
ar
X

iv
:1

31
2.

57
11

v3
  [

m
at

h.
C

A
] 

 2
8 

N
ov

 2
01

4

EULER-MACLAURIN FORMULAS

VIA DIFFERENTIAL OPERATORS

YOHANN LE FLOCH ÁLVARO PELAYO

Abstract. Recently there has been a renewed interest in asymptotic
Euler-MacLaurin formulas, partly due to applications to spectral the-
ory of differential operators. Using elementary means, we recover such
formulas for compactly supported smooth functions f on intervals, poly-
gons, and 3-dimensional polytopes ∆, where the coefficients in the as-
ymptotic expansion are sums of differential operators involving only
derivatives of f in directions normal to the faces of ∆. Our formu-
las apply to wedges of any dimension. This paper builds on, and is
motivated by, works of Guillemin, Sternberg, and others, in the past ten
years.

1. Introduction

1.1. The context. Let ∆ be a polytope in Rn. Euler-MacLaurin formulas
are expressions which may be used to approximate Riemann sums of smooth
functions f : Rn → R such as

(1)
1

Nn

∑

k∈Zn∩N∆

f
( k

N

)
,

in terms of integrals involving f . Such formulas may be traced back to the
work of L. Euler and C. MacLaurin in the first half of the XIX century.
Partly due to its connections to other areas of mathematics, this topic has
attracted great interest recently, see for instance Berline-Vergne [BeVe07],
Brion-Vergne [BrVe97], Cappell-Shaneson [CS95], Guillemin-Sternberg [GuSt07],
Guillemin-Sternberg-Weitsman [GSW], Guillemin-Stroock [GuSt08], Guillemin-
-Wang [GuWa08], Karshon-Sternberg-Weitsman [KSW05], Shaneson [Sh94],
Tate [Ta10], and Vergne [Ve13]. Let us also mention that in [ChVN08, Sec-
tion 5, Theorem 5.9] Charles and Vũ Ngo.c obtained an asymptotic expansion
for a sum over integral points of a convex polytope as a consequence of a
trace formula, and computed explicitly the first term of this expansion.

Our interest in Euler-MacLaurin formulas originates mainly in the appli-
cations they have in spectral theory of differential operators, see for instance
the recent articles of Burns-Guillemin-Wang [BuGuWa] and Zelditch [Ze09].
Euler-MacLaurin formulas are also connected to major problems in number
theory, see eg. Lagarias [La13]. At least in dimension one, these formu-
las have many other applications in other areas, for instance in numeri-
cal analysis and computational mathematics, see e.g. Berrut [Ber06] and
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Tausch [Tau10], in actuarial sciences, for instance simple approximations
in terms of annuities with annual payments are available based on Euler-
-MacLaurin formulas (see [Mac06] and the references therein), and in the
study of the Casimir effect problem, see for instance [Cas48, Dow89]. In
[CosGar08], Costin and Garoufalidis describe applications of Euler-MacLaurin
formulas to linear difference equations with a small parameter, and to the
study of knotted 3-dimensional objects.

Recently, Tate [Ta10] obtained concrete Euler-MacLaurin formulas to ap-
proximate Riemann sums of the form (1) for smooth functions on lattice
polytopes in any dimension, building primarily on the work of Berline and
Vergne [BeVe07]. As a consequence of this general result and its rather in-
volved proof, Tate obtained a fully explicit formula for Riemann sums over
Delzant polygons (Figure 1), that is Delzant polytopes in dimension 2. This
case is already of interest because such Delzant polygons arise as images of
the moment maps of 4-dimensional toric manifolds.

Let us briefly explain how toric manifolds enter the picture. Let (M,ω)
be a compact connected symplectic toric manifold, µ : M → Rn the un-
derlying moment map, and ∆ = µ(M) the associated Delzant polytope.
Assume that there exists a prequantum line bundle L → M , that is a holo-
morphic, Hermitian line bundle which Chern connection has curvature −iω,
and consider the space Hk = H0(M,L⊗k) of holomorphic sections of L⊗k;
Hk is the Hilbert space of geometric quantization. A standard result states
that the dimension of Hk is equal to the number # (Zn ∩ k∆/(2π)) of in-
teger points in the polytope k∆/(2π) (see [Ham08] for a nice exposition
in the case k = 11), that is the so-called Ehrhart polynomial [Ehr62] of
this polytope. An analogous result for toric varieties was one of the motiva-
tions behind works by Khovanskĭı [Khov77, Khov78], followed by Khovanskĭı
and Pukhlikov [KhovPuk92a, KhovPuk92b] (see also Kantor and Khovan-
skĭı [KanKhov93]), providing formulas for sums of values of f on lattice
points of a lattice polytope, where f is of the form polynomial times expo-
nential.
More generally, let (T1,k, . . . , Tn,k) be commuting self-adjoint Berezin-Toeplitz
operators (each Ti,k acts on the space Hk defined above; for more details, see
for instance [Schli10] and references therein) whose principal symbols are the
components of the moment map µ : M → Rn. A result recently obtained by
Charles, Pelayo and Vũ Ngo.c [ChPeVN2013, Theorem 1.11] states that the
joint spectrum JS (consisting of joint eigenvalues) of T1,k, . . . , Tn,k coincides,
up to O(k−∞), with the set

g

(
∆ ∩

(
v +

2π

k
Zn

)
; k

)

where v is any vertex of the Delzant polytope ∆ = µ(M) and the sequence
of functions g(.; k) : Rn → Rn admits a C∞-asymptotic expansion of the

1And with a different convention which explains some differences by factors 2π.
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form g(., k) = Id+ k−1g1 + k−2g2 + . . ., where each gj : R
n → Rn is smooth.

Thus, given any smooth function F : Rn → R, the trace of the operator
F (T1,k, . . . , Tn,k) is equal to

∑

λ∈JS

F (λ) =
∑

x∈Zn∩k∆/(2π)

ϕ
(x
k

)
,

where ϕ : Rn → R is defined by the formula ϕ(x) = F (g(v + 2πx)) (the
particular case F = 1 corresponds to the computation of the dimension of
Hk, see discussion above). The right-hand side of this equality is of the form
(1), up to a multiplicative factor kn, and can thus be evaluated thanks to
Euler-MacLaurin formulas.

1.2. Aim and structure of the paper. The goal of this paper is double.
Firstly, we recover some of Tate’s results by elementary methods–different
from those used in [Ta10]–starting from a result due to Guillemin and Stern-
berg [GuSt07], which was itself derived by elementary means. More pre-
cisely, we obtain explicit Euler-MacLaurin formulas to approximate (1) for
compactly supported functions f on wedges in Rn, intervals, polygons, and
polytopes ∆ in R3, where the coefficients in the asymptotic expansion are
sums of differential operators involving only derivatives of f in directions
normal to the faces of ∆. Secondly, we provide explicit examples in di-
mension 2; the first one is fully explicit, in the sense that the asymptotic
expansion of (1) is finite and that we provide all of its coefficients, while
for the second one we provide some numerical evidence of the correctness of
this asymptotic expansion.

The only reason to restrict ourselves to intervals, polygons and 3-polytopes,
is because of technical difficulties due to our method of proof. We hope to
be able to extend our techniques to higher dimensions in future works. How-
ever, we believe that the methods and results presented here are themselves
already interesting, understandable in the sense that they only involve ele-
mentary computations, and may serve as a comprehensive introduction to
the more general topic of Euler-MacLaurin formulas over lattice polytopes
in any dimension as treated in [Ta10]. Furthermore, despite the simplicity
of the computations involved in the cases that we treat, we have not seen
them explicitly written anywhere, which constitutes another reason to think
that this proof is worth presenting on its own.

The structure of the paper is as follows: in Section 2 we will state our
main result, and the remaining sections of the paper are devoted to its
proof and further refinements. In the case of polygons ∆, our approach
leads to formulas in which the coefficients in the asymptotic expansion can
be explicitly calculated, and we do so in Section 7. In the Appendix, we
recall some of Tate’s notation and results and provide a comparison with
ours.
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(1,0)(0,0)

(1,1)(0,1)(1,1)(0,1)

(2,0)(0,0)(1,0)(0,0)

(0,1)

Figure 1. Delzant polygons.

2. Main Result

Let n > 1 and let Zn be the integer lattice in Rn. Let (Zn)∗ and (Rn)∗ be
the corresponding dual spaces. Let 〈·, ·〉 denote the pairing of (Rn)∗ with
Rn. The subset W ⊂ Rn given by the inequalities

〈ui, x〉 6 ci, i ∈ {1, . . . ,m}(2)

is called an integer m-wedge if for every i ∈ {1, . . . ,m} the constant ci is
an integer and the vector ui is a primitive lattice vector in (Rn)∗. Let U
be the subspace of (Rn)∗ spanned by the ui’s. We say that W is regular if
{u1, . . . , um} is a lattice basis of the lattice U ∩ (Zn)∗.

When m = n, define the diffeomorphism ϕ ∈ C∞(Rn,Rn), such that
ϕ(x) = y has coordinates yi := 〈ui, x〉 − ci, i ∈ {1, . . . , n}, in the standard
orthonormal basis of Rn. Let Hi be the facet of W defined by

Hi := {x ∈ W | 〈ui, x〉 = ci} .

For α = (αi)16i6n ∈ Nn, set

F =
⋂

i,αi>0

Hi

and let the constant Kα(W ) be defined as the Jacobian of the diffeomor-
phism ϕ|F : F →

⋂
i,αi>0{yi = 0}, and write

⋆w

F

:= Kα(W )
w

F

.

Let (vi)16i6n be the dual basis of (ui)16i6n. The constant Kα(W ) is the
inverse of the volume of the parallelotope generated by the vectors vi for i
such that αi = 0, that is, the primitive outwards vectors defining the face F
(see Figure 2).

We introduce the following notation:

• α! = α1! . . . αn!;
• r(α) ∈ Nn is given by r(α)i = 1 if αi > 0, r(α)i = 0 if αi = 0;
• if u1, . . . , un ∈ Rn, uα is the |α|-tuple of vectors

uα = (u1, . . . , u1︸ ︷︷ ︸
α1 times

, . . . , un, . . . , un︸ ︷︷ ︸
αn times

);
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Figure 2. Computation of Kα(W ); here α = (0, 1, 0).

• ν(α) stands for the number of indices i such that αi > 0.

We define bn, n > 0 as follows: b0 = 1, b1 = 1/2, b2p+1 = 0 if p > 1 and
b2p = (−1)p−1Bp, with Bp the p-th Bernoulli number. Let

C(W,α) :=

(
1

α!

n∏

i=1

bαi

)
Kα(W ).

A regular n-wedge is an example of an n-dimensional Delzant polytope.
Let ∆ ⊂ Rn be an n-dimensional polytope. We say that ∆ is Delzant if it
is a simple and regular polytope2. Suppose that ∆ has d facets. Then ∆ is
defined by d equations: 〈ui, x〉 6 ci, where i ∈ {1, . . . , d}. For q ∈ J1, nK, we
denote by Fq the set of faces of codimension q of ∆.

The following theorem gives asymptotic Euler-MacLaurin formulas for
Riemann sums. It holds in any dimension for wedges, and in dimensions
1, 2, and 3 for polytopes. The case of 4-dimensional polytopes is more
complicated to handle with our techniques, and we leave it to future works
(see Remark 5.5). The first assertion of the theorem is the same as [Ta10,
Proposition 3.1] (see the Appendix for a comparison), and the second one
is similar to [Ta10, Theorem 5.1]. In fact, the uniqueness result [Ta10,
Theorem 5.3] implies that the operators that we construct are the same,
but what differs is the way we obtain them.

Theorem 2.1. Let f ∈ C∞
0 (Rn). Then the following hold.

(i) If W if a regular n-dimensional wedge in Rn,

1

Nn

∑

k∈Zn∩NW

f
( k

N

)
∼
∑

q>0

N−q
∑

α∈Nn

|α|=q

C(W,α)
w

⋂

16i6n
αi>0

Hi

Dq−ν(α)f · vα−r(α),

2∆ is simple if there are exactly n edges meeting at each vertex of ∆; it is regular if
the primitive vectors in the direction of the edges span a basis of Zn, i.e. for each vertex
v of ∆, the edges of ∆ which intersect at v lie on rays v + tαi, 0 6 t < ∞, where α is a
lattice basis of Zn.
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Figure 3. A 2-dimensional wedge.

where the integral is taken over W if the intersection is empty, and
the integral over a single point means evaluation at this point. The
sign ∼ indicates equality modulo O(N−∞).

(ii) If ∆ ⊂ Rn, n ∈ {1, 2, 3}, is an n-dimensional Delzant polytope with
vertices in Zn, for every q > 1 and every face F ∈ Fm with m 6 q,
there exists a linear differential operator Rq(F, .) of degree q − m
depending only on F and involving only derivatives of f in directions
normal to F such that

1

Nn

∑

k∈Zn∩N∆

f
( k

N

)
∼

w

∆

f +
∑

q>1

N−q
∑

16m6q
F∈Fm

⋆w

F

Rq(F, f).

Theorem 2.1 will follow from combining several upcoming results:

• Proposition 4.1;
• Theorem 5.4;
• Theorem 6.1.

Some of the results of the paper are more general than Theorem 2.1, but
we leave them to later sections for simplicity. Our proof of Theorem 2.1
is different from the proof of Tate’s general result in [Ta10, Theorem 5.1],
self-contained, and elementary (in the sense that it relies only on freshman
calculus). We expect to extend part (ii) of Theorem 2.1 to higher dimensions
in future works.

In the case where ∆ is a polygon, we give concrete expressions for the
coefficients in the formula in Theorem 2.1, see Theorem 7.2.

3. Guillemin-Sternberg formulas for regular wedges and

Delzant polytopes

3.1. Formula for regular wedges. The following approximation result
was recently proven by Guillemin-Sternberg [GuSt07].

Lemma 3.1. Let W be a regular integer m-wedge defined by (2). Let Wh

be the perturbed set defined by 〈ui, x〉 6 ci + hi, i ∈ {1, . . . ,m}, where
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h = (h1, . . . , hm). Then, if f ∈ C∞
0 (Rn), we have that

1

Nn

∑

k∈Zn∩NW

f
( k

N

)
∼
(
τ
( 1

N

∂

∂h

) w

Wh

f(x) dx
)
(h = 0),

where

τ(s1, . . . , sm) = τ(s1) . . . τ(sm)

and τ(si) is the Todd function, on the variable si, for every i ∈ {1, . . . ,m}.
The sign ∼ indicates equality modulo O(N−∞).

3.2. Formula for Delzant (i.e. regular and simple) polytopes. Now
let ∆ ⊂ Rn be an n-dimensional Delzant polytope with vertices in Zn and
exactly d facets. Then ∆ is defined by the inequalities 〈ui, x〉 6 ci, i ∈
{1, . . . , d} where ci is an integer and ui ∈ (Zn)∗ is a primitive vector per-
pendicular to the ith-facet of ∆, and pointing outwards from ∆.

Because ∆ is simple by assumption, every codimension k face of ∆ is
defined by a collection of equalities 〈ui, x〉 = ci, i ∈ F , where F is a subset
of k elements of the set {1, . . . , d}. Let WF denote the k-wedge 〈ui, x〉 6

ci, i ∈ F. Because ∆ is regular, each k-wedge WF is regular.
Guillemin and Sternberg have recently shown [GuSt07] the following Euler-

-MacLaurin formula.

Theorem 3.2. Let ∆ be a Delzant polytope with vertices in Zn. Let ∆h

be the perturbed polytope defined by the equations 〈ui, x〉 6 ci + hi, i ∈
{1, . . . , d}. Then, if f ∈ C∞

0 (Rn), we have

1

Nn

∑

k∈Zn∩N∆

f
( k

N

)
∼
(
τ
( 1

N

∂

∂h

) w

∆h

f(x) dx
)
(h = 0),

where

τ(s1, . . . , sd) = τ(s1) . . . τ(sd)

and τ(si) is the Todd function on the variable si, for every i ∈ {1, . . . , d}.

Remark 3.3. A general asymptotic Euler-MacLaurin formula for Riemann
sums over lattice polytopes (simple or not) was given by Tate [Ta10]. As far
as we know, Theorem 3.2 does not follow from Tate’s formula. Other Euler-
MacLaurin formulas have been obtained by Berline-Vergne [BeVe07], Brion-
-Vergne [BrVe97], Cappell-Shaneson [CS95], Karshon-Sternberg-Weitsman
[KSW05], and Zelditch [Ze09] among other authors. ⊘

4. Asymptotic expansion for regular wedges

Let W be a regular integer n-wedge defined by (2). Recall that (vi)16i6n

is the dual basis of (ui)16i6n and Hi is the facet of W defined by

Hi = {x ∈ W | 〈ui, x〉 = ci} .
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Then vi generates the edge
⋂

j 6=iHj . For any integer q, we introduce the

operator Tq(W, .) defined by

Tq(W,f) =
∑

α∈Nn

|α|=q

(
1

α!

n∏

i=1

bαi

)
Kα(W )

w
⋂

i,αi>0
Hi

Dq−ν(α)f · vα−r(α)

with the convention that the integral is taken over W if the intersection is
empty, and that integrating a function over the vertex means evaluating it
at the vertex. Kα(W ) is a constant depending only on the face

⋂
i,αi>0 Hi,

of which we gave an interpretation earlier.

Proposition 4.1. If f ∈ C∞
0 (Rn), we have that

(3)
1

Nn

∑

k∈Zn∩NW

f
( k

N

)
∼
∑

q>0

N−qTq(f).

Proof. The idea of the proof is the following: first, we compute the full
asymptotic expansion given by Lemma 3.1 in the case of the standard n-
wedge {x ∈ Rn;x1 6 0, . . . , xn 6 0}. Then, we perform a change of variables
to deal with the case of a general regular n-wedge.

We start by writing the expansion of τ(s1, . . . , sn) = τ(s1) . . . τ(sn); we
recall that

τ(s) =
s

1− exp(−s)
=

+∞∑

n=0

bn
sn

n!
.

Write

τ(s1, . . . , sn) =
∑

α∈Nn

aαs
α,

where sα = sα1

1 . . . sαn
n . The coefficient Sq of N−q in τ

(
∂
∂h

)
is equal to

∑

α∈Nn,|α|=q

aα
∂α

∂hα

with
∂α

∂hα
=

∂α1

∂hα1

1

. . .
∂αnf

∂hαn
n

.

Hence

Sq(f) =
∑

α∈Nn,|α|=q

(
1

α!

n∏

i=1

bαi

)
∂α

∂hα
.

From this result, we deduce a formula for the case of the standard wedge.
Remember that

w

Wh

f(x)dx =

h1w

−∞

. . .

hnw

−∞

f(x1, . . . , xn)dx1 . . . dxn;
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thus 
 ∂

∂hi

w

Wh

f(x)dx




|h=0

=

0w

−∞

. . .

0w

−∞

f(x̂i)d̂xi =
w

{xi=0}

f

where x̂i = (x1, . . . xi−1, 0, xi+1, . . . , xn) and d̂xi = dx1 . . . dxi−1dxi+1 . . . dxn.
From this we obtain a general formula when αi > 1:


 ∂αi

∂hαi

i

w

Wh

f(x)dx




|h=0

=
w

{xi=0}

∂αi−1f

∂xαi−1
i

.

This finally yields

(4)
∂α

∂hα

w

Wh

f(x)dx =
w

⋂

i,αi>0
{xi=0}

∂α−r(α)f

∂xα−r(α)
.

This gives the desired formula in the case of the standard wedge.
Let us now turn to the general case. Let W be the regular n-wedge defined

by (2). Define the diffeomorphism ϕ : Rn → Rn, such that ϕ(x) = y has the
following coordinates in the standard orthonormal basis of Rn:

∀i ∈ {1, . . . , n} yi = 〈ui, x〉 − ci.

Then ϕ(W ) is the standard wedge; moreover, ϕ is a diffeomorphism from⋂
i∈I Hi to

⋂
i∈I{xi = 0} for each subset I of J1, nK. We have that

∑

k∈Zn∩NW

f

(
k

N

)
=

∑

ℓ∈ϕ(Zn)∩Nϕ(W )

g

(
ℓ

N

)
ci integers

=
∑

ℓ∈Zn∩Nϕ(W )

g

(
ℓ

N

)

with g = f ◦ ϕ−1. But we know from the previous case that

∑

ℓ∈Zn∩Nϕ(W )

g

(
ℓ

N

)
∼
∑

q>0

N−q Tq(ϕ(W ), g);

therefore, it only remains to prove that for every q > 0,

Tq(ϕ(W ), g) = Tq(W,f).

First, we have to express the quantity ∂mg
∂ymi

in terms of f . Since g = f ◦ϕ−1,

we have
∂g

∂yi
(y) = Df(ϕ−1(y)) · Dyi(ϕ

−1)(y);

but

ϕ−1(y) =

n∑

j=1

(yj + cj)vj,

so Dyi(ϕ
−1)(y) = vi. It follows that

∂g

∂yi
(y) = Df(ϕ−1(y)) · vi.
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By induction, we find

∂mg

∂ymi
(y) = Dmf(ϕ−1(y)) · (vi, . . . , vi).

Now, we have to understand integrals of the form

I =
w

⋂

i,αi>0
{yi=0}

∂α−r(α)g

∂yα−r(α)
.

From the previous discussion

I =
w

ϕ
(

⋂

i,αi>0 Hi

)

D|α−r(α)|f(ϕ−1(y)) · vα−r(α).

Hence

I = Kα(W )
w

⋂

i,αi>0
Hi

Dq−ν(α)f · vα−r(α)

where Kα(W ) is the Jacobian of the diffeomorphism ϕ|
⋂

i,αi>0
Hi
, which was

to be proved. �

Another way to write this result is the following: we can eliminate the
constants Kα(W ) by normalizing the measure on the face F =

⋂
i,αi>0 Hi;

we set
⋆w

F

= Kα(W )
w

F

.

5. Explicit asymptotic expansion for regular wedges

In order to deduce a formula for polygons and 3-dimensional polytopes,
we need to rewrite the asymptotic expansion in Proposition 4.1 in a suitable
form. Some of the results of this section apply for general n > 1, and when
this is the case we present the most general version of the result. The final
results require that we restrict to n = 1, 2, or 3.

5.1. General results. Recall that for d ∈ J1, nK, Fd denotes the set of faces
of codimension d of W . In order to simplify the notation, we set

λα =
1

α!

n∏

i=1

bαi

for α ∈ Nn. Our objective is to write a formula of the following kind:

Tq(W,f) =

n−1∑

d=0

∑

F∈Fd

Sq(F, f)

where Sq(F, f) is a differential operator associated to the face F , with good
properties in a sense that we will precise later. Let F ∈ Fd. There exists a
subset I = {i1, . . . , id} of J1, nK such that F =

⋂
j∈I Hj ; the family (vi)i/∈I is
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a basis of the linear subspace spanned by F . A first expression for Sq(F, f)
is

Sq(F, f) =
∑

α∈Nn,|α|=q
{i, αi>0}=I

λα

⋆w

F

Dq−df · vα−r(α).

Observe that if d > q, then Sq(F, f) = 0. If d = q, then Sq(F, f) involves
the integral

⋆w

F

f.

When d < q, the situation is a little bit more complicated, because we
integrate directional derivatives of f involving the vectors vi, i ∈ I. But we
would like to keep only quantities that depend on the face F and nothing
else; this is why we decompose the vectors vi, i ∈ I as follows:

(5) vi =
∑

j /∈I

µF
ijvj +

∑

j∈I

ζFijnj

where nj is the outward primitive normal to the facet Hj . Next, we expand

the quantity Dq−df ·vα−r(α) as a linear combination of nq−d terms involving
the vectors vj , j /∈ I and nj, j ∈ I.

More precisely, write equation (5) as

vi =

n∑

j=1

λF
ijwj

where λF
ij = µF

ij, wj = vj if j /∈ I and λF
ij = ζFij , wj = nj if j ∈ I. Moreover,

set β = α− r(α) and define integers kℓ, 1 6 ℓ 6 q − d as follows: kℓ = i1 if
1 6 ℓ 6 βi1 , . . . , kℓ = id if q − d− βid 6 ℓ 6 q − d. Then

Dq−df · vα−r(α) = Dq−df ·




n∑

j1=1

λF
k1j1wj1 , . . . ,

n∑

jq−d=1

λF
kq−djq−d

wjq−d




which can be written by multilinearity as

Dq−df · vα−r(α) =
n∑

j1,...,jq−d=1

(
q−d∏

ℓ=1

λF
kℓjℓ

)
Dq−df ·

(
wj1 , . . . , wjq−d

)
.

We now want to get rid of the vectors vj, j /∈ I when they appear in the
quantity

Dq−df ·
(
wj1 , . . . , wjq−d

)
.

If j1, . . . , jq−d all belong to I, then only the normal vectors nj appear, and

we have nothing to do; this constitutes dq−d favorable cases. In unfavorable
cases, we use the following lemma.
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Lemma 5.1. For any function g ∈ C∞
0 (Rn) and for every j /∈ I, we have

⋆w

F

Dg · vj =

⋆w

Fj

g

where Fj is the face of codimension d+ 1 defined by Fj = F ∩Hj .

Proof. Let the elements of J1, nK \ I be denoted by xj, xid+2
, . . . , xin . One

has
⋆w

F

Dg · vj =
w

{xi1
=···=xid

=0}

Dg(ϕ−1(x)) · vj dxjdxid+2
. . . dxin

=
w

{xi1
=···=xid

=0}

Dg(ϕ−1(x)) · Dxj
(ϕ−1)(x) dxjdxid+2

. . . dxin

=
w

{xi1
=···=xid

=0}

∂

∂xj
(g ◦ ϕ−1)(x) dxjdxid+2

. . . dxin

=
w

{xi1
=···=xid

=xj=0}

(g ◦ ϕ−1)(x) dxid+2
. . . dxin =

⋆w

Fj

g.

�

5.2. Results for regular 2 and 3-dimensional wedges. When n =
1, 2, 3, applying Lemma 5.1 to functions of the form

g = Dq−d−1f,

and repeating this as many times as necessary, we can get rid of all the
vectors vj , j /∈ I in the expression of

⋆w

F

Dq−df · vα−r(α),

and keep only integrals over faces of codimension greater than d of deriva-
tives of f applied to vectors that are normal to the hyperplanes defining the
faces.

Before we state and prove our result, let us introduce some useful notation.
Let C(W,F ) be the cone generated by the set

{x− y, y ∈ W,x ∈ F}.

If X is a non-empty subset of Rn, let L(X) be the vector subspace generated
by the elements of the form y − x, x, y ∈ X.

The following two lemmas hold in any dimension (not just 2 and 3).

Lemma 5.2. Decompose the vectors vi, i ∈ I, as in equation (5). Choose
another set of vectors (wi)i∈I such that
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• ∀i ∈ I, wi belongs to

L


 ⋂

j∈J1,nK\{i}

Hj


 ∩C(W,F ),

• the family ((vj)j /∈I , (wj)j∈I) is a primitive lattice basis,

and write, for i ∈ I,

wi =
∑

j /∈I

µ̃F
ijvj +

∑

j∈I

ζ̃Fijnj.

Then for j ∈ I, we have ζ̃Fij = ζFij .

In other words, this means that the scalars ζFij only depend on the face F ;
when F will be considered as a face of a polytope instead of a wedge, then
the contribution coming from each wedge will display the same coefficient.

Proof. By definition of the vectors vj , nj, 1 6 j 6 n, one has

(6) ∀ℓ ∈ I 〈vi, nℓ〉 =
∑

j /∈I

ζFij 〈nj, nℓ〉.

Hence, the d coefficients ζFij , j ∈ I, are obtained by solving the linear system

(6) of d equations. Now, we express the vector wi in the basis B = (vj)16j6n:

wi =
∑

j /∈I

αijvj +
∑

j∈I

βijvj .

Since the vector wi belongs to L(
⋂

j∈J1,nK\{i} Hj), all the scalar products

〈wi, nj〉, j ∈ I \ {i}, vanish. This implies that for every j ∈ I \ {i}, βij = 0.
Thus, the matrix M of change of basis from B to

B′ = ((vj)j /∈I , (wj)j∈I)

is of the form

M =

(
In−d A
0 B

)

where
B = diag(β11, . . . , βdd).

Since B and B′ are primitive lattice bases, we have det(M) = ±1, and hence
for every i ∈ I, βii = ±1. But vi and wi belong to C(W,F ), so βii = 1. This
yields that for ℓ ∈ I, we have 〈wi, nℓ〉 = 〈vi, nℓ〉. �

Lemma 5.3. Decompose the vectors vi, i ∈ I, as in equation (5), and fix
j /∈ I. Set J = I ∪ {j}, and choose another set of vectors (wi)i∈J such that

• ∀i ∈ J , wi belongs to

L


 ⋂

k∈J1,nK\{i}

Hk


 ∩ C(W,F ),

• the family ((vi)i/∈J , (wi)i∈J ) is a primitive lattice basis.
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and write, for i ∈ I,

wi = µ̃F
ijwj +

∑

k/∈J

µ̃F
ikvk +

∑

k∈I

ζ̃Fiknk.

Then we have µ̃F
ij = µF

ij.

In other words, this means that the scalar µF
ij only depends on the face

F ∩Hj .

Proof. By definition of the vectors vk, nk, 1 6 k 6 n, one has

∀k /∈ I 〈vi, vk〉 =
∑

ℓ/∈I

µF
iℓ〈vℓ, vk〉,

which can be written in matrix form

(7) Aν = V

where V, ν are the column vectors given by

∀ℓ /∈ I Vℓ = 〈vi, vℓ〉, νℓ = µF
iℓ

and A is the symmetric matrix whose generic coefficient is Ak,ℓ = 〈vk, vℓ〉,
k, ℓ /∈ I. Similarly, the constants µ̃F

iℓ satisfy the system of equations

(Ek) ∀k /∈ J 〈wi, vk〉 = µ̃F
ij〈wj , vk〉+

∑

ℓ/∈J

µ̃F
iℓ〈vℓ, vk〉

and

(Ei) 〈wi, wj〉 = µ̃F
ij‖wj‖

2 +
∑

ℓ/∈J

µ̃F
iℓ〈vℓ, wj〉.

Thanks to the proof of the previous lemma, we know that there exists scalars
αkℓ, k ∈ J , ℓ /∈ J such that

∀k ∈ J wk = vk +
∑

ℓ/∈J

αkℓvℓ.

Hence we have

〈wi, wj〉 = 〈vi, vj〉+
∑

ℓ/∈J

αjℓ〈vi, vℓ〉+
∑

k/∈J

αik〈vj , vk〉+
∑

k,ℓ/∈J

αikαjℓ〈vℓ, vk〉

as well as

∀k /∈ J 〈wi, vk〉 = 〈vi, vk〉+
∑

ℓ/∈J

αiℓ〈vk, vℓ〉

〈wj , vk〉 = 〈vj , vk〉+
∑

ℓ/∈J

αjℓ〈vk, vℓ〉

and

‖wj‖
2 = ‖vj‖

2 + 2
∑

ℓ/∈J

αjℓ +
∑

k,ℓ/∈J

αjℓαjk〈vℓ, vk〉.
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Using these relations, equations (Ek) become

(E′
k) 〈vi, vk〉+

∑

ℓ/∈J

αiℓ〈vℓ, vk〉 = µ̃F
ij〈vj , vk〉+

∑

ℓ/∈J

(
µ̃F
iℓ + µ̃F

ijαjℓ

)
〈vℓ, vk〉

while equation (Ei) becomes

〈vi, vj〉+
∑

ℓ/∈J

αjℓ〈vi, vk〉+
∑

k/∈J

αik〈vj , vk〉+
∑

k,ℓ/∈J

αikαjℓ〈vk, vℓ〉

= µ̃F
ij‖vj‖

2 + 2
∑

ℓ/∈J

µ̃F
ijαjℓ〈vj , vℓ〉+

∑

k,ℓ/∈J

µ̃F
ijαjℓαjk〈vk, vℓ〉

+
∑

ℓ/∈J

µ̃F
iℓ〈vℓ, vj〉+

∑

k,ℓ/∈J

µ̃F
iℓαjk〈vk, vℓ〉.

(E′
i)

Considering the linear combination (E′
i) -

∑
k/∈J αjk(E

′
k), we replace equa-

tion (E′
i) by the new equation (we do no write the details of the computa-

tions)

〈vi, vj〉+
∑

k/∈J

αik〈vj, vk〉 = µ̃F
ij‖vj‖

2 +
∑

ℓ/∈J

(
µ̃F
iℓ + µ̃F

ijαjℓ

)
〈vj , vℓ〉.

Together with equations (E′
k), this means that the coefficients µ̃F

iℓ are solu-
tions of the system

AU + V = Aν̃

where A and V are as before, ν̃ is defined as ν but with the coefficients µ̃F
iℓ

instead of µF
iℓ, and U is the column vector whose entries are Uj = 0,

Uℓ = αiℓ − µ̃F
ijαjℓ.

Comparing this to (7) yields ν = ν̃ − U , and in particular µF
ij = µ̃F

ij . �

Theorem 5.4. Assume that n ∈ {1, 2, 3}. For every q > 1 and every face
F ∈ Fd with d 6 q, there exists a linear differential operator Rq(F, .) of
degree q − d depending only on F (in the sense introduced in the previous
lemmas) and involving only derivatives of f in directions normal to the face
F such that

(8) Tq(W,f) =

n−1∑

d=0

∑

F∈Fd

⋆w

F

Rq(F, f).

Proof. To compute Rq(F, .), we apply the previous technique to faces of
codimension smaller than d and gather their contribution as integrals over
F . It follows from Lemma 5.2 and Lemma 5.3 that Rq(F, .) depends only
on the face F ; let us briefly explain how.

If n = 2, we have to handle two types of faces: the two edges (d = 1) and
the vertex (d = 2) of the wedge. There is not much to say about the case of
the vertex. When we integrate over an edge, and we apply our technique,
we will find
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• constants µ in front of derivatives of f evaluated at the vertex, and
there is nothing to prove,

• constants ζ in front of integrals of derivatives of f on F , and Lemma 5.2
ensures that it only depends on the face F .

If n = 3, we have three types of faces, namely planes (d = 1), edges
(d = 2) and the vertex (d = 3). The difference with the previous case is
that when we consider integrals over a plane, we obtain integrals over edges
belonging to this plane, each one displaying a factor µ; Lemma 5.3 ensures
that it only depends on the given edge. �

Remark 5.5.

(1) In dimension 4 and higher, the situation is more complicated, and
Lemma 5.2 and Lemma 5.3 are not enough to obtain a similar the-
orem. Indeed, think of the following situation: we take n = 4 and
want to evaluate

I =

⋆w

H1

D2f · (v1, v1).

We start by expanding

v1 = µH1

12 v2 + µH1

13 v3 + µH1

14 v4 + ζH1

11 n1,

and we apply Lemma 5.1 to obtain

I = µH1

12

⋆w

H1∩H2

Df · v1 + µH1

13

⋆w

H1∩H3

Df · v1

+µH1

14

⋆w

H1∩H4

Df · v1 + ζH1

11

⋆w

H1

D2f · (v1, n1).

We have to apply the method one more time for each of these inte-
grals. For instance, we put

K =

⋆w

H1∩H2

Df · v1

and to compute this integral, we write

v1 = µH1∩H2

13 v3 + µH1∩H2

14 v4 + ζH1∩H2

11 n1 + ζH1∩H2

12 n2

which yields, again thanks to Lemma 5.1

K = µH1∩H2

13

⋆w

H1∩H2∩H3

f + µH1∩H2

14

⋆w

H1∩H2∩H4

f+

ζH1∩H2

11

⋆w

H1∩H2

Df · n1 + ζH1∩H2

12

⋆w

H1∩H2

Df · n2
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Hence, in the expression of I, we obtain the term

µH1

12 µ
H1∩H2

13

⋆w

H1∩H2∩H3

f ;

does the factor only depend on the face H1 ∩H2 ∩H3 ? We think
that our previous lemmas are not enough to give an answer to this
question.

(2) In principle, one should be able to obtain explicit expressions for the
operators Rq(F, f), but this leads to computations involving a very
large number of constants, so it is not reasonable to try to write such
an expression. However, if we restrict ourselves to dimension 2, we
can be fully explicit, as we will see later.

⊘

6. Asymptotic expansion for polygons and 3-dimensional
polytopes

As in Section 1, let ∆ ⊂ Rn be a Delzant polytope with vertices in Zn in
dimension n ∈ {1, 2, 3} with equations 〈ui, x〉 6 ci, i ∈ {1, . . . , d}. Recall
that for m ∈ J1, nK, Fm denotes the set of faces of codimension m of ∆.

We introduce as in Theorem 5.4 the operators Rq(F, .) associated to a
face F of the polytope (remembering that it only depends on the face as
part of the polytope). For any integer q, we define the operator Tq(∆, .) by

(9) Tq(∆, f) =

n−1∑

m=0

∑

F∈Fm

⋆w

F

Rq(F, f).

Theorem 6.1. If f ∈ C∞
0 (Rn), we have that

1

Nn

∑

k∈Zn∩N∆

f
( k

N

)
=
∑

q>0

N−qTq(∆, f).

Proof. Notice first that ∆ =
⋂p

i=1 Wi where p is the number of vertices of
∆ and Wi is the regular wedge which is the intersection of the n facets Hi

j ,
1 6 j 6 n, intersecting at the vertex vi. Cover ∆ by open sets Ωi, 1 6 i 6 p,
such that Ωi contains the vertex vi and does not intersect any other facet
than the Hi

j , 1 6 j 6 n. Choose a partition of unity associated to this open

covering and write f =
∑p

i=1 fi where fi ∈ C∞
0 (Rn) has support included in

Ωi. Then
∑

k∈Zn∩N∆

f
( k

N

)
=

p∑

i=1

∑

k∈Zn∩NWi

fi

( k

N

)
.

Now, from formula (3), we know that for 1 6 i 6 d
∑

k∈Zn∩NWi

fi

( k

N

)
∼
∑

α>0

N−qTq(Wi, fi);
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hence it is enough to check that for all q
p∑

i=1

Tq(Wi, fi) = Tq(∆, f).

This amounts to show that for each face F of the polytope
p∑

i=1

Rq(F, fi) = Rq(F, f).

But this is clear because Rq(F, .) is linear and because
∑p

i=1 fi = f . �

7. Explicit formula in dimension n = 2

We would like to compute explicitly the operators Rq(∆, .); unfortunately,
as already said, this seems to be quite complicated in all generality. However,
we can give nice formulas in dimension 2.

Let ∆ be a regular integer polygon defined by (2). In this case, we only
have two types of faces: vertices (codimension 2) and edges (codimension
1). Let E (resp. V ) be the set of edges (resp. vertices) of ∆. If e belongs
to E, let ne be the associated outward primitive normal vector; if v belongs
to V , let (w1(v), w2(v)) be the integral basis of Z such that the two edges
meeting at v are contained in the half-lines v+ λwi(v), λ > 0; we denote by
ei the edge generated by wi(v). Define the quantities

η1(v) =
〈w1(v), w2(v)〉

||w1(v)||2
, η2(v) =

〈w1(v), w2(v)〉

||w2(v)||2
.

and µ(v) = η1(v) + η2(v).
Now, let e be an edge, and let C(∆, e) be the cone generated by the set

{x− y, y ∈ ∆, x ∈ e}. Given a generator v1 of e ∩ Z2, there exists a vector
v2 ∈ C(∆, e) ∩ Z2 such that (v1, v2) is a primitive lattice basis of Z2.

Lemma 7.1 (Easy version of Lemma 5.2). The quantity

ζ(e) =
〈v2, ne〉

||ne||2

does not depend on the choice of v2 ∈ C(∆, e) ∩ Z2.

Proof. The lemma follows from Lemma 5.2, but its proof is very simple,
so we present it next. Choose another vector w2 ∈ C(∆, e) ∩ Z2 such that
(v1, w2) is a primitive lattice basis of Z2. Write w2 = αv1 + βv2; then, one
has 〈w2, ne〉 = β〈v2, ne〉. The matrix of the change of the basis is of the
form

A =

(
1 α
0 β

)
;

because its determinant must be ±1, we have β = ±1. Since both v2 and
w2 belong to C(∆, e), the only possibility is β = 1. �

Theorem 7.2. In Theorem 6.1 the operators Tq(∆, .) are given by:
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• T0(∆, f) =
r
∆ f(x)dx;

• T1(∆, f) = 1
2

∑
e∈E

r ⋆
e f ;

• T2(∆, f) =
∑

v∈V

(
1
4+

µ(v)
12

)
f(v)− 1

12

∑
e∈E ζ(e)

r ⋆
e Df · ne;

• if p > 1, then

T2p(∆, f) =
∑

e∈E

R2p(e, f) +
∑

v∈V

R2p(v, f)

where

R2p(e, f) = (−1)p−1 Bp

(2p)!
ζ(e)2p−1

⋆w

e

D2p−1f · (ne, . . . , ne)

and R2p(v, f) is equal to

(−1)p−2
∑

m+ℓ=p

m,ℓ>1

BmBℓ

(2m)!(2ℓ)!
D2p−2f(v) · (w1(v), . . . , w1(v)︸ ︷︷ ︸

2m−1 times

, w2(v), . . . , w2(v)︸ ︷︷ ︸
2ℓ−1 times

)

+(−1)p−2 Bp

(2p)!
η1(v)

2p−2∑

k=0

ζ(e1)
kD2p−2f · (ne1 , . . . , ne1︸ ︷︷ ︸

k times

, w2(v), . . . , w2(v)︸ ︷︷ ︸
2p−2−k times

)

+(−1)p−2 Bp

(2p)!
η2(v)

2p−2∑

k=0

ζ(e2)
kD2p−2f · (ne2 , . . . , ne2︸ ︷︷ ︸

k times

, w1(v), . . . , w1(v)︸ ︷︷ ︸
2p−2−k times

);

• if p > 1, T2p+1(∆, f) is equal to

(−1)p−1Bp

2(2p)!

∑

v∈V

(
D2p−1f(v) · (w1(v), . . . , w1(v)) + D2p−1f(v) · (w2(v), . . . , w2(v))

)
.

Remark 7.3. Theorem 7.2 recovers the formula in [Ta10, Corollary 5.4]. To
compare the two formulas, one may notice that Tate does not separate the
even and odd cases, and that in the odd case nearly every coefficient in Tate’s
formula vanishes because of the properties of the Bernoulli numbers. ⊘

Proof. We have to compute the operators Rq(F, .) as in Section 5. We start
by the case q = 2. Let v be a vertex and let W be the wedge formed by
this vertex and the two incident edges. Define the vectors w1(v), w2(v) as
before, and let e1 (resp. e2) be the edge generated by w1(v) (resp. w2(v)).

We have

T2(W,f) =
1

4
f(v)−

1

12

(
⋆w

e1

Df · w2(v) +

⋆w

e2

Df · w1(v)

)
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If ni is the outward primitive vector normal to the edge ei, we write

wi(v) = αiwj(v) + βinj

where j = 2 (resp. 1) if i = 1 (resp. 2). Taking the scalar product with nj

and wj(v), we find

αi =
〈wi(v), wj(v)〉

||wj(v)||2
= ηj(v), βi =

〈wi(v), nj〉

||nj||2
= ζ(ej).

Now, thanks to lemma 5.1, we have (being careful that the vector wi(v) is
the opposite of the vector vj in this lemma)

⋆w

ej

Df · wi(v) = −αif(v) + ζ(ej)

⋆w

ej

Df · nj.

Adding the contributions from each vertex, we obtain the desired formula.
Now, let p > 1; then

T2p(W,f) = (−1)p−1 Bp

(2p)!

⋆w

e1

D2p−1f · (w2(v), . . . , w2(v))

+(−1)p−1 Bp

(2p)!

⋆w

e2

D2p−1f · (w1(v), . . . , w1(v))

+(−1)p−2
∑

m+ℓ=p,
m,ℓ>1

BmBℓ

(2m)!(2ℓ)!
D2p−2f(v) · (w1(v), . . . , w1(v)︸ ︷︷ ︸

2m−1 times

, w2(v), . . . , w2(v)︸ ︷︷ ︸
2ℓ−1 times

).

We write
⋆w

ej

D2p−1f · (wi(v), . . . , wi(v)) = ηj(v)

⋆w

ej

D2p−1f · (wj(v), wi(v), . . . , wi(v))

+ζ(ej)

⋆w

ej

D2p−1f · (nj, wi(v), . . . , wi(v)).

By Lemma 5.1, we have

⋆w

ej

D2p−1f · (wj(v), wi(v), . . . , wi(v)) = −D2p−2f · (wi(v), . . . , wi(v))

and hence we obtain
⋆w

ej

D2p−1f · (wi(v), . . . , wi(v)) = −ηj(v)D
2p−2f · (wi(v), . . . , wi(v))

+ζ(ej)

⋆w

ej

D2p−1f · (nj, wi(v), . . . , wi(v)).
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By a straightforward induction, this yields

⋆w

ej

D2p−1f · (wi(v), . . . , wi(v))

= −ηj(v)

2p−2∑

k=0

ζ(ej)
kD2p−2f · (nj , . . . , nj︸ ︷︷ ︸

k times

, wi(v), . . . , wi(v)︸ ︷︷ ︸
2p−2−k times

)

+ζ(ej)
2p−1

⋆w

ej

D2p−1f · (nj , . . . , nj).

The case q = 2p+ 1 works in a similar way. �

8. Examples

Let us describe two examples in the 2-dimensional case. The first one is
fully explicit, in the sense that we choose a function for which the asymptotic
expansion given in Theorem 6.1 is finite, and we provide every coefficient of
the latter. The second one is more involved and we compute the first three
terms of the asymptotic expansion and give numerical computations of the
remainder.

8.1. A fully explicit example. Let ∆ be the triangle with vertices (0, 0),
(0, 1) and (1, 0) and let

f : R2 → R

be the function defined by

f(x1, x2) = x1

(multiplied by a cutoff function so that it is compactly supported). Then

Z2 ∩N∆ = {(k1, k2) ∈ Z2, 0 6 k1 6 N, 0 6 k2 6 N − k1}.

Therefore, we have

1

N2

∑

k∈N∆∩Z2

f

(
k

N

)
=

1

N2

N∑

k1=0

N−k1∑

k2=0

k1
N

=
1

N3


(N + 1)

N∑

k1=1

k1 −
N∑

k1=1

k21


 .

Using standard formulas for sums of integers and squares of integers, one
can check that

1

N2

∑

k∈N∆∩Z2

f

(
k

N

)
=

1

6
+

1

2N
+

1

3N2
.

Let us compare this with Theorem 7.2. With the notation of this lemma,
we have

T0(∆, f) =
w

∆

f =

1w

0

(
1−x1w

0

dx2

)
x1dx1 =

1

6
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so the zeroth order terms agree. Let us give names to the vertices and edges
of ∆ as follows: we put v13 = (0, 0), v12 = (0, 1) and v23 = (1, 0), and we let
ei denote the edge joining the vertices vij (or vji) and vik (or vki). Then we
have

⋆w

e1

f = 0,

⋆w

e2

f =
1

2
,

⋆w

e3

f =
1

2
.

and hence

T1(∆, f) = 1/2.

Furthermore, we have

T2(∆, f) = S − T

with

S =
∑

v∈V

(
1

4
+
µ(v)

12

)
f(v),

and

T =
1

12

∑

e∈E

ζ(e)

⋆w

e

Df · ne.

We have f(v13) = 0, f(v12) = 0, f(v23) = 1. Moreover

w1(v23) =

(
−1
0

)
, w2(v23) =

(
−1
1

)

and thus µ(v23) = 3/2. This yields

S = 3/8.

Now, one can check that
⋆w

e1

Df · ne1 = −1,

⋆w

e2

Df · ne2 = 1,

⋆w

e3

Df · ne3 = 0

and ζ(e1) = −1, ζ(e2) = −1
2 . We obtain T = 1/24 and therefore

T2(∆, f) = 1/3.

Finally, we have

Tq(∆, f) = 0, q > 2

because the derivatives of f of order greater than 2 vanish.

8.2. Numerical computations. Let us present another example. We choose
∆ as in the previous paragraph, and consider the function

f : R2 \ {(x1, x2) ∈ R2;x1 + x2 = −1} → R, (x1, x2) 7→
1

1 + x1 + x2
.

We want to evaluate the sum

SN :=
1

N2

∑

k∈N∆∩Z2

f

(
k

N

)
=

1

N2

N∑

k1=0

N−k1∑

k2=0

1

1 + k1+k2
N

.
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Let us compute the coefficients Ti(∆, f), i = 0, 1, 2, of the asymptotic ex-
pansion given in Theorem 6.1. Firstly, we have

T0(∆, f) =

∫ 1

0

(∫ 1−x1

0

dx2
1 + x1 + x2

)
dx1 = log 2−

∫ 1

0
log(1+x1)dx1 = 1−log 2.

Secondly, notice that
⋆w

e1

f =

∫ 1

0

dx2
1 + x2

= log 2,

⋆w

e2

f =

∫ 1

0

dx1
1 + x1

= log 2,

⋆w

e1

f =
1

2
,

and hence

T1(∆, f) =
1

4
+ log 2.

Finally, since

f(v13) = 1, f(v23) =
1

2
, f(v12) =

1

2
and

µ(v13) = 0, µ(v23) =
3

2
, µ(v12) =

3

2
we obtain ∑

v∈V

(
1

4
+
µ(v)

12

)
f(v) =

30

48

(we deliberately keep this fraction as it is, which will make sense in view of
the next result). Moreover, we have

⋆w

e1

Df · ne1 =

∫ 1

0

dx2
(1 + x2)2

=
1

2
,

⋆w

e2

Df · ne2 = −
1

2
,

⋆w

e3

Df · ne3 =
1

2

and

ζ(e1) = −1, ζ(e2) = −
1

2
, ζ(e3) = −1;

thus
1

12

∑

e∈E

ζ(e)

⋆w

e

Df · ne =
3

48
.

We deduce from the previous results that

T2(∆, f) =
33

48
.

We can now compute

PN := T0(∆, f) + T2(∆, f)N−1 + T2(∆, f)N−2;

in Figure 4, we compare the value of PN to the numerical value of SN ,
for N = 10, 25, 50, 75, 100, 250, 500, 750, 1000. In Figure 5, we numerically
evaluate the quantity

RN = |SN − PN | ;
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0 200 400 600 800 1000
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0.30
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Figure 4. PN and SN as functions of N .
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log(N)

−24

−22
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−8

lo
g(
R
N
)

Figure 5. Logarithm of RN as a function of logN . Notice
the behavior in O(N−3) of RN .

more precisely, we plot the value of logRN as a function of logN . The
remainder RN displays a behavior in O(N−3), as expected.
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9. Final remarks

We believe that one should be able to prove item (ii) in Theorem 2.1 in
dimensions n > 4 with the same elementary method we use in this paper
(since a similar result was already stated in Tate’s article in any dimension).
However, in dimensions n > 4 the computations appear to be complicated
(but still elementary) and will be the object of future works (see also Re-
mark 5.5).

Appendix A. Comparison between Tate’s formula for regular

wedges and ours

We devote this appendix to comparing Tate’s formula for Riemann sums
over regular wedges [Ta10, proposition 3.1] and the first assertion of theorem
2.1 of the present paper.

A.1. Tate’s notation and result. Firstly, we need to recall some of the
notation and definitions used in Tate’s article [Ta10]; most of them come
from section 3 of the latter.

LetX be a finite dimensional real vector space, of dimensionm = dim(X),
and Λ be a lattice in X. Let C be a unimodular cone (a wedge) in X and
E be the integral basis of Λ generating C. Then ZE

+ is the set of families of

non-negative integers with |E| elements; an element α ∈ ZE
+ is of the form

(α(e))e∈E . If e belongs to E, define λe ∈ ZE
+ in such a way that λe(e) = 1

and λe(f) = 0 if f 6= e. For I ⊂ E, let ZI
+ be the set of α ∈ ZE

+ such that

for all e ∈ E \ I, α(e) = 0; then α ∈ ZE
+ can be written α =

∑
e∈E α(e)λe.

If I 6= ∅ is a subset of E, set

ZI
>0 =

{
α ∈ ZI

+, ∀e ∈ I, α(e) 6= 0
}
;

moreover, set Z∅
>0 = {0}. For I ( E, set

C(I) =
∑

e∈E\I

R+e,

and C(E) = {0}.
For ν ∈ ZI

+ and for I ⊂ E nonempty, set

pI(ν) =
∏

e∈I

p(ν(e))

with p(n) = (−1)nbn/n!, where bn is the n-th Bernoulli number. Moreover,
for µ ∈ ZE

+, set

∇µ =
∏

e∈E

∇µ(e)
e .

Finally, define the differential operator Ln(C, I) as

Ln(C, I) = (−1)n
∑

ν∈ZI
>0

,|ν|=n

pI(ν)∇
ν−e(I)
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with e(I) =
∑

e∈I λe.
The following proposition gives an asymptotic expansion for the Riemann

sum

RN (C, f) =
1

Nm

∑

γ∈(NC)∩Zm

f(γ/N).

Proposition A.1 (Tate [Ta10, proposition 3.1]). Let f ∈ C∞
0 (X). Then

(10) RN (C, f) ∼
∑

n>0

N−n
∑

I⊂E,|I|6n

(−1)|I|
∫

C(I)
Ln(C, I)f.
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A.2. Comparison between Tate’s notation and ours. The following
table gives an equivalence between Tate’s notation and ours.

Tate’s notation Our notation

m n

n q

ν ∈ ZE
+ α ∈ Nn

E (−v1, . . . ,−vn)

I ⊂ E (vectors) I ⊂ J1, nK (indices)

C(I)
⋂

i∈I Hi

ZI
>0 {α ∈ Nn, {i, αi 6= 0} = I}

e({i, αi 6= 0}) r(α)

pI(ν)
(−1)|α|

α!

∏n
i=1 bαi

∇µf (−1)|β|Dβf · vβ

∫ r ⋆

A.3. Formula (10) with our notation. Using the previous comparison,
Ln(C, I)f becomes with our notation:

(−1)q
∑

α∈Nn,{i,αi 6=0}=I,|α|=q

(−1)q

α!

(
n∏

i=1

bαi

)
Dq−ν(α)f · vα−r(α);



28 YOHANN LE FLOCH ÁLVARO PELAYO

hence, formula (10) becomes

RN (W,f) ∼
∑

q>0

N−q
∑

α∈Nn,|α|=q

1

α!

(
n∏

i=1

bαi

)∫ ⋆

⋂

i,αi>0 Hi

Dq−ν(α)f · vα−r(α)

which coincides with our formula for wedges (first assertion of our main
theorem 2.1).
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