1) | p2 x1 c(p2 x1) |  

c(p1 c1)  c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) 

c(p1 x1)  x1 c1 c(x1 c1) | x1 x1 c(x1 x1) | x1 p2 c(x1 p2) 

c(p1 p1)  p1 c1 c(p1 c1) | p1 x1 c(p1 x1) | p1 p1 c(p1 p1) |  

c(p2 c1)  c1 c1 c(c1 c1) | c1 x1 c(c1 x1) | c1 p1 c(c1 p1) 

c(p2 x1)  x1 c1 c(x1 c1) | x1 x1 c(x1 x1) | x1 p2 c(x1 p2) 

(a) Productions. 

 
(b) Directed graph visualization. 

Figure 7. A 2-Reg model (Transformed from Figure 5). [10] 

 

One of the most important benefits of using of morphologically different models, generated 

using grammar transformation, is the extension of the set of possible mutants (or fault models). 

To see this, consider the mutant of Figure 7 generated by omitting sequence (p1 c1, c1 p1) as 

shown in Figure 8b. This mutant models the fault that 

p1 is missing after p1 c1; 

that is, p fails after performing a p and a c. It is not possible to create such a mutant from the 

model in Figure 5 by a simple omission. For example, one can omit sequence (c1, p1) (See 

Figure 8a). However, in this mutant, p fails immediately after performing a c. Hence, the mutant 

in Figure 8b models a different and more subtle fault than the mutant in Figure 8a. Thus, the set 

of fault models can be extended by generating mutants modeling different or more subtle faults. 
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(a) A mutant of the model in Figure 5. (b) A mutant of the model in Figure 7. 

Figure 8. Two mutants generated from morphologically different models (Mutations are shown in boldface 

dashed lines). [10] 

 

Actually, this example hints that using morphologically different models in test generation is 

also beneficial since it helps the detection of different or more subtle faults. 

2.4 Test Generation from Models 

Although it is possible to use different coverage criteria for test generation considering 

different (even application specific) semantics, such as inter-component coverage criterion [8] 

which utilizes the structure of the GUIs, we limit our discussion for test generation to more 

generic k-sequence and faulty k-sequence coverage criteria for detection of missing event and 

extra event faults as discussed in Section 2.2. 

Given an event-based model G and a set of sequences X. X is said to cover a k-sequence r in 

M, if r appears in a sequence in X, and, if X covers all k-sequences in G, it is said to achieve k-

sequence coverage. Furthermore, X is said to cover a faulty k-sequence r which is not in G, if r 

appears in a sequence in X, and, if X covers all k-sequences not in G, it is said to achieve faulty k-

sequence coverage. 

As discussed in Section 2.2, k-sequence coverage is used to reveal missing event faults where 

an event does not follow a (possibly empty) sequence of events. Although, k-sequence coverage 

can be used to reveal different or more subtle faults as k is increased, it is not stronger for 

increasing value of k; that is, (k+1)-sequence coverage does not subsume k-sequence coverage 

for k ≥ 1. It is possible that a k-sequence is not included in any (k+1)-sequences. In this case, a 

sequence set achieving m-sequence coverage for m ≥ k+1 fails to cover such k-sequences. If a 

complete subsumption is intended, such sequences should be singled out and included separately. 

In addition, faulty 1-sequence coverage is different from faulty k-sequence coverage for k ≥ 2 

because the faultiness of an event depends on its preceding event. Faulty 1-sequences actually 

correspond to faulty start events and, therefore, they should be covered at the beginning of the 

sequences. In general, faulty k-sequence coverage is used to reveal extra event faults where an 
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event follows a (possibly empty) sequence of events (although it should not). For this reason, we 

only consider the faulty k-sequences whose last events are faulty. 

To satisfy these criteria, we use k-Reg models. However, there is a problem: A sequence s in 

the corresponding k-Reg Gk of a 1-Reg G1 is not always a sequence in G1. Therefore, in order to 

obtain a sequence t in G1 from a sequence s in Gk, the following transformation is defined. 

Let s = u1 … um where k ≥ 1, m ≥ 1 and ui = ui
1 … ui

k for i = 1, …, m. Inverse sequence 

transformation of s based on integer k is a (k+m-1)-sequence 

TS
-1(s, k) = u1 u2

k u
3
k … um

k 

where u1 = s1 … sk and each ui
k = si×k for i = 2, …, m. 

For example, s = c1 c1 c1 x1 x1 x1 x1 p2 is a sequence in the 2-Reg in Figure 7 but it is not in 

the 1-Reg in Figure 5. However, TS
-1(s, 2) = c1 c1 x1 x1 p2 is a 5-derived sequence in the 1-Reg 

in Figure 5. 

2.4.1 Positive Test Generation 

In order to generate test cases achieving (k+1)-sequence coverage from a given 1-Reg, its 

corresponding k-Reg can be used. In this way, one can reveal missing event faults where an event 

does not follow a certain k-sequence. 

As discussed in Section 2.1, productions of a k-Reg encodes (k+1)-sequences in the system. 

Hence, by covering these productions, one can generate test sets achieving (k+1)-sequence 

coverage. 

 

Algorithm 4. Test Generation to Achieve (k+1)-sequence Coverage 

 Input: G = (E, B, K, C, S, P) – the input 1-Reg 

   k – an integer ≥ 1 

 Output: X – a set of sequences which achieves (k+1)-sequence coverage for G 
  X =  

  Gk = transform G to its corresponding k-Reg //See Algorithm 3 in Section 2.3 

  Y = generate a sequence set achieving production coverage for Gk 

  for each s  Y such that |s| ≥ 2k do 

   X = X  TS
-1(s, k) //See Section 2.4 

  endfor 

 

Algorithm 4 outlines the generation of a test set achieving (k+1)-sequence coverage from a 

given 1-Reg. In the algorithm, generating a test set achieving production coverage for the 

corresponding k-Reg model can be performed in different ways. For example, it is possible to 

perform some optimizations by adapting algorithms to solve Chinese Postman Problem over 

directed graphs, like [35][36][37], to cover each production a minimum number of times, 

resulting in a reduced set of test cases. However, one should note that optimization algorithms 

tend to require more resources in terms of both time and space, and there is no guarantee of 

reduced test execution costs [38][20]. Thus, algorithms such as those in [39][40][41] can also be 
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used to generate relatively short but generally nonoptimized sequences from a given grammar, 

while using less resources. 

When Algorithm 4 is executed on the 1-Reg in Figure 5 for k = 1, no transformation of the 

grammar is necessary. One can obtain the following set of test cases 

{c1 c1 x1 c1 p1 c1 p1 x1 x1 p2 c1 p1 p1, x1 p2 x1 p2, c1 p1} 

which achieves 2-sequence coverage. Furthermore, if k = 2 is used, the given 1-Reg is 

transformed once to obtain the 2-Reg in Figure 7, this 2-Reg is used to generate a sequence set 

and the elements of this set are inverse transformed to obtain test cases achieving 3-sequence 

coverage. The following is an example of test cases achieving 3-sequence coverage: 

{c1 c1 c1 x1 c1 c1 p1 c1 c1 p1 x1 c1 x1 x1 c1 p1 p1 c1 x1 p2 c1 c1 p1,  

c1 x1 p2 x1 c1 p1 c1 p1 x1 x1 x1 p2,  

c1 p1 x1 p2 c1 x1 p2 c1 p1 p1 x1 p2 x1 x1 p2 x1 p2,  

x1 c1 p1 p1 p1, x1 x1 p2, c1 p1 p1}. 

Naturally, during test execution, the corresponding basis event is used for each event, because 

basis events represent the events as they are visible to user. 

2.4.2 Negative Test Generation 

In order to generate test sets achieving fault (k+1)-sequence coverage, certain k-Reg mutants 

need to be generated and used. Therefore, before laying out the test generation algorithm, we 

discuss two mutant selection strategies based on mark start and insert k-sequence mutants (A 

detailed discussion on other possible k-Reg mutants and on the reasons for the selection of only 

these two types of mutants can be found in [33]).Having discussed mutant-related background, 

we can now proceed to the test generation algorithm to achieve faulty (k+1)-sequence coverage 

as demonstrated in Algorithm 5. 

 
Algorithm 5. Test Generation to Achieve Faulty (k+1)-sequence Coverage 

 Input: G = (E, B, K, C, S, P) – the input 1-Reg 

   k – an integer ≥ 1 

 Output: X – a set of sequences which achieves single-end faulty (k+1)-sequence coverage for G 
  X = , Y =  

  Gk = transform G to its corresponding k-Reg //See Algorithm 3 in Section 2.3 

  for each G’ = Ms(Gk, e) selected using Algorithm 1 in Section 2.2.3 do 

   X = X  {e1} 

  endfor 

  for each G’ = It(Gk, a, e) selected using Algorithm 2 in Section 2.2.3 do 

   s = generate a sequence ending with e by covering production c(a)  e c(e) from G’ 

   X = X  T-1(s, k) //See Section 2.4 

  endfor 

 

When Algorithm 5 is executed on the 1-Reg in Figure 5 for k = 1, one can obtain the 

following test set. 

{p1, x1 p2 p3} 
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Furthermore, if k = 3 is used, the given 1-Reg is transformed twice to obtain the corresponding 3-

Reg, the mutants of this 3-Reg is used to obtain test cases. The following is an example test set. 

{p1, c1 x1 p2 p3, x1 x1 p2 p3, c1 p1 x1 p2 p3, x1 p2 x1 p2 p3} 

As usual, the corresponding basis event is used for each event during test execution. 

2.5 Issues to Consider 

There are certain issues related to the model-based GUI testing methodologies discussed so 

far in Section 2 which are worth mentioning. 

Model Semantics: The models which are most commonly used for GUI testing have very 

simple semantics. They are mainly based on follows relation between events. This kind of 

abstractions may not be sufficient to capture the relevant behavior of certain applications. 

Fault and Coverage Semantics: Being partially related to the semantics of the model, fault 

models and coverage criteria are relatively general. In case one is interested in only a specific 

fault type, the employed fault models and coverage criteria may be more than needed causing a 

waste of resources. 

Size Complexity of Morphology Variation: In theory, the proposed morphology variation 

technique causes an exponential increase in the model size. Although, in practice, the value of k 

is almost always bounded, it still poses a limit by preventing the use of relatively larger k values. 

Linear Test Cases: In most cases, generated test cases have a linear structure and they are 

composed of input events. This does not allow the possibility of a change in the flow of execution 

depending on responses from the system. 

Order of Test Cases: Algorithms to generate test cases do not impose a specific order on the 

test cases. However, in practice, the fault detection efficiency of an approach may change 

depending on the order of executed test cases. 

3 Testing and Test Optimization Exemplified  

by GUI-Modeling with ESG 
Model-based GUI testing establishes a model that is used for guiding the test process to 

generate and select test cases, which form sets of test cases, or test suites. The selection is ruled 

by an adequacy criterion, which provides a measure of how effective a given set of test cases is 

in terms of its potential to reveal faults. Most model-based approaches use coverage-oriented 

adequacy criteria which determine how well the generated test suites cover the corresponding 

model. The ratio of the portion of the specification or code that is covered by the given test set in 

relation to the uncovered portion can then be used as a decisive factor in determining the point in 

time at which to stop testing (test termination). 

A. Memon et al. introduced an approach to testing graphical UI (GUI) [42]. It deploys meth-

ods of knowledge engineering to generate test cases, test oracles, etc., and to deal with the test 



This article has been accepted for publication in a future issue of a journal/proceedings, but has not been fully edited. 

Content may change prior to final publication. Citation information: Fevzi Belli, Mutlu Beyazıt, Christof J. Budnik 

and Tugkan Tuglular, Advances in Model-Based Testing of Graphical User Interfaces. In: Atif M. Memon, editor, 

Advances in Computers, Vol. 107, Burlington: Academic Press, 2017, pp. 219-280., ISBN: 978-0-12-812228-0 

 

 

termination problem. The approach uses some heuristic methods to cope with the state explosion 

problem which has the disadvantage that there is no guarantee that the best solution found is the 

optimal solution. 

M. Marré, A. Bertolino [43] adopted the notion of “spanning set”, which is similar to what has 

been introduced as “minimal spanning set of complete test sequences”. A. Gargantini and C. 

Heitmeyer used a state-oriented approach [44], which is based on the traditional SCR (Software 

Cost Reduction) method. The approach uses model checking to generate test cases automatically 

from formal requirements specifications, using coverage metrics for test case selection. The 

approach is limited by the state space explosion problem. 

Using the results of aforementioned approaches, and based on ESG notation, (Section 2), this 

section introduces a different method for GUI test optimization [45]. 

3.1 Test Termination as an Optimizing Problem 

Coverage-oriented test termination must be, of course, economical in terms of an efficient test 

suite that is generated by optimizing the test execution time. Test execution time accounts for a 

significant portion of the overall test execution costs. Tests that are generated according to the 

coverage adequacy criteria are mostly too expensive to be executed as they require longer 

execution time, which leads to an efficiency deficit. Test sets need to be specifically structured to 

optimize the test execution time. The number and length of test cases of a test set are the primary 

factors that influence the cost of the test execution time in an automated test framework which 

does not need further human intervention or effort [45].   

3.1.1 Minimizing the Test Sets of ESGs 

As defined in Section 2, subsequent nodes traversed through an ESG represent an event 

sequence (ES). Sequences of length two are called event pairs (EPs). An event sequence is 

complete (CES) if the sequence includes the start and finish node and is also called a walk in the 

following. The union of the sets of CESs of minimal total length to cover the ESs of a required 

length is called Minimal Spanning Set of Complete Event Sequences (MSCES). If a CES contains 

all EPs at least once, it is called an entire walk. A legal entire walk is minimal if its length cannot 

be reduced. A minimal legal walk is ideal if it contains all EPs exactly once. Legal walks can 

easily be generated for a given ESG as CESs, respectively. It is not, however, always feasible to 

construct an entire walk or an ideal walk. Using some results of the graph theory [46], MSCESs 

can be constructed as the next section illustrates. 

3.1.2 Minimal Spanning Sets of Complete Event Sequences 

As mentioned in Section 2, a CES represents a legal walk, traversing the ESG from its entry to 

the exit. Given an ESG e, a complete legal walk contains each EP in e at least once. A complete 

legal walk is minimal if its length cannot be reduced without changing it to an incomplete legal 

walk. A minimal legal walk is considered ideal when it contains every EP exactly once. Legal 

walks can be generated easily for a given ESG as CESs. It is not, however, always feasible to 
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construct a complete or an ideal walk. Using results from graph theory [46], MSCESs can be con-

structed as follows: 

• Check whether an ideal walk exists.  

• If not, check whether a complete walk exists and, if so, construct a minimal one. 

• If there is no complete walk, construct a set of walks such that (a) sum of the lengths of all 

walks is minimal, and (b) all EPs are covered. 

The MSCES problem introduced here has a lower degree of runtime complexity than the 

Chinese Postman Problem as the edges of the ESG are not weighted, i.e., the adjacent nodes are 

equidistant. In the following we summarize results relevant to the calculation of test costs that 

make the test process scalable. An algorithm described in [47] to solve the CPP determines a 

minimal tour that covers the edges of a given strongly connected graph. Transformation of an 

ESG into a strongly connected graph is illustrated in Figure 9. Addition of a backward edge, indi-

cated as a dashed arrow from the exit to the entry, transforms the ESG in Figure 9 (a) to a 

strongly connected graph in Figure 9(b). 

 

  

Figure 9 (a). An example ESG      (b). Transferring walks into tours 

and   balancing the node 

The labels of the vertices in Figure 9 (b) indicate the balance of these vertices as the 

difference between the number of incoming edges and the number of the outgoing edges. These 

balance values determine the number of additional edges that will be identified by searching all-

shortest-paths and solving the optimization problem. The problem can then be transformed into 

the construction of an Euler tour for this graph [46]. This tour may have multiple occurrences of 

the backward edge indicating the number of walks. For the ESG in Figure 9 (b), based on Figure 

9 (a), the minimal set of the legal walks covering the EPs are MSCES = {abcbdc, ac}. Note that 

no complete walks exist. Therefore, an ideal walk cannot be constructed. 

Algorithm 6 calculates the MSCES for a given ESG as input. ε denotes the entry of the ESG 

and γ its exit. Given an event v V, diff(v) denotes the number of predecessor events of v minus 

the number of its successor events, which enables the construction of the bags (or multisets) A, B 

in the FOR-loop. We introduce the notation 〚〛for bags and ⊎ bag union. They can be defined 

informally as follows. For instance, if diff(v)=3 in the first iteration step, assuming that A is 



This article has been accepted for publication in a future issue of a journal/proceedings, but has not been fully edited. 

Content may change prior to final publication. Citation information: Fevzi Belli, Mutlu Beyazıt, Christof J. Budnik 

and Tugkan Tuglular, Advances in Model-Based Testing of Graphical User Interfaces. In: Atif M. Memon, editor, 

Advances in Computers, Vol. 107, Burlington: Academic Press, 2017, pp. 219-280., ISBN: 978-0-12-812228-0 

 

 

initially empty, the bag A will consist of three instances of v, i.e., A =〚v, v, v〛after the 

assignment there. Note that〚v, v, v〛≠{v}, because the two entities on either side of the ine-

quality sign ≠ are of different types; on the left-hand side is a bag (with three instances of v), 

whereas on the right-hand side is a singleton set with one element v. Turning to ⊎ , note that〚v, 

v, v〛⊎〚v〛=〚v, v, v, v〛. 

Algorithm 6. Generation of MSCES [51] 

Input: ESG = (V, E, ,  ); , =] 

Output: MSCES 

add_arc(ESG, (, )); 

bags A, B, M = 〚〛; set MSCES =       //empty bags & set 

FOR all nodes vV DO 

   IF (diff(v) > 0) THEN FOR i:=1 TO diff(v) DO A = A ⊎  〚v〛; 

   IF (diff(v) < 0) THEN FOR i:=1 TO diff(v) DO B = B ⊎  〚v〛; 

m = |A| = |B|;           

 //cardinality 

D[1 .. m][1 .. m];          

 //distance matrix D 

FOR all nodes vA DO 

   compute_shortest_paths(v, B, D); 

M = solveAssignmentProblem(D); 

FOR all (i, j)M DO 

   Path = get_shortest_path(i, j); 

   FOR all arcs ePath DO 

      add_arc(ESG, e); 

EulerTourList = compute_Euler_tour(ESG); 

start = 1;

FOR i=2 TO length(EulerTourList)-1 

   IF (getElement(EulerTourList, i)= ) THEN 

      MSCES = MSCES  getPartialList(EulerTourList, start, i)

  start = i + 1; 

RETURN MSCES; 

 

3.1.3 Minimal Spanning Set of Faulty Complete Event Sequences  

The concatenation of an event sequence ES and a faulty event pair (FEP), i.e., an event pair of 

the inverse of complementary ESG, is defined as a faulty event sequence (FES). An FES is 

complete (FCES=faulty complete event sequence) if the sequence starts from the entry node. The 

union of the sets of FCESs of the minimal total length to cover the FESs of a required length is 

called Minimal Spanning Set of Faulty Complete Event Sequences (MSFCES). 

In comparison to the interpretation of the CESs as legal walks, illegal walks are realized by 

FCESs that never reach the exit. An illegal walk is minimal if its starter cannot be shortened. 

Assuming that an ESG has n nodes and d arcs as EPs to generate the CESs, then at most u:=n2-d 

FCESs of minimal length, i.e., of length 2, are available. Accordingly, the maximal length of an 
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FCES can be n; those are subsequences of CESs without their last event that will be replaced by 

an FEP. Therefore, the number of FCESs is precisely determined by the number of FEPs. FEPs 

that represent FCES are of constant length 2; thus, they also cannot be shortened. It remains to be 

noticed that only the starters of the remaining FEPs can be minimized, e.g., using the algorithm 

given in [48]. 

 

 

 

Figure 10. Completion ESG of Figure 5 (a) to determine MSFCES 

 
The minimal set of the illegal walks (MSFCES) for the ESG in Figure 10: 
aa, ad, abb, aba, aca, acc, acd, abdb, abdd, abda 

3.2 Exploiting the Structural Features of SUT for Further  

Reduction of Test Effort 

The approach has been applied to the testing and analysis of the GUIs of different kind of 

systems, leading to a considerable amount of practical experience. A great deal of test effort 

could be saved considering the structural features of the SUT. Thus, there is further potential for 

the reduction of the cost of the test process [52]. 

Analysis of the structure of the GUIs delivers the following features:  

• Windows of commercial systems are nowadays mostly hierarchically structured, i.e., the 

root window invokes children windows that can invoke further (grand) children, etc. 

• Some children windows can exist simultaneously with their siblings and parents; they will 

be called modeless (or non-modal) windows. Other children, however, must “die”, i.e., 

close, in order to resume their parents (modal windows). 

Figure 11 represents these window types as a “family tree”. In this tree, a unidirectional edge 

indicates a modal parent-child relationship. A bidirectional edge indicates a modeless one. 

c 

d b 

a [ 

] 
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Because modal windows must be closed before any other window can be invoked, it is not 

necessary to consider the FESs of the parent and children. This is true only for the FCESs and 

MSFCES as test inputs considering the structure information might impact the structure of the 

ESG, but not the number of the CESs and MSCESs as test inputs. 

Thus, similar to the strong-connectedness and symmetrical features [49], the modality feature 

is extremely important for testing since it avoids unnecessary test efforts.  

3.3 Case Studies and Their Empirical Evaluation for the Practice 

The objective of the case studies in this section is to determine the increased test effort that 

arises in relation to the length/number of ESs to be covered and to find out whether this ad-

ditional test effort is rewarded adequately by the revelation of additional errors. The data needed 

for this analysis were collected and evaluated by means of experiments carried out in accordance 

with the principles of software experimentation [50]. Case study 1 focuses on the test 

effectiveness detecting defects by the various coverage type with different length [53]. The 

second case study, case study 2, is focusing on the test efficiency, i.e., the test cost reduction 

achieved from minimal test sequences [45]. 

3.3.1 Case Study 1: Software Application GUI under Test 

For the case study, RealJukebox (RJB) has been selected, more precisely the basic, English 

version of the RJB 2 (Build: 1.0.2.340) of RealNetworks. There are several reasons why RJB has 

been selected to be SUT. First, RJB as SUT is a commercial, popular application that is widely 

well-known and accepted by a great variety of users. Second, the selected SUT has been be used 

over many years in different languages and in cultural contexts. Furthermore, RJB has been fre-

quently updated and therefore, is mature and well established. Last but not least, RJB makes 

 

 

Figure 11. Modal windows vs. modeless windows and an example of a modal opened  

window 
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comfortable use of dynamic window components in several hierarchy levels. The basic 

configuration of the tested RJB consists of about 200 distinct components. To sum up, choosing 

the RJB as SUT avoided studying an “alpha” version of a no-name product for the case study 

with the present approach. 

3.3.1.1 Results and Analysis 

Table 1 arbitrarily extracts some of the detected faults. The fault reproduction process is very 

simple. As an example, in order to reproduce the fault No. 1, one starts with the Control option of 

the Main Menu of the RJB (see Figure 12) and sub-sequentially pushes the Rec button and then 

FF button. In Figure 13, the dashed line with the label No. 1 uniquely identifies this sequence of 

actions. The other faults of Table 1can be reproduced the same way. 
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Figure 12. FEP revealed faults in a sub-graph representing “Playing track of Figure 7(P) 

Table 1. Excerpt from the list of faults revealed by testing the system function ”Play and Record a CD or Track” 

No. Detected Faults Test Case 

1 
While recording, pushing the forward button or rewind button stops the re-

cording process without a due warning. Record FF 

2 

If a track is selected but the pointer refers to another track, pushing the 

play button invokes playing the selected track; i.e., the situation is 

ambiguous. 
SelectTrack Play 

3 

Menu item Play/Pause does not lead to the same effect as the control 

buttons that will be sequentially displayed and pushed via the main 

window. Therefore, pushing play on the control panel while the track is 

playing stops the playing. 

Play Play 

4 Track position could not be set before starting the play of the file. Trackposition 

Play 

5 
Record Shuffle does not activate shuffling, i.e., tracks will be processed 

sequentially. 

CheckOne++ 

Shuffle  

Record 

6 
If the track is in Pause and Record button is pushed, then the track will be 

played. 

Play/Pause 

Play/Pause Re-

cord 

7 
The system jumps to a track that was not selected and terminates the play-

back although the selected tracks have not been completely played. 
Play/Pause FF FF 

FF 
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Note that the faults No. 2 and 5 are not included in Figure 12 as they are detected via other 

ESGs. Due to lack of space, these completed ESGs are not included in this chapter. 

Table 2 summarizes the number of test cases, their length and the corresponding faults. Faults 

are further classified as surprises and defects. Defects are serious departures from specified 

behavior; surprises are user-recognized departures from expected behavior. A surprise behavior 

is not explicitly indicated in the specification of the UI; it should, however, be perceived by some 

users as a disturbing or disappointing behavior of the system.   

Table 2. Test case costs and detected faults depending on the event length 

Length of  

covered ES 

Test  

Cases 

Detected  

Faults by  

CES 

Detected  

Faults by  

FCES 

Total nb.  

Detected  

Faults 

 

Surprises 

 

Defects 

Fault per Test  

Case  

(Efficiency) 

2 914 24 20 44 16 28 24.8 10  

3 2458 24+7 20+5 56 16+8 28+4 22.3 10  

4 6936 31+4 25+8 68 24+10 32+2 20.9 10  

 

The number of defects detected by test cases of length 3 and 4 increases obviously slower in 

relation to those of length 2. Since the faults are independent, these longer tests should still be 

executed, if the test budget and time allow for this. Another reason why test cases of length 3 and 

4 should be executed is given by the likely severity of the “expensive” faults, i.e., defects that can 

only be detected with these longer, thus more “expensive”, tests. This situation is simple to 

explain: The longer the test procedure lasts, the less populated the remaining faults become, 

while one might expect to detect more intricate and subtle faults. 

Figure 13 depicts the results found. It can be observed that the tests based on the CESs of 

length 4 and on FCESs of length 4 are very beneficial in detecting defects: 19 defects have been 

detected by tests based on FCES of length 4 in relation to only 6 based on FCESs of length 2! 

Thus, a clear tendency can be observed that an increasing number and length of CES-based and 
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FCES-based test cases lead to the detection of an increasing number of defects. Note, however, 

that Figure 13 does not consider the number of necessary tests, i.e., test costs. 

 

 

 

Figure 13. Defects and surprises based on CES/FCES, depending on the event length 

3.3.1.2 Lessons Learned 

Now, summarizing the observations of the test process when performing the case study and 

their implications lead to following major findings: 

• The RJB that has been tested in this section is a product that has been matured in many 

years of intensive and extensive deployment. 

• The fact that so many faults could be detected in this product motivates the refinement and 

improvement of this approach. 

To sum up further results, Table 2 and Figure 13clearly show the fact that CES-based tests of 

length 2 are the most cost-effective ones in this approach, i.e., they detect faults at the lowest 

costs per fault. In other words, there is a rapid fall off in cost-effectiveness of length of the event 

sequences to be covered as a consequence of the rapid rise of the number of the test cases (a total 

of 914 tests to cover ESs of length 2 for all 12 functions whereas 6936 tests to cover their ESs of 

length 4, cf. Table 2). This finding can be explained by analyzing the structure of the SUT: The 

number of CESs to cover ESs that are longer than 2 primarily increases with the number of loops 
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within the ESGs. In other words, the more vertices of the ESG under consideration are connected 

with each other, the larger is the number of tests to cover ESs that are longer than 2. 

On the other hand, tests which cover ESs of length 3 and 4 seem to detect more and intrinsic 

faults (if any), however at considerably more cost per detected fault. Finally, CES-based tests are 

more cost-efficient than the ones which are FCES-based. 

Based on these observations, it is strongly recommended starting the test process with the 

CES-based test cases of length 2, further continuing with the CES-based test cases of length 3 

and 4 and finally to start with the FCES-based ones. If the cumulative number of the detected 

faults grows very slowly, one can terminate the test process after execution of the CES-/FCES-

based test cases to cover the ESs of length 4 as further tests become very cost-ineffective. This 

really cannot be considered as a tendency of “reliability growth” because the detected faults were 

not corrected; they have just been ignored; however, the multiple counting of the same faults has 

been avoided. 

The approach delivers a very simple, but nevertheless a cost-effective, stepwise and 

straightforward test strategy, because the approach enables the enumeration of the test cases and, 

consequently, the scalability of the test process. 

3.3.2 Case Study 2: Embedded Software GUI under Test 

The SUT we use in the examples is a control terminal of a marginal strip mower (Figure 14) 

which controls a marginal strip mower (RSM13) of a special, heavy-duty vehicle (Unimog of 

Mercedes-Benz). This display unit takes the optimum advantage of mowing around guide poles, 

road signs and trees, etc. Operation is effected either by the power hydraulic of a light truck, or 

by the front power take-off. Further buttons on the control desk (Figure 14) simplify the 

operation, so that, e.g., the mow head returns to working position or to transport position when a 

button is pressed.  

  

Figure 14. The example vehicle and its display unit as a control desk 
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3.3.2.1 Results and Analysis 

For a comprehensive testing, several strategies have been developed with varying characteris-

tics of the test inputs, i.e., stepwise and scalable increasing and/or changing the length and 

number of the test sequences, and the type of the test sequences, i.e., CES- and FCESs-based, and 

their combinations. Following could be observed: The test cases of the length 4 were more 

effective in revealing dynamic, intricate faults than the test cases of the lengths 2 and 3. Even 

though more expensive to be constructed and exercised, they are more efficient in terms of costs 

per detected fault. Further on the CES-based test cases as well as the FCES-based cases were 

effective in detecting faults. 

Due to the lack of space, the experiences with the approach are here very briefly summarized. 

This can be, however, found in [53]. To sum up the test process, one student tester carried out 

826 tests semi-automatically and detected a total of 39 faults, including some severe ones (Table 

3). 

Table 3. Two of the detected faults of the RSM control terminal 

No. Faults Detected by the FCES 

1. 
The cutting unit can be activated without having any pressure on the bottom, which is very 
dangerous if pedestrians approach the working area. 

2. 
Keeping the button for shifting the mow head pushed and changing to another screen causes 
control problems of shifting: The mower head with the cutting unit cannot immediately be stopped 
in an emergency case. 

 

In a second stage, the results of the research work for minimizing the spanning set of the test 

cases (MSCES and MSFCES) have been applied to the testing of the margin strip mower. Table 4 

demonstrates that the minimization algorithm (Section 3.1.1) could save in average about 65 % of 

the total test costs, while the exploitation of the structural information (Section 3.2) of the SUT 

could further save up to almost 30 %.  

Table 4. Reducing the number of test cases 

Length #CES # MSCES Cost Reduction ES 

2  40  15 62.5 % 

3  183  62 66.1 % 

4  549  181 67.0 % 

Sum  772  258 65.2 % 
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Length 
# MSFCES without structural informa-

tion 
# MSFCES with structural infor-

mation 
Cost Reduction 

MSFCES 

2  75  58 22.7 % 

3  167  218 35.7 % 

4  487  292 40.0 % 

Sum  729  568 32.8 % 

 

3.3.2.2 Lessons Learned 

Lesson 1. Start Small, but as Early as Possible 

The determination and specification of the CESs and FCESs should ideally be carried out 

during the definition of the user requirements, much before the system is implemented; the 

availability of a prototype would be helpful in this task. They are then a part of the system and 

the test specification. However, CESs and FCESs can also be produced incrementally at a later 

time, even during the test stage, in order to discipline the test process. 

As a strategy, one starts with the CESs and FCESs that cover all event pairs. Test results and 

quality targets determine how to proceed further, i.e., whether to consider testing with event 

triples and quadruples. 

Lesson 2. Good Exception Handling is not Necessarily Expensive but Rare 

Most GUIs subjected to tests do not consider the handling of the faulty events. They have only 

a rudimentary, if any, exception handling mechanism, realized by a “panic mode” that mostly 

leads to a crash, or ignores the faulty events. The number of the exceptions that should be han-

dled systematically, but have not been considered at all by the GUIs of the commercial systems is 

presumed to be on an average about 80%.  

Lesson 3. Analysis Prior to Testing Can Reveal Conceptual Flaws 

The analysis of ESGs of the GUIs of some commercial systems has revealed several concep-

tual flaws: absence of edges, indicating incomplete exception handling, and missing vertices or 

events (approximately 20%). This amounts to defective components in the final product, high-

lighting the flaws in the initial concept and the process of product development. In this con-

nection, the proposed approach offers an important unexpected benefit: it provides a framework 

for the accelerated maturation of the product and for exercising the creativity of the developers. 
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4 Contract-Based Testing of GUIs 

Methods and techniques presented in Section 2 and Section 3 aim to generate abstract test 

cases. In this Section, a contract-based approach for concrete test case generation is presented. 

The presented contract-based approach stems from the concept of design-by-contract (DbC). 

Meyer [54] introduced DbC as an object-oriented design technique. Design by contract follows 

the principle that interfaces between modules of a software system should be governed by precise 

specifications, similar to contracts between humans or companies. The contracts cover mutual 

obligations (preconditions), benefits (postconditions), and consistency constraints (invariants) 

[55]. From the point of view of GUI testing, DbC plays an important role because contracts 

delineate what user is expected to provide as input and what the GUI is expected to supply as 

output with respect to the provided input. From testing point of view, a GUI operation can be 

evaluated with respect to preconditions, postconditions, and invariants according to DbC. 

Following DbC, UML is supplemented with object constraint language (OCL) to provide some 

formalism. Contracts in decision table format are compact and easy to understand and maintain 

[56]. However, there is no generally accepted formalism for contract representation. 

4.1 Contract-Based Testing in General 

Contracts form a valuable source of information regarding the intended semantics of the 

software. A behavioral specification is a description of what is expected to happen when software 

executes [57]. This specification can be used to verify that the software meets its requirements. 

When behavioral specification is presented using DbC, it becomes more useful for both 

programmers and testers. 

There exist some approaches that adopt the DbC-idea for testing. Zheng and Bundell [58] 

introduced an UML-based software component testing technique called Test by Contract. Ciupa 

and Leitner [59] noted that the validity of a software element can be ascertained by checking the 

software with respect to its contracts. In addition to using contracts to automatically generate test 

input values, contracts can be used as test oracles as they define valid and invalid conditions for 

the software. Thus, utilization of contracts eliminates the necessity of developing a test oracle for 

each test case [60]. As contracts are used to evaluate test results, the quality of the test oracles is 

entirely dependent on the quality of the contracts [59]. Aichering [61] shows how mutation 

testing can be applied to contracts. Similar to source code mutation, a mutant contract is produced 

by introducing small change to the formal contract definition. Then test-cases that are able to 

detect the introduced mutations are selected. 

Madsen [62] investigated how JUnit and Design by Contract can be combined. This way, 

assertions written as pre- and post-conditions and class-invariants can be used in unit test cases 

and automatic execution and evaluation of test cases becomes possible. If test cases are 

automatically generated, then JUnit can be used to setup and execute the test cases and then 

contracts can be used to evaluate the test cases. Languages like Phyton, C++, Java are extended 
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to comply with DbC for catching bugs. Guerreiro [63] used design by contract in C++ by using 

and inheriting the Assertions class. In [64], the DbC concept is integrated into the programming 

language Python and adopted by adding mechanisms for dynamic type checking of method 

parameters and instance variables.  

Contracts establish the ground for the automation of the model-based testing process. While 

testing a system, a model of the system helps to predict and control its behavior. Modeling a 

system acquires the understanding of its abstraction, and there is the need of a formal 

specification technique for distinguishing between legal and illegal situations. Contracts serve 

perfectly for these purposes. There are some contract-based testing techniques focused on web 

service testing [65],[66],[67], where web service behavior is modeled using contracts. Valentini 

et al. [68] proposed a framework for contract-based component testing, which enables extendable 

and robust contract-checkers to be dynamically inserted between client component and supplier 

component. Contract-checkers use the contract between client and supplier to work like proxies 

by forwarding method call to the client, the result back to the supplier and to evaluate test result. 

Xu et al. [69] proposed an approach that transforms a contract-based test model into an 

operational model, which enables analysis of the correctness of the test model. Then integration 

tests are generated to meet coverage criteria of the test model.  

Another use of contracts is for robustness. Robustness is a quality attribute, which is defined 

by the IEEE standard glossary of software engineering terminology [70] as the degree to which a 

system or component can function correctly in the presence of invalid inputs or stressful 

environmental conditions. Specifications presented in contracts helps to improve robustness of 

software [71]. An example of contract usage in robustness testing is presented by Tuglular et a. 

[72], where they introduced decision table augmented ESGs, which utilizes design by contract 

patterns, and applied this concept to event-based robustness testing for catching boundary 

overflow errors. 

4.2 ESG-Based Contract Testing of GUIs 

The contract notion is used to describe input properties in precise terms. Preventing invalid 

input from ever getting to the application in the first place is possible only at the user interface. 

Therefore, GUIs should be specifically designed to filter unwanted or unexpected input. This can 

be achieved through input contracts that are defined and used in our work. Model-based 

specification of input contracts is achieved through an input contract model, which enables the 

input data and corresponding actions to be defined with their constraints. Thus, for simplicity, the 

term “testing" here is used to refer to function-based, specification-oriented testing, or black-box 

testing. 

In the input contract testing approach, the tests are derived from contracts supporting the 

creation of test input values and test oracles. This novel approach suggests that an automatic 

input testing process is possible with a GUI test driver that invokes mouse clicks and enters text 

into rich client GUIs. In this context, contracts form a valuable source of information regarding 
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the intended semantics of the software. As noted by Ciupa and Leitner [59], the validity of a 

software element can be ascertained by checking the software with respect to its contracts. 

Therefore, contracts establish the ground for the automation of the testing process. Accordingly, 

the primary goal of input contract testing is to develop and implement a fully automated test case 

generation for contract-based GUI input testing. 

The input contract testing approach suggests converting graphical user interface specification 

into a model, which is employed to generate positive and negative test cases. The event sequence 

graph (ESG) is chosen for the specification of GUIs. ESG merges inputs and events and turns 

them to vertices of an event transition diagram for easy understanding and checking the behavior 

of the GUI under consideration. 

4.2.1. Input Contract Model 

Modeling input data, especially concerning causal dependencies between each other as 

additional nodes, inflates the ESG model since vertices represent events and edges allowed 

sequences of events and not transitions as in automata theory. Assuming that a condition for 

choosing input data can be evaluated to true or false, the combination of conditions results in 2|C| 

combinations, where |C| represents the number of conditions. Each combination of conditions 

would have to be modeled as vertex and is to be connected with the appropriate successor. Thus a 

decision table (DT) with n binary conditions subsumes 2n nodes to realize a thorough evaluation 

considering all combinations. To avoid this inflation, decision tables are introduced to refine a node 

of the ESG. Such refined nodes are double-circled. The successors of such refined vertices 

represent the actions of the DT and vice versa. 

A Decision Table DT = (C, A, R) represents actions that depend on certain constraints, where 

• C ≠ ∅ is the set of constraints (conditions) as Boolean predicates, 

• A ≠ ∅ is the set of actions, and 

• R ≠ ∅ is the set of rules, each of which triggers executable actions depending on a certain 

combination of constraints. 

Decision tables are popular in information processing and are used for testing, e.g., in cause and 

effect graphs. A decision table (DT) logically links conditions (”if”) with actions (”then”) that are 

to be triggered, depending on combinations of conditions (”rules”). 

Let R be defined as the set of rules, each of which triggers executable actions depending on a 

certain combination of constraints.. Then, a rule r  R can be defined by  

r = (CTrue, CFalse, Ax), where 

• CTrue  C is the set of constraints that have to be resolved to true, 

• CFalse  C is the set of constraints that have to be resolved to false, and 

• Ax  Aui  Axcpt is the set of actions that should be executable if all constraints t  CTrue are 

resolved to true and all constraints f  CFalse are resolved to false with  

- Aui containing possible user interactions, 
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- Axcpt containing exception messages. 

That is, one rule represents a specific combination of conditions where each condition is 

evaluated either to true or to false. Depending on one rule, one or several follow-on actions are 

allowed. In the other way around, the execution of a specific action is only allowed if input data is 

chosen along a rule which possesses the considered action as allowed successor. As already stated 

above, the combination of conditions results in 2|C| combinations, that is, 2|C| rules can be 

formulated without producing redundancy. Note that CTrue  CFalse = C and CTrue  CFalse = ∅ 

under regular circumstances. In certain cases it is inevitable to mark conditions with a don't care 

(symbolized with a '-' in DT), i.e., such a condition is not considered in a rule and CTrue  CFalse 

C. A DT is used to refine data input of GUI’s. 

An example of DT is given Figure 15. This DT can be used to refine a node of an ESG. This node 

will be double-circled and next event, which is an action in the DT, is decided with respect to DT 

that is attached to this double-circuled node. Such an ESG is called DT-supplemented ESG and is 

shown in Figure 15. 

For DTs, such as the one presented in Figure 15, X entry indicates an action, or for GUIs a user 

interaction. No exception is defined for actions y and z. As an example, rule 1 (R1) reads as follows: 

If v0 is resolved to true and v1 is resolved to false, then action y will be executed. If this DT is used 

to refine a node of ESG, such as given in Figure 15, then regarding to R1 next event after v will be y 

and the ES will be (…,v,y, …).  

 

Figure 15. An example of DT-supplemented ESG [73] 

 

 

Given a GUI, the quadruple  is an input contract model (Io, Dv, Ac, Co), where 

• Io is the finite set of GUI input objects; 
• Dv is the finite set of data variables; 
• Ac is the finite set of actions on GUI; 

[ ]v

y

zx
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• Co is the input contract definition represented by a DT. 

As stated before, event sequence of GUI is modeled with DT-supplemented ESG. It is an ESG 

with a special DT, where conditions of DT come from constraints of input contracts. Input 

contract model provides a guideline for the construction of a contract-supplemented ESG for the 

GUI it represents. Input objects, such as inputArea and comboBox, and button objects indicate 

possible events. Event sequences are established among these events through drawing edges 

between vertices. 

4.2.2 Input Contract Testing Process 

For GUI input contract testing, test scope is always a GUI. A set of GUI components that make 

up a window can be tested if event-based testing is integrated into input contract testing. Therefore, 

GUI input contracts are modeled with contract-supplemented ESGs so that a seamless testing 

process can be achieved for a window or a composition of GUI input elements. Solutions for 

automating test case generation and test result interpretation stages are described in the following 

paragraphs. 

A test case specifies input values for a method of an input component, which may work on one 

or more input area. A test suite is composed of test cases to check validation of all assertions offered 

by an input contract. The input values making up a test case can be derived from the constraints of 

a provided contract. Expected outputs are actions with or without exceptions given in DT. Please 

note that an input contract is not supposed to cover all inputs, its purpose is to filter. 

GUI input contract testing process is given in Algorithm 7. Full event coverage and full rule 

coverage criterion is fulfilled in terms of coverage. For full event coverage criterion, each event is 

executed at least once. In other words, each node of ESG is visited at least once. For full rule 

coverage criterion, each rule should be tested independently. These test cases should be sampled 

from input space composed of valid and invalid values of constraints. 

 
Algorithm 7. GUI input contract testing process 

 

generate the corresponding ESG 

cover all events by means of CESs 

foreach CES with decision tables do 

    generate data-expanded CES using corresponding DT (input contract-  

         based test case generation) 

apply the test suite to GUI 

observe GUI output to determine whether a correct response or a faulty   

    event occurs 

 

 

4.2.3 Input Contract Test Generation 
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The DT is used to produce test cases automatically. Since it is often not feasible to include all 

possible input values for a test case, the central question of testing is about the selection of test 

input values most likely to reveal faults. This problem comes down to grouping data into 

equivalence classes, which should comply with the property that if one value in the set causes a 

failure, then all other values in the set will cause the same failure. Conversely, if a value in the set 

does not cause a failure, then none of the others should cause a failure. This property allows using 

only one value from each equivalence class as a representative for its set. 

Equivalence class testing divides the test value domain into equivalence classes using contract 

conditions. Each test case selects one input value from each equivalence class. This approach is 

improved by boundary value selection of input values for numeric and date data, which appear at 

the boundaries of equivalence classes. For string data, such as names, and for other types of data, 

such as files, a set of input values representing each equivalence class should be manually prepared 

in advance with respect to the input contract and then test input values are selected randomly for 

each equivalence class. Thus, in our work, cause-effect testing, which generates test values from 

decision tables, is used to strengthen equivalence class testing. In the presented approach, causes 

are input conditions and effects are represented by actions. This proposed approach is presented in 

Algorithm 8, namely input contract-based test case generation algorithm, which derives test inputs 

from contract-supplemented ESG. 

The input contract-based test case generation algorithm produces test values for each rule in the 

DT. The DT is represented with a data structure that contains the set of variables, the set of clauses 

along with its variable(s) and their equivalence classes, the set of actions and exceptions, and the 

set of rules wherein each rule is composed of a conjunction of clauses and conjunction of actions 

and exceptions. 

For each rule, the function findTestInputValue is called. It attempts to find values for variables 

that satisfy the Boolean expression that is a special case of a constraint satisfaction problem [74] 

of the corresponding rule in the DT. The function solveCSP determines valid and invalid 

equivalence classes for each clause and searches the values that make the Boolean expression true. 

The runtime complexity of the whole algorithm mainly depends on this function, which has to be 

solved for each rule of the DT. 

The algorithm of getAssignment within the function solveCSP starts by assigning a value to a 

single variable and extends the solution step-by-step with the other variables by assigning values. 

If a value assignment to the current variable is not possible due to previously selected values, the 

algorithm steps back and chooses next value from the set of boundary values for the current 

variable. This procedure is also called "simple backtracking". The proposed algorithm combines 

backtracking with the techniques "Arc Consistency Check" and "Minimum Remaining Values", 

see [74] for further information, to solve the given constraint satisfaction problem modeled by DT. 

 
Algorithm 8.  The input contract-based test case generation algorithm. 
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foreach event with DT do 

     foreach rule in DT do 

          findTestInputValue(DT, rulei) 

function findTestInputValue 

begin 

   tc_inputs : Test_Case_Inputs 

   set_clauses : LIST[<Clause, Variable, EquivalenceClasses] 

   b : BooleanExpr 

   set_clauses ← getClauses(DT) 

   b ← determineBooleanExpr(DT, rule) 

   tc_inputs ← solveCSP(b, set_clauses) 

   return tc_inputs  

end 

function solveCSP 

begin 

   assignment : LIST[<Variable , SelectedValue>] 

   g ← getConstraintGraph(b, set_clauses) 

   assignment ← getAssignment(g, assignment) 

   return assignment 

end 

 

 

 

The runtime complexity for backtracking is given as O(n*d) where n is the number of nodes for 

the corresponding constraint graph and d is the depth of the graph. The runtime complexity for the 

consistency check is given as O(n2d3) [74]. However, in practice the number of variables on a GUI 

is strictly limited due to usability restrictions.  

Simultaneously, this also limits the number of corresponding constraints so that the runtime 

complexity of this algorithm is negligible. Furthermore, the search space for numerical values may 

be narrowed by considering only boundary values of equivalence classes. Finally, the function 

solveCSP returns test case inputs for a rule in the decision table. Resulting test cases contain test 

input values as well as expected results. 

The development of test oracles, which automatically performs a pass/fail evaluation of the test 

case, is an important issue in software testing. Developing such test oracles manually when writing 

test drivers is expensive and error-prone. Since our work proposes that assertions based on 

contracts can effectively be utilized as test oracles, the presented methodology is composed using 

different techniques to derive the oracles from the contracts in synchronization with the generation 

of test input values. 

Fully automated testing requires automating the handling of oracles. In this case, evaluation of 

test results is straight forward due to the presence of contracts as specifications. Test cases are 

generated with expected test results automatically from the DT, which is constructed from input 

contracts. Since the test oracle in this approach uses executable input contracts by means of 

checking test case results, test outputs can be easily compared with expected test results. Thus, the 
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test oracle in our work enables an automatic pass/fail evaluation of the test case. If the obtained 

results match the expected results, then the test case passes, otherwise it fails. 

Analysis of the test case generation process reveals the fact that ESGs are to be transformed into 

one large model for test case generation. On the other hand, DTs could be consolidated, which 

results in reduced number of rules. Both facts give some clues about the scalability of the presented 

approach. Transforming ESGs into one large model might complicate test case generation and the 

intuitive partitioning of SUT intended by the tester would be lost. Further test generation techniques 

are considerable, which make use of the intuitive partitioning of the tester to reduce and/or simplify 

test sequences and their generation, especially with regard to input contracts. The more input 

contracts exist, the costlier is their evaluation. This is due to the fact that adding just one single 

input contract doubles (in the worst case) the number of combinations of input contracts to be 

tested. Thus, further techniques to reduce the evaluation complexity of large sets of input contracts 

could be helpful, such as partitioning of input contracts that could be achieved by a hierarchical set 

of DTs. 

The following questions are required to be answered in the future: a) How much overhead does 

the presented approach impose on a tester of large software systems? b) How far can a tester 

develop contracts for such an application and how long would it take? c) How would a tester 

developing contracts for applications impact speed of execution during testing? Moreover, 

developing formal semantics for input contracts will have an important impact not only on the 

testing of GUIs but also on the design and implementation of GUIs. Definition of refinement and 

inclusion operations on contracts provide distinct means to express complex input behavior in 

terms of simpler behavior. Furthermore, a refinement enables specialization of contractual 

obligations and invariants of other contracts, whereas inclusion allows contracts to be composed 

from simpler sub-contracts [75]. 

5 Rationalization and Automation of GUI Testing 
Techniques for modeling, analyzing, and testing GUIs are represented in the previous sections. 

This section categories and exemplifies tools for GUI testing that are available on the market. It is 

evident that this market changes frequently as these tools are to a great extent short-living. So, the 

critical reader may forgive if the authors have forgotten to name some important brands.   

5.1 MBT Test Tools in General 

MBT is defined as an approach to deriving executable tests from a given model of the system 

under test (SUT) using several test selection criteria. The model is built either from requirements 

and/or from specifications of test model. The model should contain both input and expected 

output in order to be able to generate test oracles [83]. Thus, no model-based input generator and 

no test automation framework where test cases can be manually created or pre-recorded [76] are 

considered to be MBT tools. 
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Figure 16:  MBTT Categories of Interest 

 

An MBT tool supports the test life cycle and interacts with other development phase elements 

as depicted in Figure 16. Selected evaluation criteria are (i) Test Modeling - design of the test 

model derived from the SUT, (ii) Test Generation – strategy for deriving test cases, and (iii) 

Extensibility – integration possibilities with other tools via import/export interfaces and/or 

extending tool to different domains. The usability criterion has been intentionally omitted. Test 

generation algorithm are better covered elsewhere and omitted here.  

MBT tools need to satisfy the following criteria: (i) Usage of a test model (not a system 

model) from where tests are derived. (ii) Automate test generation covering test input data and 

system behavior. (iii) The test model is represented by a formal modeling language.  

5.2 Test Tools for Graphical User Interfaces 

The term test automation for graphical user interfaces (GUIs) in industry implies automated 

test execution in most cases. There are many GUI test tools available [77], [78] which we refer to 

as a selection of commercial as well as open-source tools. The test tool market however is 

changing rapidly. This makes it very difficult to discuss or compare specific tools which will be 

sustainable at the market. Thus, this section rather focuses on the needs from a practical and 

industrial perspective.  

Test execution itself is mostly automated by Capture/Replay tools such qf-test [84] or jfcUnit 

[85] and is used for regression testing. More recently, Capture/Replay tools have been enhanced 

to visual GUI test tool using image recognition instead of GUI object code or coordinates [90]. 

Test automation is more than just regression testing. Automation should be attempted for as many 

stages of the entire test process as possible. First, the test process has to be managed, which 
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means that the test documentation, the different releases of test cases, and the test cases itself 

have to be maintained and kept consistent with the requirements they are associated with. In 

practice, this is the most neglected step. In the next step, the test cases have to be generated. This 

differs from a simple test script generator, which only allows defining test inputs and their 

corresponding outputs. When a specification represented as a model is used to automatically 

generate executable test, the method is referred to as model-based test generation. In contrast, in 

data-driven test generation [86], existing test cases of just plain templates are parameterized with 

different data the test has to be run with. Once the test cases are designed, tests have to be 

conducted on the System under test (SUT). Automation of this test step is supported by a wide 

variety of tools such as Conformiq Test Generator [91] and Smartesting CertifyIt [92] that 

support many popular programming languages. Finally, the test analysis step is left in which 

conducted tests and their outputs are evaluated. The results of the analysis are needed to fix the 

faults and to decide further tests.  

The test automation has to keep through to the complete product life cycle. D. Kelly [79] 

divided the life cycle into six major stages and for each stage there is a checklist of questions. 

Depending on the responses it is decided whether to automate the corresponding stage or not. 

However, the work [79] do not include necessary detail how to set up test automation during the 

entire life cycle. Another work dealing with the issue about when a test should be automated is 

given in [80]. It assumes the intent of automated testing and does not take a decision on need for 

automation. Beyond this it is still difficult to decide which tool fits best to the requirements. This 

is addressed in [81] providing a catalogue of features to be compared when evaluating a GUI test 

tool. 

5.3 Test Automation in Theory and Practice 

This section describes test automation of the entire test process, divided into four parts as 

illustrated in Figure 17, in the context of black-box testing of software applications containing a 

graphical user interface (GUI). The objective of test automation research is to maximize 

automation in test process. This means that existing models from development are used to 

generate test cases (model-driven) using suitable algorithms. The models have to contain the test 

inputs and the outputs to derive a fault model. This ensures that the tests are observable and the 

outputs can be compared with the expected ones described in the model. It may be observed in 

Figure 17 that the test process steps are coordinated, i.e., the test results of one stage can be used 

as an input of the following stage. Therefore, the entire test process is automated as a single step.  
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Figure 17. Gap between Test Automation in Theory and Practice 

Insights from industrial projects trying to adopt test automation reveal that test automation is 

treated for each step separately. This differs from theory which treats test automation as a single 

step. In Figure 17, steps which still need some manual work are depicted as semi-automated. The 

test planning step is done manually and is accordingly depicted as non-automated. In addition, 

automation is adopted in most cases too early which means without any preparation [80]. 

The most reasonable cause to implement test automation in practice is for repeating test cases. 

That is also the reason why until now regression testing is so widely used and test automation is 

almost limited to the test execution in industry. Regression testing just confirms that despite 

changes to the software, the tests previously run provide identical results now. In fact, this means 

that no new functions have been tested. So regression testing is not supposed to find new faults in 

the code. In theory, it is the methodology that reveals fewest bugs. However, the most 

Capture/Replay tools are not able to provide expected benefits. 

5.4 Test Tool Requirements in Industry 

For testing GUIs of software systems powerful commercial tools Ranorax [87], Squish [89] 

and HP Unified Functional Test [88], are available. Nevertheless, numerous time consuming and 

error-prone manual steps are still necessary to complete the test process. Still, not all test tools 

allow constructing templates which can be run for different data from a database. Also, not all 

testing tools nowadays support the use of stubs or wrapping. From the industrial point of view 

there are many other problems concerning how to implement successful test automation. This 

section lists practical issues faced while attempting to introduce test automation for graphical user 

interfaces supported by Capture/Replay tools. 

5.4.1 Dynamically Design Changes 

Recorded objects of a GUI are identified by its unique properties. But these properties are 

static. This is an issue as only those objects which are available at the point of recording can be 

recognized by the tool. Otherwise, the objects have to be introduced into the tool afterwards. But, 

this can be very time consuming because the system has to set in the right state where the 

elements are active. Another problem arises due to the changes of different objects from release 

to release. Although, previous mentioned test tools (Ranorex, Squish, HP UFT) already provide 

to change the objects properties or to set regular expressions fitting the object, this has to be done 

manually and takes a lot of time to maintain. A significant problem is the case in which the object 

will change dynamically depending on the behavior of the user. For example, a conformed GUI 

depending on the user behavior affected by knowledge based programs or learning software. 
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There it is impossible to predefine all possible cases where objects will change. These 

vulnerabilities can be eliminated by a model-based test generation which maintains the model 

instead of repairing the test cases.  

5.4.2 Failure Treatment 

Failure treatment is rarely supported by the test tools. One problem observed when testing the 

GUI is that while the GUI objects are checked, the underlying system operation is not. Indeed, 

one can write a test scenario which tests if all fields have to be filled out and if the submission 

button is disabled after sending once. This restriction is enforced to prevent multiple entries. 

However, this does not prove that the system has really connected with the database and stored or 

changed the values. Therefore, the test tools have to be extended by a functionality to compare 

database values with the expected values. Another kind of fault appears when the application 

crashes. Then a fault can be detected but the bug cannot be fixed, because there is no information 

on which test cases failed. The only way to find that out is by conducting the test cases manually. 

This is analogous to finding a zero point numerically. Hence, the advantage of executing the test 

scripts without being present is lost. The same holds for faults which prevent the process from 

continuing like open windows. It is assumed that each test case starts at the main window, i.e., 

from the same starting point. Therefore, the SUT has to be reset in its initial state from which 

each test case can be started. This is important if the test process should also provide test cases 

which are expected to fail. Bret Pettichord mentions this special case of resetting the system in 

his work where he called it an "Error Recovering System" [82]. For bug fixing, it is also 

recommend having a function which can set the system in predefined system state from which the 

test can further run. Additionally, it may be necessary to have a memory map which is recorded 

during the test process. A worst-case scenario occurs when a test case crashes not only the 

application, but also the testing tool or even the whole system. In this case the only chance to 

overcome the problem is to start the test execution from a remote machine which has to be 

provided by the test tool or even to support a test execution on a virtual machine. 

5.5 ESG Test Suite Designer 

Number of tools providing model-based testing is very limited. The ESG tool is a good 

example of model-based testing tool. The aim of this subsection is to explain ESG tool named 

ESG Test Suite Designer (ESG-TSD) [93] that provides necessary functions to develop ESG 

models and to generate test cases form ESG models.  

 

Finite state machines are models used in model-based testing. UML statechart is a way to 

represent finite state machines. Ticket machine is used as a running example in this subsection. 

The running example has two ticket machines. Simple ticket machine lets users to buy a single 

type ticket whereas complex ticket machine allows users to buy tickets by selecting ticket type as 

well as number of tickets. Their statecharts are given in Figure 18 and Figure 19, respectively. 
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coin added

ticket printed canceled

coin

coin

OK cancel

 
Figure 18. Statechart for simple ticket machine [94] 

 

ticket type
number of tickets

ticket(s) selected coin added

coin

coin

change returned

ticket(s) printed canceled

OK 
[no change] cancel

OK 
[change]

 
Figure 19. Statechart for complex ticket machine [95] 

 

Simple ticket machine shows coins inserted. User either inserts coins until the exact cost of 

ticket is reached and gets the ticket or quits and gets coins back. Complex ticket machine lets the 

user to select ticket type and number of tickets and then waits for the amount to be inserted. Once 

the inserted amount is equal to or more than the required amount then change is returned if there 

is and ticket(s) are printed. The user can quit while inserting coins. 

 

A statechart can be transformed into an ESG by presenting transitions between events that 

cause state transitions in statecharts. ESG for simple ticket machine is modeled using ESG-TSD 

and shown in Figure 20, which shows valid event sequences for simple ticket machine. Complete 

event sequences, which are given in Figure 21, are generated by pressing wheel icon on the icon 

tab of ESG-TSD. The output shown in Figure 21 also presents the time elapsed in producing 

complete event sequences. 

 



This article has been accepted for publication in a future issue of a journal/proceedings, but has not been fully edited. 

Content may change prior to final publication. Citation information: Fevzi Belli, Mutlu Beyazıt, Christof J. Budnik 

and Tugkan Tuglular, Advances in Model-Based Testing of Graphical User Interfaces. In: Atif M. Memon, editor, 

Advances in Computers, Vol. 107, Burlington: Academic Press, 2017, pp. 219-280., ISBN: 978-0-12-812228-0 

 

 

 
Figure 20. ESG for simple ticket machine in ESG-TSD [96] 

 

 
Figure 21. Complete event sequences generated by ESG-TSD for simple ticket machine [96] 

 

ESG for complex ticket machine is shown in Figure 22. When wheel icon is pressed, it 

generates three complete event sequences as follows: 

• “[, select ticket type, enter number of tickets, insert coin, print ticket(s), ]” 

• “[, select ticket type, enter number of tickets, insert coin, cancel, return money, ]” 

• “[, select ticket type, enter number of tickets, insert coin, insert coin, print ticket(s), return 

change, ]” 
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ESG-TSD also produces faulty complete event sequences, which are test cases for negative 

testing. For instance, “[, select ticket type, insert coin, ]” is a faulty complete event sequence of 

length two for complex ticket machine. ESG-TSD generates 15 faulty complete event sequences 

for simple ticket machine and 48 faulty complete event sequences for complex ticket machine. 

 

 
Figure 22. ESG for complex ticket machine [96] 

 

DT-supplemented ESGs are supported by the ESG-TSD. As explained above, DTs help to reduce 

complexity of ESGs by representing conditional event transitions in DTs within sub-ESGs. DT-

supplemented ESG for complex ticket machine is given in Figure 23. The difference between 

Figure 22 and Figure 23 is that “print ticket(s)” and “return change” events are encapsulated in 

“tickets & change” sub-ESG represented using double circle. In this sub-ESG after printing 

ticket(s), if there is no change to be returned, pseudo-exit is executed, whereas if there is a 

change, after printing ticket(s) first change is returned and then pseudo-exit is executed. This is 

an example of how to simplify ESG models. 
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Figure 23. DT- supplemented ESG for complex ticket machine [96] 

 

 

6 Conclusions 
GUIs are likely to continue playing a role in human-computer-interfaces. The question is how 

far new modes of interaction may make the field obsolete. In other words, can we reuse and 

generalize some of the things we have learned with GUI testing and apply them to other types of 

software? 

Before wrapping up and summarizing the present chapter, the authors briefly discuss on where 

they see the field going.  

6.1 Peer into the Future 

6.1.1 Changes in Look and Feel of UIs will Come, But What About Their Modeling? 

GUIs have been important parts of many software applications to provide interactions 

between the user and the system. Recent advances suggest that UIs are likely to change form in 

future. Although classical GUI elements such as buttons, menus will still probably be there for at 

least some time, the way users interact with systems is expected to change greatly. It will not be 

surprising when interacting with systems using additional types of triggers such as sounds, 

hand/body/face/eye gestures and brain waves becomes a common thing. The interaction methods 

supported by UIs have been getting enriched by such technological advances. Therefore, the 

approaches that do not have right level of abstraction, or that are strongly dependent on certain 

GUI properties or components are expected to be harder to reuse or adapt in future when the 

changes reach at a considerable level. However, event-based approaches as discussed in Section 2 

can still be useful if the user interact with the system in a way that can be formulated in terms of 
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discrete stimuli. It is always possible that semantic extensions will be required to capture 

different types of behaviors, descriptions or problems; however, the formal basis will be the 

same. 

On the other hand, the approaches proposed for GUI testing can also be used for other types 

of software applications with certain adjustments depending on the application area. As 

mentioned above, if user-system interactions can be formulated in form of events, most of the 

approaches proposed for GUI testing can be used. For example, event-based models such as 

ESGs are used for testing of web service compositions, and, also, there are formalisms which can 

be alternative/complementary to the finite-state-machine-based approaches in fault-based testing. 

6.1.2 Contracts will Become More Precise and Look Different 

Further test generation techniques, which make use of the intuitive approaches to reduce 

and/or simplify test sequences and their generation, are considerable for contract-based GUI 

testing. The more GUI contracts exist, the costlier is their evaluation. This is because adding just 

one single contract doubles (in the worst case) the number of combinations of contracts to be 

tested. Thus, further techniques to reduce the evaluation complexity of large sets of GUI 

contracts can be helpful, such as partitioning of contracts that can be achieved by a hierarchical 

set of DTs, if GUI contracts are represented with DTs. 

Another path for future work is to introduce formal semantics for GUI contracts, which may 

include refinement and inclusion operations on contracts. These operations aim to provide 

distinct means to express complex GUI behavior in terms of simpler behavior. Furthermore, a 

refinement enables specialization of contractual obligations and invariants of other contracts, 

whereas inclusion allows contracts to be composed from simpler contracts. With these contract 

operations, an approach for combining GUI components and testing them as a single unit can be 

defined and implemented. More formalism for GUI contracts is necessary to systematically 

discuss and justify the differences between GUI contracts and classical Meyer contracts with 

respect to preconditions, post-conditions, invariants, and inheritance mechanism. 

Such formalism on GUI contracts may end up with a formal contract language for 

specification of GUIs with composition and inheritance mechanisms. Contracts written in this 

language can be converted to test cases and test oracles can be built automatically. 

6.1.3 What About Automation of GUI Testing? 

Model-based testing has been proven to bring advantage in terms of test effectiveness and test 

efficiency when testing graphical user interfaces. However graphical user interfaces have been 

evolving over time from systems where it was easily possible to test merely every interface in the 

past to more complicated systems. Today’s challenge is to know what to test for in graphical user 

interfaces rather than how to test as not everything is testable anymore. Future graphical user 

interfaces are heading towards more intelligent systems with changing feedback behavior over 

time not only adapting to the user behavior but even predicting the user’s behavior. Furthermore, 
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graphical user interfaces will integrate voice interfaces utilizing speech processing (such as 

apple’s Siri). The results of these more intelligent user interfaces will become unpredictable and 

bring the challenge how to test them if we don’t know what to test for. 

Model-based testing tends to generate a large amount of test cases which will become 

impractical even if executed automatically for future graphical user interfaces. On the contrary 

side testing needs to withstand the coverage of the exponential growth of graphical user 

interfaces comprising more and more features. Thus, testing graphical user interfaces will require 

even more emphasis to optimize and minimize test suites in the future. The goal is to find 

coverage of graphical user interface interactions and events by test instances of test inputs and 

test sequences with high defect detection likelihood. This would also mean that traditional test 

coverage criteria are probably not adequate any longer and have to be replaced by a more 

property or situation based test input generation. In addition, the automation of the test oracle 

would need a heuristic approach when testing complex graphical user interfaces to overcome 

their characteristics of unpredictable test outcomes. This would tend towards an oracle that would 

find suspicious deviations and would need to define some new qualitative measurements. 

6.2 Summary 

The present book chapter reviewed existing work on model-based GUI testing. Both the 

desirable and undesirable features of the system to be developed have been unified, leading to a 

holistic approach to testing. Notions of mutation analysis and testing have been used to refine this 

holistic view. 

Event-based modeling has been favored as it is broadly accepted. Due to the use of models 

that can be represented as graphs, application of sound mathematical methods is enabled. Results 

and algorithms have been borrowed from graph theory, automata theory, and formal languages to 

construct test cases, optimize test suites, etc. Modeling with event sequence graphs has been 

exemplarily used without any loss of generality, because also other graph-based models can be 

adapted for enabling the application of such formal methods. 

The focus was on modeling and test case construction that covered also optimization. An 

important issue of testing in the practice is the quantification of the test cases, that is, assigning 

real and symbolic values to them. This aspect has been studied involving contract-based testing, 

which entails augmenting the graphs by decision tables. 

Because of the limitation of the expected size of a chapter not all aspects of GUI testing could 

be discussed, for example, test prioritization, or considering other semantic features than 

“follows” relation in ESG modeling, for example concurrency or causality. Follow-on limitations 

can be seen in the definition and usage of fault and coverage semantics. Consequently, there are 

severe theoretical barriers, necessitating further research to extend and generalize the introduced 

ideas and techniques, mostly caused by the explosion of states when taking, for example, 

concurrency into account [22]. 
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Nevertheless, the authors hope that further research will enable more and comprehensive 

adoption of the approaches introduced in the practice. 
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