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CENTRAL LIMIT THEOREMS FOR SOME SET PARTITION

STATISTICS

BOBBIE CHERN, PERSI DIACONIS, DANIEL M. KANE, AND ROBERT C. RHOADES

Abstract. We prove the conjectured limiting normality for the number of crossings of a
uniformly chosen set partition of [n] = {1, 2, . . . , n}. The arguments use a novel stochastic
representation and are also used to prove central limit theorems for the dimension index
and the number of levels.

1. Introduction

Let λ be a partition of the set [n] = {1, 2, . . . , n}, so 1|2|3, 12|3, 13|2, 1|23, 123 are the five
partitions of [3]. The enumerative theory of “supercharacters” leads to the statistics

(1.1) d(λ) =
∑

i

(Mi −mi + 1) and cr(λ) = # of crossings of λ.

In d(λ), the sum is over the blocks of λ and Mi (mi) is the largest (smallest) element of
the block i. The statistic cr(λ) counts i < i′ < j < j′ with i, j adjacent elements of the

same block and i′, j′ adjacent elements of the same block ( ). In a companion paper
[3] the moments of d(λ) and cr(λ) are determined as explicit linear combinations of Bell
numbers Bn. Numerical computations (see Figures 1 and 2) suggests that normalized by
their mean and variance, these statistics have approximate normal distributions. Figures 1
– 3 are based on exact counts from our new algorithms [3]. Figures 1 and 2 suggest good
agreement with the normal approximation for dimension index and crossings. Figure 3 shows
slower convergence for levels and suggests a search for finite sample correction terms. We
found the limiting normality challenging to prove using available techniques (eg. moments,
Fristedt’s method of conditioned limit theorems [9], or Stein’s method [4]). Indeed, the
limiting normality of cr(λ) is conjectured in [13].

A key ingredient of the present paper is a stochastic algorithm for generating a random
set partition due to Stam [24]. Supplementing this with some novel probabilistic ideas allows
standard “delta method” techniques to finish the job.

Brief reviews of the extensive enumerative, algebraic and probabilistic aspects of set par-
titions are in [16] and [25]. The book of Mansour [18] contains applications to computer
science and much else. An important paper combining many of the statistics we work with
is [2]. The companion paper [3] has an extensive review. It also summarizes the literature on
supercharacters. Briefly, these are natural characters χλ on the uni-upper triangular matrix
group Un(Fq) which are indexed by set partitions. The representation corresponding to χλ

has dimension qd(λ). The (usual) inner product between χλ and χµ is < χλ, χµ >= qcr(λ)δλ,µ.
This suggests understanding how d(λ) and cr(λ) vary for typical set partitions.
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Figure 1. Histogram of the dimension exponent counts for n = 100 and the
associated Q-Q plot.
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Figure 2. Histogram of the crossing number counts for n = 100 and the
associated Q-Q plot.
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Figure 3. Histogram of the level counts for n = 100 and the associated Q-Q plot.
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There are many codings of a set partition. One needed below codes λ as a sequence
x1, x2, · · · , xn with xi = j if and only if i is in block j of λ. Thus 135|24|6|7 corresponds
to 1, 2, 1, 2, 1, 3, 4. If ai = xi − 1, a1, a2, · · · , an is a restricted growth sequence: a1 = 0 and
ai+1 ≤ 1 +max(a1, · · · , ai) for 1 ≤ i ≤ n− 1. This standard coding is discussed in [16, page
416]. For this coding, let

(1.2) L(λ) = |{i : xi+1 = xi}|

the number of levels of λ. This is used as an example of the present techniques. See [18,
Chapter 4] for further references.

The main theorems proved use αn, the positive real solution of ueu = n + 1 (so αn =
log(n) − log log(n) + o(1) [8]). Let Π(n) be the set of partitions of [n]. Throughout, λ is
uniformly chosen in Π(n).

Theorem 1.1. The number of levels L(λ) has µL
n = E(L(λ)) = (n − 1)Bn−1

Bn
∼ log(n) and

(
σL
n

)2
= VAR(L(λ)) = (n− 1)Bn−1

Bn
+ n(n− 1)Bn−2

Bn
− (n− 1)2

B2

n−1

B2
n

∼ log(n). Normalized by

its mean and standard deviation, L(λ) has an approximate standard normal distribution

P

(
L(λ)− µL

n

σL
n

≤ x

)
→ 1√

2π

∫ x

−∞
e−τ2/2dτ

for all fixed x as n → ∞.

Theorem 1.2. The dimension index d(λ) has µd
n = E(d(λ)) = αn−2

αn
n2+O

(
n
αn

)
and

(
σd
n

)2
=

VAR(d(λ)) =
(

α2
n−7αn+17
α3
n(αn+1)

)
n3+O

(
n2

αn

)
. Normalized by its mean and standard deviation, d(λ)

has an approximate standard normal distribution

P

(
d(λ)− µd

n

σd
n

≤ x

)
→ 1√

2π

∫ x

−∞
e−τ2/2dτ

for all fixed x as n → ∞.

Theorem 1.3. The number of crossings cr(λ) has µcr
n = E(cr(λ)) = 2αn−5

4α2
n

n2 + O
(

n
αn

)

and (σcr
n )2 = VAR(cr(λ)) = 3α2

n−22αn+56
9α3

n(αn+1)
n3 + O

(
n2

αn

)
. Normalized by its mean and standard

deviation, cr(λ) has an approximate standard normal distribution

P

(
cr(λ)− µcr

n

σcr
n

≤ x

)
→ 1√

2π

∫ x

−∞
e−τ2/2dτ

for all fixed x as n → ∞.

Section 2 of this paper explains Stam’s algorithm and shows how it gives a useful heuristic
picture of what a random set partition “looks like”. The limit theorem for levels is proved in
Section 3 as a simple illustration of our proof technique. The dimension index and number
of crossings require further ideas. They are given separate proofs in Sections 4 and 5.
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Notation

Throughout, we use the stochastic order symbols Op and op. If Xn for 1 ≤ n < ∞ is
a sequence of real valued random variables and an is a sequence of real numbers, write
Xn = Op(an) if for every ǫ > 0 and some η > 0, which may depend on ǫ, there is N so that
P{|Xn| ≤ η |an|} > 1− ǫ for all n > N . Write Xn = op(an) if for every ǫ > 0 and η > 0 there
is N so that P{|Xn| < η |an|} > 1 − ǫ for all n > N . For background, examples and many
variations see Pratt [21], Lehman [17], or Serfling [22]. We say two sequences of random
variables are weak star close if their distributions are close in Lévy metric.

2. Stam’s algorithm and set partition heuristics

Write Π(n) for the set partitions of [n] = {1, 2, · · · , n} and Bn = |Π(n)| for the nth Bell
number (sequence A000110 of Sloane’s [23]). To help evaluate asymptotics it is helpful to
have

Bn+1

Bn
=

n

αn
+

1

2

αn

(1 + αn)2
+O

(αn

n

)

Bn+k

Bn
=

(n+ k)!

n!αk
n

(
1 +O

(
k

nαn

))

αn+k

αn
= 1 +O

(
k

n log(n)

)

which are valid for fixed k as n → ∞. See, for instance, [8]. Dobinski’s identity [7, 20]

(2.1) Bn =
1

e

∞∑

m=1

mn

m!

shows that for fixed n ∈ {0, 1, 2, · · · }

(2.2) µn(m) =
1

eBn

mn

m!

is a probability measure on {1, 2, 3, · · · }. Stam [24] uses this measure to give an elegant
algorithm for choosing a uniform random element of Π(n).

Stam’s Algorithm

(1) Choose M from µn.
(2) Drop n labelled balls uniformly into M boxes.
(3) Form a set partition λ of [n] with i and j in the same block if and only if balls i and

j are in the same box.

Of course, after choosing M and dropping balls, some of the boxes may be empty. Stam
[24] shows that the number of empty boxes has (exactly) a Poisson distribution and is
independent of the generated set partition. This implies that the number of boxes M drawn
from µn at (2.2) has the same limiting distribution as the number of blocks in a random
λ ∈ Π(n). This is a well studied random variable. It will emerge that the fluctuations of M
are the main source of randomness in Theorems 1.1 – 1.3. Results of Hwang [11] prove the
following normal limit theorem (Hwang also has an error estimate).
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Theorem 2.1. For M chosen from µn of (2.2), as n → ∞

µM
n := E(M) =

Bn+1

Bn

=
n

αn

+O

(
1

αn

)

and
(
σM
n

)2
:= VAR(M) =

Bn+2

Bn

− B2
n+1

B2
n

=
n

α2
n

+O

(
n

α3
n

)
.

Normalized by its mean and standard deviation, M has an approximate standard normal

distribution.

Heuristic I. Stam’s algorithm gives a useful intuitive way to think about a random element
of Π(n). It behaves practically the same as a uniform multinomial allocation of n labelled
balls into m = n/ log(n) boxes. The arguments in the following sections make this precise. It
appears to us that many of the features previously treated in the beautiful paper of Fristedt
[9] can be treated by the present approach. Note that Fristedt treated features that only
depend on block sizes (largest, smallest, number of boxes of size i). None of our statistics
have this form.
Heuristic II. Fristedt’s arguments randomize n. This makes the block variables, Ni(λ) =
# blocks of size i, independent allowing standard probability theorems to be used. At the
end, a Tauberian argument (dePoissonization) is used to show that the theorems hold for
fixed n. The present argument fixes n and randomizes the number of blocks. This results in
a “balls in boxes” problem with many tools available. At the end, an Abelian argument shows
that the appropriate limit theorem holds when m fluctuates. See [10] for background on this
use of Abelian and Tauberian theorems. There are many variants of Poissonization in active
use. We do not see how to abstract Stam’s algorithm to other combinatorial structures.

We conclude this section with a simple illustration of Stam’s algorithm. From (2.2),
µn(m) = 1

eBn

mn

m!
is a probability measure on {1, 2, 3, · · · }. Thus for −n < d < ∞

(2.3) En(M
d) =

1

eBn

∞∑

m=1

mn+d

m!
=

Bn+d

Bn
.

Let us apply this to compute the moments for L(λ), the number of levels of λ ∈ Π(n). From
the definition (1.2), given M , L(λ) = X1 + · · · + Xn−1 where Xi is the indicator random
variable of the event that balls i and i + 1 are dropped into the same box. By inspection,
the Xi are independent with P(Xi = 1) = 1

M
. Thus

(2.4) En(L(λ)) = EnE (L(λ|M)) = En

(
n− 1

M

)
= (n− 1)

Bn−1

Bn

.

The standard identity

VAR(Z) = E(VAR(Z|W )) + VAR(E(Z|W ))

for any random variables Z and W such that the moments exist, shows that

(2.5) VARn(L(λ)) = (n− 1)
Bn−1

Bn

+ n(n− 1)
Bn−2

Bn

− (n− 1)2
B2

n−1

B2
n

.

More generally, this provides an alternative approach to [3] for showing that the moments
of statistics T (λ) are shifted Bell polynomials. It requires En(T (λ)|m) to be a Laurent
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polynomial in m. As an example, Stam worked with Wi(λ), the size of the block in λ
containing i, 1 ≤ i ≤ n. Then, any polynomial in the {Wi}ni=1 has expectation a shifted Bell
polynomial; for example, W k

i and WiWj . Stam proves that Wi is approximately normal.

3. Proof of Theorem 1.1

Theorem 1.1 is proved here as a simple illustration of our technique. Conditioning on M
in Stam’s algorithm, classical “balls in bins” central limit theorems are used to prove the
limiting normality uniformly in M and standard δ-method arguments are used to complete
the proof.

Proof of Theorem 1.1. The moments of the level statistic L(λ) are computed in (2.4) and
(2.5). Conditional on M , L(λ) = X1+· · ·+Xn−1 with Xi independent identically distributed
binary variables with P(Xi = 1) = 1/M . Thus conditioned on M ,

E(L(λ) | M) =
n− 1

M
, and VAR(L(λ) | M) =

n− 1

M

(
1− 1

M

)
.

and, normalized by its conditional mean and variance, L(λ) has a standard normal limiting
distribution provided n/M → ∞. In the present case, M = Mn is a random variable. From
Theorem 2.1, as n tends to infinity

(3.1)
Mn − µM

n

σM
n

→ N(0, 1) with µM
n ∼ n

αn
, (σM

n )2 ∼ n

α2
n

.

This implies

(3.2)
n

Mn

= αn +Op

(
1√
n

)
.

To be precise, write Mn = µM
n + Znσ

M
n with Zn = Mn−µM

n

σM
n

. Then

(3.3)
n

Mn
=

n

µM
n + ZnσM

n

=
n

µM
n

(
1 + Zn

σM
n

µM
n

) =
n

µn

(
1 +

Zn

µM
n

σM
n +O

((
Znσ

M
n

µM
n

)2
))

.

From Theorem 2.1, n/µM
n = αn + O(αn/n), σ

M
n /µM

n = O(1/
√
n). Since Zn = Op(1), (3.2)

follows.
Thus, with probability close to 1 with respect to M we have that L(λ) conditioned on M

is weak star close to a Gaussian with mean

µM =
n− 1

M
= αn +Op(n

−1/2)

and standard deviation

σM =

√
n− 1

M

(
1− 1

M

)
=

√
αn +Op(n

−1/2).

Thus, with high probability over M , the conditional distribution on L(λ) is weak star close
to N(αn,

√
αn). Therefore, the overall distribution of L(λ) is also close to this normal

distribution.
�
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4. Proof of Theorem 1.2

In outline, the proof proceeds by choosing a random λ ∈ Π(n) using Stam’s algorithm.
Conditioning on the chosen m reduces the problem to a slightly non-standard balls in boxes
problem. Given m, it is shown that d(λ) = nm − 2m2 + Op(m

3/2) so that the fluctuations
in d(λ) are driven by the fluctuations in m. These are asymptotically normally distributed

with mean and variance
(

n
αn
, n
α2
n

)
. From Theorem 2.1 above, a simple averaging argument

completes the proof. The first proposition treats the balls in boxes argument. It proves more
than is needed. The argument is useful for statistics such as T (λ) =

∑
i Mi where the sum

runs over the blocks of λ indexed by i and Mi is the maximum element in the ith block.
The first step in the proof is to prove the appropriate approximation conditional on m.

While it would be of interest to explore this for general n, m, we content ourselves with
proving what is needed for Theorem 1.2. From Theorem 2.1 the relevant values of m are
n
αn

+ c
√
n

log(n)
for large fixed values of c. This explains the choice in the next lemma.

Lemma 4.1. Fix a large number C. Let n balls labeled 1, 2, · · · , n be dropped uniformly at

random into m boxes with m = n
αn

+ c
√
n

log(n)
. For |c| ≤ C. Let

Dn =
m∑

i=1

(Mi −mi + 1)

with Mi the maximum label in box i and mi the minimum label of box i. Mi −mi is omitted

if box i is empty. Then Dn = nm− 2m2 +Op,C(m
3/2) uniformly in |c| ≤ C.

Proof. Consider an infinite supply of balls labelled 1, 2, 3, . . . dropped uniformly at random
into m boxes. Let Wi 1 ≤ i ≤ m be the waiting time until i boxes have been filled.
Thus Wi = 1, W2 − W1 is GEOMETRIC(1/m), W3 − W2 is GEOMETRIC(2/m), . . . ,
Wn −Wn−1 is GEOMETRIC((m − 1)/m) and all these differences are independent. Here,
if X is GEOMETRIC(θ), P(X = j) = θj−1(1− θ), E(X) = 1/θ, and VAR(X) = 1

θ

(
1
θ
− 1
)
.

Let Et be the number of empty boxes at time t and Lt be the largest ℓ so that Wℓ ≤ t. If
Lm ≤ t all boxes are non-empty at time t and Et = 0. More generally, Lt = m−Et.

The sum
∑m

i=1mi is W1 + · · · + WLn
. This sum may be controlled by showing that En

is bounded with high probability and then bounding the sum by Chebychev bounds. The
same argument works for

∑m
i=1Mi. Toward this end, represent

En =
m∑

i=1

Xi where Xi =

{
1 box i is empty after n balls

0 box i is not empty after n balls
.

E (En) = m

(
1− 1

m

)n

, VAR(En) = m

(
1− 1

m

)n

+m(m−1)

(
1− 1

m

)n

−m2

(
1− 1

m

)2n

.

By elementary estimates

(4.1) E (En) = 1 +O

(
C√
n

)
, VAR(En) = 1 +O

(
C√
n

)
.
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Indeed, m
(
1− 1

m

)n
= elog(m)− n

m
+O( n

m2 ). Using the assumption m = n
αn

+ c
√
n

log(n)
, log(m) =

αn +O
(

c√
n

)
, n
m

= αn +O
(

1√
n log(n)

)
. This gives the first result in (4.1), the second follows

similarly. By classical results [1], En is approximately POISSON(1) distributed with an
explicit total variation error but this is not needed.

Consider next

Sn = W1 + · · ·+Wm = mW1 + (m− 1)(W2 −W1) + · · ·+2(Wm−1−Wm−2) + (Wm−1 −Wm).

E(Sn) =
m

1
+

m− 1
m−1
m

+ · · ·+ 1
1
m

= m2(4.2)

VAR(Sn) =

m−1∑

i=1

(m− i)2
m

m− i

(
m

m− i
− 1

)
=

m∑

i=1

mi = m
m(m− 1)

2
∼ m3

2
.(4.3)

Consider next the sum of the box maxima. Drop balls labelled n, n−1, · · · , 1 sequentially

into m boxes. If the new arrivals are at times W̃1, W̃2, · · · , W̃m, the box maxima are n −
(W̃1 − 1), n− (W̃2 − 1), . . . , n− (W̃m − 1). The sum

S̃n =
m∑

i=1

mi = nm−
(
W̃1 + · · ·+ W̃m

)
+ n.

Thus

E(S̃n) = n(m+ 1)−m2(4.4)

VAR(S̃n) = m
m(m− 1)

2
.(4.5)

The random variable of interest is

Dn =

m∑

i=1

(Mi −mi + 1) = S̃n − Sn −
m∑

i=Ln+1

(
W̃i −Wi

)
+m.

The sum
∑m

i=Ln+1 W̃i ≤ EnW̃m. From the coupon collectors problem W̃m is of stochastic

order m log(m) ∼ n and En is stochastically bounded. A similar argument holds with W̃i

replaced by Wi. It follows that the sum
∑m

i=Ln+1

(
W̃i −Wi

)
= Op(n). Combining terms

Dn = S̃n − S̃n +m+Op(n) = nm+
(
S̃n − E(S̃n)

)
− (Sn − E(Sn)) +Op(n).

By Chebychev’s inequality |Sn − E(Sn)| and
∣∣∣S̃n − E(S̃n)

∣∣∣ are both Op(m
3/2). It follows that

Dn = nm− 2m2 +Op(m
3/2). �

Proof of Theorem 1.2. To finish the proof of Theorem 1.2 note that conditional on M

d(λ) = nM − 2M2 +Op(M
3/2).

This is weak star close to

N

(
n2

αn
− 2n2

α2
n

,
n3/2

αn

)
+Op

(
n

αn

)3/2

.
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Since (n/αn)
3/2 is much smaller than the standard deviation of the normal, this is in turn

close to

N

(
n2

αn
− 2n2

α2
,
n3/2

αn

)
.

This completes the proof. �

5. Proof of Theorem 1.3

This section contains the proof of Theorem 1.3. Our approach is to compare the cross-
ing statistic to the dimension statistic, which by Theorem 1.2 is known to be normally
distributed.

Proof. To analyze the distribution of the crossing number, we compare it to the dimension
index. We do this by producing a uniform random set partition λ in the following unusual
way:

• Pick M from µn.
• Pick a uniform random set partition µ for that m according to Stam’s algorithm.
• Let λ be a uniform random set partition conditional on the event that the set of

minimum elements of blocks of λ is the set of minimum elements of blocks on µ and
that the set of maximum elements of blocks of λ equals the set of maximum elements
of blocks of µ.

This third step can be accomplished in the following way, assigning the elements of [n] to
blocks in order. We begin with no blocks and add elements to blocks one at a time, sometimes
creating new blocks. If an element k, where k is the maximum element of some block of
µ is added to a block in λ, we declare that block closed. After having assigned the first k
elements to blocks in λ, we assign k + 1 to a uniform random un-closed block, unless k + 1
is the minimum element of some block of µ, in which case we assign k + 1 to a new block of
λ. This procedure clearly produces a uniform λ subject to the restriction on the minimum
and maximum elements of blocks.

On the other hand, this method of choosing λ gives us a reasonable way to analyze cr(λ).
In particular, the crossing number of λ equals the number of pairs of a j ∈ [n] and a block
B in λ with

• j 6∈ B
• j not the first element of its block
• max(B) > j
• The element of B immediately preceding j is larger than the element of j’s block

immediately preceding j

We note that this is easy to analyze given the procedure above for choosing λ. Suppose that
when k is being added to λ that there are ak blocks of λ currently open. If k is the first
element of its block, then we have no crossings with j = k. Otherwise, we claim that the
number of crossings with j = k (which we call Xk) has distribution given by the discrete
uniform random variable on [0, ak − 1]. In particular, if the open blocks are B1, . . . , Bak

whose element immediately preceding k is m1 < m2 < . . . < mak , then Xk = k − i if k is
assigned to block Bi. Note furthermore, that the ak are determined by µ and that the Xk

are independent conditional on µ. Since cr(λ) =
∑

k Xk is a sum of independent random
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variables, it is easy to see that conditioned on µ that with high probability cr(λ) is weak
star close to

N

(
∑

k not a minimum

ak − 1

2
,

√ ∑

k not a minimum

a2k − 1

12

)
.

We note that a given block contributes to ak if and only if k is between is minimum and
maximum values. Therefore,

n∑

k=1

(ak − 1) =

(
m∑

i=1

Mi −mi

)
− n = nm− 2m2 +Op(m

3/2).

On the other hand, the sum over ak at the start of blocks is the number pairs of blocks that
overlap. Note that for m = n/αn + op(n/ log

2(n)), that any given block has n/2 between
its minimum and maximum with probability 1 − O(m−1/2). Thus, for m in this range, the
expected number of pairs of non-overlapping blocks is O(m3/2). Thus,

∑

k not a minimum

ak − 1

2
= nm/2 − 5m2/4 +Op(m

3/2).

It is also easy to see that

∑

k not a minimum

(a2k − 1) = n2m(1 + op(1)) =
n3

αn
(1 + op(1)).

Therefore, with probability approaching 1 over the choice of m, the distribution of λ condi-
tioned on m is close to

N

(
nm/2− 5m2/4,

n3/2

√
12αn

)
.

This can be rewritten (up to small error) as the sum of (n/2 + 5n/(2αn))(m− n/αn) and a
variable with distribution

N

(
n2

2αn
− 5n2

4α2
n

,
n3/2

√
12αn

)
.

On the other hand, by Theorem 2.1, (n/2 + 5n/(2αn))(m − n/αn) is approximated by an
independent normal weak star close to

N

(
0,

n3/2

2αn

)
.

Thus, the distribution of cr(λ) is close in cdf distance to this sum of independent normals,
which is given by

N

(
n2

2αn
− 5n2

4α2
n

,
n3/2

√
3αn

)
.

This completes the proof. �
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