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TRIANGLE-FREE TRIANGULATIONS

RON M. ADIN, MARCELO FIRER, AND YUVAL ROICHMAN

Abstract. The flip operation on colored inner-triangle-free triangulations
of a convex polygon is studied. It is shown that the affine Weyl group
eCn acts transitively on these triangulations by colored flips, and that the
resulting colored flip graph is closely related to a lower interval in the weak

order on eCn. Lattice properties of this order are then applied to compute
the diameter.
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1. Introduction

In a seminal paper, using volume computations in hyperbolic geometry, Sleator,
Tarjan and Thurston [5] computed the diameter of the flip graph of all triangu-
lations of a convex polygon. For special classes of triangulations, the diameter
problem – and, sometimes, even the question of connectivity – is still open. For
instance, monochromatic-triangle-free triangulations were introduced by Propp.
Sagan [4] showed that the corresponding flip graph is connected only if two colors
are used. The diameter in this case is not known.
This paper studies the set of inner-triangle-free triangulations, which is con-

tained in the set of monochromatic-triangle-free triangulations. Methods from
Coxeter group theory are applied to describe the structure of the resulting colored
flip graph and to compute its diameter. It is shown that the affine Weyl group

C̃n acts transitively, by flips, on such triangulations. The stabilizer is computed,
leading to an interpretation of the flip graph as a Schreier graph. This graph is

closely related to a distinguished lower interval in the weak order on C̃n. Lattice
properties of this order are then applied to compute the diameter.

2. Basic Concepts

Label the vertices of a convex (n + 4)-gon Pn+4 (n > 0) by the elements
0, . . . , n + 3 of the additive cyclic group Zn+4. Consider a triangulation (with
no extra vertices) of the polygon. Each edge of the polygon is called an external
edge of the triangulation; all other edges of the triangulation are called internal
edges, or chords.

Definition 2.1. A triangulation of a convex (n + 4)-gon Pn+4 is called inner-
triangle-free (or simply triangle-free) if it contains no triangle with 3 internal
edges. The set of all triangle-free triangulations of Pn+4 is denoted TFT (n).

Definition 2.2. A chord in Pn+4 is called short if it connects the vertices labeled
i− 1 and i+ 1, for some i ∈ Zn+4.

Claim 2.3. For n > 0, a triangulation of Pn+4 is triangle-free if and only if it
contains only two short chords.

Proof. Any triangulation of Pn+4 consists of n+1 diagonals and n+2 triangles.
Each chord lies in exactly 2 triangles. Thus the average number of chords per

triangle is 2(n+1)
n+2 = 2− 2

n+2 . By definition, a triangulation is triangle-free if and
only if each triangle contains at most 2 chords. On the other hand, each triangle
contains at least one chord. One concludes that there are exactly two triangles
each containing only one chord, completing the proof. �

Definition 2.4. A proper coloring of a triangulation T ∈ TFT (n) is a labeling
of the chords by 0, . . . , n in the following inductive way: Choose a short chord
and label it 0. Inductively, a chord which was not yet labeled and is contained in
a triangle whose other chord has been labeled i, is labeled i+ 1.
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It is easy to see that this uniquely defines the coloring. The set of all properly
colored triangle-free triangulations is denoted CTFT (n).

Definition 2.5. Each chord in a triangulation is a diagonal of a unique quad-
rangle (the union of two adjacent triangles). Replacing this chord by the other
diagonal of that quadrangle is a flip of the chord.
The colored flip graph Γn is defined as follows: the nodes are all the colored

triangle-free triangulations in CTFT (n). Two triangulations are connected in
Γn by an arc colored i if one is obtained from the other by a flip of the chord
labeled i.

By Claim 2.3,

Corollary 2.6. For n > 0, any triangle-free triangulation of Pn+4 has exactly
two proper colorings. In other words,

#CTFT (n) = 2 ·#TFT (n).

Definition 2.7. Define a map

ϕ : CTFT (n) → Zn+4 × Z
n
2

as follows: Let T ∈ CTFT (n). If the (short) chord labeled 0 in T is [a− 1, a+1]
for a ∈ Zn+4, let ϕ(T )0 := a. For 1 ≤ i ≤ n, assume that the chord labeled i − 1
in T is [a − k, a +m] for some k,m ≥ 1, k +m = i + 1. The chord labeled i is
then either [a− k − 1, a+m] or [a− k, a+m+ 1]. Let ϕ(T )i be 0 in the former
case and 1 in the latter.

Observation 2.8. ϕ is a bijection.

Corollary 2.9. For n > 0, the number of triangle-free triangulations of a convex
(n+ 4)-gon is

#CTFT (n) = (n+ 4) · 2n.

3. Group Action by Flips

In this section we assume that n > 1.

3.1. The C̃n-Action. Let C̃n be the affine Weyl group generated by

S = {s0, s1, . . . , sn−1, sn}

subject to the Coxeter relations

(1) s2i = 1 (∀i),

(2) (sisj)
2 = 1 (|j − i| > 1),

(3) (sisi+1)
3 = 1 (1 ≤ i < n− 1),

and

(4) (sisi+1)
4 = 1 (i = 0, n− 1).
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The group C̃n acts naturally on CTFT (n) by flips: generator si flips the chord
labeled i in T ∈ CTFT (n), provided that the resulting colored triangulation still
belongs to CTFT (n). If this is not the case, T is unchanged by si.
Notice that si(T ) = T if and only if ϕ(T )i = ϕ(T )i+1; also the only short

chords are labeled by 0 and n, hence s0 and sn never leave the corresponding
chords unchanged. Furthermore, one can easily verify that by definition, the
following observation holds.

Observation 3.1. For every T ∈ CTFT (n)

(ϕ(s0T ))j =





ϕ(T )j , if j 6= 0, 1,

ϕ(T )0 + 1 mod n+ 4, if j = 0 and ϕ(T )1 = 0,

ϕ(T )0 − 1 mod n+ 4, if j = 0 and ϕ(T )1 = 1,

ϕ(T )1 + 1 mod 2, if j = 1 and ϕ(T )1 = 0;

(ϕ(snT )j =

{
ϕ(T )j , if j 6= n, 00

ϕ(T )n + 1 mod 2, if j = n;

and

(ϕ(siT )j = ϕ(T )si(j) (0 < i < n),

Proposition 3.2. This operation determines a transitive C̃n-action CTFT (n).

Proof. To prove that the operation is a C̃n-action, it suffices to show that it is

consistent with the defining Coxeter relations of C̃n. Indeed, for every i, si acts
on a particular triangulation T ∈ CTFT (n) by flipping the diagonal labeled by
i or leaving it unchanged; in both cases s2i (T ) = T . If |j − i| > 1, si and sj act
on diagonals of quadrangles with no common triangle, hence si and sj commute.
Thus relation (2) is satisfied. Relations (3) and (4) may be verified by a direct
calculation of the corresponding flip operation, taking in account the relative
position of the relevant chords. Alternatively, all relations may be easily verified
using Observation 3.1. We leave verification of the details to the reader.

To prove that the action is transitive, notice first that s0 changes the location
of the chord labeled by 0, where the cyclic orientation of this change depends on
the relative position of the chord labeled by 1. It, thus, suffices to prove that the

maximal parabolic subgroup of C̃n, 〈s1, . . . , sn〉 acts transitively on all colored
triangle-free triangulations with a given 0 chord. Indeed, the parabolic subgroup
〈s1, . . . , sn〉 is isomorphic to the classical Weyl group Bn. By Observation 3.1,
the restricted Bn-action on all colored triangle-free triangulations with a given 0
chord, may be identified with the natural Bn-action on all subsets of {1, . . . , n},
and is thus transitive.

�

3.2. Stabilizer. Define

g0 := s0s1 · · · sn−2snsn−1snsn−2 · · · s1s0 ∈ C̃n
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and

gn := (sn · · · s0)
n+4 ∈ C̃n.

Denote:

T0 := ϕ−1(0, . . . , 0),

the canonical colored star triangulation.

Theorem 3.3. The subgroup Stn = 〈g0, s1, . . . , sn−1, gn〉 of C̃n is the stabilizer,

under the C̃n-action on CTFT (n), of the canonical colored star triangulation T0.

Stabilizers of other colored triangulations are subgroups of C̃n conjugate to Stn.

Proof. We shall proceed by a volume argument, using a sequence of technical
observations.
Consider the action of C̃n on R

n given by

s0(x1, x2, . . . , xn) := (−x1, x2, . . . , xn),

si(. . . , xi, xi+1, . . .) := (. . . , xi+1, xi, . . .) (1 ≤ i ≤ n− 1),

sn(x1, . . . , xn−1, xn) := (x1, . . . , xn−1, 2− xn).

It is well-known that this gives rise to a faithful n-dimensional linear representa-

tion of C̃n (the natural action of C̃n on its root space). The reflecting hyperplanes
for the reflections si are

H0 := {(x1, . . . , xn) ∈ R
n |x1 = 0},

Hi := {(x1, . . . , xn) ∈ R
n |xi = xi+1} (1 ≤ i ≤ n− 1),

Hn := {(x1, . . . , xn) ∈ R
n |xn = 1}.

Observation 3.4. A fundamental region for the above action of C̃n is the n-
dimensional simplex Fund1 with vertices v0, . . . , vn ∈ R

n, where

vi := (0, . . . , 0︸ ︷︷ ︸
i

, 1, . . . , 1︸ ︷︷ ︸
n−i

) (0 ≤ i ≤ n).

vi is the intersection point of the reflecting hyperplanes for all generators of

C̃n except si.
The generators of Stn are s1, . . . , sn−1 acting as above, as well as

g0(x1, x2, . . . , xn−1, xn) := (xn − 2, x2, . . . , xn−1, x1 + 2)

and

gn = (sn · · · s0)
n+4, (sn · · · s0)(x1, x2, . . . , xn) := (x2, . . . , xn, x1 + 2).

Thus g0, s1, . . . , sn−1 are reflections, while gn is a cyclic permutation of coordi-
nates combined with a translation. The reflecting hyperplanes for g0, s1, . . . , sn−1

are

H ′
0 := {(x1, . . . , xn) ∈ R

n |xn = x1 + 2},

Hi := {(x1, . . . , xn) ∈ R
n |xi = xi+1} (1 ≤ i ≤ n− 1).
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Observation 3.5. The subgroup 〈g0, s1, . . . , sn−1〉 of C̃n is an affine Weyl group

of type Ãn−1, and has

H := {(x1, . . . , xn) ∈ R
n |x1 + . . .+ xn = 0}

as an invariant subspace. A fundamental region for its action on H is the (n−1)-
dimensional simplex ∆n−1 with vertices w0, . . . , wn−1 ∈ H, where

wi :=
2

n
(i− n, . . . , i− n︸ ︷︷ ︸

i

, i, . . . , i︸ ︷︷ ︸
n−i

) (0 ≤ i ≤ n− 1).

Now note that

(sn · · · s0)(wi) = e+ wi−1 (0 ≤ i ≤ n− 1)

with the index i− 1 interpreted modulo n, and where

e =
2

n
(1, . . . , 1) ∈ H⊥.

Therefore gn acts as a linear transformation of H preserving ∆n−1, combined
with a translation by the vector (n+ 4)e ∈ H⊥.

Observation 3.6. A fundamental region for the action of Stn on R
n is the prism

Fund2 = ∆n−1 × I := {w + t(1, . . . , 1) |w ∈ ∆n−1, 0 ≤ t ≤ 2(n+ 4)/n}.

Return now to the action of C̃n on CTFT (n). Each of the generators of Stn
clearly stabilizes the canonical colored star triangulation T0 defined immediately

before Theorem 3.3, so that Stn is contained in the stabilizer of T0 under the C̃n-
action on CTFT (n). In order to show that Stn is actually equal to this stabilizer,

it suffices to show that both subgroups have the same finite index in C̃n. The
index of the stabilizer is the size of the orbit of T0, namely (by Proposition 3.2)

the number of colored triangulations, #CTFT (n). The index of Stn in C̃n is the
quotient of volumes vol(Fund2)/vol(Fund1). By Corollary 2.9 it thus suffices to
show that

vol(Fund2)/vol(Fund1) = (n+ 4) · 2n.

This indeed follows from the following computations, using the well-known for-
mula for the volume of a k-dimensional simplex ∆ with vertices v0, . . . , vk ∈ R

k:

vol(∆) =
1

k!
· [det(〈vi − v0, vj − v0〉)1≤i,j≤k]

1/2,

where 〈·, ·〉 is the standard inner product on R
k.

Claim 3.7.

vol(Fund1) =
1

n!
· det(A)1/2,

where, following Observation 3.4,

A := (aij) ∈ R
n×n,

aij := 〈vi − v0, vj − v0〉 = min(i, j) (1 ≤ i, j ≤ n).
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Claim 3.8.

vol(Fund2) = [2(n+ 4)/n] · n1/2 ·
1

(n− 1)!
· det(B)1/2,

where, following Observations 3.5 and 3.6,

B := (bij) ∈ R
(n−1)×(n−1),

bij := 〈wi −w0, wj −w0〉 =
4

n
·min(i, j) ·min(n− i, n− j) (1 ≤ i, j ≤ n− 1).

Proof. For i ≤ j,

bij = 〈wi − w0, wj − w0〉

=
4

n2
· [i · (i− n) · (j − n) + (j − i) · i · (j − n) + (n− j) · i · j]

=
4

n2
· [i · (j − n)2 + (n− j) · i · j]

=
4

n2
· i · (n− j) · n.

�

Claim 3.9.
det(A) = 1

and

det(B) =

(
4

n

)n−1

· nn−2 = 4n−1 · n−1.

Proof. By elementary row operations (subtracting row i − 1 from row i, for 2 ≤
i ≤ n), the n × n matrix A = (min(i, j)) can be transformed into an upper
triangular matrix with 1-s in and over the main diagonal, so that det(A) = 1.
By similar operations, the (n − 1) × (n − 1) matrix (n/4) · B = (min(i, j) ·

min(n− i, n− j)) can be transformed into the matrix C = (cij) with

ci,j =

{
1 · (n− j), if i ≤ j;

j · (−1), if i > j.

Subtracting row n− 1 from all the other rows we get the matrix D = (dij) with

di,j =





n, if 1 ≤ i ≤ j ≤ n− 2;

0, if 1 ≤ j < i ≤ n− 2;

0, if 1 ≤ i ≤ n− 2 and j = n− 1;

−j, if i = n− 1 and 1 ≤ j ≤ n− 2;

1, if i = j = n− 1.

It follows that det(C) = det(D) = nn−2 and det(B) = 4n−1 · n−1. �

Claim 3.10.

vol(Fund2)/vol(Fund1) = (n+ 4) · 2n = #CTFT (n).
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Proof. By Claims 3.7, 3.8 and 3.9,

vol(Fund1) =
1

n!

while

vol(Fund2) = 2(n+ 4)n−1/2 ·
1

(n− 1)!
· 2n−1n−1/2 =

1

n!
· 2n(n+ 4).

�

This completes the proof of Theorem 3.3.
�

3.3. Coset Representatives. The stabilizer Stn of the canonical colored star

triangulation T0 is not a parabolic subgroup of C̃n. However, it will be shown

that a distinguished set of representatives of Stn in C̃n forms an interval in the

weak order on C̃n.

For 0 ≤ i ≤ n denote ai := sisi−1 · · · s0 ∈ C̃n and bi := sn−isn−i+1 · · · sn ∈ C̃n.

Proposition 3.11. Each of the sets

Rn := {aǫ00 a
ǫ1
1 · · · a

ǫn−1

n−1 a
ǫn
n : ǫi ∈ {0, 1} (0 ≤ i < n) and 0 ≤ ǫn < n+ 4}

R′
n := {bǫ00 b

ǫ1
1 · · · b

ǫn−1

n−1 b
ǫn
n : ǫi ∈ {0, 1} (0 ≤ i < n) and 0 ≤ ǫn < n+ 4}

forms a complete list of representatives of the left cosets of Stn in C̃n.

Proof. Since #Rn ≤ (n+4) · 2n, in order to prove that Rn forms a complete list
of coset representatives it suffices to prove that for every T ∈ CTFT (n) there
exists an element r ∈ Rn such that rT0 = T , where T0 is the canonical colored
star triangulation. By Observation 2.8, it suffices to prove that for every vector
v = (v0, . . . , vn) ∈ Zn+4 × Z

n
2 there exists r ∈ Rn such that ϕ(rT0) = v. Indeed,

by Observation 3.1,

ϕ(avn0 a
vn−1

1 · · ·av1n−1a
−v0mod(n+4)
n T0) = (v0, . . . , vn).

The proof for R′
n is similar. �

Let ℓ(w) be the length of an element w ∈ C̃n with respect to Coxeter generating
set, that is,

ℓ(w) := min{ℓ : w = si1si2 · · · siℓ , sij ∈ {s0, . . . , sn} (∀j)}.

Claim 3.12. For every r = aǫ00 · · · aǫnn ∈ Rn

ℓ(r) =

n∑

j=0

(j + 1)ǫj =

n∑

j=0

n∑

i=j

ǫi.
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Proof. Notice that for every 0 ≤ i < n, a
ǫi+1

i+1 is a representative of shortest
length of a right coset of the parabolic subgroup 〈s0, . . . , si〉 in 〈s0, . . . , si, si+1〉.
The Claim follows, by induction, from the length-additivity property of parabolic
subgroups in Coxeter groups [3, §1.10] [1, §2.4]. �

The following lemma plays a key role in understanding the structure of Rn

(Proposition 3.15) and of the colored flip-graph (Propsosition 4.1).

Lemma 3.13. For every r = aǫ00 · · · aǫnn ∈ Rn and a Coxeter generator si of C̃n

exactly one of the following holds:

1. sir ∈ Rn.
2. sir ∈ rStn.
3. (i) i = n, ǫn−1 = 1 and ǫn = n+ 3. Then snr ∈ aǫ00 · · ·a

ǫn−2

n−2 Stn.

(ii) i = n, ǫn−1 = 0 and ǫn = 0. Then snr ∈ aǫ00 · · · a
ǫn−2

n−2 an−1a
n+3
n Stn.

Corollary 3.14. For every si ∈ S and r = aǫ00 · · · aǫnn ∈ Rn

ℓ(sir) < ℓ(r) ⇐⇒ ǫi−1 = 0 and ǫi > 0,

where ǫ0 := 0.

For proofs of Lemma 3.13 and Corollary 3.14 see Appendix (Section 7).

Denote

wo := a0a1 · · ·an−1a
n+3
n

the longest element in Rn.

Proposition 3.15. Rn is a self-dual lower interval {w ∈ C̃n : id ≤ w ≤ wo} in

the left weak order on C̃n; hence it forms a graded lattice.

Proof. By Corollary 3.14, for every r ∈ Rn and si ∈ S, ℓ(sir) < ℓ(r) implies that
r = · · · a0i−1a

ǫi
i · · · (ǫi > 0) for some 0 ≤ i ≤ n, thus

sir = · · · ai−1a
ǫi−1
i · · · ∈ Rn.

It follows that Rn is an interval in the left weak order.
Self-duality follows from the identity

rw0 = a1−ǫ0
0 a1−ǫ1

1 · · ·a
1−ǫn−1

n−1 an+3−ǫn
n

for all r = aǫ00 · · · aǫnn ∈ Rn.
�

Remark 3.16. Since Rn is an interval in the left weak order the rank of an
element is given by its Coxeter length. Thus the rank generating function is

(1 + q)(1 + q2) · · · (1 + qn)(1 + qn+1 + q2(n+1) + · · ·+ q(n+3)(n+1)),

(not necessarily unimodal).
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Lemma 3.17. For every pair of elements in Rn

aǫ00 · · · aǫnn < aδ00 · · ·aδnn

in the left weak order if and only if

(ǫn, . . . , ǫ0) < (δn, . . . , δ0)

in the dominance order; i.e.,
n∑

i=k

ǫi <
n∑

i=k

δi for all 0 ≤ k ≤ n.

Proof. By Corollary 3.14, the lemma holds for the covering relation. Proceed by
induction on the length of the chain. �

For every pair of elements r, s ∈ Rn denote by r ∧ s their join and by r ∨ s

their meet in the weak order on C̃n. Lemma 3.17 implies

Corollary 3.18. For every pair of elements in Rn

aǫ00 · · · aǫnn ∧ aδ00 · · · aδnn = aα0

0 · · · aαn
n ,

where

αk := min{
n∑

i=k

ǫi,
n∑

i=k

δi} −min{
n∑

i=k+1

ǫi,
n∑

i=k+1

δi} (0 ≤ k ≤ n),

and
aǫ00 · · ·aǫnn ∨ aδ00 · · ·aδnn = aβ0

0 · · · aβn
n ,

where

βk := max{
n∑

i=k

ǫi,
n∑

i=k

δi} −max{
n∑

i=k+1

ǫi,
n∑

i=k+1

δi} (0 ≤ k ≤ n).

It follows that

Corollary 3.19. Rn forms a modular lattice with respect to the weak order;
namely, for every r, s ∈ Rn

ℓ(r ∨ s) + ℓ(r ∧ s) = ℓ(r) + ℓ(s).

It should be noted that the weak order on C̃n is not modular.

Proof. Combining Corollary 3.18 with Claim 3.12 yields

ℓ(r ∨ s) =

n∑

j=0

n∑

i=j

βi =

n∑

j=0

max{

n∑

i=j

ǫi,

n∑

i=j

δi},

and, similarly,

ℓ(r ∧ s) =

n∑

j=0

min{

n∑

i=j

ǫi,

n∑

i=j

δi}.

Hence

ℓ(r ∧ s) + ℓ(r ∨ s) =

n∑

j=0

max{

n∑

i=j

ǫi,

n∑

i=j

δi}+

n∑

j=0

min{

n∑

i=j

ǫi,

n∑

i=j

δi}
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=

n∑

j=0

n∑

i=j

(ǫi + δi) = ℓ(r) + ℓ(s).

�

4. The Flip Graph: Algebraic Description

The colored flip graph Γn is isomorphic to the Schreier graph of the cosets of

Stn in C̃n with respect to the Coxeter generating set {s0, . . . , sn}. Furthermore,
fixing a set of coset representatives we can get an explicit description of Γn.

Proposition 4.1. The colored flip graph Γn is isomorphic to the graph whose
vertices are the elements in Rn; two distinct elements r1, r2 ∈ Rn forms an edge if

their quotient is a Coxeter generator of C̃n or they are of the form (v, van−1a
n+3
n ),

for any v = aǫ00 · · · a
ǫn−2

n−2 .

In other words, the flip graph is obtained from the (undirected) Hasse diagram
Σn of the left weak order on Rn by adding the edges (v, van−1a

n+3
n ), for any

v = aǫ00 · · · a
ǫn−2

n−2 .

Proof. Proposition 4.1 is an immediate consequence of Lemma 3.13. �

Observation 4.2. A right multiplication by an is an automorphism of the colored
flip graph Γn.

Proof. A rotation by 2π
n+4 of the colored triangulation aǫ00 · · · a

ǫn−1

n−1 a
t
nT0 gives the

triangulation aǫ00 · · · a
ǫn−1

n−1 a
t+1 (modn+4)
n T0. �

For every pair π, σ ∈ Rn let distΓn
(π, σ) be the distance between πT0 and σT0

in Γn.
It follows from Observation 4.2 that

Corollary 4.3. For every pair r, s ∈ Rn and an integer t

distΓn
(r, s) = distΓn

(ratn, sa
t
n).

5. The Flip Graph: Diameter

Denote by Diam(Γn) the diameter of the colored flip graph Γn.

Theorem 5.1. For every n ≥ 3

Diam(Γn) =
(n+ 1)(n+ 4)

2
.

5.1. Proof of Theorem 5.1.
The proof relies on the intimate relation between the colored flip graph Γn and

the Hasse diagram of the weak order on Rn, see Proposition 4.1 and comment
afterwards. The upper bound (Lemma 5.4) is obtained by combining the proper-
ties of the weak order on Rn with the invariance of the flip graph under rotation.
The grading of the Hasse diagram together with Proposition 4.1 implies a lower
bound (Lemma 5.5).
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5.1.1. Distance. For a graph G denote by distG(v, u) the distance (i.e., the length
of the shortest path) between the vertices u and v. We begin with a general
lemma.

Lemma 5.2. Let P be a modular lattice. Let ℓ be its rank function and Σ its
Hasse diagram. Then for every pair r, s ∈ P

distΣ(r, s) = ℓ(r ∨ s)− ℓ(r ∧ s).

Proof. If there is a shortest path between r and s with at most one pick (local
maximum), then by the modularity

distΣ(r, s) = 2ℓ(r ∨ s)− ℓ(r)− ℓ(s) = ℓ(r ∨ s)− ℓ(r ∧ s).

Given a shortest path from r to s with k > 1 picks let v, w be two consequent
picks in the path. There is a unique local minimum z in the path from v to w.
By the minimality of the length of the path, z = v ∧ w. By the modularity we
can replace the segment from v to w through the meet z by a path through v∧w
and obtain a path of same length and k− 1 picks. Proceed by recursion to get a
shortest path with one pick.

�

Lemma 5.3. For every pair r =
n∏

i=0

aǫii , s =
n∏

i=0

aδii ∈ V (Γn) = Rn

distΓn
(r, s) =

min{ℓ(ra−ǫn
n ∨ sa−ǫn

n )− ℓ(ra−ǫn
n ∧ sa−ǫn

n ), ℓ(ra−δn
n ∨ sa−δn

n )− ℓ(ra−δn
n ∧ sa−δn

n )}.

Proof. Let Cn be a cycle of length n + 4 whose set of vertices is {ui : 0 ≤ i <
n+ 4} and edges (ui, u(i+1)mod(n+4)) for every 0 ≤ i < n+ 4. Consider the map

ρ : Γn −→ Cn, defined by ρ(aǫ00 · · · a
ǫn−1

n−1 a
i
n) := ui. By Proposition 4.1, ρ is a

graph homomorphism. Let Ui be the pre-image of ui, i.e.

Ui := ρ−1(ui) = {aǫ00 · · ·a
ǫn−1

n−1 a
i
n : ǫj ∈ {0, 1} for all 0 ≤ j < n} (0 ≤ i < n+4).

Notice that the subgraph of Γn induced by Ui is isomorphic to the undirected
Hasse diagram of the weak order on Ui.
We first claim that for any r, s ∈ Rn a shortest path from r to s in Γn does not

contain a sequence of the form v1, . . . , vk, where v1 =
n−1∏
j=0

a
µj

j ain, vk =
n−1∏
j=0

a
νj
j a

i
n ∈

Ui for some i and v2, . . . , vk−1 ∈ Uj for j = (i±1) mod (n+4). If there is such a
shortest path, then by Corollary 4.3, we may assume that i = 0 and j = 1; namely
v1, vk ∈ U0 and v1, v2, . . . , vk−1 ∈ U1. By assumption of the length minimality of
the path

distU0
(v1, vk) ≥ 2 + distU1

(v2, vk−1).
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On the other hand, by Proposition 4.1, µn−1 = νn−1 = 1, v2 =
n−2∏
j=0

a
µj

j an, and

vk−1 =
n−2∏
j=0

a
νj
j an. Hence, by Lemma 5.2 together with Corollary 3.18,

distU0
(v1, vk) = distU1

(v2, vk−1).

Contradiction.
We deduce that the ρ-image of the shortest path between any pair r, s ∈ Ui

for some i is either of length zero or a multiple of a full cycle. But it cannot be
a multiple of a full cycle since a pre-image of a full cycle is of length at least

ℓ(an+3
n )− ℓ(a0 · · · an−1) =

(n+ 1)(n+ 5)

2
.

On the other hand, since Ui is a modular lattice, the diameter of Ui is the
difference between the lengths of the top and bottom elements in Ui. That is

(5) Diam(Ui) = ℓ(a0 · · · an−1ai)− ℓ(ai) =

(
n+ 1

2

)
.

One concludes that for any pair r, s ∈ Ui the shortest path is contained in the
modular lattice Ui, so the lemma holds for such a pair.
If r ∈ Ui, s ∈ Uj and i < j then by the above arguments the ρ-image of the

shortest path between r and s is one of the two intervals from ui to uj in the
cycle. By Corollary 4.3, a right multiplication (by a−ǫn

n if the image contains ui+1

or by a−δn otherwise) maps the shortest path to a shortest path in the modular
lattice Rn. Lemma 5.2 completes the proof.

�

5.1.2. Diameter: Upper Bound. In this subsection we prove

Lemma 5.4. For every n ≥ 3

Diam(Γn) ≤
(n+ 1)(n+ 4)

2
.

Proof. By the lattice property and modularity of Rn (Corollary 3.19) together

with Claim 3.12 and Corollary 3.18, for every r = aǫ00 · · ·aǫnn , s = aδ00 · · ·aδnn ∈ Rn

(6) distΓn
(r, s) = ℓ(r ∨ s)− ℓ(r ∧ s) =

n∑

j=0

|
n∑

i=j

(ǫi − δi)|.

If ǫn = δn then there exists 0 ≤ i < n+ 4 such that r, s ∈ Ui. Then by (5),

distΓn
(r, s) ≤

(
n+ 1

2

)
.

If ǫn 6= δn then by Corollary 4.3, we may assume, without loss of generality, that
δn = 0. Also, by note that Corollary 4.3, distΓn

(r, s) = dist(ra−ǫn
n , sa−ǫn

n ). Now,
by Lemma 5.3 together with (6) and the assumption δn = 0,
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(7) distΓn
(r, s) = min{

n∑

j=0

|ǫn +

n−1∑

i=j

(ǫi − δi)|,

n∑

j=0

|n+ 4− ǫn −

n−1∑

i=j

(ǫi − δi)|}.

For 0 ≤ j ≤ n denote xj := ǫn +
n∑

i=j

(ǫi − δi)−
n+4
2 . Then

distΓn
(r, s) = min{

n∑

j=0

|
n+ 4

2
+ xj |,

n∑

j=0

|
n+ 4

2
− xj |},

where, by definition, (i) −n+4
2 ≤ xn <

n+4
2 and (ii) |xj+1 − xj | ≤ 1.

By (i), n+4
2 + xn ≥ 0. Combining this with (ii) implies that if n+4

2 + xj is

negative for some j, then there exists 0 ≤ jo ≤ n, such that n+4
2 +xjo = 0. Then,

by (ii), for every 0 ≤ j ≤ n, |n+4
2 + xj | ≤ |j − jo|. Hence

n∑
j=0

|n+4
2 + xj | ≤

(
n+1
2

)
.

So, we may assume that n+4
2 + xj is positive for all 0 ≤ j ≤ n. By a similar

reasoning (regarding the second sum), we may assume that n+4
2 − xj is positive

for all 0 ≤ j ≤ n. Thus

distΓn
(r, s) = min{

n∑

j=0

n+ 4

2
+ xj ,

n∑

j=0

n+ 4

2
− xj} ≤

(n+ 1)(n+ 4)

2
.

�

5.1.3. Diameter: Lower Bound. In this subsection we prove

Lemma 5.5. Let n ≥ 3. For every r ∈ Rn there exists an element s ∈ Rn such
that

distΓn
(r, s) ≥

(n+ 1)(n+ 4)

2
.

In particular,

Diam(Γn) ≥
(n+ 1)(n+ 4)

2
.

Proof. Since the Hasse diagram Σn on Rn is graded by the length function ℓ,
and since Γn is obtained from the Σn by adding the edges (v, van−1a

n+3
n ), for

any v = aǫ00 · · · a
ǫn−2

n−2 (Proposition 4.1) it follows that for every r, s ∈ Rn

(8) distΓn
(r, s) ≥ min{|ℓ(s)− ℓ(r)|, ℓ(an−1a

n+3
n ) + 1− |ℓ(s)− ℓ(r)|}.

It follows that
Diam(Γn) = max{distΓn

(r, s) : r, s ∈ Rn}

≥ max{min{d, (n+ 1)(n+ 4)− d} : 0 ≤ d ≤ 3

(
n+ 2

2

)
},

where d := |ℓ(s)− ℓ(r)|, hence 0 ≤ d ≤ ℓ(wo) =
(
n
2

)
+(n+3)(n+1) = 3

(
n+2
2

)
. By

Proposition 3.15, for any given r ∈ Rn, there exists an s ∈ Rn of length distance
(n+1)(n+4)

2 , completing the proof.
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�

Combining Lemma 5.4 with Lemma 5.5 completes the proof of Theorem 5.1.
�

5.2. Antipodes.
Let φ : CTFT (n) −→ CTFT (n) denote the map which reverse the coloring of

a triangle free triangulation; namely each color i is replaced by n− i. Clearly, φ
is an automorphism of the colored flip graph Γn. Furthermore,

Proposition 5.6. For every T ∈ CTFT (n) the flip distance between T and φ(T )
is equal to Diam(Γn).

To prove that we need the following Lemma. Let f be the natural bijection
from CTFT (n) to Rn: f(T ) := r if rT0 = T . Then

Lemma 5.7. For every r = aǫ00 · · · a
ǫn−1

n−1 a
ǫn
n with ǫi ∈ {0, 1} (0 ≤ i < n) and

0 ≤ ǫn < n+ 4

f−1φ(rT0) =

n−1∏

i=0

a
1−ǫn−1−i

i · amn ,

where m := (2 +
n∑

i=0

ǫi)(mod n+ 4).

Proof of Proposition 5.6. By Corollary 4.3, we may assume that ǫn = 0.

Then by Lemma 5.7, f−1φ(rT0) = a
1−ǫn−1

0 · · ·a1−ǫ0
n−1 a

m
n , where m = 2 +

n−1∑
i=0

ǫi.

By Claim 3.12,

ℓ(f−1φ(rT0))− ℓ(r) = (2 +

n−1∑

i=0

ǫi)(n+ 1) +

n−1∑

i=0

(i+ 1)(1− ǫn−1−i)−

n−1∑

i=0

(i+ 1)ǫi

= 2(n+ 1) +

n−1∑

i=0

(i+ 1) +

n−1∑

i=0

ǫi((n+ 1)− (i+ 1)− (n− i)) =
(n+ 1)(n+ 4)

2
.

Hence by (8), distΓn
(f−1φ(rT0), r) ≥

(n+1)(n+4)
2 , so it is equal to the diameter.

�

Another antipode may be obtained by rotation. For an even n let ψ denote
the rotation of a triangle free triangulation T ∈ CTFT (n) by π with respect to
the center of Pn+4. Then

Proposition 5.8. For every even n and T ∈ CTFT (n) the flip distance between
T and ψ(T ) is equal to Diam(Γn).

Proof. Without loss of generality, r = f−1(T ) = aǫ00 · · ·a
ǫn−1

n−1 . By the proof of

Observation 4.2, for every r ∈ Rn f
−1ψ(rT0) = ra

(n+4)/2
n . Hence, by Claim 3.12,

ℓ(f−1ψ(rT0))− ℓ(r) =
n+ 4

2
(n+ 1).
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Combining this with (8) yields

distΓn
(f−1ψ(rT0), r) ≥

n+ 4

2
(n+ 1) = Diam(Γn).

�

6. Final Remarks

The colored flip-graph is bipartite; the bipartition is fixed by the parity of the
corresponding elements in Rn.
Recall the natural bijection f : CTFT (n) −→ Rn, defined by f(T ) := r if

rT0 = T .

Definition 6.1. For every T ∈ CTFT (n) associate a sign

sign(T ) := (−1)ℓ(f(T )).

A triangulation T ∈ CTFT (n) is even if sign(T ) = 1 and odd otherwise.

Proposition 6.2. The graph Γn is bipartite; the flip operation changes the sign.

Proof. By Proposition 4.1, the vertices of Γn may be identified with elements in
Rn, where for every pair r, s ∈ Rn (r, s) is an edge in the colored flip graph if
and only if rs−1 is a Coxeter generator or equals to (an−1a

n+3
n )±1. Notice that

for every n the length ℓ(an−1a
n+3
n ) = n+(n+1)(n+3) is odd. We conclude that

if (r, s) is an edge then r and s differ by the parity of their Coxeter length. �

Proposition 6.3. The number of even triangulations is equal to the number of
odd triangulations.

Proof. By definition of the sign, it suffices to show that there exists an invertible
map from Rn to itself, which changes the parity of the length. A left multiplica-
tion by s0 is such a map. �

Hereby we mention (without proofs) some properties of the stabilizer Stn.

Proposition 6.4. The stabilizer Stn is isomorphic to the direct product Ãn⊗Z.

Even though Stn is not a parabolic subgroup of C̃n the following remarkable
property holds.

Proposition 6.5. Every coset of Stn in C̃n has a unique shortest representative.

The set of shortest representatives may be constructed from Rn by a slight

modification. Let B(n, r) := {π ∈ C̃n : ℓ(π) ≤ r} be the ball of radius r in C̃n.

Proposition 6.6. The set

R̂n :=

(
Rn ∩B(n,

(n+ 1)(n+ 4)

2
)

)⋃(
Rn \B(n,

(n+ 1)(n+ 4)

2
)

)
g−1
n

forms a complete list of shortest representatives of the left cosets of Stn in C̃n.
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Finally, the computation of the diameter of the flip graph of uncolored triangle-
free triangulations involves a surprisingly subtle optimization problem and will
be addressed elsewhere.

7. Appendix: Proofs of Lemma 3.13 and Corollary 3.14

Proof of Lemma 3.13.
First, notice that, by the braid relations of C̃n, (letting a−1 := id)

(9) siaj = ajsi (−2 ≤ j − 1 < i ≤ n);

(10) siai = ai−1 and siai−1 = ai (0 ≤ i ≤ n)

(11) siaj = ajsi+1 (0 < i < j and i 6= n− 1);

and

(12) sn−1an = ang0,

and

(13) ans1 = g0an,

where g0 := s0s1 · · · sn−2snsn−1snsn−2 · · · s1s0. Recall that g0 ∈ Stn (see Theo-
rem 3.3).

We proceed by cases analysis.
Case (a). ǫi−1 = 0 and ǫi > 0 (where ǫ−1 := 0).
By (10) and (9),

sir = sia
ǫ0
0 · · · a

ǫi−2

i−2 a
ǫi
i a

ǫi+1

i+1 · · · aǫnn = aǫ00 · · · a
ǫi−2

i−2 siaia
ǫi−1
i a

ǫi+1

i+1 · · ·aǫnn

= aǫ00 · · · a
ǫi−2

i−2 ai−1a
ǫi−1
i a

ǫi+1

i+1 · · · aǫnn ∈ Rn.

Case (b). 0 < i < n, ǫi−1 = 1 and ǫi = 0, or i = 0 and ǫ0 = 0.
Since s2i = 1, it follows from the analysis of the previous case that in this case

sir = aǫ00 · · ·a
ǫi−2

i−2 aia
ǫi+1

i+1 · · · aǫnn ∈ Rn.

Case (c). i = n.
If ǫn−1 = 1 then snr = aǫ00 · · ·a

ǫn−2

n−2 a
ǫn+1
n . For ǫn < n + 3 this is an element in

Rn. If ǫn = n+ 3 then, since an+4
n ∈ Stn, snr ∈ aǫ00 · · · a

ǫn−2

n−2 Stn.

If ǫn−1 = 0 then snr = aǫ00 · · · a
ǫn−2

n−2 an−1a
ǫn−1
n . This element is in Rn if ǫn > 0,

and belongs to aǫ00 · · · a
ǫn−2

n−2 an−1a
ǫn+3
n Stn otherwise.

Case (d). 0 < i < n, ǫi−1 = 1 and ǫi = 1.

By the braid relations of C̃n, for every 0 < i < n, siai−1ai = a2i = ai−1ais1.
Hence

sir = sia
ǫ0
0 · · ·a

ǫi−2

i−2 ai−1aia
ǫi+1

i+1 · · · aǫnn = aǫ00 · · · a
ǫi−2

i−2 siai−1aia
ǫi+1

i+1 · · · aǫnn

= aǫ00 · · ·a
ǫi−2

i−2 ai−1ais1a
ǫi+1

i+1 · · ·aǫnn = rs1 ∈ rStn

Case (e). 0 < i < n, ǫi−1 = 0 and ǫi = 0.
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By (9)

sir = aǫ00 · · · a
ǫi+2

i−2 sia
ǫi+1

i+1 · · · aǫnn = aǫ00 · · · a
ǫi+2

i−2 a
ǫi+1

i+1 · · · a
ǫn−1

n−1 si+ka
ǫn
n ,

where k := #{j : i < j < n, ǫj = 1}.
If i + k < n− ǫn then, by (11), si+ka

ǫn
n = aǫnn si+k+ǫn , so that sir = rsi+k+ǫn .

Since 0 < i+ k + ǫn < n, si+k+ǫn ∈ Stn, thus sir ∈ rStn.
If i+ k ≥ n− ǫn, then by definition of k, i+ k = n− 1. By (12), (13) and (11),

si+ka
ǫn
n = ang0a

ǫn−1
n =






aǫnn g0, if ǫn = 1,

aǫnn sǫn−1, if 1 < ǫn ≤ n,

aǫnn g0, if ǫn = n+ 1,

aǫnn sm−1, if ǫn = n+m, m = 2, 3.

Hence sir ∈ rStn.
�

Proof of Corollary 3.14. The proof follows from the case-by-case analysis in
the proof of Lemma 3.13. If ǫi−1 = 0 and ǫi > 0 then sir = si(· · · a

0
i−1a

ǫi
i · · · ) =

· · ·ai−1a
ǫi−1
i · · · . By Claim 3.12, ℓ(sir) < ℓ(r). If ǫi−1 = 1 and ǫi = 0, by

same argument ℓ(sir > ℓ(r). Similarly, for i = n and ǫn−1 = 1. Otherwise, by
Lemma 3.13, sir = rg for some g ∈ Stn. By the length-additivity property [3,
§1.10], ℓ(sir) = ℓ(r) + ℓ(g) ≥ ℓ(r).

�
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