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Abstract. The spatial preferred attachment (SPA) model is a model for net-
worked information spaces such as domains of the World Wide Web, citation
graphs, and on-line social networks. It uses a metric space to model the hidden
attributes of the vertices. Thus, vertices are elements of a metric space, and link
formation depends on the metric distance between vertices. We show, through
theoretical analysis and simulation, that for graphs formed according to the
SPA model it is possible to infer the metric distance between vertices from the
link structure of the graph. Precisely, the estimate is based on the number of
common neighbours of a pair of vertices, a measure known as co-citation. To be
able to calculate this estimate, we derive a precise relation between the number
of common neighbours and metric distance. We also analyze the distribution of
edge lengths, where the length of an edge is the metric distance between its end
points. We show that this distribution has three different regimes, and that the
tail of this distribution follows a power law.

1. Introduction

Thanks to the World Wide Web and its hyperlinked structure, more and more
information is becoming available in the form of a networked information space:
a collection of information entities (documents, scientific papers, Web pages, in-
dividuals in a social network), connected by links between pairs of entities (refer-
ences, citations, hyperlinks, “friend” relationships). Studies of various networked
information spaces have given convincing evidence that a significant amount of
information about the entities represented by the vertex can be derived from the
graph representing the link structure. This has led to the application of graph-
theoretical techniques to such graphs, with the aim of developing methods to
understand the link structure and mine its information.

An important step in understanding the link structure is the development of
a graph model; a stochastic process that models the link formation. The first
generation of graph models was mainly aimed at explaining the graph-theoretical
properties observed in real-life networks. In such models, vertices are considered
anonymous, and link formation is only influenced by the current link structure. An
example is the seminal model by Barabási and Albert in [2] based on the principle
of preferential attachment: each new vertex attaches randomly to a prescribed
number of existing vertices, with a link probability proportional to the degree, so
vertices of high degree are more likely to receive a link from the new vertex.

Key words and phrases. Node similarity, co-citation, bibliographic coupling, link analysis,
complex networks, spatial graph model, SPA model.
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In networked information spaces, vertices are not only defined by their link
environment, but also by the information entity they represent. More recently,
attempts have been made to model this alternative view of the vertices through
spatial models. In a spatial model, vertices are embedded in a metric space, and
link formation is influenced by the metric distance between vertices. The metric
space is meant to be like a feature space, so that the coordinates of a vertex in this
space represent the information associated with the vertex. For example, in text
mining, documents are commonly represented as vectors in a word space. The
metric is chosen so that metric distance represents similarity, i.e. vertices whose
information entities are closely related will be at a short distance from each other
in the metric space.

In this paper, we focus on the Spatial Preferred Attachment (SPA) model, pro-
posed in [1], and analyze the relationship between the link structure of graphs
produced by the model, and the relative positions of the vertices in the metric
space. The SPA model generates directed graphs according to the following prin-
ciple. Vertices are points in a given metric space. Each vertex v has a sphere of
influence. The volume of the sphere of influence of a vertex is a function of its
in-degree. A new vertex u can only link to an existing vertex v if u falls inside the
sphere of influence of v. In the latter case, u links to v with probability p. The
SPA model incorporates the principle of preferential attachment, since vertices
with a higher in-degree will have a larger sphere of influence. A model for on-line
social networks based on similar principles can be found in [4, 5].

A number of spatial models have been proposed recently [6, 10, 11, 19, 12]. In
these models, as in the SPA model, the relationship between spatial distance and
link formation is determined by a threshold function: a link is possible if vertices
are within a prescribed threshold distance of each other, and impossible otherwise.
However, for these models the threshold distance remains constant throughout the
process, and does not depend on the degree, and decrease with time, as in the SPA
model.

A different class of graphs explores the interplay between distance and edge
likelihood—with associated graph properties—with more involved mechanisms
than simple thresholds: for example, in [23], each new vertex is born with m
edges, each joining a neighbour with probability proportional to the in-degrees
and a function of the distance between them. Variations include the deterministic
model [21] in which edges are formed based on the “utility” for the nodes in ques-
tion, utility incorporating both in-degree and distance; in [9], the model demands
that the number of nodes per unit volume is constant, and an analysis on the dis-
tribution of edge lengths is also included. Beyond the creation of models, [17] takes
a closer look at the concept of complex networks having an underlying geometry.
For a recent survey of spatial models, see [14].

Our first main result shows that, for the SPA model, the number of common in-
neighbours between a pair of vertices can, in many cases, be used to estimate the
distance between the vertices. Since the metric distance is assumed to represent
the similarity or “closeness” of the entities represented by the vertices, this means
that it is possible to estimate similarity between vertices by looking at the graph
only, i.e. without considering the underlying reality represented by the metric
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space. The number of common in-neighbours in a citation graph is known in
library science as the measure of co-citation, and is one the earliest measures
of graph-based similarity, proposed by Small in 1973 in [22]. Co-citation, and
the related measure of bibliographic coupling (from [15]) based on the number
of common out-neighbours, are widely used link similarity measures for scientific
papers, via the citation graph, for Web pages, and others [3, 8, 20, 18].

The question of determining similarity between vertices is one that is central
to many link mining applications. It is an important tool in searching, by finding
documents or Web pages that are similar to a given target document. It can also
be used as the basis to identify communities, or clusters, of similar vertices. A
purely graph-based measure of similarity can be used as a complementary indi-
cation of similarity between vertices when other information is unreliable (as is
often the case in the World Wide Web), largely unavailable (as in some biological
networks and online social networks), or protected by privacy laws (as in networks
representing phone calls or bank transactions).

Our result on the relationship between number of common neighbours and met-
ric distance is derived theoretically through an analysis of the SPA model. The
analytic result is asymptotic in the size of the graph. In order to test the result
on realistic graph sizes, we performed simulations for graphs of 100,000 vertices,
with various parameter choices. The simulations show that the real distance and
the predicted distance from the number of common neighbours are in very good
agreement.

Our second main result determines the distribution of the edge lengths, where
the length of an edge is the metric distance between its end points. Edge length
is a metric property of a graph feature, and edge length distribution is a com-
bined metric/graph property which is unique to spatial graph models. In the SPA
model, the maximum length of an edge is determined by the size of the sphere
of influence of its destination vertex, and this size is determined by the degree of
the vertex. Since the degrees follow a power law, we might expect that the edge
length distribution follows a power law. We show, both through theoretical results
and simulations, that the situation is slightly more complex. In fact, we present
clear evidence that, for a certain combination of model parameters, there are three
different regimes of the distribution. For the smallest edge lengths, the cumulative
edge length distribution is constant: almost all edges fall in this category. In the
mid range, we have a power law with coefficient between 0 and 1, and in the tail,
we have a power law with exponent greater than 1.

In Section 2, we describe the SPA model and derive some properties on the de-
gree of a vertex which we will need to establish our results. In Section 3, we give
the result on common in-neighbours and metric distance, and present the simula-
tion results. In Section 4, we state our theorem on edge length distribution, and
present the edge length distribution as obtained through simulations for various
parameters. In Section 5, we give proofs of all the main theorems.
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2. The SPA model

We start by giving a precise description of the SPA model, and deriving some
facts about the degrees of the vertices, which we will need to prove our main
results. In [1], the model is defined for a variety of metric spaces S. In this paper,
we let S be the unit hypercube in Rm, equipped with the torus metric derived
from any of the Lp norms. This means that for any two points x and y in S,

d(x, y) = min
{
||x− y + u||p : u ∈ {−1, 0, 1}m

}
.

The torus metric thus “wraps around” the boundaries of the unit square; this
metric was chosen to eliminate boundary effects. Let cm be the constant of pro-
portionality of volume used with the m-th power of the radius in m dimensions,
so the volume of a ball of radius r in m-dimensional space with the given metric
equals cmr

m. For example, for the Euclidean metric, c2 = π, and for the product
metric derived from L∞, cm = 2m.

The parameters of the model consist of the link probability p ∈ [0, 1], and two
positive constants A1 and A2. The SPA model generates stochastic sequences of
graphs (Gt : t ≥ 0), where Gt = (Vt, Et), and Vt ⊆ S. Let deg−(v, t) be the
in-degree of vertex v in Gt, and deg+(v, t) its out-degree. We define the sphere of
influence S(v, t) of vertex v at time t ≥ 1 to be the ball centered at v with volume
|S(v, t)| defined as follows:

|S(v, t)| = A1deg−(v, t) + A2

t
, (1)

or S(v, t) = S and |S(v, t)| = 1 if the right-hand-side of (1) is greater than 1.
The process begins at t = 0, with G0 being the null graph. Time-step t, t ≥ 1,

is defined to be the transition between Gt−1 and Gt. At the beginning of each
time-step t, a new vertex vt is chosen uniformly at random from S, and added
to Vt−1 to create Vt. Next, independently, for each vertex u ∈ Vt−1 such that
vt ∈ S(u, t − 1), a directed link (vt, u) is created with probability p. Thus, the
probability that a link (vt, u) is added in time-step t equals p |S(u, t− 1)|.

We note that, to avoid the resulting graph becoming too dense, the parameters
must be chosen so that pA1 < 1, as explained in [1]. In this paper, we assume that
the parameters meet this condition. Also, the original model as presented in [1]
has a third parameter, A3, which is assumed to be zero here. This causes no loss
of generality, since all asymptotic results presented here are unaffected by A3.

We now introduce some more definitions. In the rest of the paper, unless oth-
erwise stated we will assume all asymptotics to refer to n going to infinity, where
n is the end time of the growth process, and thus the final size of the graph.
(As explained above, Theorem 2.1 is an exception.) We say that an event holds
asymptotically almost surely (a.a.s.) if the probability that it holds tends to one
as n goes to infinity. Similarly, we will use with extreme probability (w.e.p.) if the
event holds with probability at least 1− exp(−Θ(log2 n)). Thus, if we consider a
polynomial number of events that each holds w.e.p., then w.e.p. all events hold.

It was shown in [1] that the SPA model produces graphs with a power law
degree distribution, with exponent 1 + 1/(pA1). In [7], the (directed) diameter
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of the model was investigated. For the results of this paper, we need a precise
expression for the expected in-degree of each vertex.

Theorem 2.1. Let ω = ω(t) be any function tending to infinity together with t.
The expected in-degree at time t of a vertex vi born at time i ≥ ω is given by

E(deg−(vi, t)) = (1 + o(1))
A2

A1

(
t

i

)pA1

− A2

A1

. (2)

Proof. In order to simplify calculations, we make the following substitution:

X(vi, t) = deg−(vi, t) +
A2

A1

. (3)

It follows immediately from the definition of the process that

X(vi, t+ 1) =

{
X(vi, t) + 1, with probability pA1X(vi,t)

t

X(vi, t), otherwise.

Therefore,

E(X(vi, t+ 1) | X(vi, t)) = (X(vi, t) + 1)
pA1X(vi, t)

t
+X(vi, t)

(
1− pA1X(vi, t)

t

)
= X(vi, t)

(
1 +

pA1

t

)
,

and so

E(X(vi, t+ 1)) = E(X(vi, t))

(
1 +

pA1

t

)
.

Since all vertices start with in-degree zero, X(vi, i) = A2

A1
. Since i ≥ ω, one can

use this to get

E(X(vi, t)) =
A2

A1

t−1∏
j=i

(
1 +

pA1

j

)

= (1 + o(1))
A2

A1

exp

(
t−1∑
j=i

pA1

j

)

= (1 + o(1))
A2

A1

exp

(
pA1 log

(
t

i

))
= (1 + o(1))

A2

A1

(
t

i

)pA1

,

and the assertion follows from (3). �

Theorem 2.1 states that the expected in-degree of an individual vertex born

at time i is asymptotically equal to A2

A1

(
t
i

)pA1 − A2

A1
, with an error term of order

o((t/i)pA1). (The asymptotics assume that t is going to infinity, and i is a growing
function of t.) However, the in-degree of an individual vertex is not concentrated
around its expected value. This is due to variation happening shortly after birth;
whether or not the vertex receives in-links in the first few time steps after its
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birth greatly affects the size of its sphere of influence throughout the process, and
therefore its final in-degree.

We can circumvent this difficulty by considering the final in-degree of the vertex,
and infer the growth history of the in-degree from there. Namely, from the in-
degree of the vertex at end time n, we can obtain sharp bounds on the in-degree of
the vertex during most of the process. This is expressed in the following theorem.
First, define a injective function f : R→ R by

f(i) =
A2

A1

(n
i

)pA1

,

so f(i) is the expected in-degree, at time n, of a vertex born at time i (up to a
multiplicative factor of (1 + o(1))). Thus f−1(k) is the birth time of a vertex of
final in-degree k, had the in-degree of the vertex remained close to its expected
value during its entire lifetime. Moreover, the (asymptotic) expected in-degree
at time t of a vertex born at time i can be given as (A2/A1)f(i)/f(t) (provided
that i = i(n) tends to infinity with n). Thus, if a vertex of final in-degree k has
in-degree growth close to its expected value, then

t = f−1
(
A2k

A1a

)
will be the approximate time when that vertex has in-degree a. The precise
statement and proof of this discussion follows below in Theorem 2.2, the main
result of this section.

Theorem 2.2. Let ω = ω(n) be any function tending to infinity together with n.
The following statement holds a.a.s. for every vertex v for which deg−(v, n) = k =
k(n) ≥ ω log n. Let i = f−1(k), and let

tk = f−1
(

A2k

A1ω log n

)
.

Then, for all values of t such that tk ≤ t ≤ n,

deg−(v, t) = (1+o(1))
A2

A1

(
t

i

)pA1

= (1+o(1))
A2

A1

· k
f(t)

= (1+o(1))k

(
t

n

)pA1

. (4)

The theorem implies that once a given vertex accumulates ω log n in-neighbours,
the rest of the process (until time-step n) can be predicted with high probability;
in fact, a.a.s. we get a concentration around the expected value. Let us mention
that it seems that the ω factor is needed to get a concentration result. However,
without this factor, the order of the in-degrees still can be predicted: once the
vertex has log n in-neighbours, we can bound the in-degree of this vertex so that
the ratio between upper and lower bounds would a.a.s. be a constant.

In order to prove Theorem 2.2, we need strong results on the concentration of
the in-degree throughout the process. These results, and the proof of the theorem,
are given in Section 5.
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3. Number of common neighbours and spatial distance

The principles of the SPA model make it plausible that vertices that are close to-
gether in space will have a relatively high number of common neighbours. Namely,
if two vertices are close together, their spheres of influence will overlap during most
of the process, and any new vertex falling in the intersection of both spheres has
the potential to become a common neighbour. Thus, the number of common
neighbours (co-citation) should lead to a reliable measure of closeness in the met-
ric space. In this section, we will quantify the relation between spatial distance
and number of common in-neighbours, and show how it can be used to estimate
distance.

The term “common neighbour” here refers to common in-neighbours. Precisely,
a vertex w is a common neighbour of vertices u and v if there exist directed links
from w to u and from w to v. Note that in our model this can only occur if w is
younger than u and v, and, at its birth, w lies in the intersection of the spheres
of influence of u and v. We use cn(u, v, t) to denote the number of common
in-neighbours of u and v at time t.

Theorem 3.1 distinguishes three cases. The division into cases is based on the
trend, as shown in Theorem 2.2, that spheres of influence tend to shrink over time.
Thus, once the spheres of influence of two vertices have become disjoint, and their
boundaries have some distance between them, it is not likely that they will overlap
at any time after that. The cases therefore are distinguished by how the spheres of
influence of u and v overlap, and when or whether they become disjoint. Figure 1
gives a pictorial representation of the three cases. Consider two vertices u and v
so that v has smaller in-degree at time n than u. Thus, the sphere of influence of
v tends to be smaller than that of u, and the likely birth time of u is before that
of v.

In Case 1, u and v are so far apart that their spheres of influence never overlap,
except maybe for a negligible initial time period near their birth. In this case, no
vertex can fall in the spheres of influence of both u and v, and thus u and v will
acquire no common neighbours after the initial time period. Thus, they will have
negligibly few common neighbours. In this case again, accurate prediction of the
spatial distance between u and v is not possible: if u and v have very few common
neighbours, we can only give a lower bound on their distance.

In Case 2, u and v are so close that the sphere of influence of v is contained
within the sphere of influence of u for almost all of its existence. In this case, the
number of common neighbours of u and v is a constant proportion of the degree
of v, due to the fact that each new vertex linking to v will automatically be within
the sphere of influence of u, and thus can link to u as well (and does so with
probability p.) This means that u and v are too close for accurate prediction: if
cn(u, v, n) and deg−(v, n) differ by a factor close to p we can only give an upper
bound on the spatial distance between u and v.

In Case 3, the sphere of influence of v is contained in that of u near the birth
of v, but the spheres become disjoint before the end of the process. The moment
at which the separation occurs can be determined fairly precisely, and depends
heavily on the distance between u and v. Thus, for this case we have a formula
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Case Near
birth of v

Near end
of process

1

u

v

u

v

Too far

2

u v u v

Too close

3

u
v

u
v

Just right

Figure 1. The three cases of Theorem 3.1

for the number of common neighbours which involves the distance between u and
v, and the in-degree of both u and v at the end of the process. Reversing the
formula, we can obtain a reliable estimate for the distance between u and v from
the observable graph properties cn(u, v, n), deg−(u) and deg−(v).

Theorem 3.1. Let ω = ω(n) be any function tending to infinity together with n.
The following holds a.a.s. Let vk and v` be vertices such that

k = deg(vk, n) ≥ deg(v`, n) = ` ≥ ω2 log n

in a graph generated by the SPA model. Let d = d(vk, v`) be the distance between
vk and v` in the metric space. Finally, let T = f−1(`/(ω log n)). Then,

Case 1. If d ≥ ε(ω log n/T )1/m for some ε > 0, then

cn(v`, vk, n) = O(ω log n).

Case 2. If k ≥ (1 + ε)` for some ε > 0 and

d ≤
(
A1k + A2

cmn

)1/m

−
(
A1`+ A2

cmn

)1/m

= Θ

((
k

n

)1/m
)
, (5)

then

cn(v`, vk, n) = (1 + o(1))p`.

If k = (1 + o(1))` and d � (k/n)1/m = (1 + o(1))(`/n)1/m, then
cn(v`, vk, n) = (1 + o(1))p` as well.
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Case 3. If k ≥ (1 + ε)` for some ε > 0 and(
A1k + A2

cmn

)1/m

−
(
A1`+ A2

cmn

)1/m

< d� (ω log n/T )1/m, (6)

then

cn(v`, vk, n) = Ci
− (pA1)

2

1−pA1
k i−pA1

` d
− mpA1

1−pA1

(
1 +O

((
ik
i`

)pA1/m
))

, (7)

where ik = f−1(k) and i` = f−1(`) and C = pA−11 A
1

1−pA1
2 c

− pA1
1−pA1

m .
If k = (1 + o(1))` and ε(k/n)1/m < d� (ω log n/T )1/m for some ε > 0,

then

cn(v`, vk, n) = Θ

(
i
− (pA1)

2

1−pA1
k i−pA1

` d
− mpA1

1−pA1

)
.

The importance of the theorem is that (7) gives a relationship between the
distance between the vertices, their number of common neighbours, and their
degrees. Since the number of common neighbours and the degrees are observable
from the graph, the equation allows us to obtain an estimate for the (spatial)
distance between the vertices using only basic graph parameters.

We tested the predictive power of our theoretical results on data obtained from
simulations. The data was obtained from a graph with 100,000 vertices. The graph
was generated from points randomly distributed in the unit square in R2 according
to the SPA model described in Section 2, with n = 100, 000 and p = 0.95, and
A1 = A2 = 1.

First of all, we show that a blind approach to using the co-citation measure
(number of common neighbours) does not work. In Figure 2 we plot spatial
distance versus number of common neighbours without further processing. No
relation between the two is apparent.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

dist_commneigh 0.95

Figure 2. Actual distance vs. number of common neighbours.

Next, we apply Theorem 3.1 to estimate the spatial distance between two ver-
tices, based on the number of common neighbours of the pair. (The spatial dis-
tance is actual distance between the point in the metric space, which for our
simulation is the distance obtained from the Euclidean torus metric on the unit
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square.) From Cases 1 and 2, we can only obtain a lower and upper bound on
the distance, respectively. In order to eliminate Case 1 (too far), we consider only
pairs that have at least 20 common neighbours. This reduces the data to 19,200
pairs. For pairs of vertices in Case 2 (too close), the number of common neigh-
bours equals p times the lowest degree of the pair. In order to eliminate this case,
we require that the number of common neighbours should be less than p/2 times
the lowest degree of the pair. This reduces the data set to 2,400 pairs. We expect
these pairs mainly to be in Case 3.

For pairs in Case 3, we can derive an estimate of the distance. Consider two
such vertices v` and vk, with final in-degree ` and k, respectively. We base our
estimate on Equation 7, where we ignore the multiplicative (1 + O(( ik

i`
)pA1/m))

error term. Namely, when k and ` are of the same order, then this expression is
the average of the lower and upper bound as derived in the proof of the theorem,
and when ` � k the term is asymptotically negligible. The estimated distance d̂
between nodes v` and vk, given that their number of common neighbours equals
N , is then given by

d̂ = C ′i
− pA1

m
k i

− 1−pA1
m

` N−
1−pA1
mpA1 ,

where ik = f−1(k) and i` = f−1(`) and C ′ = (p/A1)
1−pA1
mpA1 A

1
mpA1
2 c

− 1
m

m .
Figure 3 shows actual vs. estimated distance for these pairs. The estimated

distance (on the y-axis), is computed using only data obtainable from the graph:
the in-degrees of both vertices, and their number of common neighbours. This is
compared to the actual distance (on the x-axis), known from the simulation. We
see almost perfect agreement between estimate and reality.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

Figure 3. Actual distance (x-axis) vs. estimated distance (y-axis)
for eligible pairs from simulated data, calculated using the in-degree
of both vertices.

The figure shows that the scatter away from the diagonal is confined to points
below the diagonal. This means that, for the corresponding pairs, the estimate d̂
is lower than the actual distance. This is due to the choice to base our estimate on
the average between the lower bound obtained from t−, the estimated time when
the sphere of influence of v` first touches the boundary of the sphere of influence
of vk, and the upper bound derived from t+, when the spheres of influence of v`
and vk first become disjoint.
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The probability that a neighbour of v` born between t− and t+ becomes a
common neighbour of vk and v` depends on the fraction of the sphere of influence
of v` which lies inside the sphere of influence of vk. If the curvature of the sphere
of influence of vk is negligible so that the boundary locally resembles a line, and
if the sphere of influence of v` remains constant in size from t− to t+, then the
average is a good estimate. However, both assumptions are notably false: the
curvatures of the spheres of influence of v` an vk may well be of the same order,
and the spheres of influence both shrink during the process. This implies that
the fraction of the sphere of influence of v` inside the sphere of influence of vk is
smaller than assumed near time t+, and larger than assumed near t−. Thus, the
true expected number of common neighbours will likely be larger than indicated
by the average. This leads to an underestimate of the distance (more common
neighbours is interpreted as closer distance).

In order to test our interpretation of the error in the estimation, we based the
estimator d̂ on a convex combination of the lower bound L on the numbers of
common neighbours of vertices vk and v` given by L = p deg−(v`, t

−) and the
upper bound U = p deg(v`, t

+). So the expected number of common neighbours is
assumed to be (1− c)L+ cU , which gives an expression involving d. Solving for d

gives our estimator d̂. We found that the best value of c occurred when c = 0.005,
which means that the lower bound based on time t− gives the best indication of
the true number of common neighbours.

The results for this adjusted estimator are given in Figure 4. As we can see, the
estimator is still not perfect; we conjecture that this is because the value of c that
gives the best estimate is not uniform over all pairs, but depends on the relative
sizes of the spheres of influence of the pair in the critical time interval.

 0

 0.05

 0.1

 0.15
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 0.4

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

Figure 4. Actual distance (x-axis) vs. estimated distance (y-axis)
for eligible pairs from simulated data, using the adjusted estimator.

4. Edge length distribution

In this section we derive the edge length distribution; that is, the number of
edges whose length is at least a given value x. The length of an edge is the (metric)
distance between its endpoints. The edge distribution is a characteristic of spatial
models. It will influence a number of graph properties, especially the diameter and
the expansion properties. Long edges, even if they are rare, give the opportunity
to jump to another locality in the metric space. It has been shown before (see,
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for example, [16]) that a small number of long edges can reduce the average path
length between vertices by a large factor.

In the SPA model, the degree distribution follows a power law, and the volume
of the spheres of influence is proportional to the degree of a vertex. The radius
of the sphere of influence determines the limit of the length of an edge to that
vertex. Thus, we expect the edge lengths to follow a power law as well. These
considerations lead us to consider all edges whose length exceeds a given value

rα =

(
n−α

cm

)1/m

.

(Recall that cm is the volume of an m-dimensional ball of unit radius.) Namely,
in this case we can limit our focus to those vertices whose sphere of influence has
volume at least n−α.

Fix α > 0. An edge (v, w) ∈ E(G) will be called a long edge if the edge length
d(v, w) ≥ rα. We will study the random variable e(α), the number of long edges
in the graph. Formally,

e(α) =

∣∣∣∣∣
{

(v, w) ∈ E : d(v, w) ≥
(
n−α

cm

)1/m
}∣∣∣∣∣ .

Theorem 4.1. In the SPA Model with 1/2 < pA1 < 1, a.a.s. the number of long
edges is given by

e(α) =

{
(1 + o(1)) pA2

1−pA1
n, if α > 1

(1 + o(1))Cn
2− 1

pA1
+α

1−pA1
pA1 , if 1− pA1

4pA1+2
< α < 1,

(8)

where

C =
Γ
(
A2

A1
+ 1

pA1

)
Γ
(
A2

A1

) A
pA1

1−pA1
1

1− pA1

(
(1− pA1)

3

2pA1 − 1
A

1−2pA1
(1−pA1)pA1
1 + 1− (pA1)(1− pA1)

)
.

By [1], the total number of edges in graphs generated by the SPA model equals
(1 + o(1)) pA2

1−pA1
n. Thus, the first case of the theorem states that for α > 1, e(α) is

approximately equal to the total number of edges. To see why this is so, consider
that, as α increases, the threshold for an edge to be classified as “long”, namely
rα, decreases. If α > 1, then rα is so small that almost all edges are long.

The next range for α, 1− pA1

4pA1+2
< α < 1, shows a linear relationship between

log e(α) and log rα. Namely, m log rα = (1 + o(1))(−α) log n, and thus for this
range,

log e(α) = (1 + o(1))

(
2− 1

pA1

+ α
1− pA1

pA1

)
log n (9)

= (1 + o(1))

(
(2− 1

pA1

) log n−m1− pA1

pA1

log rα

)
.

Since 1/2 < pA1 < 1, the slope of the line giving the relationship between α and
log e(α) lies between 0 and 1.
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The theorem does not include a claim about the tail of the edge distribution,
when α becomes small, and thus rα becomes relatively large. When 1 − pA1 <
α ≤ 1− pA1

4pA1+2
, the main contribution to e(α) comes from vertices that have very

high final degree (not moderately high, as before) and the long edges are created
till the very end of the process. Unfortunately, the number of vertices of very high
degree cannot be precisely controlled ; from [1] we only have upper bounds and
lower bounds on the maximum degree that hold w.e.p. which differ by a factor of
log4 n. Therefore, it seems unlikely that e(α) is concentrated in this case.

When α < 1−pA1, a.a.s. long edges cannot be created at the end of the process
but only until time s = nα/(1−pA1)+o(1). The main contribution to the number of
long edges comes from those vertices that have very high degree at time s (and
have very high final degrees, of course). By a similar argument as given above,
the number of such vertices, and thus the value of e(α), is not likely to be highly
concentrated.

A different problem occurs when pA1 < 1/2. The main contribution in this
case comes from vertices born at time Θ(nα) and the long edges must have been
created when these vertices were still young, and had small degrees. Unfortunately,
the behaviour of the random variable representing the degree of a vertex is not
concentrated until the degree is ω log n. We expect Θ(nα) such edges but we
cannot control the behaviour of these vertices until the degree is large enough.

The following theorem fills in the missing case when α is small. However, the
results only apply to the expected value of e(α), and they give broad results about
the order of the exponent, instead of the finer results of the previous theorem.
The proofs of both theorems can be found in the last section of the paper.

Theorem 4.2. For the SPA model, the logarithmic behaviour of the expected value
of e(α) is as follows.

For 1/2 < pA1 < 1,

logE(e(α))

log n
=


1 + o(1) if α ≥ 1,

2− 1
pA1

+ α 1−pA1

pA1
+ o(1), if 1− pA1 < α < 1,

αpA1

1−pA1
+ o(1), if 0 ≤ α ≤ 1− pA1.

For pA1 < 1/2,

logE(e(α))

log n
=

{
1 + o(1) if α ≥ 1,

α + o(1), if 0 ≤ α < 1.

Thus, for the case where pA1 > 1/2, the middle range of e(α) extends beyond
the lower bound on α for which precise results for e(α) can be obtained, and
there is a third range for small α, namely α < 1 − pA1, for which the expected
relationship between log e(α) and α is given by

log e(α) = (1 + o(1))

(
pA1

1− pA1

)
α log n = − mpA1

1− pA1

log rα. (10)
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Thus we have clear power law behaviour at the tail of the distribution, with
coefficient mpA1

1−pA1
> 1.

To verify our intuition that the real behaviour of the SPA model is similar to
the asymptotic results given by the theorems, we ran simulations. We generated
graphs of 100,000 nodes, in S of dimension m = 2, for various values of p. A1

and A2 were both set to 1. The results are seen in Figures 5 and 6, where the
logarithm of the number of long edges has been plotted against a range of values
for α. The straight lines in the figures represent the expected behaviour for the
three ranges of α as given by (9) and (10) (and a horizontal line for the behaviour
for large α). To show the fact that the number of long edges decreases as the
threshold rα increases, the x-axis gives the values of −α.

 1

 10

 100

 1000

 10000

 100000

 1e+06

-1.2 -1 -0.8 -0.6 -0.4 -0.2  0

p=0.70

 1

 10

 100

 1000

 10000

 100000

 1e+06

-1.2 -1 -0.8 -0.6 -0.4 -0.2  0

p=0.80

Figure 5. Long Edges Simulation vs. Theory, SPA Model. Parameters:
n = 100, 000, A1 = A2 = 1, m = 2, p = 0.7 (left) and p = 0.8 (right).

Figure 5 shows two values in the range 1/2 < pA1 < 1. For both cases, the
theoretical results expressed in Equations 9 and 10 give a good approximation of
the envelope of the curve represented by the simulated values. Not surprisingly,
near the threshold 1 − pA1 = α, the simulated version shows smooth behaviour
that is a blend between the behaviour on both sides of the range. The angle of
the tail of the distribution has good agreement with the value predicted from the
modified model.
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Figure 6. Long Edges Simulation vs. Theory, SPA Model. Parameters:
n = 100, 000, A1 = A2 = 1, m = 2, p = 0.3 (left), and p = 0.5 (right)
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In Figure 6 we give a simulation result for the case where pA1 < 1/2. Here the
modified model predicts only two regimes, which is borne out by the simulation
data. We also include a picture for the case pA1 = 1/2. At this cross-over value,
no linear relationship between log e(α) and α can be observed from the picture.
However, our theoretical results predict that for larger values of n, the curve should
approach a straight line with slope −α.

5. Proofs of the main theorems

5.1. Degree of a vertex. The first part of this section is devoted the proof of
Theorem 2.2. We will be using the following version of a well-known Bernstein
inequalities many times so let us state it explicitly.

Lemma 5.1 ([13]). Let X be a random variable that can be expressed as a sum
X =

∑n
i=1Xi of independent random indicator variables where Xi ∈ Be(pi) with

(possibly) different pi = P(Xi = 1) = EXi. Then the following holds for t ≥ 0:

P(X ≥ EX + t) ≤ exp

(
− t2

2(EX + t/3)

)
,

P(X ≤ EX − t) ≤ exp

(
− t2

2EX

)
.

In particular, if ε ≤ 3/2, then

P(|X − EX| ≥ εEX) ≤ 2 exp

(
−ε

2EX
3

)
. (11)

Now, we are ready to prove the following key observation.

Theorem 5.2. Suppose that deg−(v, T ) = d ≥ ω log n, where ω = ω(n) is any
function tending to infinity together with n. Then, for every value of t, T ≤ t ≤
2T , we get that ∣∣∣∣∣deg−(v, t)− d ·

(
t

T

)pA1

∣∣∣∣∣ ≤ 2

pA1

· t
T

√
d log n

with probability 1−O(n−4/3).

Proof. Let ω = ω(n) be any function tending to infinity together with n. Suppose
that deg−(v, T ) = d ≥ ω log n. We will show that the upper bound holds; the
lower bound can be obtained by using an analogous symmetric argument.

Let us introduce the following stopping time

T0 = min

{
t ≥ T : deg−(v, t) > d ·

(
t

T

)pA1

+
2

pA1

· t
T

√
d log n ∨ t = 2T + 1

}
.

A stopping time is any random variable T0 with values in {0, 1, . . . }∪{∞} such
that it can be determined whether T0 = t∗ for any time t∗ from knowledge of the
process up to and including time t∗. The name can be misleading, since a process
does not stop when it reaches a stopping time. Here, T0 determines the first time
the process does not exhibit the bounded behaviour we wish to establish. The
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condition t = 2T + 1 has been added to assure that the set is never empty, and
thus T0 is well-defined. If T0 = 2T + 1, then the in-degree of v remained bounded
as given during the entire time interval T ≤ t ≤ 2T . In order to prove the bound,
we need to show that with probability 1−O(n−4/3) we have T0 = 2T + 1.

Suppose that T0 ≤ 2T . Note that for t ≥ T up to and including time-step
T0 − 1, the random variable deg−(v, t) is (deterministically) bounded from above,
and so the number of new neighbours accumulated during this phase of the process,
deg−(v, T0)− deg−(v, T ), can be (stochastically) bounded from above by the sum

X =
∑T0−1

t=T Xt of independent indicator random variables Xt with

P(Xt = 1) = p
A1

(
d
(
t
T

)pA1 + 2
pA1
· t
T

√
d log n

)
+ A2

t
.

Hence,

E deg−(v, T0) ≤ d+ EX = d+

T0−1∑
t=T

EXt

= d+ pA1dT
−pA1

(
T0−1∑
t=T

tpA1−1

)
+
T0 − T
T

2
√
d log n+O(1)

= d

(
T0
T

)pA1

+
T0 − T
T

2
√
d log n+O(1).

This implies that

deg−(v, T0)− E deg−(v, T0) ≥
2

pA1

· T0
T

√
d log n− T0 − T

T
2
√
d log n−O(1)

≥ 2
√
d log n,

and it follows from the bound (11) that

P(|X − EX| ≥ 2
√
d log n) ≤ 2 exp

(
− ε

2
√
d log n

3

)
,

where ε = 2
√
d log n/EX. Since the maximum value of EX corresponds to T0 =

2T , it follows that EX ≤ d(2pA1 − 1)(1 + o(1)) ≤ d, and so ε ≥ 2
√
d−1 log n.

Therefore, the probability that T0 ≤ 2T is at most 2 exp(−4
3

log n) and the theorem
is finished. �

Now, with Theorem 5.2 in hand we can easily get Theorem 2.2. For a given ver-
tex v of degree ω log n at time T we obtain from Theorem 5.2 that, with probability
1−O(n−4/3),

d

(
t

T

)pA1
(

1− 4

pA1

√
d−1 log n

)
≤ deg−(v, t) ≤ d

(
t

T

)pA1
(

1 +
4

pA1

√
d−1 log n

)
for T ≤ t ≤ 2T . We can now keep applying the same theorem for times 2T , 4T ,
8T , 16T, . . . , using the final value as the initial one for the next period, to get
the statement for all values of t from T up to and including time n. Since we
apply the theorem O(log n) times (for a given vertex v), the statement holds with
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probability 1− o(n−1) and so a.a.s. the statement we are about to prove will hold
for all vertices.

It remains to make sure that the accumulated multiplicative error is still only
(1 + o(1)). After applying the theorem recursively i times the degree is shown
to be d2pA1i(1 + o(1)). Using this rough estimate, and assuming the theorem is
applied for a total of k = O(log n) times, we get that the error term is, in fact,
bounded from above by

k∏
i=1

(
1 +

5

pA1

√
d−12−pA1i log n

)
= (1 + o(1)) exp

(
5

pA1

√
d−1 log n

k∑
i=1

2−pA1i/2

)
= (1 + o(1)) exp

(
O(
√
d−1 log n)

)
= 1 + o(1),

since d grows faster than log n. A symmetric argument can be used to show a
lower bound for the error term and so Theorem 2.2 holds.

5.2. Number of common neighbours. The proof of Theorem 3.1, which gives
a formula for the number of common neighbours of two given vertices v and w,
is based on three cases, as explained in Section 3 and Figure 1. The division
into three cases is based on the trend, as shown in Theorem 2.2, that spheres of
influence tend to shrink over time. It can happen that spheres of influence that
are disjoint become overlapping at a later time instance, and thus do not fit any
of the three cases. However, this behaviour happens with low enough probability
that it does not affect our result.

Proof of Theorem 3.1. The proof depends heavily on Theorem 2.2. Any precise
reference to the theorem will therefore be omitted. We can assume that at time
T ,

deg(v`, T ) = (1 + o(1))
A2

A1

ω log n

and the degree of this vertex is as predicted by (4) until the end of the process (that
is, the ratio between the upper and lower bound on the degree is deterministically
equal to (1 + o(1))). Since k ≥ l, the degree of vk for the time interval after T is
given by (4) as well. Let r(v, t) denote the radius of the sphere of influence around
v at time t; that is, r(v, t) = (|S(v, t)|/cm)1/m.

Case 1: Suppose that d ≥ ε(ω log n/T )1/m for some ε > 0. For T ≤ t ≤ n, we
can deduce from the expression for the degree of v` over time and the expression
for the volume |S(v`, t)| of the sphere of influence of v` that

r(v`, t) = (1 + o(1))

(
A2ω log n(t/T )pA1

cmt

)1/m

.

In particular, let us note that d is of greater or equal order as r(v`, T ), and hence
of greater or equal order as r(vk, T ) as well. Moreover, both radii tend to be
decreasing from time T on. (Formally what we mean is that r(v`, t) > r(v`, t(1+ε))
for any ε > 0 and t ≥ T . When a vertex receives a new neighbour, its radius
slightly increases.) Therefore, there exists a constant c = c(ε) > 0 such that
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S(v`, t) and S(vk, t) are disconnected for every t > cT and so there is no chance
to create more common neighbours. Since at time cT the degree of vertex v` is
(1 + o(1))(A2/A1)c

pA1ω log n = O(ω log n), we can apply an obvious upper bound
to get

cn(v`, vk, n) ≤ deg(v`, n) = O(ω log n).

Finally, note that it can happen that cT > n, which means that the process stops
before the spheres of influence become disjoint. This causes no problem since the
upper bound for the number of common neighbours at time cT will then trivially
hold at time n.

Case 2: Suppose k ≥ (1 + ε)` for some ε > 0 and d satisfies inequality (5).
Note that the condition for d implies that at time n the sphere of influence of v`
is contained in that of vk. Moreover, the radii of influence are proportionally de-
creasing during the process from the time we start having concentrated behaviour
of degrees onwards (that is, from time T on, in the sense explained earlier). So the
sphere of influence of v` is contained in the sphere of influence of vk from time T
to time (1+o(1))n. Any vertex u that links to v` lies inside the sphere of influence
of v` and thus of vk as well, and has a probability p of also linking to vk.

At the end of the process (for t = (1 + o(1))n) it can happen that the sphere
of influence S(v`, t) is not completely contained in S(vk, t), but it is the case that
they overlap to a large extend, namely

|S(v`, t) ∩ S(vk, t)|
|S(v`, t)|

= 1 + o(1). (12)

Thus, the probability that a neighbour of v`, added during this phase of the
process, is also a neighbour of vk is (1 + o(1))p.

Therefore, Ecn(v`, vk, n) = (1+o(1))p`, since the number of common neighbours
accumulated until time T is O(ω log n) and so is negligible.

Suppose now that k = (1 + o(1))` and d � (k/n)1/m. In this case, the radii
of v` and vk are approximately equal from time T to the end of the process (that
is, they differ by a multiplicative factor of (1 + o(1))). Since d is of order smaller
than the radii at the end of the process, property (12) holds for T ≤ t ≤ n and
the results holds by the same argument as before.

Case 3: Suppose k ≥ (1 + ε)` for some ε > 0 and d satisfies inequality (6).
Note that the condition for d implies that at time T the sphere of influence of v`
is contained in that of vk, but this is not the case at time n.

Let t− be the first moment when S(v`, t) is not completely contained in S(vk, t)
(T < t− ≤ n). Let t+ be the last time when the spheres overlap (t− ≤ t+). (Note
that it is possible that t+ > n but, as before, this causes no problem.) Up to time
t−, each neighbour of v` will be a common neighbour of v` and vk with probability
p. From time t+ to n, no common neighbours can be created. From time t− until
time t+, the probability that a neighbour of v` becomes a neighbour of vk is at
most p. Thus, p deg−(v`, t

−) and p deg−(v`, t
+) form a lower and an upper bound,

respectively, on the expected number of common neighbours of v and w.
Note that at time t−, S(v`, t

−) is contained in S(vk, t
−) and “touches” the

boundary from the inside (the distance between the boundaries at time t− may not
be exactly zero but certainly is o(d)). At time t+, S(v`, t

+) is outside S(vk, t
−) but
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“touches” the boundary from the outside. Since the centers of S(v`, t) and S(vk, t)
are at distance d from each other, this translates into the following expressions
involving t− and t+:

r(vk, t
−)− r(v`, t−) = (1 + o(1))d,

r(vk, t
+) + r(v`, t

+) = (1 + o(1))d.

Using the concentration result about the in-degree, this translates into the fol-
lowing conditions on t− and t+(

A2

cm
(t−)pA1−1

)1/m

i
−pA1/m
k

(
1−

(
ik
i`

)pA1/m
)

= (1 + o(1))d,

(
A2

cm
(t+)pA1−1

)1/m

i
−pA1/m
k

(
1 +

(
ik
i`

)pA1/m
)

= (1 + o(1))d,

and so

t− = (1 + o(1))

(
A2

cm

) 1
1−pA1

i
− pA1

1−pA1
k d

− m
1−pA1

(
1−

(
ik
i`

)pA1/m
) m

1−pA1

,

t+ = (1 + o(1))

(
A2

cm

) 1
1−pA1

i
− pA1

1−pA1
k d

− m
1−pA1

(
1 +

(
ik
i`

)pA1/m
) m

1−pA1

.

The number of common neighbours of vk and v` is bounded from below by
(1 + o(1))p deg−(v`, t

−), and from above by (1 + o(1))p deg(v`, t
+). Using our

knowledge about the behaviour of the in-degree of v`, this leads to the following
bounds, which hold within a (1 + o(1)) term:

pA−11 A
1

1−pA1
2 c

− pA1
1−pA1

m i
− (pA1)

2

1−pA1
k i−pA1

` d
− mpA1

1−pA1

(
1−

(
ik
i`

)pA1/m
) mpA1

1−pA1

≤ E cn(v`, vk, n) ≤

pA−11 A
1

1−pA1
2 c

− pA1
1−pA1

m i
− (pA1)

2

1−pA1
k i−pA1

` d
− mpA1

1−pA1

(
1 +

(
ik
i`

)pA1/m
) mpA1

1−pA1

.

The result follows from the fact that(
1±

(
ik
i`

)pA1/m
) mpA1

1−pA1

= 1 +O

((
ik
i`

)pA1/m
)
.

Finally, consider the case where k = (1 + o(1))`, and thus ik/il = 1 + o(1). As
before, from time

t+ = (1 + o(1))

(
A22

m

cm

) 1
1−pA1

i
− pA1

1−pA1
k d

− m
1−pA1

until time n, the spheres are disjoint and there is no chance for a common neigh-
bour. At time t such that T ≤ t = o(t+), the spheres overlap to a large extent
and (12) holds. However, for ε > 0 and t such that εt+ ≤ t ≤ t+ only a nontrivial
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fraction of S(v`, t) is contained in S(vk, t). The above analysis still applies, but in
this case instead of an asymptotic result, we obtain the order result stated in the
theorem.

Finally, let us note that the number of common neighbours is a sum of indepen-
dent random indicator variables with Bernouilli distribution. The concentration
follows from the bound (5.1). �

5.3. Edge length distribution. Finally, we give the proof of the theorem about
the edge length distribution. Remember that a long edge is an edge such that its
endpoints are at distance at least rα, where rα is chosen so that a ball of radius
rα has volume n−α. As in the previous subsection, the proof distinguishes three
cases, but now the three cases depend on whether the sphere of influence of a
vertex has radius greater than rα (allowing the vertex to receive long edges) at
the beginning and the end of its life.

First, we need to recall a few known results: the behaviour of Nk = Nk(n),
the number of vertices of in-degree k = k(n) at time n, the number of edges
M = M(n) at time n, and the upper bound for the size of the influence regions.
The following result was proven in [1].

Theorem 5.3 ([1]). Suppose that pA1 < 1. The following holds a.a.s. for every
0 ≤ k ≤ (n/ log8 n)(pA1)/(4pA1+2).

Nk = (1 + o(1))ckn,

where c0 = 1/(1 + pA2) and for k ≥ 1,

ck =
pk

1 + kpA1 + pA2

k−1∏
j=0

jA1 + A2

1 + jpA1 + pA2

.

Moreover, a.a.s.

M = (1 + o(1))
pA2

1− pA1

n.

Note that

ck =
1

pA1

·

∏k−1
j=0

(
j + A2

A1

)
∏k

j=0

(
j + A2

A1
+ 1

pA1

)
=

1

pA1

·
Γ
(
k + A2

A1

)
/ Γ

(
A2

A1

)
Γ
(
k + 1 + A2

A1
+ 1

pA1

)
/ Γ

(
A2

A1
+ 1

pA1

) .

Suppose now that k = k(n) tends to infinity together with n. Using Stirling’s as-
ymptotic approximation of the Gamma function (Γ(z) = (1 + o(1))

√
2πzz−1/2e−z)

we can take ck to be:

ck =
1

pA1

·
Γ
(
A2

A1
+ 1

pA1

)
Γ
(
A2

A1

) k
−1− 1

pA1 ,
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and the following useful corollary is proved.

Corollary 5.4. Suppose that pA1 < 1. Let ω = ω(n) be any function tending to in-
finity with n. The following holds a.a.s. for every ω ≤ k ≤ (n/ log8 n)(pA1)/(4pA1+2).

Nk = (1 + o(1))ck
−1− 1

pA1 n,

where

c =
1

pA1

·
Γ
(
A2

A1
+ 1

pA1

)
Γ
(
A2

A1

) . (13)

In [1], it was proved that a.a.s. for all vertices we have that deg−(vi, n) =
O((log2 n)(n/i)pA1), provided that vi was born at time i. Now, with Theorem 2.2
in hand, we get a stronger result, namely that a.a.s. for all i ≤ t ≤ n

deg−(vi, t) = O

(
(ω log n)

(
t

i

)pA1
)
,

where ω = ω(n) is any function tending to infinity together with n. (Indeed,
for a contradiction suppose that deg−(vi, t) ≥ (2ω log n)(t/i)pA1 for some value
of t. Theorem 2.2 implies that deg−(vi, i) = (2 + o(1))ω log n which is clearly a
contradiction.) This implies the following result.

Theorem 5.5. Suppose that pA1 < 1, and ω is a function that goes to infinity
together with n. The following holds a.a.s. for every vertex born at time i.

|S(vi, t)| = O

(
ω log n

i

)
,

The results given above are used in the proof of Theorem 4.1, which we are now
ready to give.

Proof of Theorem 4.1. Suppose first that α > 1. Since the sphere of influence of
every vertex at every time of the process is (deterministically) at least A2/n �
n−α, “long” edges can occur at every step of the process. A vertex v will receive
a short edge precisely when the new vertex falls within a ball of radius rα around
v, and thus automatically falls within the sphere of influence of v, and then links
to v. The probability that this happens equals pn−α. Thus, the expected number
of short edges pointing to a vertex born at time i is pn−α(n − i), and the total
number of short edges is (1 + o(1))pn2−α/2 = o(n) and so is negligible compared
to the total number of edges. We conclude that a.a.s. almost all edges are long,
and the result holds by Theorem 5.3.

Suppose now that 1 − pA1

4pA1+2
< α < 1. Let ev(α) be the number of long edges

pointing to v, that is:

ev(α) =
∣∣∣{w ∈ N−(v) : d(v, w) ≥ rα

}∣∣∣,
where N−(v) is the in-neighbourhood of vertex v.

For a vertex v to receive an edge of length greater than rα at time t, its region
of influence must have radius at least rα, and thus have volume |S(v, t)| ≥ n−α.
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Key to the proof is Theorem 2.2 and its conclusion that the regions of influence
tend to be shrinking.

Let ω = ω(n) be any function increasing with n. First, we only consider vertices
whose final degree is at least ω log n. This is enough to get a lower bound for the
number of long edges. Later we will show that the contribution of the remaining
edges is negligible. Consider a vertex v with final degree k = deg−(v, n) ≥ ω log n.
It follows from Theorem 2.2 that a.a.s. for every vertex v of degree k ≥ ω log n at
time n,

deg−(v, t) = (1 + o(1))k

(
t

n

)pA1

for all tk ≤ t ≤ n, where

tk = n

(
ω log n

k

) 1
pA1

.

(Note that deg(v, tk) = (1+o(1))ω log n.) Therefore, we may assume, without loss
of generality, that for all tk ≤ t ≤ n

|S(v, t)| = (1 + o(1))A1kn
−pA1tpA1−1.

We distinguish three possible classes of vertices, based on their final degree:
vertices of high final degree can receive long edges from time tk until the end of
the process, t = n (Case 1); vertices with final degree in a mid-range can receive
long edges from time tk until some time t∗k, tk < t∗k < n (Case 2); and vertices with
small final degree can never receive long edges after time tk (Case 3).

The cut-off values of the three cases are

kmin =

(
n1−α

A1

)pA1

(ω log n)1−pA1

and kmax = n1−α

A1
. Consider a vertex v of degree k.

Case 1. Suppose that k ≥ kmax. Note that this implies that

|S(v, n)| = (1 + o(1))A1k/n ≥ (1 + o(1))n−α,

so for any constant ε > 0, and for any time t in the range tk ≤ t ≤ (1 − ε)n,
the sphere of influence of v has radius greater than rα. This implies that v has
an opportunity to receive long edges from time tk until the end of the process, or
very close to it.

For tk ≤ t ≤ n, the probability that v receives a short edge (edge from a vertex
within distance rα) equals pmin{n−α, |S(v, t)|} = (1+o(1))pn−α. Moreover, these
events are independent. Thus, w.e.p. the number of short edges is

(1 + o(1))pn−α(n− tk) = (1 + o(1))pn1−α,

where the last step uses the fact that tk = o(n) in this case.
The degree of v at time tk is O(ω log n), so we have that w.e.p.

ev(α) = deg−(v, n)− (1 + o(1))pn1−α +O(ω log n) = (1 + o(1))(k − pn1−α)

≥ (1− pA1 + o(1))
n1−α

A1

.

Note that if k ≥ ωn1−α, then w.e.p. almost all edges pointing to v are long.
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Case 2. Let ε > 0 be some (arbitrarily small) constant. Suppose that (1 +
ε)kmin ≤ k ≤ (1 − ε)kmax. The upper bound on k implies that |S(v, n)| ≤ (1 −
ε+ o(1))n−α so there is no chance for v to receive long edges near the end of the
process. On the other hand, it follows from the lower bound on k that |S(v, tk)| ≥
(1 + ε − o(1))n−α so if the new vertex at time tk falls within S(vt, k) , there is a
positive probability that a long edge to v is created.

Let

t∗k =
(
A1kn

α−pA1
) 1

1−pA1 .

Note that |S(v, t∗k)| = (1 + o(1))n−α. Thus, the influence region of v has radius
greater than rα from time tk to (1−δ)t∗k, and radius less than rα from time (1+δ)t∗k
to n, for some small δ > 0.

Thus, by a similar argument to the previous case, we obtain:

ev(α) ≥ (1 + o(1))

(1−δ)t∗k∑
t=tk

p
(
A1kn

−pA1tpA1−1 − n−α
)

= (1−O(δ))
(
kn−pA1(t∗k)

pA1 − p(t∗k)n−α
)

= (1−O(δ))A
pA1

1−pA1
1 k

1
1−pA1 n

−pA1(1−α)
1−pA1 (1− pA1) .

Similarly, we get that ev ≤ (1 +O(δ))A
pA1

1−pA1
1 k

1
1−pA1 n

−pA1(1−α)
1−pA1 (1− pA1) and so

ev(α) = (1 + o(1))A
pA1

1−pA1
1 k

1
1−pA1 n

−pA1(1−α)
1−pA1 (1− pA1) ,

by taking δ → 0.

Case 3. Finally, suppose that ω log n ≤ k ≤ (1− ε)kmin for some ε > 0. Since
|S(v, tk)| ≤ (1 − ε + o(1))n−α, the influence region has radius smaller than rα
from time tk until the end of the process. Thus, for such vertices, all edges they
receive in this time slot are short. Thus the only long edges v can receive are those
received before t∗k, so ev(α) = O(ω log n). Trivially, the same property holds for
any vertex of degree smaller than ω log n.

In order to obtain upper and lower bounds on the total number of long edges, we
can use Theorem 5.3 and its corollary (Corollary 5.4) to calculate the number of
long edges pointing to vertices of final degree larger than kmin (Cases 1 and 2). Let
c be as defined in Equation (13), and letK = (n/ log8 n)(pA1)/(4pA1+2). By Corollary
5.4, K is the upper bound on the values of k for which we have concentration for
Nk. Note that the bounds on α imply that kmax � K, and thus

∑
k≥kmax

k−γ =

(1 + o(1))
∑

kmax≤k≤K k
−γ for all γ > 1.
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The number of long edges to vertices of the first type (Case 1) is a.a.s. equal to

E1 = (1 + o(1))
∑

k≥kmax

Nk

(
k − pn1−α)

= (1 + o(1))
∑

kmax≤k≤K

(
ck
−1− 1

pA1 n
) (
k − pn1−α)

= (1 + o(1))

(
cn

∑
k≥kmax

k
− 1
pA1 − cpn2−α

∑
k≥kmax

k
−1− 1

pA1

)

= (1 + o(1))

(
cn

(kmax)
pA1−1
pA1

1−pA1

pA1

− cpn2−α (kmax)
− 1
pA1

1
pA1

)

= c
pA

1
pA1
1

1− pA1

n
2− 1

pA1
+α

1−pA1
pA1

(
1− (pA1)(1− pA1)

)
.

The number of long edges to vertices of the second type (Case 2) is a.a.s. equal
to

E2 = (1 + o(1))
kmax∑
k=kmin

(
ck
−1− 1

pA1 n
)(

A
pA1

1−pA1
1 k

1
1−pA1 n

−pA1(1−α)
1−pA1 (1− pA1)

)

= (1 + o(1))c A
pA1

1−pA1
1 (1− pA1)n

1− pA1(1−α)
1−pA1

kmax∑
k=kmin

k
−1+ 2pA1−1

(1−pA1)pA1 .

(Technically, to get a lower bound of E2 we should sum over kmin(1 + ε) ≤ k ≤
kmax(1 − ε) and sum over kmin(1 + ε) ≤ k ≤ kmax to get an upper bound. Since
the error in this summation is (1 +O(ε)), the result holds by taking ε→ 0.)

Since 1/2 < pA1 < 1, the exponent of k in the summation is in the interval
(−1, 0), and thus the behaviour of the summation is determined by its upper
bound kmax. This leads to

E2 = (1 + o(1))c A
pA1

1−pA1
1 (1− pA1)n

1− pA1(1−α)
1−pA1

(kmax)
2pA1−1

(1−pA1)pA1

2pA1−1
(1−pA1)pA1

= (1 + o(1))c
pA

1
pA1
1

1− pA1

n
2− 1

pA1
+α

1−pA1
pA1 · (1− pA1)

3

2pA1 − 1
A

1−2pA1
(1−pA1)pA1
1 .

Since E1 and E2 are of the same order, we can take E1 +E2 as a lower bound for
e(α).

In order to obtain an upper bound, we consider edges to vertices that are in
Case 3, that is, those that have final degree at most kmin. It follows from The-
orem 5.5 that any vertex that is able to receive long edges directed to vertices
with small final degree has to have a time of birth i ≤ imax = ωnα log n. There
are obviously at most imax of such vertices, and each of them has O(ω log n) long
edges. So the number of long edges that we did not count yet is at most:

E3 = O
(
(ωnα log n)(ω log n)

)
= nα+o(1).
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Since E3 is of smaller order than E1 + E2, the result follows. �

For the proof of Theorem 4.2, we use a large part of the previous proof.

Proof of Theorem 4.2. For this theorem, we consider the expected value of e(α).
Thus, we can use the expected values of Nk, and do not need to consider the
cut-off on the values of k for which the values of Nk are concentrated. In [1], it
was shown that

E(Nk) = (1 + o(1))ck
−1− 1

pA1 n, for all k ≥ kmax.

Suppose first that 1/2 < pA1 < 1 and 1− pA1 < α < 1. Consider the proof of
Theorem 4.1. The three cases of this proof still hold as before; let kmin and kmax

be as defined in this proof. As explained in this proof, concentration for the values
of Nk hold only up to degree K = npA1/(4pA1+2)+o(1). This affects the computation
of E1. However, in this proof we only consider the expected value of e(α), so by
linearity of expectation, in the computation of E1 we can use the expected values
of the Nk. This leads to the following expression for the expected number of long
edges to vertices of the first type (Case 1) :

E(E1) = (1 + o(1))
∑

k≥kmax

E(Nk)
(
k − pn1−α)

= (1 + o(1))
∑

k≥kmax

(
ck
−1− 1

pA1 n
) (
k − pn1−α)

= c
pA

1
pA1
1

1− pA1

n
2− 1

pA1
+α

1−pA1
pA1

(
1− (pA1)(1− pA1)

)
, (14)

where c is as defined in Equation (13).
For the computation of E2, we should note that we may not have concentration

of Nk for the values of k close to kmax. However, we can a similar calculation to
that used in the proof of Theorem 4.1, using the expected values of the Nk, to

obtain that E(E2) = Θ(n
2− 1

pA1
+α

1−pA1
pA1 ).

The argument that E3 is negligible compared to E(E1) and E(E2), as laid out
in the proof of Theorem 4.1, still holds here. Thus, we have that

E(e(α)) = Θ(n
2− 1

pA1
+α

1−pA1
pA1 )

The result follows by taking the logarithm.
Next, consider the case where 1/2 < pA1 < 1 and α < 1− pA1. It follows from

Theorem 2.2, and it was also shown in [1], that w.e.p. the maximum in-degree
in a graph produced by the SPA model is at most KM = O(npA1 log4 n). Since
kmax = n1−α/A1 � npA1 , w.e.p. no vertices are in Case 1, so no vertices can receive
long edges until the edge of the process.

For the vertices that are in Case 2, we can apply the same calculation as
in the proof of Theorem 4.1, while taking the expected values of the Nk as in
the previous case. Since w.e.p. KM is an upper bound on the maximum de-
gree, the expected number of vertices of degree greater than KM is at most
n exp(−Θ(log2 n)). Hence, the expected number of long edges to such vertices,
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is at most n2 exp(−Θ(log2 n)) = o(1). The expected number of long edges to
vertices of the second type (Case 2) therefore is equal to

E(E2) ≤ (1 + o(1))

KM∑
k=kmin

(
ck
−1− 1

pA1 n
)(

A
pA1

1−pA1
1 k

1
1−pA1 n

−pA1(1−α)
1−pA1 (1− pA1)

)

= (1 + o(1))c A
pA1

1−pA1
1 (1− pA1)n

1− pA1(1−α)
1−pA1

KM∑
k=kmin

k
−1+ 2pA1−1

(1−pA1)pA1 .

For a lower bound on E(E2), we should sum over kmin(1 + ε) ≤ k ≤ npA1 .
Since pA1 > 1/2, as before the exponent of k in the summation is determined

by its upper bound KM = O(npA1 log4 n). This leads to

E(E2) ≤ (1 + o(1))c A
pA1

1−pA1
1 (1− pA1)n

1− pA1(1−α)
1−pA1

(KM)
2pA1−1

(1−pA1)pA1

2pA1−1
(1−pA1)pA1

= g(n)n
pA1α
1−pA1 ,

for some function g of order g(n) = Θ(KM/n
pA1) = Θ(log4 n). For the lower bound

on E(E2), we have the same summation, but with upper bound npA1 instead of

KM , and thus E(E2) = Ω(n
pA1α
1−pA1 ).

Since log(g(n)) = o(log n), we can combine lower and upper bound to see that

logE(E2)

log n
=

pA1α

1− pA1

+ o(1).

Finally, consider the vertices in Case 3. Here, the exact same argument as given
in the proof of Theorem 4.1 can be used to show that

E(E3) = O
(
(ωnα log n)(ω log n)

)
= nα+o(1).

Since this is of smaller order than E(E2), the result follows.
Finally, consider the case where pA1 ≤ 1/2. For α ∈ (1 − pA1, 1) we have the

exact same expression for E(E1) as for the case where pA1 > 1/2, as given in
Equation (14). Thus

E(E1) = Θ(n
2− 1

pA1
+α

1−pA1
pA1 ) = o(nα),

where the last step follows since

2− 1

pA1

+ α
1− pA1

pA1

= 1− (1− α)

(
1− pA1

pA1

)
< α.

For α ∈ (0, 1− pA1) we have that w.e.p. E1 = 0, so E(E1) = exp(−Θ(log2 n)).
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For E2, we have the same sum as before: let K∗ = kmax if α ∈ (1− pA1, 1), and
K∗, an (almost sure) upper bound on the maximum degree, otherwise. Then

E(E2) = (1 + o(1))
K∗∑

k=kmin

(
ck
−1− 1

pA1 n
)(

A
pA1

1−pA1
1 k

1
1−pA1 n

−pA1(1−α)
1−pA1 (1− pA1)

)

= (1 + o(1))c A
pA1

1−pA1
1 (1− pA1)n

1− pA1(1−α)
1−pA1

K∗∑
k=kmin

k
−1+ 2pA1−1

(1−pA1)pA1 .

Since pA1 < 1/2, the exponent of k in the summation in this case is determined
by its lower bound

kmin =

(
n1−α

A1

)pA1

(ω log n)1−pA1 .

This leads to

E(E2) ≤ (1 + o(1))c A
pA1

1−pA1
1 (1− pA1)n

1− pA1(1−α)
1−pA1

(kmin)
2pA1−1

(1−pA1)pA1

2pA1−1
(1−pA1)pA1

= o(nα),

where the last step follows since the exponent of (ω log n) in (kmin)
2pA1−1

(1−pA1)pA1 equals

(1− pA1)
(2pA1 − 1)

(1− pA1)pA1

< 0.

Finally, the same estimate as before can be used to show that E3 ≤ nα+o(1), and
thus log(E(e(α))/ log n ≤ α + o(1).

For the lower bound, note that all volumes of influence up to time T = (A1/2)nα

have (deterministically) volume at least 2nα. Therefore, a positive fraction of all
edges generated until time T are long, and so a.a.s. Ω(nα) is a lower bound for the
number of long edges and the theorem is finished. �
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