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Abstract

Until now, little was known about properties of small cells in a Poisson
hyperplane tessellation. The few existing results were either heuristic or ap-
plying only to the two dimensional case and for very specific size functionals
and directional distributions. This paper fills this gap by providing a sys-
tematic study of small cells in a Poisson hyperplane tessellation of arbitrary
dimension, arbitrary directional distribution ϕ and with respect to an arbi-
trary size functional Σ. More precisely, we investigate the distribution of the
typical cell Z, conditioned on the event {Σ(Z) < a}, where a → 0 and Σ is a
size functional, i.e. a functional on the set of convex bodies which is contin-
uous, not identically zero, homogeneous of degree k > 0, and increasing with
respect to set inclusion. We focus on the number of facets and the shape of
such small cells. We show in various general settings that small cells tend to
minimize the number of facets and that they have a non degenerated limit
shape distribution which depends on the size Σ and the directional distribu-
tion. We also exhibit a class of directional distribution for which cells with
small inradius do not tend to minimize the number of facets.

Keywords. Poisson hyperplane tessellation, typical cell, small cells, number
of facets, shape, size functional.

MSC. 60D05, 52A22

1 Introduction

D.G. Kendall recalled in 1987 in the foreword of [SKM87] a conjecture he made a few
decades before about the shape of big cells in random tessellations. He considered
a planar stationary isotropic Poisson line tessellation and conjectured that the zero
cell Zo (i.e. the cell containing the origin) tends do be circular, if we condition on its
area V2(Zo) → ∞. This conjecture was later proved by Kovalenko [Kov97, Kov99]
and many contributions to this problem and very broad generalisations of it have
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been done by Miles, Goldman, Mecke, Osburg, Hug, Reitzner and Schneider. See
Note 9 of Section 10.4 in [SW08] for precise references.

In contrast to D.G. Kendall’s problem we are interested in the shape of small
cells for which much less is known. Let η be a stationary Poisson hyperplane process
in Rd, with d ≥ 2, of intensity measure

γµ(·) := γ

∫

Sd−1

∞∫

0

1 (H(u, t) ∈ ·) dt dϕ(u) ,

where γ > 0, H(u, t) = {x ∈ Rd : 〈x, u〉 = t} is the hyperplane orthogonal to u at
distance t from the origin o, and ϕ is an even probability measure on Sd−1 whose
support is not contained in some great circle. We call γ the intensity and ϕ the direc-
tional distribution. We consider the typical cell Z of the corresponding hyperplane
tessellation. It will be defined in Section 2, but we give here an intuitive description
of it. Consider a window tW ⊂ Rd, with W a convex body containing the origin and
t > 0 large. Among the cells which intersect tW , choose one uniformly at random
and translate it to the origin. This random polytope converges in distribution to Z,
as t → ∞. We consider the following random variables:

• f(Z), the number of facets i.e. (d− 1)-dimensional faces, of Z,

• s(Z), the shape of Z, which can be viewed as the congruence class of Z under
the scale action,

• Σ(Z), the size of Z, where Σ is any real function on the set of convex bodies
(convex and compact sets with non empty interior) which is continuous, not
identically zero, homogeneous of some degree k > 0, and increasing under set
inclusion (K ⊂ L ⇒ Σ(K) ≤ Σ(L)).

Let nmin := min{n ∈ N : P(f(Z) = n) > 0}. We are interested by the following
questions.

(Q1) Is it true that P(f(Z) = nmin | Σ(Z) < a) → 1, as a → 0?

(Q1’) If yes, what is the speed of convergence?

(Q2) What is the limiting distribution (if well defined) of the random variable s(Z)
conditioned on the event {Σ(Z) < a}, as a → 0?

The answers to these questions turn out to strongly depend on Σ and on the direc-
tional distribution ϕ of η.

In [Mil95], Miles considered the planar isotropic case, i.e. ϕ is the normalized
spherical Lebesgue measure. He gave heuristic arguments that the shape of Z con-
ditioned on Σ(Z) → 0 is a triangle with a random shape depending on Σ.

In [BRT14], Beermann, Redenbach and Thäle considered the planar case where
the support of ϕ is concentrated in two couples of antipodal points. In this situation
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all cells are parallelograms. This setting is particularly interesting because the be-
havior of small cells can change drastically depending on which size functional Σ is
considered. They show that, when Σ is the perimeter, the shape of Z conditioned on
Σ(Z) → 0 converges weakly to a random non-degenerated parallelogram. Moreover,
if the two directions are distributed with equal probability, it even holds that the
shape of Z is independent from its perimeter. In contrast to these results, they also
show that when Σ is the area, the shape of Z conditioned on Σ(Z) → 0 converges
weakly to the shape of a random line segment, i.e. a degenerated parallelogram.

We also want to mention that Schulte and Thäle in [ST16, Cor. 5], and Chenavier
and Hemsley in [CH15, Thm. 2], both gave results, in the stationary and isotropic
planar case, about the smallest cell(s) in a window of increasing size. Schulte and
Thäle show that the area of the smallest triangular cell (with respect to the area)
after a proper rescaling converges in distribution to a Weibull distributed random
variable. Chenavier and Hemsley show that, for any k ∈ N, the k smallest cells
(with respect to the inradius) are triangles with high probability when the window
is big enough.

It seems that apart from the results mentioned above, nothing else is known
about small cells. The present paper fills this gap by a systematic study of the small
typical cell for general dimensions, directional distributions and size functionals.

In the next sections we will present general results. Before that, we give examples
for which our results apply. The set of convex bodies in Rd is denoted by K. For
any K ∈ K, we denote by r(K) the biggest radius possible of a closed ball contained
in K, and by R(K) the radius of the smallest ball containing K. These two size
functionals are of particular interest, since they give the following bounds for any
size functionals Σ of degree k > 0,

c r(K) ≤ Σ(K)
1
k ≤ c R(K), for any convex body K, (1.1)

where c = Σ(Bd)
1
k . Therefore, for any Borel set A ⊂ K, and a > 0,

P

(
Z ∈ A , R(Z) <

a

c

)
≤ P

(
Z ∈ A , Σ(Z)

1
k < a

)
≤ P

(
Z ∈ A , r(Z) <

a

c

)
.

Example 1 (general ϕ, Σ
1
k ≥ c R). Assume that Σ

1
k ≥ c R for some constant c > 0.

Several classical size functionals satisfy this condition. For example: the diameter
(maximal distance between two points in a convex body), the mean-width, or R. We
will show that

P

(
f(Z) = nmin | Σ(Z)

1
k < a

)
→ 1, as a → 0.

In the trivial case where the support of ϕ consists of d pairs of antipodal points, all
cells are parallelepipeds and therefore

P

(
f(Z) = nmin | Σ(Z)

1
k < a

)
= P (f(Z) = 2d) = 1 ,
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for any a > 0. Apart from this case, we have a linear speed of convergence, that is

P

(
f(Z) > nmin | Σ(Z)

1
k < a

)
∼ c′γa, as a → 0 ,

where c′ is a positive constant depending only on ϕ and Σ. Theorem 3.1 presents
a refined version of these results. In particular it gives the limiting distribution of
s(Z) conditioned on {Σ(Z) 1

k < a}.

Example 2 (absolutely continuous ϕ, general Σ). Assume that ϕ is absolutely
continuous with respect to the spherical Lebesgue measure. This setting includes
the isotropic case. Theorem 4.1 will tell us that, for any size functional Σ of degree
k > 0, namely

P

(
f(Z) = d+ 1 | Σ(Z) 1

k < a
)
→ 1, as a → 0 ,

moreover it also describes the limiting shape distribution. And Theorem 4.3 gives
bounds for the speed of convergence,

cγa ≤ P

(
f(Z) > d+ 1 | Σ(Z) 1

k < a
)
≤ c′γa ln

(
1

γa

)
,

where the positive constants c and c′ depend on Σ, and where the lower bound is
sharp if Σ = R. We conjecture that the upper bound is sharp when Σ = r.

Example 3 (ϕ with atoms, Σ = r). Finally we exhibit a class of directional distri-
bution for which f(Z) does not converge in distribution to nmin when conditioned
on {r(Z) < a} with a → 0.

We assume that ϕ has atoms, i.e. there exists u ∈ Sd−1 such that ϕ({u,−u}) > 0,
and that the support of ϕ includes d+ 1 distinct points which are not all contained
in some half sphere. Then, Theorem 5.1 says that

P (f(Z) = nmin | r(Z) < a) 6→ 1, as a → 0 .

Our paper is structured as follow. In Section 2 we set up the notation, define
formally the typical cell and present the well known Complementary Theorem. In
the remaining 3 sections we study the asymptotic of small cells with respect to
different conditions on the directional distribution ϕ. In Section 3 we provide results
which apply for general ϕ. In Section 4 we consider the case where ϕ is absolutely
continuous, while Section 5 focuses on a specific class of directional distributions
with atoms.
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Σ \ ϕ general ϕ isotropy/abs. cont. with atom & condition on suppϕ

general Σ f(Z)
d−→ d+ 1

R f(Z)
d−→ nmin f(Z)

d−→ d+ 1 f(Z)
d−→ nmin

r f(Z)
d−→ d+ 1 f(Z) 6 d−→ nmin

Table 1: Answers to (Q1) depending on Σ and ϕ. In the right column, ϕ is such
that it has atoms and its support includes d + 1 distinct points which are not all
contained in some half sphere.

2 Preliminaries

We work in a d-dimensional Euclidean vector space Rd, d ≥ 2, with scalar product
〈·, ·〉, norm ‖·‖ and origin o. We denote by B(x, r) the closed ball and by S(x, r) =
∂B(x, r) the sphere with center x and radius r, by Bd = B(o, 1) the unit ball and by
Sd−1 = ∂Bd the unit sphere. Let H be the space of affine hyperplanes in Rd with its
usual topology and Borel structure, see [SW08]. Every hyperplane H ∈ H, which
does not contain the origin, has a unique representation

H(u, t) := {x ∈ Rd : 〈x, u〉 = t} ,

with u ∈ Sd−1 and t > 0. For such hyperplane, we denote by H− (resp. H+) the
halfspace supported by H containing the origin (resp. not containing the origin).

Let K be the set of convex bodies (compact convex sets of Rd with non-empty
interior). We write P for the set of all polytopes, and f(P ) for the number of facets
of a polytope P ∈ P. Denote by Pn = {P ∈ P : f(P ) = n} the set of n-topes,
hence Pn ⊂ P ⊂ K. For any t > 0, and K,L ∈ K we define

tK := {tx : x ∈ K}, K + L := {x+ y : x ∈ K, y ∈ L} ,

where the latter is the Minkowski sum of K and L.
The sets K, P, and Pn are equipped with the Hausdorff distance dH ,

dH(K,L) = min{r ≥ 0 : K ⊂ L+ rBd, L ⊂ K + rBd} ,

and with the associated topology and Borel structure.
As in [HS07], a functional Σ : K → R is called size functional of degree k > 0 if

it is continuous, not identically zero, homogeneous of some degree k meaning that
Σ(tK) = tkΣ(K), and increasing under set inclusion (K ⊂ L ⇒ Σ(K) ≤ Σ(L)).
Note that this definition implies that Σ is positive. For any K ∈ K, we denote
by r(K) the biggest radius possible of a closed ball contained in K, and by R(K)
the radius of the smallest ball containing K. These two size functionals are called
inradius and circumradius respectively.
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Let η be a stationary Poisson hyperplane process in Rd, that is a Poisson point
process in the space H whose intensity measure is of the form

E η(·) = γµ(·) := γ

∫

Sd−1

∞∫

0

1 (H(u, t) ∈ ·) dt dϕ(u) , (2.1)

where γ > 0, µ is a measure on H, ϕ is an even probability measure on Sd−1 and 1(·)
is the indicator function. We call γ the intensity and ϕ the directional distribution

of the hyperplane process η. We assume that the support of ϕ is not contained in a
great circle of Sd−1. When ϕ is the normalized spherical Lebesgue measure on Sd−1,
we say that η is isotropic.

The closure of each of the connected components of the complement of the union⋃
H∈η H is almost surely a polytope (because the support of ϕ is not contained in

a great circle). We denote by X the collection of these polytopes. It is called the
Poisson hyperplane tessellation induced by η, and the polytopes are called the cells
of X . We can see X as a point process in P. To describe the distribution of X we
need the notion of the Φ-content of a convex body K which is given by

Φ(K) :=

∫

Sd−1

h(K, u) dϕ(u) ,

where h(K, u) := max{〈x, u〉 : x ∈ K} is the value of the support function of K at
u. The definition of Φ is motivated by the fact that, for any K ∈ K,

P(η ∩K = ∅) = e−γΦ(K) ,

where η is identified with the union ∪H∈ηH .
Note that Φ is homogeneous of degree 1 and translation invariant, meaning that

Φ(tK + x) = tΦ(K) for any K ∈ K, t ≥ 0 and x ∈ Rd. In the isotropic case, the
Φ-content of a convex set K is half of the mean-width and up to a constant the first
intrinsic volume V1(K). Note that K ∈ K implies that Φ(K) > 0 since K contains
at least 2 points.

Let c : K → Rd be a center function, i.e. a measurable map compatible with
translations and homogeneous under the scale action: c(tK + x) = tc(K) + x, for
any t ∈ (0,∞) and any x ∈ Rd. For example, c can be the center of mass. We set
Pc := {P ∈ P : c(P ) = o}. Due to the natural homeomorphism

P → Rd × Pc

P 7→ (c(P ), P − c(P )) ,

we will consider from now on X as a germ-grain process in Rd with grain space Pc,
see [SW08] for a definition of this concept. Since η is stationary, this is also the
case for X . This implies the existence of a probability measure Q on Pc such that
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the intensity measure of the germ-grain process X decomposes into Q and Lebesgue
measure λd, that is

EX({P − c(P ) ∈ C , c(P ) ∈ A}) = γ(d)λd(A)Q(C) , (2.2)

for C ⊂ Pc andA ⊂ Rd, where γ(d) = EX({P ∈ P , c(P ) ∈ [0, 1]d}). The probability
measure Q and the constant γ(d) are called, respectively, the grain distribution and
the intensity of X . It is easy to see that γ(d) is a multiple of γd, where γ is the
intensity of the Poisson hyperplane process. A random centred polytope Z ∈ Pc

with distribution Q is called a typical cell of X .
For a convex body K, we define its shape to be

s(K) :=
1

Φ(K)
(K − c(K)) ,

i.e. its translated and normalized copy of center o and Φ-content 1. We denote

Ks := s(K) = {K ∈ K : c(K) = o , Φ(K) = 1} ,

and similarly Ps := s(P) and Pn,s := s(Pn).
The complementary theorem is a well-known result which shows how the shape

and the Φ-content are essential characteristics of the typical cell. It will be an im-
portant tool in the next section. This theorem holds in much more general settings.
See [Mil71b, MZ96, Cow06, BL09] for general versions of this theorem, or [BCR16]
for a direct proof in the present setting.

Theorem 2.1 (Complementary theorem). Let n ∈ N be such that P(f(Z) = n) > 0.
If we condition the typical cell Z to have n facets, then

1. Φ(Z) and s(Z) are independent random variables,

2. Φ(Z) is Γγ,n−d distributed, i.e. for any a ≥ 0,

P(Φ(Z) ≤ a) =
γn−d

(n− d− 1)!

a∫

0

tn−d−1e−γtdt .

We conclude this section by presenting standard notation for asymptotic ap-
proximations. For two given functions f and g, we write f(a) ∼ g(a), as a → 0, if

lima→0
f(a)
g(a)

= 1; and f(a) = o(g(a)), as a → 0, if lima→0
f(a)
g(a)

= 0.

3 General directional distribution

Because of the second point of complementary theorem, the probability P(f(Z) =
n , Φ(Z) < a) is of order an−d as a → 0. This implies that cells with small Φ-
content have nmin = min{n : P(f(Z) = n) > 0} facets with high probability. This
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fact combined with the first point of the complementary theorem gives us that s(Z)
conditioned on {Φ(Z) < a} converges in distribution, as a → 0, to s(Z) conditioned
on the event {f(Z) = nmin}. The next theorem generalizes these properties to any
size functional of the same order as Φ, for example the diameter, the mean-width,
the first intrinsic volume or R. It also gives a speed of convergence. In order to state
the theorem we need to introduce measures on Ks which are concentrated on the
spaces Pn,s. We set µn,s(·) := P(f(Z) = n , s(Z) ∈ ·). This definition is motivated
by the fact that, by the complementary theorem, we have for any Borel set A ⊂ K,

P(f(Z) = n , Z ∈ A) =
γn−d

(n− d− 1)!

∫

Pn,s

∞∫

0

1(tP ∈ A)e−γttn−d−1 dt dµn,s(P ) . (3.1)

Recall that we say that a size functional Σ is of degree k when Σ(tK) = tkΣ(K),
for any t > 0 and K ∈ K. For any size functional Σ of degree k, we also consider a
Σ-weighted version of µn,s:

µn,s,Σ(·) =
1

(n− d)!

∫

Pn,s

1(P ∈ ·)Σ(P )−
n−d
k dµn,s(P ) .

Note that µn,s = (n− d)!µn,s,Φ.

Theorem 3.1. Assume that Σ is a size functional homogeneous of degree k, and

that there exists c > 0 such that cΦ(K) ≤ Σ(K)
1
k , for any K ∈ K. Then, for any

Borel set S ⊂ Ks

P

(
s(Z) ∈ S | Σ(Z) 1

k < a
)
→ µnmin,s,Σ(S)

µnmin,s,Σ(Ks)
,

as a → 0. In particular

P

(
f(Z) = nmin | Σ(Z)

1
k < a

)
→ 1 ,

as a → 0. Moreover, for any Borel set S ⊂ Ks for which µnmin,s,Σ(S) > 0 and

µnmin+1,s,Σ(S) > 0, it holds that

P

(
f(Z) > nmin , s(Z) ∈ S | Σ(Z) 1

k < a
)
∼ γa

µnmin+1,s,Σ(S)

µnmin,s,Σ(S)
,

as a → 0.

In order to prove the theorem above, we need the following lemma.

Lemma 3.2. Let S ⊂ Ks be a Borel set and Σ be a size functional of degree k. We

have

(γa)−(n−d)P

(
f(Z) = n , s(Z) ∈ S , Σ(Z)

1
k < a

){→ µn,s,Σ(S) as a → 0,

≤ µn,s,Σ(S) for any a > 0 .
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Proof. From (3.1), we have

P

(
f(Z) = n , s(Z) ∈ S , Σ(Z)

1
k < a

)

=
γn−d

(n− d− 1)!

∫

Pn,s

1(P ∈ S)

∞∫

0

1

(
Σ(tP )

1
k < a

)
e−γttn−d−1 dt dµn,s(P )

=
γn−d

(n− d− 1)!

∫

Pn,s

1(P ∈ S)

∞∫

0

1

(
t <

a

Σ(P )
1
k

)
e−γttn−d−1 dt dµn,s(P ) . (3.2)

Note that for any P ∈ Pn,s, the substitution s = t
a
gives that

a−(n−d)

∞∫

0

1

(
t <

a

Σ(P )
1
k

)
e−γttn−d−1 dt =

Σ(P )−
1
k∫

0

e−γassn−d−1ds ,

which converges monotonically to 1
n−d

Σ(P )−
n−d
k , as a → 0. Therefore multiplying

both sides of (3.2) by (γa)−(n−d) and applying the monotone convergence theorem
yields the assertion.

We can now prove Theorem 3.1.

Proof of Theorem 3.1. In the case |{n : P(f(Z) = n) > 0}| = 1, only the first part
of the theorem matters, and it is a direct consequence of Lemma 3.2. Therefore we
can assume that |{n : P(f(Z) = n) > 0}| > 1.

Because of Lemma 3.2, we observe that for any n,

(γa)−(n−d)P

(
f(Z) > n , Σ(Z)

1
k < a

)
≤
∑

k≥1

(γa)kµn+k,s,Σ(Pn+k,s) , (3.3)

and we will see now that, because of the assumption made on Σ, the series above is
finite and tends to 0 as a → 0. Since Σ(P )

1
k ≥ cΦ(P ) = c for any P ∈ Pn,s,

µn,s,Σ(Pn,s) =
1

(n− d)!

∫

Pn,s

Σ(P )−
n−d
k dµn,s(P ) ≤ c−(n−d)

(n− d)!
µn,s(Pn,s) ≤

c−(n−d)

(n− d)!
.

In particular (3.3) gives

(γa)−(n−d)P

(
f(Z) > n , Σ(Z)

1
k < a

)
≤ γa

∑

k≥0

(γa)k
c−(n+k+1−d)

(n + k + 1− d)!

≤ γac−(n+1−d) exp(c−1γa) → 0 .
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Thus, with Lemma 3.2, we have for any n and S ⊂ Ks,

(γa)−(n−d)P

(
f(Z) ≥ n , s(Z) ∈ S , Σ(Z)

1
k < a

)

= (γa)−(n−d)P

(
f(Z) = n , s(Z) ∈ S , Σ(Z)

1
k < a

)
+ o(1) → µn,s,Σ(S) . (3.4)

Therefore

P

(
s(Z) ∈ S | Σ(Z) 1

k < a
)
=

(γa)−(n−d)P

(
f(Z) ≥ nmin , s(Z) ∈ S , Σ(Z)

1
k < a

)

(γa)−(n−d)P

(
f(Z) ≥ nmin , s(Z) ∈ Ks , Σ(Z)

1
k < a

)

→ µnmin,s,Σ(S)

µnmin,s,Σ(Ks)
,

as a → 0.
It only remains to prove the last point of the theorem. We consider a Borel set

S ⊂ Ks for which µnmin,s,Σ(S) > 0 and µnmin+1,s,Σ(S) > 0. Thus, with (3.4) , we
obtain

P

(
f(Z) > nmin , s(Z) ∈ S | Σ(Z) 1

k < a
)

= γa
(γa)−(nmin+1−d)P

(
f(Z) ≥ nmin + 1 , s(Z) ∈ S , Σ(Z)

1
k < a

)

(γa)−(nmin−d)P

(
f(Z) ≥ nmin , s(Z) ∈ Ks , Σ(Z)

1
k < a

)

∼ γa
µnmin+1,s,Σ(S)

µnmin,s,Σ(S)
,

as a → 0. Note that we can write the asymptotic equivalence because the assump-
tions made on S imply that the right hand side is well defined and non zero.

4 Absolutely continuous directional distribution

In this section we assume that ϕ is absolutely continuous with respect to the spherical
Lebesgue measure. Almost surely each cell of the tessellation contains a unique ball
of maximal volume called the inball of the cell. Thus, we can assume the centering
function c to be the center of the inball. In the first subsection we show that cells
with small Σ-content are simplices of a random shape. In the second subsection we
investigate the speed of convergence of P(f(Z) > d+ 1 | Σ(Z) < a) to 0, as a → 0.

4.1 Absolutely continuous case: Cells with small Σ-content
are simplices with random shape

Theorem 10.4.6 of [SW08] describes the distribution of the typical cell of a stationary
isotropic hyperplane tessellation. As observed after the proof of the theorem in
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[SW08], it easily extends to the non isotropic case if ϕ is absolutely continuous with
respect to the spherical Lebesgue measure. It states that for any Borel set A ⊂ K,

P(Z ∈ A) =
γd+1

(d+ 1)γ(d)

∫

P

∞∫

0

e−γrP


 ⋂

H∈η∩FrBd

H− ∩ (rT (u0:d)) ∈ A


 dr

×∆d(u0:d) dϕ
d+1(u0:d) ,

(4.1)

where η∩F rBd

denotes the set of hyperplanes of the process η which do not intersect
the ball rBd,

u0:d = (u0, . . . , ud) ,

P =
{
(u0:d) ∈ (Sd−1)d+1 : u0, . . . , ud are not all in one closed half sphere

}
, (4.2)

and

T (u0:d) =

d⋂

i=0

H(ui, 1)
−, and ∆d(u0:d) = λd(ConvexHull(u0, . . . , ud)) . (4.3)

Note that the factor e−γr in the integrand above is the probability that no hy-
perplanes of η intersect the ball rBd. Therefore for any measurable set of simplices
A ⊂ Pd+1, any r > 0, and any (d+ 1)-tuple u0:d ∈ P, the integrand of (4.1) is equal
to 1(rT (u0:d) ∈ A)P(η∩rT (u0:d) = ∅) = 1(rT (u0:d) ∈ A)e−γrΦ(T (u0:d)). In particular,
for an open Borel set S ⊂ Ps and a > 0, Equation (4.1) gives

P

(
f(Z) = d+ 1 , s(Z) ∈ S , Σ(Z)

1
k < a

)

=
γd+1

(d+ 1)γ(d)

∫

P

∞∫

0

e−γrΦ(T (u0:d))1 (s(T (u0:d)) ∈ S)1
(
Σ(rT (u0:d))

1
k < a

)
dr

×∆d(u0:d) dϕ
d+1(u0:d)

∼ γa · γd

(d+ 1)γ(d)

∫

P

∆d(u0:d)

Σ(T (u0:d))
1
k

1 (s(T (u0:d)) ∈ S) dϕd+1(u0:d) , (4.4)

as a → 0.
But, because of (1.1),

P

(
f(Z) > d+ 1 , Σ(Z)

1
k < a

)
≤ P

(
f(Z) > d+ 1 , r(Z) <

a

Σ(Bd)
1
k

)
,

11



and thus (4.1) also gives

P

(
f(Z) > d+ 1 , Σ(Z)

1
k < a

)

≤ γd+1

(d+ 1)γ(d)

∫

P

∞∫

0

e−γrP (it exists H ∈ η such that H ∩ rT (u0:d) 6= ∅ )

× 1

(
r <

a

Σ(Bd)
1
k

)
dr∆d(u0:d) dϕ

d+1(u0:d) .

Observe that, for any fixed u0:d ∈ P, the probability in the integrand is decreasing
and tends to 0, as r → 0. This implies

P

(
f(Z) > d+ 1 , Σ(Z)

1
k < a

)

≤ γa
γd

(d+ 1)γ(d)Σ(Bd)
1
k

∫

P

P

(
it exists H ∈ η such that H ∩ a

Σ(Bd)
1
k

T (u0:d) 6= ∅
)

×∆d(u0:d) dϕ
d+1(u0:d) .

With the dominated convergence theorem we get that the last integral tends to 0,
as a → 0. Therefore

P

(
f(Z) > d+ 1 , Σ(Z)

1
k < a

)
= o(γa) , (4.5)

as a → 0.
Equations (4.4) and (4.5) immediately give the following theorem.

Theorem 4.1. If ϕ is absolutely continuous with respect to the spherical Lebesgue

measure, and Σ is a size functional of degree k, then for any Borel set S ⊂ Ps, we

have

P

(
f(Z) = d+ 1 | Σ(Z) 1

k < a
)
→ 1 ,

and

P

(
s(Z) ∈ S | Σ(Z) 1

k < a
)
→ ξϕ,Σ(S)

ξϕ,Σ(Ps)
,

as a → 0, where

ξϕ,Σ(S) =

∫

P

∆d(u0:d)

Σ(T (u0:d))
1
k

1 (s(T (u0:d)) ∈ S) dr dϕd+1(u0:d) .

4.2 Absolutely continuous case: Speed of convergence

Our goal now is to find how fast P(f(Z) = d+ 1 | Σ(Z) 1
k < a) tends to 1 as a → 0.

Observe that there exists a strictly positive constant c depending on ϕ and Σ such
that

P

(
Σ(Z)

1
k < a

)
∼ P

(
f(Z) = d+ 1 , Σ(Z)

1
k < a

)
∼ cγa . (4.6)

12



The first equivalence is due to Theorem 4.1. The second one is a special case of (4.4).

Thus, our problem boils down to study how fast P(f(Z) > d+ 1 , Σ(Z)
1
k < a) tends

to 0, as a → 0.
Because of (1.1), we have

P(f(Z) > d+ 1 , Σ(Z)
1
k < a)





≤ P

(
f(Z) > d+ 1 , r(Z) < a

Σ(Bd)
1
k

)

≥ P

(
f(Z) > d+ 1 , R(Z) < a

Σ(Bd)
1
k

)
.

(4.7)

This shows that it is essential to study the cases of the inradius and the circumradius.
Size functionals of the same order as the circumradius were already considered in
Section 3, and by essentially the same technics, see in particular (3.4), there exists
a positive constant c such that

P

(
f(Z) > d+ 1 , R(Z) <

a

Σ(Bd)
1
k

)
∼ c(γa)2 .

Combining this with (4.6) and (4.7) leads to

P

(
f(Z) > d+ 1 | Σ(Z) 1

k < a
)
≥

P

(
f(Z) > d+ 1 , R(Z) < a

Σ(Bd)
1
k

)

P

(
Σ(Z)

1
k < a

) ∼ cγa .

(4.8)

It remains to give an upper bound for P

(
f(Z) > d+ 1 , r(Z) < a

Σ(Bd)
1
k

)
, which

turns out to be technically more involved and is the essential part of this subsection.
By (4.1), we have

(d+ 1)

γ

γ(d)

γd
P(f(Z) > d+ 1 , r(Z) < a)

=

∫

P

a∫

0

e−γr
(
1− e−γr(Φ(T (u0:d))−Φ(Bd))

)
dr∆d(u0:d) dϕ

d+1(u0:d)

≤
∫

P

a∫

0

1− e−γrΦ(T (u0:d))dr∆d(u0:d) dϕ
d+1(u0:d) ,

where P, T (u0:d) and ∆d(u0:d) are defined as in (4.2) and (4.3). It is tempting to
upper bound the integrand 1 − e−γrΦ(T (u0:d)) by γrΦ(T (u0:d)), since for r → 0 these
quantities are equivalent. This would lead us to

P(f(Z) > d+ 1 , r(Z) < a)

≤ (γa)2
1

2(d+ 1)

γd

γ(d)

∫

P

Φ(T (u0:d))∆d(u0:d) dϕ
d+1(u0:d) ,

13



but this is useless since the integral
∫
P
Φ(T (u0:d))∆d(u0:d) dϕ

d+1(u0:d) turns out to
diverge. We need to consider more carefully the contribution of simplices T (u0:d)
which have a big Φ-content. The factor ∆d(u0:d) is not important to get the order
of the integral. We upper bound it by ∆max = maxu0:d∈P∆d(u0:d). So we have

(d+ 1)

γ∆max

γ(d)

γd
P(f(Z) > d+ 1 , r(Z) < a)

≤
∫

P

a∫

0

1− e−γrΦ(T (u0:d))dr dϕd+1(u0:d)

(4.9)

In order to go further, we need to prove the following key lemma.

Lemma 4.2. Assume that ϕ has a bounded density with respect to the spherical

Lebesgue measure. There exists a constant Cϕ, only depending on ϕ, such that for

any increasing function f : R+ → R+, we have

∫

P

f(Φ(T (u0:d))) dϕ
d+1(u0:d) ≤ Cϕ

∞∫

1

f(t)
1

t2
dt .

Proof. By standard continuity arguments, there exists a constant c0 > 1, depending
on ϕ such that Φ(T (u0:d)) > c0 for any u0:d ∈ P. To see this, one must extend the
map P ∋ u0:d 7→ Φ(T (u0:d)) ∈ [0,∞) to the compact domain (Sd−1)d+1 and codomain
[0,∞] by defining Φ(T (u0:d)) = ∞ for any u0:d ∈ (Sd−1)d+1 \ P. The extended map
is continuous and since its domain is compact and Φ(T (u0:d)) > Φ(Bd) = 1 for any
u0:d ∈ (Sd−1)d+1, there exists a constant c0 as described above. Therefore we can
assume without loss of generality that f(t) = 0 for any t ∈ [0, c0].

The increasing function f can be uniformly approximated by stair functions of
the form

∑
i∈N ai1[ti,∞), where ai ≥ 0, and ti ≥ c0. Hence we only need to show that

the lemma holds for indicator functions of the form 1[t0,∞), where t0 ≥ c0.
Set c > 0 such that ϕ ≤ cσ, where σ denotes the spherical Lebesgue measure.

We have
∫

P

1[t0,∞)(Φ(T (u0:d))) dϕ
d+1(u0:d) ≤ cd+1

∫

P

1[t0,∞)(Φ(T (u0:d))) dσ
d+1(u0:d) .

Since Φ : K → R is increasing with respect to the inclusion and the Φ-content
of a ball is equal to its radius, we have that any set of Φ-content greater than t0 is
not included in the ball t0B

d. In particular

∫

P

1[t0,∞)(Φ(T (u0:d))) dϕ
d+1(u0:d) ≤ cd+1

∫

P

1(T (u0:d) 6⊂ t0B
d) dσd+1(u0:d) .
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o

u0

u1

u2

u′
1

u′
2

v
v(u0:d, 0)

v(u0:d, 2)

v(u0:d, 1)

t

Figure 1: Construction of T (u0:d) (thick triangle).

For any u0:d ∈ P and i ∈ {0, . . . , d}, we consider

v(u0:d, i) :=
⋂

j∈{0,...d}\{i}

H(uj, 1) .

This is the vertex of the simplex T (u0:d) which is not contained in the face with
outward normal vector ui, see Figure 1. The condition T (u0:d) 6⊂ t0B

d is equivalent
to saying that the vertex of T (u0:d) the furthest away from the origin has norm
greater than t0. Thus
∫

P

1[t0,∞)(Φ(T (u0:d))) dϕ
d+1(u0:d)

≤ c′
∫

P

1(T (u0:d) 6⊂ t0B
d)1(‖v(u0:d, 0)‖ ≥ ‖v(u0:d, i)‖ for any i ∈ [d] ) dσd+1(u0:d)

≤ c′
∫

P

1(‖v(u0:d, 0)‖ ≥ t0) dσ
d+1(u0:d) ,

where c′ := cd+1(d+ 1).
Observe that ‖v(u0:d, 0)‖ ≥ t0 if and only if the hyperplane containing the unit

vectors u1, . . . , ud is at distance less than or equal to 1
t0
, see Figure 1. We denote

this distance by D(o, aff(u1, . . . , ud)). We have
∫

P

1[t0,∞)(Φ(T (u0:d))) dϕ
d+1(u0:d)

≤ c′
∫

P

1

(
D(o, aff(u1, . . . , ud)) ≤

1

t0

)
dσd+1(u0:d) .
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Note that the integrand does not involve u0. Now, we release the constraint
u0:d ∈ P and integrate over the variable u0, which does not appear in the integrand.
This gives

∫

P

1[t0,∞)(Φ(T (u0:d))) dϕ
d+1(u0:d)

≤ c′′
∫

(Sd−1)d

1

(
D(o, aff(u1, . . . , ud)) ≤

1

t0

)
dσd(u1:d) ,

where c′′ := c′σ(Sd−1).
Using an integral transformation due to Miles, see Theorem 4 of [Mil71a] or Note

6 on page 286 of [SW08] we have

∫

P

1[t0,∞)(Φ(T (u0:d))) dϕ
d+1(u0:d)

≤ c′′(d− 1)!

∫

Sd−1

1∫

0

∫

(H(v,t)∩ Sd−1)d

1

(
t ≤ 1

t0

)
∆d−1(u1:d)dσ

′
v,t

d
(u1:d)

dt

(1− t2)
d
2

dσ(v) ,

where σ′
v,t denotes the spherical Lebesgue measure on the (d−2)-dimensional sphere

H(v, t) ∩ Sd−1. For any v ∈ Sd−1 and t ∈ (0, 1), considering the diffeomorphism

H(v, 0) ∩ Sd−1 → H(v, t) ∩ Sd−1

u′ 7→ u = tv +
√
1− t2u′ ,

we get

∫

(H(v,t)∩Sd−1)d

∆d−1(u1:d) d(σ
′
v,t)

d(u1:d)

=

∫

(H(v,0)∩Sd−1)d

(1− t2)
d−1
2 ∆d−1(u

′
1:d)
(
(1− t2)

d−2
2

)d
dσ′

v,0
d
(u′

1:d) .

Therefore
∫

P

1[t0,∞)(Φ(T (u0:d))) dϕ
d+1(u0:d)

≤ c′′(d− 1)!

∫

Sd−1

1
t0∫

0

∫

(H(v,0)∩ Sd−1)d

∆d−1(u1:d) dσ
′
v,0

d
(u1:d)(1− t2)

d2−2d−1
2 dt dσ(v) .
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Recall that t0 ≥ c0 > 1, and therefore the factor (1− t2)
d2−2d−1

2 can be uniformly
bounded on the interval [0, 1

t0
]. For an appropriate constant c(3) this implies

∫

P

1[t0,∞)(Φ(T (u0:d))) dϕ
d+1(u0:d)

≤ c(3)
∫

Sd−1

1
t0∫

0

∫

(H(v,0)∩ Sd−1)d

∆d−1(u1:d) dσ
′
v,0

d
(u1:d)dt dσ(v) .

Thus by setting

Cϕ := c(3)
∫

Sd−1

∫

(H(v,0)∩ Sd−1)d

∆d−1(u1:d) dσ
′
v,0

d
(u1:d) dσ(v) ,

we obtain that

∫

P

1[t0,∞)(Φ(T (u0:d))) dϕ
d+1(u0:d) ≤ Cϕ

1

t0
= Cϕ

∞∫

0

1[t0,∞)
1

t2
dt ,

which is what we needed to show.

Now that we proved Lemma 4.2, we go back to our original problem which is
to derive an upper bound for P(f(Z) > d + 1 , r(Z) < a). Equation (4.9) and
Lemma 4.2 give

(d+ 1)

γ∆max

γ(d)

γd
P(f(Z) > d+ 1 , r(Z) < a) ≤ Cϕ

∞∫

1

a∫

0

1− e−γrtdr
1

t2
dt

= Cϕ (I1 + I2 + I3) ,

where

I1 =

1
γa∫

1

a∫

0

1− e−γrt

t2
drdt ≤

1
γa∫

1

a∫

0

γrt

t2
drdt =

γa2

2
ln

(
1

γa

)
,

I2 =

∞∫

1
γa

1
γt∫

0

1− e−γrt

t2
drdt ≤

∞∫

1
γa

1
γt∫

0

γrt

t2
drdt =

γa2

4
,
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and

I3 =

∞∫

1
γa

a∫

1
γt

1− e−γrt

t2
drdt =

a∫

0

∞∫

1
γr

1− e−γrt

t2
dtdr =




∞∫

1

1− e−t

t2
dt


 γa2

2
≤ γa2

2
.

Therefore, by setting C ′
ϕ := Cϕ

(
1
2
+ 1

4
+ 1

2

)
∆maxγ

d

(d+1)γ(d+1) , we have

P(f(Z) > d+ 1 , r(Z) < a) ≤ C ′
ϕ(γa)

2 ln

(
1

γa

)
,

for a < e−1γ−1. And with (4.7), we obtain

P

(
f(Z) > d+ 1 , Σ(Z)

1
k < a

)
≤ P

(
f(Z) > d+ 1 , r(Z) <

a

Σ(Bd)
1
k

)

≤ C ′
ϕ(γΣ(B

d)−
1
ka)2 ln

(
1

γΣ(Bd)−
1
ka

)
,

for a < Σ(Bd)−
1
k e−1γ−1. This implies the existence of a constant Cϕ,Σ, depending

only on ϕ and Σ, such that

P

(
f(Z) > d+ 1 , Σ(Z)

1
k < a

)
≤ Cϕ,Σ(γa)

2 ln

(
1

γa

)
, (4.10)

for a < 1
2γ
.

Now, we easily get the following theorem.

Theorem 4.3. Assume that ϕ has a bounded density with respect to the spherical

Lebesgue measure and that Σ is a size functional of degree k > 0. There exist positive
constants c, c′ > 0, depending only on ϕ and Σ, such that

cγa ≤ P

(
f(Z) > d+ 1 | Σ(Z) 1

k < a
)
≤ c′γa ln

(
1

γa

)
,

for a < 1
2γ
. Moreover the lower bound is sharp if Σ = R.

Proof. The lower bound is (4.8), which also includes the equality case if Σ = R.
Thus we only need to show the upper bound. Equation (4.4) says that

P

(
f(Z) = d+ 1 , Σ(Z)

1
k < a

)
∼ c1γa ,

as a → 0, where c1 > 0 is a constant depending only on ϕ and Σ. In particular, it
exists a constant c2 > 0, depending only on ϕ and Σ, such that

P

(
Σ(Z)

1
k < a

)
≥ P

(
f(Z) = d+ 1 , Σ(Z)

1
k < a

)
≥ c2γa ,

18



for any a < γ−1. Thus, with (4.10), we get

P

(
f(Z) > d+ 1 | Σ(Z) 1

k < a
)
=

P

(
f(Z) > d+ 1 , Σ(Z)

1
k < a

)

P

(
Σ(Z)

1
k < a

)

≤
Cϕ,Σ (γa)2 ln

(
1
γa

)

c2γa

=
Cϕ,Σ

c2
γa ln

(
1

γa

)
,

for a < γ−1. This yields the theorem.

5 Directional distribution with atoms

In the two previous sections we have seen that P
(
f(Z) = nmin | Σ(Z) 1

k < a
)
→ 1,

as a → 0, if

• either Σ
1
k > cΦ for some c > 0,

• or ϕ is absolutely continuous with respect to the spherical Lebesgue measure.

In contrast to these results we present in the following theorem a class of directional
distributions for which cells with small inradius do not have with high probability
the minimal number of facets. This class includes, for example, the normalization
of the sum of the spherical Lebesgue measure and a non-zero discrete measure. In
the planar case, other examples are discrete measures with support of cardinality at
least 2× 3.

Theorem 5.1. Assume that ϕ is such that:

1. the support of ϕ includes d + 1 distinct points which are not all contained in

some half sphere,

2. ϕ has an atom at u ∈ Sd−1, i.e. ϕ({u,−u}) > 0.

Then

P (f(Z) = nmin | r(Z) < a) 6→ 1, as a → 0,

meaning that, conditionally on the event {r(Z) < a}, the probability that Z has the

minimal number of facets possible does not tend to 1, as a → 0.

Proof. The first condition is equivalent to nmin = d+ 1. For a > 0, set

Au,a = {P ∈ P : P has two parallel facets orthogonal to u with distance less than a} .
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Since a polytope which has a couple of parallel facets cannot be a simplex, we have
that

P (f(Z) > d+ 1 | r(Z) < a) ≥ P (Z ∈ Au,a | r(Z) < a) . (5.1)

But Theorem 10.4.8 of [SW08] (where γ = 2γ̂) tells us that P(r(Z) < a) = 1−e−γa ∼
γa as a → 0, and we will show below that, under condition 2,

there exists c > 0 and a0 > 0 such that

P(Z ∈ Au,a) > cγa, for any a ∈ (0, γ−1a0).
(5.2)

Therefore, for a ∈ (0, γ−1a0),

P (Z ∈ Au,a | r(Z) < a) =
P (Z ∈ Au,a)

P (r(Z) < a)
>

cγa

γa
= c > 0 .

Combined with (5.1) and the fact that nmin = d+ 1, it implies the theorem.

It remains to show that (5.2) holds. We will use Theorem 10.4.7 of [SW08]
which gives an explicit representation of the typical cell as an intersection of the
zero cell Zo and d + 1 halfspaces containing the origin in their boundaries. For
ξ, u1, . . . , ud ∈ Sd−1 in general position, we denote by Tξ(u1, . . . , ud) the simplicial
cone whose facets are subsets of the hyperplanes H(u1, 0), . . . , H(ud, 0) and for which
the origin o is the unique highest point in direction ξ, meaning that 0 = 〈ξ, o〉 > 〈ξ, x〉
for any x ∈ Tξ(u1, . . . , ud) \ {o}. With Theorem 10.4.7 of [SW08], we get that there
exist a probability measure φd on (Sd−1)d and a vector ξ ∈ Sd−1 such that, for any
a > 0,

P(Z ∈ Au,a) =

∫

(Sd−1)d

P(Zo ∩ Tξ(u1, . . . , ud) ∈ Au,a) dφd(u1, . . . , ud)

≥
∫

(Sd−1)d

1(u1 = u)P(Zo ∩ Tξ(u1, . . . , ud) ∈ Au,a) dφd(u1, . . . , ud) .

Observe that for any fixed u2, . . . , ud, and a → 0, we have

P(Zo ∩ Tξ(u, u2 . . . , ud) ∈ Au,a) ∼ P(∃t ∈ (0, a) : H(u, t) ∈ η) = 1− e−γaϕ({u})

∼ γaϕ({u}) .

Thus, by setting a constant c such that

0 < c < ϕ({u})
∫

(Sd−1)d

1(u1 = u) dφd(u1, . . . , ud) ,

we have P(Z ∈ Au,a) > cγa for a small enough. This is precisely (5.2).
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