# TRIANGLE-FREE TRIANGULATIONS

RON M. ADIN, MARCELO FIRER, AND YUVAL ROICHMAN

ABSTRACT. The flip operation on colored inner-triangle-free triangulations of a convex polygon is studied. It is shown that the affine Weyl group  $\widetilde{C}_n$  acts transitively on these triangulations by colored flips, and that the resulting colored flip graph is closely related to a lower interval in the weak order on  $\widetilde{C}_n$ . Lattice properties of this order are then applied to compute the diameter.

# Contents

| 1. Introduction                                      | 2  |
|------------------------------------------------------|----|
| 2. Basic Concepts                                    | 2  |
| 3. Group Action by Flips                             | 3  |
| 3.1. The $\widetilde{C}_n$ -Action                   | 3  |
| 3.2. Stabilizer                                      | 4  |
| 3.3. Coset Representatives                           | 8  |
| 4. The Flip Graph: Algebraic Description             | 11 |
| 5. The Flip Graph: Diameter                          | 11 |
| 5.1. Proof of Theorem 5.1                            | 11 |
| 5.2. Antipodes                                       | 15 |
| 6. Final Remarks                                     | 16 |
| 7. Appendix: Proofs of Lemma 3.13 and Corollary 3.14 | 17 |
| References                                           | 18 |

Date: January 27, 2009.

Key words and phrases. Triangulations, flips, group actions, Schreier graphs, Coxeter groups, weak order, Hasse diagrams.

### 1. INTRODUCTION

In a seminal paper, using volume computations in hyperbolic geometry, Sleator, Tarjan and Thurston [5] computed the diameter of the flip graph of all triangulations of a convex polygon. For special classes of triangulations, the diameter problem – and, sometimes, even the question of connectivity – is still open. For instance, monochromatic-triangle-free triangulations were introduced by Propp. Sagan [4] showed that the corresponding flip graph is connected only if two colors are used. The diameter in this case is not known.

This paper studies the set of inner-triangle-free triangulations, which is contained in the set of monochromatic-triangle-free triangulations. Methods from Coxeter group theory are applied to describe the structure of the resulting colored flip graph and to compute its diameter. It is shown that the affine Weyl group  $\widetilde{C}_n$  acts transitively, by flips, on such triangulations. The stabilizer is computed, leading to an interpretation of the flip graph as a Schreier graph. This graph is closely related to a distinguished lower interval in the weak order on  $\widetilde{C}_n$ . Lattice properties of this order are then applied to compute the diameter.

# 2. Basic Concepts

Label the vertices of a convex (n + 4)-gon  $P_{n+4}$  (n > 0) by the elements  $0, \ldots, n+3$  of the additive cyclic group  $\mathbb{Z}_{n+4}$ . Consider a triangulation (with no extra vertices) of the polygon. Each edge of the polygon is called an *external* edge of the triangulation; all other edges of the triangulation are called *internal* edges, or chords.

**Definition 2.1.** A triangulation of a convex (n + 4)-gon  $P_{n+4}$  is called innertriangle-free (or simply triangle-free) if it contains no triangle with 3 internal edges. The set of all triangle-free triangulations of  $P_{n+4}$  is denoted TFT(n).

**Definition 2.2.** A chord in  $P_{n+4}$  is called short if it connects the vertices labeled i-1 and i+1, for some  $i \in \mathbb{Z}_{n+4}$ .

**Claim 2.3.** For n > 0, a triangulation of  $P_{n+4}$  is triangle-free if and only if it contains only two short chords.

*Proof.* Any triangulation of  $P_{n+4}$  consists of n+1 diagonals and n+2 triangles. Each chord lies in exactly 2 triangles. Thus the average number of chords per triangle is  $\frac{2(n+1)}{n+2} = 2 - \frac{2}{n+2}$ . By definition, a triangulation is triangle-free if and only if each triangle contains at most 2 chords. On the other hand, each triangle contains at least one chord. One concludes that there are exactly two triangles each containing only one chord, completing the proof.

**Definition 2.4.** A proper coloring of a triangulation  $T \in TFT(n)$  is a labeling of the chords by  $0, \ldots, n$  in the following inductive way: Choose a short chord and label it 0. Inductively, a chord which was not yet labeled and is contained in a triangle whose other chord has been labeled i, is labeled i + 1.

It is easy to see that this uniquely defines the coloring. The set of all properly colored triangle-free triangulations is denoted CTFT(n).

**Definition 2.5.** Each chord in a triangulation is a diagonal of a unique quadrangle (the union of two adjacent triangles). Replacing this chord by the other diagonal of that quadrangle is a flip of the chord.

The colored flip graph  $\Gamma_n$  is defined as follows: the nodes are all the colored triangle-free triangulations in CTFT(n). Two triangulations are connected in  $\Gamma_n$  by an arc colored i if one is obtained from the other by a flip of the chord labeled i.

By Claim 2.3,

**Corollary 2.6.** For n > 0, any triangle-free triangulation of  $P_{n+4}$  has exactly two proper colorings. In other words,

$$#CTFT(n) = 2 \cdot #TFT(n).$$

**Definition 2.7.** Define a map

$$\varphi: CTFT(n) \to \mathbb{Z}_{n+4} \times \mathbb{Z}_2^n$$

as follows: Let  $T \in CTFT(n)$ . If the (short) chord labeled 0 in T is [a-1, a+1]for  $a \in \mathbb{Z}_{n+4}$ , let  $\varphi(T)_0 := a$ . For  $1 \leq i \leq n$ , assume that the chord labeled i-1in T is [a-k, a+m] for some  $k, m \geq 1$ , k+m = i+1. The chord labeled i is then either [a-k-1, a+m] or [a-k, a+m+1]. Let  $\varphi(T)_i$  be 0 in the former case and 1 in the latter.

**Observation 2.8.**  $\varphi$  is a bijection.

**Corollary 2.9.** For n > 0, the number of triangle-free triangulations of a convex (n + 4)-gon is

$$#CTFT(n) = (n+4) \cdot 2^n.$$

#### 3. Group Action by FLIPS

In this section we assume that n > 1.

3.1. The  $\tilde{C}_n$ -Action. Let  $\tilde{C}_n$  be the affine Weyl group generated by

 $S = \{s_0, s_1, \dots, s_{n-1}, s_n\}$ 

subject to the Coxeter relations

(1) 
$$s_i^2 = 1 \qquad (\forall i),$$

- (2)  $(s_i s_j)^2 = 1 \quad (|j i| > 1),$
- (3)  $(s_i s_{i+1})^3 = 1$   $(1 \le i < n-1),$

and

(4)  $(s_i s_{i+1})^4 = 1$  (i = 0, n-1).

The group  $C_n$  acts naturally on CTFT(n) by flips: generator  $s_i$  flips the chord labeled i in  $T \in CTFT(n)$ , provided that the resulting colored triangulation still belongs to CTFT(n). If this is not the case, T is unchanged by  $s_i$ .

Notice that  $s_i(T) = T$  if and only if  $\varphi(T)_i = \varphi(T)_{i+1}$ ; also the only short chords are labeled by 0 and n, hence  $s_0$  and  $s_n$  never leave the corresponding chords unchanged. Furthermore, one can easily verify that by definition, the following observation holds.

**Observation 3.1.** For every  $T \in CTFT(n)$ 

$$(\varphi(s_0T))_j = \begin{cases} \varphi(T)_j, & \text{if } j \neq 0, 1, \\ \varphi(T)_0 + 1 \mod n + 4, & \text{if } j = 0 \text{ and } \varphi(T)_1 = 0, \\ \varphi(T)_0 - 1 \mod n + 4, & \text{if } j = 0 \text{ and } \varphi(T)_1 = 1, \\ \varphi(T)_1 + 1 \mod 2, & \text{if } j = 1 \text{ and } \varphi(T)_1 = 0; \end{cases}$$
$$(\varphi(s_nT)_j = \begin{cases} \varphi(T)_j, & \text{if } j \neq n, 00 \\ \varphi(T)_n + 1 \mod 2, & \text{if } j = n; \end{cases}$$

and

$$(\varphi(s_i T)_j = \varphi(T)_{s_i(j)} \qquad (0 < i < n),$$

**Proposition 3.2.** This operation determines a transitive  $\widetilde{C}_n$ -action CTFT(n).

*Proof.* To prove that the operation is a  $\tilde{C}_n$ -action, it suffices to show that it is consistent with the defining Coxeter relations of  $\tilde{C}_n$ . Indeed, for every i,  $s_i$  acts on a particular triangulation  $T \in CTFT(n)$  by flipping the diagonal labeled by i or leaving it unchanged; in both cases  $s_i^2(T) = T$ . If |j - i| > 1,  $s_i$  and  $s_j$  act on diagonals of quadrangles with no common triangle, hence  $s_i$  and  $s_j$  commute. Thus relation (2) is satisfied. Relations (3) and (4) may be verified by a direct calculation of the corresponding flip operation, taking in account the relative position of the relevant chords. Alternatively, all relations may be easily verified using Observation 3.1. We leave verification of the details to the reader.

To prove that the action is transitive, notice first that  $s_0$  changes the location of the chord labeled by 0, where the cyclic orientation of this change depends on the relative position of the chord labeled by 1. It, thus, suffices to prove that the maximal parabolic subgroup of  $\tilde{C}_n$ ,  $\langle s_1, \ldots, s_n \rangle$  acts transitively on all colored triangle-free triangulations with a given 0 chord. Indeed, the parabolic subgroup  $\langle s_1, \ldots, s_n \rangle$  is isomorphic to the classical Weyl group  $B_n$ . By Observation 3.1, the restricted  $B_n$ -action on all colored triangle-free triangulations with a given 0 chord, may be identified with the natural  $B_n$ -action on all subsets of  $\{1, \ldots, n\}$ , and is thus transitive.

3.2. Stabilizer. Define

$$g_0 := s_0 s_1 \cdots s_{n-2} s_n s_{n-1} s_n s_{n-2} \cdots s_1 s_0 \in C_n$$

and

$$g_n := (s_n \cdots s_0)^{n+4} \in C_n.$$

Denote:

$$T_0:=\varphi^{-1}(0,\ldots,0),$$

the canonical colored star triangulation.

**Theorem 3.3.** The subgroup  $St_n = \langle g_0, s_1, \ldots, s_{n-1}, g_n \rangle$  of  $\widetilde{C}_n$  is the stabilizer, under the  $\widetilde{C}_n$ -action on CTFT(n), of the canonical colored star triangulation  $T_0$ . Stabilizers of other colored triangulations are subgroups of  $\widetilde{C}_n$  conjugate to  $St_n$ .

*Proof.* We shall proceed by a volume argument, using a sequence of technical observations.

Consider the action of  $\widetilde{C}_n$  on  $\mathbb{R}^n$  given by

$$s_0(x_1, x_2, \dots, x_n) := (-x_1, x_2, \dots, x_n),$$
  

$$s_i(\dots, x_i, x_{i+1}, \dots) := (\dots, x_{i+1}, x_i, \dots) \quad (1 \le i \le n-1),$$
  

$$s_n(x_1, \dots, x_{n-1}, x_n) := (x_1, \dots, x_{n-1}, 2-x_n).$$

It is well-known that this gives rise to a faithful *n*-dimensional linear representation of  $\widetilde{C}_n$  (the natural action of  $\widetilde{C}_n$  on its root space). The reflecting hyperplanes for the reflections  $s_i$  are

$$H_0 := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \, | \, x_1 = 0 \},$$
  
$$H_i := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \, | \, x_i = x_{i+1} \} \quad (1 \le i \le n-1),$$
  
$$H_n := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \, | \, x_n = 1 \}.$$

**Observation 3.4.** A fundamental region for the above action of  $\widetilde{C}_n$  is the ndimensional simplex Fund<sub>1</sub> with vertices  $v_0, \ldots, v_n \in \mathbb{R}^n$ , where

$$v_i := (\underbrace{0, \dots, 0}_{i}, \underbrace{1, \dots, 1}_{n-i}) \qquad (0 \le i \le n).$$

 $v_i$  is the intersection point of the reflecting hyperplanes for all generators of  $\widetilde{C}_n$  except  $s_i.$ 

The generators of  $St_n$  are  $s_1, \ldots, s_{n-1}$  acting as above, as well as

$$g_0(x_1, x_2, \dots, x_{n-1}, x_n) := (x_n - 2, x_2, \dots, x_{n-1}, x_1 + 2)$$

and

$$g_n = (s_n \cdots s_0)^{n+4}, \qquad (s_n \cdots s_0)(x_1, x_2, \dots, x_n) := (x_2, \dots, x_n, x_1 + 2).$$

Thus  $g_0, s_1, \ldots, s_{n-1}$  are reflections, while  $g_n$  is a cyclic permutation of coordinates combined with a translation. The reflecting hyperplanes for  $g_0, s_1, \ldots, s_{n-1}$  are

$$H'_0 := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \, | \, x_n = x_1 + 2 \},\$$
  
$$H_i := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \, | \, x_i = x_{i+1} \} \qquad (1 \le i \le n-1).$$

**Observation 3.5.** The subgroup  $\langle g_0, s_1, \ldots, s_{n-1} \rangle$  of  $\widetilde{C}_n$  is an affine Weyl group of type  $\widetilde{A}_{n-1}$ , and has

$$H := \{ (x_1, \dots, x_n) \in \mathbb{R}^n \, | \, x_1 + \dots + x_n = 0 \}$$

as an invariant subspace. A fundamental region for its action on H is the (n-1)dimensional simplex  $\Delta_{n-1}$  with vertices  $w_0, \ldots, w_{n-1} \in H$ , where

$$w_i := \frac{2}{n} \underbrace{(\underbrace{i-n, \ldots, i-n}_{i}, \underbrace{i, \ldots, i}_{n-i})}_{i} \qquad (0 \le i \le n-1).$$

Now note that

$$(s_n \cdots s_0)(w_i) = e + w_{i-1} \qquad (0 \le i \le n-1)$$

with the index i - 1 interpreted modulo n, and where

$$e = \frac{2}{n}(1, \dots, 1) \in H^{\perp}$$

Therefore  $g_n$  acts as a linear transformation of H preserving  $\Delta_{n-1}$ , combined with a translation by the vector  $(n+4)e \in H^{\perp}$ .

**Observation 3.6.** A fundamental region for the action of  $St_n$  on  $\mathbb{R}^n$  is the prism

$$Fund_2 = \Delta_{n-1} \times I := \{ w + t(1, \dots, 1) \mid w \in \Delta_{n-1}, \ 0 \le t \le 2(n+4)/n \}$$

Return now to the action of  $\tilde{C}_n$  on CTFT(n). Each of the generators of  $St_n$ clearly stabilizes the canonical colored star triangulation  $T_0$  defined immediately before Theorem 3.3, so that  $St_n$  is contained in the stabilizer of  $T_0$  under the  $\tilde{C}_n$ action on CTFT(n). In order to show that  $St_n$  is actually equal to this stabilizer, it suffices to show that both subgroups have the same finite index in  $\tilde{C}_n$ . The index of the stabilizer is the size of the orbit of  $T_0$ , namely (by Proposition 3.2) the number of colored triangulations, #CTFT(n). The index of  $St_n$  in  $\tilde{C}_n$  is the quotient of volumes  $vol(Fund_2)/vol(Fund_1)$ . By Corollary 2.9 it thus suffices to show that

$$vol(Fund_2)/vol(Fund_1) = (n+4) \cdot 2^n.$$

This indeed follows from the following computations, using the well-known formula for the volume of a k-dimensional simplex  $\Delta$  with vertices  $v_0, \ldots, v_k \in \mathbb{R}^k$ :

$$vol(\Delta) = \frac{1}{k!} \cdot [\det(\langle v_i - v_0, v_j - v_0 \rangle)_{1 \le i,j \le k}]^{1/2},$$

where  $\langle \cdot, \cdot \rangle$  is the standard inner product on  $\mathbb{R}^k$ .

Claim 3.7.

$$vol(Fund_1) = \frac{1}{n!} \cdot \det(A)^{1/2},$$

where, following Observation 3.4,

$$A := (a_{ij}) \in \mathbb{R}^{n \times n},$$
  
$$a_{ij} := \langle v_i - v_0, v_j - v_0 \rangle = \min(i, j) \qquad (1 \le i, j \le n).$$

Claim 3.8.

$$vol(Fund_2) = [2(n+4)/n] \cdot n^{1/2} \cdot \frac{1}{(n-1)!} \cdot \det(B)^{1/2},$$

where, following Observations 3.5 and 3.6,

ъ

$$B := (b_{ij}) \in \mathbb{R}^{(n-1) \times (n-1)},$$
  
$$b_{ij} := \langle w_i - w_0, w_j - w_0 \rangle = \frac{4}{n} \cdot \min(i, j) \cdot \min(n - i, n - j) \qquad (1 \le i, j \le n - 1)$$

*Proof.* For  $i \leq j$ ,

$$b_{ij} = \langle w_i - w_0, w_j - w_0 \rangle$$
  
=  $\frac{4}{n^2} \cdot [i \cdot (i - n) \cdot (j - n) + (j - i) \cdot i \cdot (j - n) + (n - j) \cdot i \cdot j]$   
=  $\frac{4}{n^2} \cdot [i \cdot (j - n)^2 + (n - j) \cdot i \cdot j]$   
=  $\frac{4}{n^2} \cdot i \cdot (n - j) \cdot n.$ 

| г |  | ٦ |
|---|--|---|
| L |  | I |
| L |  | I |
| L |  | I |

Claim 3.9.

$$\det(A) = 1$$

and

$$\det(B) = \left(\frac{4}{n}\right)^{n-1} \cdot n^{n-2} = 4^{n-1} \cdot n^{-1}.$$

*Proof.* By elementary row operations (subtracting row i - 1 from row i, for  $2 \leq i$  $i \leq n$ ), the  $n \times n$  matrix A = (min(i, j)) can be transformed into an upper triangular matrix with 1-s in and over the main diagonal, so that det(A) = 1.

By similar operations, the  $(n-1) \times (n-1)$  matrix  $(n/4) \cdot B = (min(i,j) \cdot b)$ min(n-i, n-j) can be transformed into the matrix  $C = (c_{ij})$  with

$$c_{i,j} = \begin{cases} 1 \cdot (n-j), & \text{if } i \leq j; \\ j \cdot (-1), & \text{if } i > j. \end{cases}$$

Subtracting row n-1 from all the other rows we get the matrix  $D = (d_{ij})$  with

$$d_{i,j} = \begin{cases} n, & \text{if } 1 \leq i \leq j \leq n-2; \\ 0, & \text{if } 1 \leq j < i \leq n-2; \\ 0, & \text{if } 1 \leq i \leq n-2 \text{ and } j = n-1; \\ -j, & \text{if } i = n-1 \text{ and } 1 \leq j \leq n-2; \\ 1, & \text{if } i = j = n-1. \end{cases}$$

It follows that  $\det(C) = \det(D) = n^{n-2}$  and  $\det(B) = 4^{n-1} \cdot n^{-1}$ . Claim 3.10.

$$vol(Fund_2)/vol(Fund_1) = (n+4) \cdot 2^n = \#CTFT(n).$$

Proof. By Claims 3.7, 3.8 and 3.9,

$$vol(Fund_1) = \frac{1}{n!}$$

while

$$vol(Fund_2) = 2(n+4)n^{-1/2} \cdot \frac{1}{(n-1)!} \cdot 2^{n-1}n^{-1/2} = \frac{1}{n!} \cdot 2^n(n+4).$$

This completes the proof of Theorem 3.3.

3.3. Coset Representatives. The stabilizer  $St_n$  of the canonical colored star triangulation  $T_0$  is not a parabolic subgroup of  $\widetilde{C}_n$ . However, it will be shown that a distinguished set of representatives of  $St_n$  in  $\widetilde{C}_n$  forms an interval in the weak order on  $\widetilde{C}_n$ .

For 
$$0 \le i \le n$$
 denote  $a_i := s_i s_{i-1} \cdots s_0 \in \widetilde{C}_n$  and  $b_i := s_{n-i} s_{n-i+1} \cdots s_n \in \widetilde{C}_n$ .

Proposition 3.11. Each of the sets

$$R_n := \{a_0^{\epsilon_0} a_1^{\epsilon_1} \cdots a_{n-1}^{\epsilon_{n-1}} a_n^{\epsilon_n} : \epsilon_i \in \{0,1\} \ (0 \le i < n) \text{ and } 0 \le \epsilon_n < n+4\}$$
$$R'_n := \{b_0^{\epsilon_0} b_1^{\epsilon_1} \cdots b_{n-1}^{\epsilon_{n-1}} b_n^{\epsilon_n} : \epsilon_i \in \{0,1\} \ (0 \le i < n) \text{ and } 0 \le \epsilon_n < n+4\}$$

forms a complete list of representatives of the left cosets of  $St_n$  in  $\widetilde{C}_n$ .

*Proof.* Since  $\#R_n \leq (n+4) \cdot 2^n$ , in order to prove that  $R_n$  forms a complete list of coset representatives it suffices to prove that for every  $T \in CTFT(n)$  there exists an element  $r \in R_n$  such that  $rT_0 = T$ , where  $T_0$  is the canonical colored star triangulation. By Observation 2.8, it suffices to prove that for every vector  $\mathbf{v} = (v_0, \ldots, v_n) \in \mathbb{Z}_{n+4} \times \mathbb{Z}_2^n$  there exists  $r \in R_n$  such that  $\varphi(rT_0) = \mathbf{v}$ . Indeed, by Observation 3.1,

$$\varphi(a_0^{v_n}a_1^{v_{n-1}}\cdots a_{n-1}^{v_1}a_n^{-v_0 \operatorname{mod}(n+4)}T_0) = (v_0,\ldots,v_n).$$

The proof for  $R'_n$  is similar.

Let  $\ell(w)$  be the length of an element  $w \in \widetilde{C}_n$  with respect to Coxeter generating set, that is,

$$\ell(w) := \min\{\ell : w = s_{i_1} s_{i_2} \cdots s_{i_\ell}, s_{i_j} \in \{s_0, \dots, s_n\} \ (\forall j)\}.$$

Claim 3.12. For every  $r = a_0^{\epsilon_0} \cdots a_n^{\epsilon_n} \in R_n$ 

$$\ell(r) = \sum_{j=0}^{n} (j+1)\epsilon_j = \sum_{j=0}^{n} \sum_{i=j}^{n} \epsilon_i.$$

*Proof.* Notice that for every  $0 \leq i < n$ ,  $a_{i+1}^{\epsilon_{i+1}}$  is a representative of shortest length of a right coset of the parabolic subgroup  $\langle s_0, \ldots, s_i \rangle$  in  $\langle s_0, \ldots, s_i, s_{i+1} \rangle$ . The Claim follows, by induction, from the length-additivity property of parabolic subgroups in Coxeter groups [3, §1.10] [1, §2.4].

The following lemma plays a key role in understanding the structure of  $R_n$  (Proposition 3.15) and of the colored flip-graph (Proposition 4.1).

**Lemma 3.13.** For every  $r = a_0^{\epsilon_0} \cdots a_n^{\epsilon_n} \in R_n$  and a Coxeter generator  $s_i$  of  $\tilde{C}_n$  exactly one of the following holds:

 $\begin{array}{ll} 1. \ s_{i}r \in R_{n}. \\ 2. \ s_{i}r \in rSt_{n}. \\ 3. \ (\mathrm{i}) \ i=n, \ \epsilon_{n-1}=1 \ and \ \epsilon_{n}=n+3. \ Then \ s_{n}r \in a_{0}^{\epsilon_{0}} \cdots a_{n-2}^{\epsilon_{n-2}}St_{n}. \\ (\mathrm{ii}) \ i=n, \ \epsilon_{n-1}=0 \ and \ \epsilon_{n}=0. \ Then \ s_{n}r \in a_{0}^{\epsilon_{0}} \cdots a_{n-2}^{\epsilon_{n-2}}a_{n-1}a_{n}^{n+3}St_{n}. \end{array}$ 

**Corollary 3.14.** For every  $s_i \in S$  and  $r = a_0^{\epsilon_0} \cdots a_n^{\epsilon_n} \in R_n$ 

$$\ell(s_i r) < \ell(r) \iff \epsilon_{i-1} = 0 \text{ and } \epsilon_i > 0,$$

where  $\epsilon_0 := 0$ .

For proofs of Lemma 3.13 and Corollary 3.14 see Appendix (Section 7).

Denote

$$w_{o} := a_{0}a_{1}\cdots a_{n-1}a_{n}^{n+3}$$

the longest element in  $R_n$ .

**Proposition 3.15.**  $R_n$  is a self-dual lower interval  $\{w \in \widetilde{C}_n : id \leq w \leq w_o\}$  in the left weak order on  $\widetilde{C}_n$ ; hence it forms a graded lattice.

*Proof.* By Corollary 3.14, for every  $r \in R_n$  and  $s_i \in S$ ,  $\ell(s_i r) < \ell(r)$  implies that  $r = \cdots a_{i-1}^0 a_i^{\epsilon_i} \cdots (\epsilon_i > 0)$  for some  $0 \le i \le n$ , thus

$$s_i r = \cdots a_{i-1} a_i^{\epsilon_i - 1} \cdots \in R_n.$$

It follows that  $R_n$  is an interval in the left weak order. Self-duality follows from the identity

$$rw_0 = a_0^{1-\epsilon_0} a_1^{1-\epsilon_1} \cdots a_{n-1}^{1-\epsilon_{n-1}} a_n^{n+3-\epsilon_n}$$

for all  $r = a_0^{\epsilon_0} \cdots a_n^{\epsilon_n} \in R_n$ .

**Remark 3.16.** Since  $R_n$  is an interval in the left weak order the rank of an element is given by its Coxeter length. Thus the rank generating function is

$$(1+q)(1+q^2)\cdots(1+q^n)(1+q^{n+1}+q^{2(n+1)}+\cdots+q^{(n+3)(n+1)}),$$

(not necessarily unimodal).

**Lemma 3.17.** For every pair of elements in  $R_n$ 

$$a_0^{\epsilon_0} \cdots a_n^{\epsilon_n} < a_0^{\delta_0} \cdots a_n^{\delta_n}$$

in the left weak order if and only if

$$(\epsilon_n,\ldots,\epsilon_0)<(\delta_n,\ldots,\delta_0)$$

in the dominance order; i.e.,  $\sum_{i=k}^{n} \epsilon_i < \sum_{i=k}^{n} \delta_i$  for all  $0 \le k \le n$ .

*Proof.* By Corollary 3.14, the lemma holds for the covering relation. Proceed by induction on the length of the chain.  $\Box$ 

For every pair of elements  $r, s \in R_n$  denote by  $r \wedge s$  their join and by  $r \vee s$  their meet in the weak order on  $\widetilde{C}_n$ . Lemma 3.17 implies

**Corollary 3.18.** For every pair of elements in  $R_n$ 

$$a_0^{\epsilon_0} \cdots a_n^{\epsilon_n} \ \land \ a_0^{\delta_0} \cdots a_n^{\delta_n} = a_0^{\alpha_0} \cdots a_n^{\alpha_n}$$

where

$$\alpha_k := \min\{\sum_{i=k}^n \epsilon_i, \sum_{i=k}^n \delta_i\} - \min\{\sum_{i=k+1}^n \epsilon_i, \sum_{i=k+1}^n \delta_i\} \qquad (0 \le k \le n),$$

and

$$a_0^{\epsilon_0}\cdots a_n^{\epsilon_n} \lor a_0^{\delta_0}\cdots a_n^{\delta_n} = a_0^{\beta_0}\cdots a_n^{\beta_n},$$

where

$$\beta_k := \max\{\sum_{i=k}^n \epsilon_i, \sum_{i=k}^n \delta_i\} - \max\{\sum_{i=k+1}^n \epsilon_i, \sum_{i=k+1}^n \delta_i\} \qquad (0 \le k \le n).$$

It follows that

**Corollary 3.19.**  $R_n$  forms a modular lattice with respect to the weak order; namely, for every  $r, s \in R_n$ 

$$\ell(r \lor s) + \ell(r \land s) = \ell(r) + \ell(s)$$

It should be noted that the weak order on  $\widetilde{C}_n$  is not modular.

Proof. Combining Corollary 3.18 with Claim 3.12 yields

$$\ell(r \lor s) = \sum_{j=0}^{n} \sum_{i=j}^{n} \beta_i = \sum_{j=0}^{n} \max\{\sum_{i=j}^{n} \epsilon_i, \sum_{i=j}^{n} \delta_i\},\$$

and, similarly,

$$\ell(r \wedge s) = \sum_{j=0}^{n} \min\{\sum_{i=j}^{n} \epsilon_i, \sum_{i=j}^{n} \delta_i\}.$$

Hence

$$\ell(r \wedge s) + \ell(r \vee s) = \sum_{j=0}^{n} \max\{\sum_{i=j}^{n} \epsilon_i, \sum_{i=j}^{n} \delta_i\} + \sum_{j=0}^{n} \min\{\sum_{i=j}^{n} \epsilon_i, \sum_{i=j}^{n} \delta_i\}$$

$$=\sum_{j=0}^{n}\sum_{i=j}^{n}(\epsilon_{i}+\delta_{i})=\ell(r)+\ell(s).$$

### 4. The FLIP Graph: Algebraic Description

The colored flip graph  $\Gamma_n$  is isomorphic to the Schreier graph of the cosets of  $St_n$  in  $\tilde{C}_n$  with respect to the Coxeter generating set  $\{s_0, \ldots, s_n\}$ . Furthermore, fixing a set of coset representatives we can get an explicit description of  $\Gamma_n$ .

**Proposition 4.1.** The colored flip graph  $\Gamma_n$  is isomorphic to the graph whose vertices are the elements in  $R_n$ ; two distinct elements  $r_1, r_2 \in R_n$  forms an edge if their quotient is a Coxeter generator of  $\widetilde{C}_n$  or they are of the form  $(v, va_{n-1}a_n^{n+3})$ , for any  $v = a_0^{\epsilon_0} \cdots a_{n-2}^{\epsilon_{n-2}}$ .

In other words, the flip graph is obtained from the (undirected) Hasse diagram  $\Sigma_n$  of the left weak order on  $R_n$  by adding the edges  $(v, va_{n-1}a_n^{n+3})$ , for any  $v = a_0^{\epsilon_0} \cdots a_{n-2}^{\epsilon_{n-2}}$ .

*Proof.* Proposition 4.1 is an immediate consequence of Lemma 3.13.  $\Box$ 

**Observation 4.2.** A right multiplication by  $a_n$  is an automorphism of the colored flip graph  $\Gamma_n$ .

*Proof.* A rotation by  $\frac{2\pi}{n+4}$  of the colored triangulation  $a_0^{\epsilon_0} \cdots a_{n-1}^{\epsilon_{n-1}} a_n^t T_0$  gives the triangulation  $a_0^{\epsilon_0} \cdots a_{n-1}^{\epsilon_{n-1}} a_n^{t+1 \pmod{n+4}} T_0$ .

For every pair  $\pi, \sigma \in R_n$  let  $\operatorname{dist}_{\Gamma_n}(\pi, \sigma)$  be the distance between  $\pi T_0$  and  $\sigma T_0$  in  $\Gamma_n$ .

It follows from Observation 4.2 that

**Corollary 4.3.** For every pair  $r, s \in R_n$  and an integer t

$$\operatorname{dist}_{\Gamma_n}(r,s) = \operatorname{dist}_{\Gamma_n}(ra_n^t, sa_n^t).$$

## 5. The FLIP Graph: Diameter

Denote by  $\operatorname{Diam}(\Gamma_n)$  the diameter of the colored flip graph  $\Gamma_n$ .

**Theorem 5.1.** For every  $n \ge 3$ 

$$\operatorname{Diam}(\Gamma_n) = \frac{(n+1)(n+4)}{2}.$$

### 5.1. Proof of Theorem 5.1.

The proof relies on the intimate relation between the colored flip graph  $\Gamma_n$  and the Hasse diagram of the weak order on  $R_n$ , see Proposition 4.1 and comment afterwards. The upper bound (Lemma 5.4) is obtained by combining the properties of the weak order on  $R_n$  with the invariance of the flip graph under rotation. The grading of the Hasse diagram together with Proposition 4.1 implies a lower bound (Lemma 5.5). 5.1.1. Distance. For a graph G denote by  $\operatorname{dist}_{G}(v, u)$  the distance (i.e., the length of the shortest path) between the vertices u and v. We begin with a general lemma.

**Lemma 5.2.** Let P be a modular lattice. Let  $\ell$  be its rank function and  $\Sigma$  its Hasse diagram. Then for every pair  $r, s \in P$ 

$$\operatorname{dist}_{\Sigma}(r,s) = \ell(r \lor s) - \ell(r \land s).$$

*Proof.* If there is a shortest path between r and s with at most one pick (local maximum), then by the modularity

$$\operatorname{dist}_{\Sigma}(r,s) = 2\ell(r \lor s) - \ell(r) - \ell(s) = \ell(r \lor s) - \ell(r \land s).$$

Given a shortest path from r to s with k > 1 picks let v, w be two consequent picks in the path. There is a unique local minimum z in the path from v to w. By the minimality of the length of the path,  $z = v \wedge w$ . By the modularity we can replace the segment from v to w through the meet z by a path through  $v \wedge w$ and obtain a path of same length and k - 1 picks. Proceed by recursion to get a shortest path with one pick.

**Lemma 5.3.** For every pair 
$$r = \prod_{i=0}^{n} a_i^{\epsilon_i}$$
,  $s = \prod_{i=0}^{n} a_i^{\delta_i} \in V(\Gamma_n) = R_n$   
 $\operatorname{dist}_{\Gamma_n}(r, s) =$ 

 $\min\{\ell(ra_n^{-\epsilon_n} \lor sa_n^{-\epsilon_n}) - \ell(ra_n^{-\epsilon_n} \land sa_n^{-\epsilon_n}), \ell(ra_n^{-\delta_n} \lor sa_n^{-\delta_n}) - \ell(ra_n^{-\delta_n} \land sa_n^{-\delta_n})\}.$ 

*Proof.* Let  $C_n$  be a cycle of length n + 4 whose set of vertices is  $\{u_i : 0 \le i < n + 4\}$  and edges  $(u_i, u_{(i+1) \mod (n+4)})$  for every  $0 \le i < n + 4$ . Consider the map  $\rho : \Gamma_n \longrightarrow C_n$ , defined by  $\rho(a_0^{\epsilon_0} \cdots a_{n-1}^{\epsilon_{n-1}} a_n^i) := u_i$ . By Proposition 4.1,  $\rho$  is a graph homomorphism. Let  $U_i$  be the pre-image of  $u_i$ , i.e.

$$U_i := \rho^{-1}(u_i) = \{ a_0^{\epsilon_0} \cdots a_{n-1}^{\epsilon_{n-1}} a_n^i : \epsilon_j \in \{0, 1\} \text{ for all } 0 \le j < n \} \qquad (0 \le i < n+4).$$

Notice that the subgraph of  $\Gamma_n$  induced by  $U_i$  is isomorphic to the undirected Hasse diagram of the weak order on  $U_i$ .

We first claim that for any  $r, s \in R_n$  a shortest path from r to s in  $\Gamma_n$  does not contain a sequence of the form  $v_1, \ldots, v_k$ , where  $v_1 = \prod_{j=0}^{n-1} a_j^{\mu_j} a_n^i, v_k = \prod_{j=0}^{n-1} a_j^{\nu_j} a_n^i \in U_i$  for some i and  $v_2, \ldots, v_{k-1} \in U_j$  for  $j = (i \pm 1) \mod (n+4)$ . If there is such a shortest path, then by Corollary 4.3, we may assume that i = 0 and j = 1; namely  $v_1, v_k \in U_0$  and  $v_1, v_2, \ldots, v_{k-1} \in U_1$ . By assumption of the length minimality of the path

$$\operatorname{dist}_{U_0}(v_1, v_k) \ge 2 + \operatorname{dist}_{U_1}(v_2, v_{k-1}).$$

On the other hand, by Proposition 4.1,  $\mu_{n-1} = \nu_{n-1} = 1$ ,  $v_2 = \prod_{j=0}^{n-2} a_j^{\mu_j} a_n$ , and

 $v_{k-1} = \prod_{j=0}^{n-2} a_j^{\nu_j} a_n$ . Hence, by Lemma 5.2 together with Corollary 3.18,

$$\operatorname{dist}_{U_0}(v_1, v_k) = \operatorname{dist}_{U_1}(v_2, v_{k-1}).$$

Contradiction.

We deduce that the  $\rho$ -image of the shortest path between any pair  $r, s \in U_i$ for some *i* is either of length zero or a multiple of a full cycle. But it cannot be a multiple of a full cycle since a pre-image of a full cycle is of length at least

$$\ell(a_n^{n+3}) - \ell(a_0 \cdots a_{n-1}) = \frac{(n+1)(n+5)}{2}.$$

On the other hand, since  $U_i$  is a modular lattice, the diameter of  $U_i$  is the difference between the lengths of the top and bottom elements in  $U_i$ . That is

(5) 
$$\operatorname{Diam}(U_i) = \ell(a_0 \cdots a_{n-1}a_i) - \ell(a_i) = \binom{n+1}{2}.$$

One concludes that for any pair  $r, s \in U_i$  the shortest path is contained in the modular lattice  $U_i$ , so the lemma holds for such a pair.

If  $r \in U_i$ ,  $s \in U_j$  and i < j then by the above arguments the  $\rho$ -image of the shortest path between r and s is one of the two intervals from  $u_i$  to  $u_j$  in the cycle. By Corollary 4.3, a right multiplication (by  $a_n^{-\epsilon_n}$  if the image contains  $u_{i+1}$  or by  $a^{-\delta_n}$  otherwise) maps the shortest path to a shortest path in the modular lattice  $R_n$ . Lemma 5.2 completes the proof.

5.1.2. Diameter: Upper Bound. In this subsection we prove

Lemma 5.4. For every  $n \geq 3$ 

ł

$$\operatorname{Diam}(\Gamma_n) \le \frac{(n+1)(n+4)}{2}.$$

*Proof.* By the lattice property and modularity of  $R_n$  (Corollary 3.19) together with Claim 3.12 and Corollary 3.18, for every  $r = a_0^{\epsilon_0} \cdots a_n^{\epsilon_n}$ ,  $s = a_0^{\delta_0} \cdots a_n^{\delta_n} \in R_n$ 

(6) 
$$\operatorname{dist}_{\Gamma_n}(r,s) = \ell(r \lor s) - \ell(r \land s) = \sum_{j=0}^n |\sum_{i=j}^n (\epsilon_i - \delta_i)|$$

If  $\epsilon_n = \delta_n$  then there exists  $0 \le i < n + 4$  such that  $r, s \in U_i$ . Then by (5),

$$\operatorname{dist}_{\Gamma_n}(r,s) \leq \binom{n+1}{2}.$$

If  $\epsilon_n \neq \delta_n$  then by Corollary 4.3, we may assume, without loss of generality, that  $\delta_n = 0$ . Also, by note that Corollary 4.3,  $\operatorname{dist}_{\Gamma_n}(r, s) = \operatorname{dist}(ra_n^{-\epsilon_n}, sa_n^{-\epsilon_n})$ . Now, by Lemma 5.3 together with (6) and the assumption  $\delta_n = 0$ ,

(7) dist<sub>$$\Gamma_n$$</sub>( $r, s$ ) = min{ $\sum_{j=0}^n |\epsilon_n + \sum_{i=j}^{n-1} (\epsilon_i - \delta_i)|, \sum_{j=0}^n |n+4-\epsilon_n - \sum_{i=j}^{n-1} (\epsilon_i - \delta_i)|$ }.

For  $0 \le j \le n$  denote  $x_j := \epsilon_n + \sum_{i=j}^n (\epsilon_i - \delta_i) - \frac{n+4}{2}$ . Then

$$\operatorname{dist}_{\Gamma_n}(r,s) = \min\{\sum_{j=0}^n |\frac{n+4}{2} + x_j|, \sum_{j=0}^n |\frac{n+4}{2} - x_j|\},\$$

where, by definition,  $(i) - \frac{n+4}{2} \le x_n < \frac{n+4}{2}$  and  $(ii) |x_{j+1} - x_j| \le 1$ . By  $(i), \frac{n+4}{2} + x_n \ge 0$ . Combining this with (ii) implies that if  $\frac{n+4}{2} + x_j$  is

By (i),  $\frac{n+2}{2} + x_n \ge 0$ . Combining this with (ii) implies that if  $\frac{n+2}{2} + x_j$  is negative for some j, then there exists  $0 \le j_o \le n$ , such that  $\frac{n+4}{2} + x_{j_o} = 0$ . Then, by (ii), for every  $0 \le j \le n$ ,  $|\frac{n+4}{2} + x_j| \le |j-j_o|$ . Hence  $\sum_{j=0}^n |\frac{n+4}{2} + x_j| \le {\binom{n+1}{2}}$ . So, we may assume that  $\frac{n+4}{2} + x_j$  is positive for all  $0 \le j \le n$ . By a similar reasoning (regarding the second sum), we may assume that  $\frac{n+4}{2} - x_j$  is positive for all  $0 \le j \le n$ . Thus

$$\operatorname{dist}_{\Gamma_n}(r,s) = \min\{\sum_{j=0}^n \frac{n+4}{2} + x_j, \sum_{j=0}^n \frac{n+4}{2} - x_j\} \le \frac{(n+1)(n+4)}{2}.$$

5.1.3. Diameter: Lower Bound. In this subsection we prove

**Lemma 5.5.** Let  $n \ge 3$ . For every  $r \in R_n$  there exists an element  $s \in R_n$  such that

$$\operatorname{dist}_{\Gamma_n}(r,s) \ge \frac{(n+1)(n+4)}{2}.$$

In particular,

$$\operatorname{Diam}(\Gamma_n) \ge \frac{(n+1)(n+4)}{2}$$

*Proof.* Since the Hasse diagram  $\Sigma_n$  on  $R_n$  is graded by the length function  $\ell$ , and since  $\Gamma_n$  is obtained from the  $\Sigma_n$  by adding the edges  $(v, va_{n-1}a_n^{n+3})$ , for any  $v = a_0^{\epsilon_0} \cdots a_{n-2}^{\epsilon_{n-2}}$  (Proposition 4.1) it follows that for every  $r, s \in R_n$ 

(8) 
$$\operatorname{dist}_{\Gamma_n}(r,s) \ge \min\{|\ell(s) - \ell(r)|, \ell(a_{n-1}a_n^{n+3}) + 1 - |\ell(s) - \ell(r)|\}.$$

It follows that

$$Diam(\Gamma_n) = \max\{dist_{\Gamma_n}(r, s) : r, s \in R_n\} \\ \ge \max\{\min\{d, (n+1)(n+4) - d\} : 0 \le d \le 3\binom{n+2}{2}\},\$$

where  $d := |\ell(s) - \ell(r)|$ , hence  $0 \le d \le \ell(w_o) = \binom{n}{2} + (n+3)\binom{n+1}{2} = 3\binom{n+2}{2}$ . By Proposition 3.15, for any given  $r \in R_n$ , there exists an  $s \in R_n$  of length distance  $\frac{(n+1)(n+4)}{2}$ , completing the proof. Combining Lemma 5.4 with Lemma 5.5 completes the proof of Theorem 5.1.

### 5.2. Antipodes.

Let  $\phi : CTFT(n) \longrightarrow CTFT(n)$  denote the map which reverse the coloring of a triangle free triangulation; namely each color *i* is replaced by n - i. Clearly,  $\phi$ is an automorphism of the colored flip graph  $\Gamma_n$ . Furthermore,

**Proposition 5.6.** For every  $T \in CTFT(n)$  the flip distance between T and  $\phi(T)$  is equal to  $Diam(\Gamma_n)$ .

To prove that we need the following Lemma. Let f be the natural bijection from CTFT(n) to  $R_n$ : f(T) := r if  $rT_0 = T$ . Then

**Lemma 5.7.** For every  $r = a_0^{\epsilon_0} \cdots a_{n-1}^{\epsilon_{n-1}} a_n^{\epsilon_n}$  with  $\epsilon_i \in \{0,1\}$   $(0 \le i < n)$  and  $0 \le \epsilon_n < n+4$ 

$$f^{-1}\phi(rT_0) = \prod_{i=0}^{n-1} a_i^{1-\epsilon_{n-1-i}} \cdot a_n^m,$$

where  $m := (2 + \sum_{i=0}^{n} \epsilon_i) \pmod{n+4}$ .

**Proof of Proposition 5.6.** By Corollary 4.3, we may assume that  $\epsilon_n = 0$ . Then by Lemma 5.7,  $f^{-1}\phi(rT_0) = a_0^{1-\epsilon_{n-1}} \cdots a_{n-1}^{1-\epsilon_0} a_n^m$ , where  $m = 2 + \sum_{i=0}^{n-1} \epsilon_i$ . By Claim 3.12,

$$\ell(f^{-1}\phi(rT_0)) - \ell(r) = (2 + \sum_{i=0}^{n-1} \epsilon_i)(n+1) + \sum_{i=0}^{n-1} (i+1)(1 - \epsilon_{n-1-i}) - \sum_{i=0}^{n-1} (i+1)\epsilon_i$$
$$= 2(n+1) + \sum_{i=0}^{n-1} (i+1) + \sum_{i=0}^{n-1} \epsilon_i((n+1) - (i+1) - (n-i)) = \frac{(n+1)(n+4)}{2}.$$

Hence by (8),  $\operatorname{dist}_{\Gamma_n}(f^{-1}\phi(rT_0), r) \geq \frac{(n+1)(n+4)}{2}$ , so it is equal to the diameter.

Another antipode may be obtained by rotation. For an even n let  $\psi$  denote the rotation of a triangle free triangulation  $T \in CTFT(n)$  by  $\pi$  with respect to the center of  $P_{n+4}$ . Then

**Proposition 5.8.** For every even n and  $T \in CTFT(n)$  the flip distance between T and  $\psi(T)$  is equal to  $\text{Diam}(\Gamma_n)$ .

*Proof.* Without loss of generality,  $r = f^{-1}(T) = a_0^{\epsilon_0} \cdots a_{n-1}^{\epsilon_{n-1}}$ . By the proof of Observation 4.2, for every  $r \in R_n$   $f^{-1}\psi(rT_0) = ra_n^{(n+4)/2}$ . Hence, by Claim 3.12,

$$\ell(f^{-1}\psi(rT_0)) - \ell(r) = \frac{n+4}{2}(n+1).$$

Combining this with (8) yields

$$\operatorname{dist}_{\Gamma_n}(f^{-1}\psi(rT_0), r) \ge \frac{n+4}{2}(n+1) = \operatorname{Diam}(\Gamma_n).$$

### 6. Final Remarks

The colored flip-graph is bipartite; the bipartition is fixed by the parity of the corresponding elements in  $R_n$ .

Recall the natural bijection  $f: CTFT(n) \longrightarrow R_n$ , defined by f(T) := r if  $rT_0 = T$ .

**Definition 6.1.** For every  $T \in CTFT(n)$  associate a sign

$$\operatorname{sign}(T) := (-1)^{\ell(f(T))}.$$

A triangulation  $T \in CTFT(n)$  is even if sign(T) = 1 and odd otherwise.

**Proposition 6.2.** The graph  $\Gamma_n$  is bipartite; the flip operation changes the sign.

*Proof.* By Proposition 4.1, the vertices of  $\Gamma_n$  may be identified with elements in  $R_n$ , where for every pair  $r, s \in R_n$  (r, s) is an edge in the colored flip graph if and only if  $rs^{-1}$  is a Coxeter generator or equals to  $(a_{n-1}a_n^{n+3})^{\pm 1}$ . Notice that for every n the length  $\ell(a_{n-1}a_n^{n+3}) = n + (n+1)(n+3)$  is odd. We conclude that if (r, s) is an edge then r and s differ by the parity of their Coxeter length.  $\Box$ 

**Proposition 6.3.** The number of even triangulations is equal to the number of odd triangulations.

*Proof.* By definition of the sign, it suffices to show that there exists an invertible map from  $R_n$  to itself, which changes the parity of the length. A left multiplication by  $s_0$  is such a map.

Hereby we mention (without proofs) some properties of the stabilizer  $St_n$ .

**Proposition 6.4.** The stabilizer  $St_n$  is isomorphic to the direct product  $\widetilde{A}_n \otimes \mathbb{Z}$ .

Even though  $St_n$  is not a parabolic subgroup of  $\widetilde{C}_n$  the following remarkable property holds.

**Proposition 6.5.** Every coset of  $St_n$  in  $C_n$  has a unique shortest representative.

The set of shortest representatives may be constructed from  $R_n$  by a slight modification. Let  $B(n,r) := \{\pi \in \widetilde{C}_n : \ell(\pi) \leq r\}$  be the ball of radius r in  $\widetilde{C}_n$ .

**Proposition 6.6.** The set

$$\hat{R}_n := \left( R_n \cap B(n, \frac{(n+1)(n+4)}{2}) \right) \bigcup \left( R_n \setminus B(n, \frac{(n+1)(n+4)}{2}) \right) g_n^{-1}$$

forms a complete list of shortest representatives of the left cosets of  $St_n$  in  $C_n$ .

Finally, the computation of the diameter of the flip graph of uncolored trianglefree triangulations involves a surprisingly subtle optimization problem and will be addressed elsewhere.

7. Appendix: Proofs of Lemma 3.13 and Corollary 3.14

#### Proof of Lemma 3.13.

First, notice that, by the braid relations of  $\widetilde{C}_n$ , (letting  $a_{-1} := id$ )

- $s_i a_j = a_j s_i$   $(-2 \le j 1 < i \le n);$ (9)
- $s_i a_i = a_{i-1}$  and  $s_i a_{i-1} = a_i$   $(0 \le i \le n)$ (10)

(11) 
$$s_i a_j = a_j s_{i+1}$$
  $(0 < i < j \text{ and } i \neq n-1);$ 

and

$$(12) s_{n-1}a_n = a_n g_0$$

and

where  $g_0 := s_0 s_1 \cdots s_{n-2} s_n s_{n-1} s_n s_{n-2} \cdots s_1 s_0$ . Recall that  $g_0 \in St_n$  (see Theorem 3.3).

We proceed by cases analysis.

Case (a).  $\epsilon_{i-1} = 0$  and  $\epsilon_i > 0$  (where  $\epsilon_{-1} := 0$ ). By (10) and (9),

$$s_{i}r = s_{i}a_{0}^{\epsilon_{0}} \cdots a_{i-2}^{\epsilon_{i-2}}a_{i}^{\epsilon_{i}}a_{i+1}^{\epsilon_{i+1}} \cdots a_{n}^{\epsilon_{n}} = a_{0}^{\epsilon_{0}} \cdots a_{i-2}^{\epsilon_{i-2}}s_{i}a_{i}a_{i}^{\epsilon_{i}-1}a_{i+1}^{\epsilon_{i+1}} \cdots a_{n}^{\epsilon_{n}}$$
$$= a_{0}^{\epsilon_{0}} \cdots a_{i-2}^{\epsilon_{i-2}}a_{i-1}a_{i}^{\epsilon_{i}-1}a_{i+1}^{\epsilon_{i+1}} \cdots a_{n}^{\epsilon_{n}} \in R_{n}.$$

**Case (b).** 0 < i < n,  $\epsilon_{i-1} = 1$  and  $\epsilon_i = 0$ , or i = 0 and  $\epsilon_0 = 0$ . Since  $s_i^2 = 1$ , it follows from the analysis of the previous case that in this case

$$s_i r = a_0^{\epsilon_0} \cdots a_{i-2}^{\epsilon_{i-2}} a_i a_{i+1}^{\epsilon_{i+1}} \cdots a_n^{\epsilon_n} \in R_n.$$

Case (c). i = n.

If  $\epsilon_{n-1} = 1$  then  $s_n r = a_0^{\epsilon_0} \cdots a_{n-2}^{\epsilon_{n-2}} a_n^{\epsilon_n+1}$ . For  $\epsilon_n < n+3$  this is an element in  $R_n$ . If  $\epsilon_n = n+3$  then, since  $a_n^{n+4} \in St_n$ ,  $s_n r \in a_0^{\epsilon_0} \cdots a_{n-2}^{\epsilon_{n-2}} St_n$ . If  $\epsilon_{n-1} = 0$  then  $s_n r = a_0^{\epsilon_0} \cdots a_{n-2}^{\epsilon_{n-2}} a_{n-1} a_n^{\epsilon_n-1}$ . This element is in  $R_n$  if  $\epsilon_n > 0$ , and belongs to  $a_0^{\epsilon_0} \cdots a_{n-2}^{\epsilon_{n-2}} a_{n-1} a_n^{\epsilon_n+3} St_n$  otherwise.

Case (d). 0 < i < n,  $\epsilon_{i-1} = 1$  and  $\epsilon_i = 1$ . By the braid relations of  $\widetilde{C}_n$ , for every 0 < i < n,  $s_i a_{i-1} a_i = a_i^2 = a_{i-1} a_i s_1$ . Hence

$$s_{i}r = s_{i}a_{0}^{\epsilon_{0}} \cdots a_{i-2}^{\epsilon_{i-2}}a_{i-1}a_{i}a_{i+1}^{\epsilon_{i+1}} \cdots a_{n}^{\epsilon_{n}} = a_{0}^{\epsilon_{0}} \cdots a_{i-2}^{\epsilon_{i-2}}s_{i}a_{i-1}a_{i}a_{i+1}^{\epsilon_{i+1}} \cdots a_{n}^{\epsilon_{n}}$$
$$= a_{0}^{\epsilon_{0}} \cdots a_{i-2}^{\epsilon_{i-2}}a_{i-1}a_{i}s_{1}a_{i+1}^{\epsilon_{i+1}} \cdots a_{n}^{\epsilon_{n}} = rs_{1} \in rSt_{n}$$

**Case (e).**  $0 < i < n, \epsilon_{i-1} = 0$  and  $\epsilon_i = 0$ .

By (9)

$$s_{i}r = a_{0}^{\epsilon_{0}} \cdots a_{i-2}^{\epsilon_{i+2}} s_{i}a_{i+1}^{\epsilon_{i+1}} \cdots a_{n}^{\epsilon_{n}} = a_{0}^{\epsilon_{0}} \cdots a_{i-2}^{\epsilon_{i+2}} a_{i+1}^{\epsilon_{i+1}} \cdots a_{n-1}^{\epsilon_{n-1}} s_{i+k}a_{n}^{\epsilon_{n}},$$

where  $k := \#\{j : i < j < n, \epsilon_j = 1\}.$ 

If  $i + k < n - \epsilon_n$  then, by (11),  $s_{i+k}a_n^{\epsilon_n} = a_n^{\epsilon_n}s_{i+k+\epsilon_n}$ , so that  $s_ir = rs_{i+k+\epsilon_n}$ . Since  $0 < i + k + \epsilon_n < n$ ,  $s_{i+k+\epsilon_n} \in St_n$ , thus  $s_ir \in rSt_n$ .

If  $i + k \ge n - \epsilon_n$ , then by definition of k, i + k = n - 1. By (12), (13) and (11),

$$s_{i+k}a_n^{\epsilon_n} = a_n g_0 a_n^{\epsilon_n - 1} = \begin{cases} a_n^{\epsilon_n} g_0, & \text{if } \epsilon_n = 1, \\ a_n^{\epsilon_n} s_{\epsilon_n - 1}, & \text{if } 1 < \epsilon_n \le n, \\ a_n^{\epsilon_n} g_0, & \text{if } \epsilon_n = n + 1, \\ a_n^{\epsilon_n} s_{m-1}, & \text{if } \epsilon_n = n + m, \ m = 2, 3. \end{cases}$$

Hence  $s_i r \in rSt_n$ .

**Proof of Corollary 3.14.** The proof follows from the case-by-case analysis in the proof of Lemma 3.13. If  $\epsilon_{i-1} = 0$  and  $\epsilon_i > 0$  then  $s_i r = s_i (\cdots a_{i-1}^0 a_i^{\epsilon_i} \cdots) = \cdots a_{i-1} a_i^{\epsilon_i - 1} \cdots$ . By Claim 3.12,  $\ell(s_i r) < \ell(r)$ . If  $\epsilon_{i-1} = 1$  and  $\epsilon_i = 0$ , by same argument  $\ell(s_i r > \ell(r)$ . Similarly, for i = n and  $\epsilon_{n-1} = 1$ . Otherwise, by Lemma 3.13,  $s_i r = rg$  for some  $g \in St_n$ . By the length-additivity property [3, §1.10],  $\ell(s_i r) = \ell(r) + \ell(g) \ge \ell(r)$ .

### References

- A. Björner and F. Brenti, Combinatorics of Coxeter groups. Graduate Texts in Mathematics, 231. Springer, New York, 2005.
- [2] P. Dehoronoy, Dual presentation of Thompson's group F and flip distance between triangulations, Lecture notes (CIRM, June 2008).
- [3] J.E. Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics. 29. Cambridge University Press, Cambridge, 1990.
- [4] B. E. Sagan, Proper partitions of a polygon and k-Catalan numbers, Ars Combin. 88 (2008), 109–124.
- [5] D. D. Sleator, R. E. Tarjan and W. P. Thurston, Rotation distance, triangulations, and hyperbolic geometry, J. Amer. Math. Soc. 1 (1988), 647–681.

DEPARTMENT OF MATHEMATICS, BAR-ILAN UNIVERSITY, RAMAT-GAN 52900, ISRAEL *E-mail address*: radin@math.biu.ac.il

DEPARTMENT OF MATHEMATICS, INSTITUTE OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE (IMECC), STATE UNIVERSITY OF CAMPINAS (UNICAMP), 13.081 CAMPINAS SP, BRAZIL

*E-mail address*: mfirer@ime.unicamp.br

DEPARTMENT OF MATHEMATICS, BAR-ILAN UNIVERSITY, RAMAT-GAN 52900, ISRAEL *E-mail address:* yuvalr@math.biu.ac.il