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Abstract 

We address the classical factorization problem of a one dimensional Schrödinger operator −∂2 + 

u − λ, for a stationary potential u of the KdV hierarchy but, in this occasion, a ”parameter” λ. 

Inspired by the more e ective approach of Gesztesy and Holden to the ”direct” spectral problem, 

we give a symbolic algorithm by means of di erential elimination tools to achieve the aimed 

factorization. Di erential resultants are used for computing spectral curves, and di erential 

subresultants to obtain the frst order common factor. To make our method fully e ective, we 

design a symbolic algorithm to compute the integration constants of the KdV hierarchy, in the 

case of KdV potentials that become rational under a Hamiltonian change of variable. Explicit 

computations are carried for Schrödinger operators with solitonic potentials. 

Keywords: Schrödinger operator, factoriazation of ODOs, di erential resultant, di erential 

subresultant, spectral curve 
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1. Introduction 

This paper addresses the e ective factorization of the Schrodinger operator 

L − λ = −∂2 + u − λ (1) 

for a stationary potential u in a complex variable, say x, and λ a parameter over the feld of 

coeÿcients. It is well known that whenever the potential satisfes one of the di erential equations 
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of the Korteweg de Vries (KdV) hierarchy, this problem is intimately related to the existence of 

a plane algebraic curve �, the spectral curve associated to the operator L. In 1923, J.L. Burchnall 

and T.W. Chaundy [7] established a correspondence between commuting di erential operators 

and algebraic curves. They discovered the spectral curve, defned by the so called Burchnall and 

Chaundy (BC) polynomial. This discovery allowed an algebro-geometric approach to handling 

the direct and inverse spectral problems for the fnite-gap operators, with the spectral data being 

encoded in the spectral curve and an associated line bundle [16]. In particular, KdV Schrödinger 

operators (a special case of fnite-gap operators) can be treated by the methods in [16], but in 

this paper we present a di erent approach to the direct spectral problem inspired by the more 

e ective treatment of Gesztesy and Holden in [14]. We advice for instance [14] for a historic 

introduction on the subject. 

Classically, the spectral curve was computed using a Lenard-type di erential recursion (see 

[14]), where arbitrary integration constants appeared at each step of the iterative process. In 

[14] Theorem D.1, the intimate relationship between these integration constants and � is shown. 

Our approach to the problem of computation of constants has the goal of designing an algorithm 

that depends only on the potential u, but not directly on the spectral curve. For this purpose we 

describe the fag structure that the constants create, see Section 4.1. In the case of potentials that 

become rational under a Hamiltonian change of variable [1], we have been able to design the 

aimed algorithm. 

Based on Goodearl’s theoretical results [15], we describe the centralizer of L for a KdV 

potential u. In other words, we determine the essential odd order operator A2s+1 of the centralizer 

of L, that together with L generates the centralizer as a C-algebra C[L, A2s+1]. The potential u 

satisfes a fxed KdVs equation 

KdVs = kdvs + c1kdvs−1 + · · · + cskdv0 = 0, 

with corresponding integration constants c1, . . . , cs in C. Thus for a fxed potential u, the algo-

rithmic determination of the operator A2s+1 relies on the algorithmic computation of the constants 

ci. 

Once we have explicitly obtained the operator A2s+1, a defning equation for � can be com-

puted. In fact, E. Previato [25] used di erential resultants to compute spectral curves, opening 

the door to symbolic computation techniques. The use of these techniques did not transcend so 

far [14], [19] and their defning polynomials are commonly computed as characteristic polyno-

mials [14], [5], [19]. Di erential resultants for ordinary di erential operators were defned in the 

90’s by Berkovich and Tsirulik [3] and studied by Chardin [9], who also defned the di erential 

subresultant sequence; see [18] for a recent report on the subject. 

We present a new symbolic algorithm for the factorization of a KdV Schrödinger operator 

L − λ over the feld K(�) of its spectral curve � using di erential subresultants. There are other 

factorization algorithms for linear ordinary di erential operators in the literature, as [6], [29], 

[28]. But we beneft from the use of the frst subresultant since it provides a di erential algebraic 

formula only in terms of the potential u and the computed constants. In this way the factorization 

obtained for L − λ is written as 

(⋆) L − λ = (−∂ − φ)(∂ − φ) 

with φ a quotient of two determinants of matrices with entries di erential polynomials in u. 

Whenever the spectral curve admits a global parametrization, the algebraic framework that jus-
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tifes the correctness of the algorithms allows to develop a parametric version of (⋆). In the 

examples of Section 7 we illustrate some of these cases. 

A very important requirement in this work is to treat λ as a parameter. The di erential 

operator L − λ is treated frst as an operator with coeÿcients in the feld K(λ); then, when the 

spectral curve � is considered, as a di erential operator with coeÿcients in the feld K(�) of 

rational functions on �. Our symbolic factorization structure allows the specialization process to 

points (λ0, µ0) on �, recovering the classical factorization of L − λ0 at each point (λ0, µ0) of �s, 

see [14]. Another approach to the factorization is carried by means of Darboux transformations 

and the raising and lowering operators A+ and A− , but with this approach one previously needs 

to compute a set of solutions for a fnite set of energy levels, see [1] and the references therein. 

The paper is organized as follows. In Section 3, we construct the KdV hierarchy and defne 

di erential subresultants, reviewing its main properties. Section 4 contains our algorithm for 

computation of the integration constants of the KdV hierarchy. Then in Section 5 we describe 

the centralizer of L and compute the operator A2s+1. We are ready to review Previato’s Theorem, 

applying it to the computation of the spectral curve of the Lax pair {L, A2s+1}. Section 6 contains 

our factorization algorithm for L − λ as an operator in K(�)[∂]. In Section 7, we apply our algo-

rithms to three special families of solitons. A parametric version of the factors is also included 

for those examples. 

We implemented the algorithm for the computation of constants and the factorization algo-

rithm using Maple 18. We used these implementations to compute the examples in Section 7. 

2. Notation 

We establish some notation to be used throughout the whole manuscript. 

Let N be the set of positive integers including 0. For concepts in di erential algebra we refer 

the reader to [10], [30] or [20]. Let K be a di erential feld of characteristic zero with derivation 

∂, whose feld of constants C is algebraically closed. Let us consider algebraic variables λ and 

µ with respect to ∂. Thus ∂λ = 0 and ∂µ = 0 and we can extend the derivation ∂ of K to the 

polynomial ring K[λ, µ] by 

X X 
� � 

j j∂ ai, jλ
i µ = ∂(ai, j)λ

i µ , ai, j ∈ K. (2) 

Hence (K[λ, µ], ∂) is a di erential ring whose ring of constants is C[λ, µ]. 

Given a di erential commutative ring E with derivation ∂, let us denote by E[∂] the ring of 

di erential operators with coeÿcients in E and commutation rule 

[∂, a] = ∂a − a∂ = ∂(a), a ∈ E, 

where ∂a denotes the product in the noncommutative ring E[∂] and ∂(a) is the image of a by 

the derivation map. The ring of pseudo-di erential operators in ∂ will be denoted by E[∂−1] (see 

[15]) 
  

n 
 X 

  

  

E[∂−1] = 
 

ai∂
i | ai ∈ E, n ∈ Z 


, 

  

  

i=−∞ 

where ∂−1 is the inverse of ∂ in E[∂−1], ∂−1∂ = ∂∂−1 = 1. 
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3. Formal KdV Schrödinger operators 

Let us consider a di erential indeterminate u over C. We will call formal Schrödinger oper-

ator to L(u) = −∂2 + u with coeÿcients in the ring of di erential polynomials 

′ ′′ C{u} = C[u, u , u , . . .] 

′ (n)where u stands for ∂(u) and u = ∂n(u), n ∈ N. 

3.1. KdV polynomials and their Lax pair representations 

In this section we will work with the formal Schrödinger operator L = L(u). In a conve-

nient way to be used in this paper, we review well known algorithms to compute the di erential 

polynomials in u of the KdV hierarchy and the family of di erential operators of its Lax repre-

sentation. This was studied for the frst time in the paper [13]. We follow the normalization in 

[14], see also [22] for other presentations. 

Let us consider the pseudo-di erential operator 

1 1 1 1′ ∂−1 ∂2 ′ R = − ∂2 + u + u and its adjoint R∗ = − + u − ∂−1 u . (3) 
4 2 4 2 

Observe that R∗ = ∂−1R∂. The operator R∗ is a recursion operator of the KdV equation (see [22], 

p. 319). Applying the recursion operator R, we defne: 

′ kdv0 := u , kdvn := R(kdvn−1), for n ≥ 1. (4) 

Applying R∗ we defne: 

v0 := 1, vn := R
∗ (vn−1), for n ≥ 1. (5) 

Hence for n ∈ N it holds 

2∂(vn+1) = kdvn. (6) 

We will prove next that for all n, kdvn and vn are di erential polynomials in u, elements of 

C{u}. The proof is similar to the one of [22], Theorem 5.31 but we include details for completion, 

and due to its importance for their symbolic computation, see Section 3.3. We will call the 

di erential polynomials kdvn the KdV di erential polynomials. 

Lemma 3.1. The formulas for kdvn and vn give di erential polynomials in C{u}. 

Proof. Observe that R(kdvn−1) is well defned if and only if kdvn−1 is a total derivative. We 

will prove this by induction on n. It is trivial for n = 1 since kdv0 = ∂(u). Let us assume that 

kdvn−1 = ∂(gn−1), gn−1 ∈ C{u}. 
Since R and R∗ are adjoint operators we have pR(q) = qR∗ (p) + ∂(a), p, q, a ∈ C{u}. Thus 

′ for p = u and q = u we get 

′ ′ uRk(u ) = u (R∗ )k(u) + ∂(ak), for ak ∈ C{u}. 

Then 

)n−1 )n−1 ukdvn−1 = (∂u − u∂)(R∗ (u) + ∂(an−1) = −u∂(R∗ (u) + ∂(b), b ∈ C{u} 

4 
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which implies that ukdvn−1 = ∂(b/2) is the total derivative of a di erential polynomial in C{u}. 

Since 
! 

1 1 1 
∂−1 u∂−1R = ∂ − ∂ + u + 

4 2 2 

we obtain that kdvn = R(kdvn−1) is a total derivative. 

The fact that kdvn is a total derivative and (6) imply that vn+1 are also elements of C{u}. 

As in [14], we defne a family of di erential operators in C{u}[∂] of odd order (see also [11], 

[21]) 
1 

P1 := ∂, P2n+1 := vn∂ − ∂(vn) + P2n−1L, for n ≥ 1. (7) 
2 

Observe that 

n ! 

X 1 
LlP2n+1 = vn−l∂ − ∂(vn−l) . (8) 

2 
l=0 

The operators P2n+1 have the important property that the commutator [P2n+1, L] is a di erential 

operator in C{u}[∂] but Lemma 3.2 shows that it has order zero, it is the multiplication operator 

by the kdvn di erential polynomial. This is the famous Lax representation of kdvn, see [14], 

[21]. We will call the di erential operators P2n+1(u) the KdV di erential operators. 

Lemma 3.2. For n ∈ N it holds [P2n+1, L] = kdvn. 

′ Proof. One can easily check that v1 = R
∗ (1) = u/2 and [P1, L] = u = 2∂(v1). We prove the 

result by induction on n. Since P2n+3 = O + P2n−1L where O = vn+1∂ − 1 ∂(vn+1), we have 
2 

[L, P2n+3] = [L, O] + [L, P2n+1]L = [L, O] − 2∂(vn+1)L, 

with 

′ [L, O] = −2∂(vn+1)∂2 + (1/2)∂3(vn+1) − vn+1u , 

2∂(vn+1)L = −2∂(v) ′ ∂2 + 2∂(vn+1)u. n+1 

′ Observe that R∗ = − 1 ∂−1S where S = ∂3 − 4u∂ − 2u . Thus 
4 

′ [L, P2n+3] = (1/2)∂3(vn+1) − vn+1u − 2∂(vn+1)u = (1/2)S (vn+1) = −2∂R∗ (vn+1) = −2∂(vn+2). 

By (6) the result is proved. 

Now let us consider algebraic indeterminates cn, n ≥ 1 over C. We defne an extended family 

of KdV di erential polynomials KdVn(u, cn), n ∈ N in the di erential indeterminate u and the 
nlist of algebraic indeterminates c = (c1, . . . , cn). 

n−1 
X 

′ KdV0 := u , KdVn := kdvn + cn−lkdvl, for n ≥ 1 (9) 

l=0 

and an extended family of KdV di erential operators whose coeÿcients are di erential polyno-
nmials in u and c , 

n−1 
X 

P̂1 := ∂ and P̂2n+1 := P2n+1 + cn−lP2l+1, for n ≥ 1. (10) 

l=0 

5 



�

� �

�

�

�

�

�

�

�

One can easily check that 

[P̂2n+1, L] = KdVn = 2∂( fn+1), (11) 

for 
n−1 
X 

f0 := v0 = 1 and fn := vn + cn−lvl, for n ≥ 1. (12) 

l=0 

3.2. Di erential resultant and subresultants 

Let K be a di erential feld as in Section 3. Let us consider di erential operators P and Q in 

K[∂] of orders n and m respectively and leading coeÿcients an and bm. We are interested in the 

common solutions of the system of linear di erential equations 

( 

P = 0 
. 

Q = 0 

The tools we have chosen to study this problem are di erential resultant and subresultants. They 

are an adaptation of the algebraic resultant of two algebraic polynomials in one variable to a 

noncommutative situation. We summarize next the defnition and some important properties of 

di erential resultants to be used in this work. 

3.2.1. Di erential resultant for ODO’s and main properties 

The Sylvester matrix S 0(P, Q) is the coeÿcient matrix of the extended system of di erential 

operators 

�0(P, Q) = {∂m−1P, . . . ∂P, P, ∂n−1Q, . . . , ∂Q, Q}. 

Observe that S 0(P, Q) is a squared matrix of size n+m and entries in K. We defne the di erential 

resultant of P and Q to be 

∂Res(P, Q) := det(S 0(P, Q)). 

Example 3.3. Given P = a2∂
2 + a1∂ + a0 and Q = b3∂

3 + b2∂
2 + b1∂ + b0 in K[∂], 

 

 

a2 a1 + 2∂(a2) a0 + 2∂(a1) + ∂2(a2) 2∂(a0) + ∂2(a1) ∂2(a0) 
 

 

  

 

 

 

 
0 a2 a1 + ∂(a2) a0 + ∂(a1) ∂(a0) 

 

 

 

 

  

  

S 0(P, Q) =   0 
 

0 a2 a1 a0 
 

 

 . 
 

  

 

 

 

 

b3 b2 + ∂(b3) b1 + ∂(b2) b0 + ∂(b1) ∂(b0) 
 

 

 

 

  

0 b3 b2 b1 b0 

The next propositions state the most relevant properties of the di erential resultant. 

Proposition 3.4 ([9]). Let (P, Q) be the left ideal generated by P, Q in K[∂]. 

1. ∂Res(P, Q) = AP + BQ with A, B ∈ K[∂], ord(A) < m, ord(B) < n, that is ∂Res(P, Q) 

belongs to the elimination ideal (P, Q) ∩ K. 
¯ ¯ ¯2. ∂Res(P, Q) = 0 if and only if P = PR, Q = QR, with ord(R) > 0 and P̄ , Q, R ∈ K[∂]. 

Observe that Proposition 3.4, 1, indicates that AP+ BQ is an operator of order zero, the terms 

in ∂ of degree greater than zero have been eliminated. Furthermore, Proposition 3.4, 2 states that 

∂Res(P, Q) = 0 is a condition on the coeÿcients of the operators that guarantees a right common 

factor. 

6 
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Given a fundamental system of solutions y1, . . . , yn of P = 0, let us denote by W(y1, . . . , yn) 

the Wronskian matrix 
  

 
y1 · · · yn  

  

 

 

 

 
∂y1 · · · ∂yn 

 

 

 

 

  

W(y1, . . . , yn) =   
 

 

. . . . . . 
 

 

 

 

 

 

 . . .  

 

  

 

∂n−1 y1 · · · ∂n−1 yn 

 

and by w(y1, . . . , yn) its determinant. As in the case of the classical algebraic resultant there is a 

Poisson formula for ∂Res(P, Q). 

Proposition 3.5 ([9], Theorem 5, see also [25]). Given P, Q ∈ K[∂] with respective orders n and 

m, leading coeÿcients an and bm and fundamental systems of solutions y1, . . . , yn and z1, . . . , zm 

respectively of P = 0 and Q = 0. It holds, 

w(Q(y1), . . . , Q(yn)) w(P(z1), . . . , P(zm)) m∂Res(P, Q) = (−1)nm a = bn .n m w(y1, . . . , yn) w(z1, . . . , zm) 

3.2.2. Subresultant sequence 

We introduce next the subresultant sequence for P and Q, which was defned in [9], see also 

[17]. For k = 0, 1, . . . , N := min{n, m} − 1 we defne the matrix S k(P, Q) to be the coeÿcient 

matrix of the extended system of di erential operator 

�k(P, Q) = {∂m−1−kP, . . . ∂P, P, ∂n−1−kQ, . . . , ∂Q, Q}. 

Observe that S k(P, Q) is a matrix with n + m − 2k rows, n + m − k columns and entries in K. 

For i = 0, . . . , k let S i (P, Q) be the squared matrix of size n + m − 2k obtained by removing 
k 

the columns of S k(P, Q) indexed by ∂k , . . . , ∂, 1, except for the column indexed by ∂i . Whenever 

there is no room for confusion we denote S k(P, Q) and S i (P, Q) simply by S k and S i respectively. 
k k 

The subresultant sequence of P and Q is the next sequence of di erential operators in K[∂]: 

k 
X 

Lk = det(S i )∂i , k = 0, . . . , N.k 

i=0 

In this paper we will only use L1 = det(S 0) + det(S 1)∂ where 
1 1 

S 0 ˆ:= submatrix(S 1, ∂) (13) 1 

and 

S 1 ˆ:= submatrix(S 1, 1) (14) 1 

are the submatrices of S 1 = S 1(P, Q) obtained by removing columns indexed by ∂ and 1 respec-

tively. 

Recall that K[∂] is a left Euclidean domain. If ord(P) ≥ ord(Q) then P = qQ + r with 

ord(r) < ord(Q), q, r ∈ K[∂]. Let us denote by gcd(P, Q) the greatest common (right) divisor of 

P and Q. 

Theorem 3.6 ([9], Theorem 4. Di erential Subresultant Theorem). Given di erential operators 

P and Q in K[∂], gcd(P, Q) is a di erential operator of order r if and only if: 

7 
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1. Lk is the zero operator for k = 0, 1, , . . . , r − 1 and, 

2. Lr is nonzero. 

Then gcd(P, Q) = Lr. 

Remark 3.7. From 3.6 we obtain the following consequences. 

¯ ¯ ¯ ¯1. Given Lr = gcd(P, Q) then P = PLr and Q = QLr, P, Q ∈ K[∂]. 

2. The gcd(P, Q) is nontrivial (it is not in K) if and only if L0 = ∂Res(P, Q) = 0. 

We will defne resultants and frst subresultants of KdV Schrödinger di erential operators. 

Next we make some remarks in the formal case to be used later when u is specialized to a 

potential in K. 

Remark 3.8. Let us consider the formal Schrödinger operator L = −∂2 + u and the di erential 

operator P̂2s+1(u, cs) defned in (10). The following statements hold: 

1. We have the following formula: 

2 s∂Res(L − λ, P̂2s+1 − µ) = −µ + R2s+1(u, c , λ) 

where R2s+1(u, cs, λ) is a polynomial in C{u}[cs, λ]. 

2. The determinant of S 1(L − λ, P̂2s+1 − µ) is a polynomial ϕ2 in C{u}[cs, λ].
1 

3. The determinant of S 0(L − λ, P̂2s+1 − µ) equals −µ − α, where α ∈ C{u}[cs, λ] .
1 

3.3. Formal examples 

We would like to highlight now that all defnitions in Section 3.1 are algorithms due to 

Lemma 3.1. Since u is a di erential indeterminate over C and kdvn, vn are di erential poly-

nomials in C{u}, it is important to note that Lemma 3.1 guarantees that they are well defned, the 

symbolic integral ∂−1(kdvn) of kdvn can be computed with any software for symbolic computa-

tion. 

We implemented these defnitions with Maple 18. The frst iterations of these computations 

are: 

1 3 1 5 5 15 ′′′ ′ (5) ′′′ ′ ′′ 2 ′ kdv1 = − u + uu , kdv2 = u − uu − u u + u u , 
4 2 16 8 4 8 

35 35 35 35 21 7 35 1′ 3 2 ′′′ ′ ′′ )3 (4) ′ (5) ′′′ ′′ (7) kdv3 = u u − u u − uu u − (u ′ + u u + u u + u u − u 
16 32 8 32 32 32 32 64 

3 ′′ ′ )2 (4) u 3 2 1 ′′ 5 u 5 u u 5 (u u 
v1 = , v2 = u − u , v3 = − − + 

2 8 8 16 16 32 32 

To implement the KdV di erential operators P̂2n+1 we used formula (10) and the Maple package 

OreTools. They are di erential operators in C{u}[∂] the ring of di erential polynomials in u. In 

fact by (8) we obtain 

3 3 5 15 15 25 15 15 ′ ′ 2 ′′ ′′′ ′ P3 = − ∂3 + u∂ + u , P5 = ∂
5 − u∂3 − u ∂2 + u ∂ − u ∂ − u + uu , 

2 4 2 4 8 8 16 8 
!

2 ′ ′ ′′ ′′′ (5) 3 ′2 ′′ (4) 105 u u 105 u u 105 u u 63 u 35 u 245 u 175 u u 161 u 
P7 = − − + + − − + ∂ 

32 16 32 64 16 32 16 32 
! !

′′′ ′ ′′ 2 ′ ∂4175 u 105 u u 105 u 35 u 35 u 7 
∂2 ∂3 u∂5 − ∂7+ − + − + + . 

16 8 8 8 4 2 
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Let us consider the formal Schrödinger operator L = −∂2 + u and P̂3(u, c 1) = P3 + c1P1. 

Let λ and µ be algebraic indeterminates as in Section 2. The next di erential resultant will be of 

interest 

2 1 2∂Res(L − λ, P̂3 − µ) = −µ + R3(u, c , λ) = −µ − λ3 − 2c1λ
2 + p1(u, c1)λ + p0(u, c1) 

where 

1 ′′ 3 2 2 p1(u, c1) = u + u + c1u − c with ∂(p1(u, c1)) = KdV1(u, c 1),
4 4 1 
1 1 ′′ ′′ 2 2′ )2 3 − 1 p0(u, c1) = (u + u u u − 1 u c1 + u c1 + uc 

16 4 8 4 1 
� � 

uwith ∂(p0(u, c1)) = + c1 KdV1(u, c 1).
2 

The di erential subresultant of L − λ and P̂3 − µ is 

! 

� � ′ u u 
L1 = det(S 0) + det(S 1)∂ = −µ − + + c1 + λ ∂1 1 4 2 

with 
 

′    

 −1 0 u   −1 0 u − λ  

    

 



S 0 
=  01  

−1 u − λ 
  

  

  

  0 
 

and S 1 = 1  

−1 0 
 

 

 

 

 

. 
 

 

−1 0 3 ′ u − µ
4 

 

 

 

 

−1 0 3 u + c12 

 

 

4. Integration constants for KdV potentials 

In this section, we specialize u to a potential ũ in the di erential feld K, with feld of constants 
nC. First observe that KdVn(ũ, cn) is equal to zero if there exists a set of constants c̃ ∈ Cn such 

that KdVn(ũ, c̃n) = 0. 

4.1. Flag of constants for KdV potentials 

nHaving fxed a potential ũ in K, we will study next the determination of a set of constants c̃ 
nsatisfying the equation KdVn(ũ, cn) = 0, n ∈ N, in the set of algebraic variables c = (c1, . . . , cn). 

We will explore the structure of the sets of constants verifying the KdV equations for a given 

potential ũ. Our method was motivated by [14], Remark 1.5, where the problem is posted but no 

computational solution is given. We addressed the problem with the goal of giving an algorithm 

for the computation of constants, that is included in Section 4.2. 

Recall that kdvn is the di erential polynomial in C{u} given by (4). After replacing u = ũ in 

kdvn we obtain an element of K denoted by kn = kdvn(ũ). Observe that the linear equation in 

c1, . . . , cn 

n−1 
X 

nKdVn(ũ, c ) = kdvn(ũ) + kdvℓ(ũ)cn−ℓ = kn + kn−1c1 + . . . k1cn−1 + k0cn = 0 (15) 

ℓ=0 

determines an aÿne hyperplane in Kn . Let Hn be its intersection with Cn 

Hn := {ξ ∈ Cn | KdVn(ũ, ξ) = 0}. 
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�Defnition 4.1. We call a potential ũ in a di erential feld K, a KdV potential if there exists n ≥ 1 

such that Hn , ∅. Let s be the smallest positive integer such that Hs , ∅, we call s the KdV 

level of u.˜ We will write us for a KdV potential ũ of KdV level s. 

Thus the level s of a potential indicates the frst equation KdVs = 0 that is satisfed by us for a 

given set of constants. Furthermore, the next proposition explains that us satisfes KdVn = 0 for 

all n > s. In addition, the choice of constants is unique in the frst level but not in the remaining 

ones. 

Proposition 4.2. Given a potential us the following statements are satisfed: 

s s s1. Hs = {c̄
s} with c̄ = (c , . . . , c ) ∈ Cs.

1 s 

2. For all n > s, the C vector space Vn := {ξ ∈ Cn | KdVn(us, ξ) − kn = 0} has dimension 

n − s, namely 

s sVs+1 = h(1, c̄ )i, Vn+1 = Vn ⊕Wn, with Wn = h(1, c̄ , 0, . . . , 0)i, (16) 

identifying Vn with its natural embedding in Vn+1 defned by x 7→ (0, x). Furthermore, 

there is an infnite fag 

Vs ⊂ · · · ⊂ Vn ⊂ · · · , (17) 

that we call the fag of constants for us. 
s s s s3. For all n > s, we have Hn = c̄ + Vn, with c̄ = (c , . . . , c , 0, . . . , 0) ∈ Cn. Furthermore, n n s1 

there is an infnite fag of aÿne spaces 

Hs ⊂ · · · ⊂ Hn ⊂ · · · , (18) 

identifying Hn with its natural embedding in Hn+1 defned by x 7→ (x, 0). 

sProof. 1. If there exists ξ = (ξ1, . . . , ξs) , c̄s in Hs then for some 1 ≤ i ≤ s, ξi − c , 0 and 
i 

s sξi+1 − c ξs − ci+1 s
ks−i + ks−i−1 + . . . + k0 = 0,

s sξi − c
i 

ξi − c
i 

contradicting that Hs−i = ∅. 

2. By (4) and (9) we have 

s−1 s−1 
X X 

Rn−s s(KdVs(u, c )) = Rn−s(kdvs(u)) + cs−ℓR
n−s(kdvℓ(u)) = kdvn(u) + cs−ℓkdvn−s+l(u). 

ℓ=0 ℓ=0 

(19) 

1 ′ Let us consider the recursion operator (3) for u = us, that is Rs = − 1
4 
∂2 + us + u ∂−1. s 

Replacing u by us and cs by c̄s in (19) we obtain 
2 

s skn = −kn−1c − · · · − kn−sc , (20) 1 s 

since Rs is a linear operator acting on Chusi and KdVs(us, c̄s) = 0. 

We prove (16) by induction on n. An element ξ = (ξ1, . . . , ξs+1) of Vs+1 verifes ksξ1 + 

· · · + k0ξs+1 = 0, and taking n = s in (20) we get 

s sks−1(ξ2 − ξ1c ) + · · · + k0(ξs+1 − ξ1c ) = 0.1 s 

10 



Then ξ = ξ1(1, c̄s), because 1. implies that Vs is the null space. Let us assume that Vn has 

basis {w1, . . . , wn−s}. Observe that 

Vn+1 ∩ {ξ ∈ Cn+1 | ξ1 = 0} = {0} × Vn 

has basis B = {(0, w1), . . . , (0, wn−s)}. Using (20) we can prove that ξ ∈ Vn+1 verifes 

1 skn−1(ξ2 − ξ1c ) + . . . + kn−s(ξs+1 − ξ1c ) + kn−s−1ξs+2 + · · · + k0ξn+1 = 0.1 s 

sLet w = (1, c̄ , 0, . . . , 0) ∈ Cn+1, then ξ − ξ1w ∈ {0} ×Vn, which proves that {w} ∪ C{u} is a 

basis of Vn+1 of size n + 1 − s. 

3. Substituting (20) in KdVn(us, cn) gives 

n s sKdVn(us, c ) =kn(c1 − c ) + · · (cs − cs) + kn−s−1cs+1 + . . . + k0cn,1 · + kn−s 

sproving that Hn = c̄ + Vn. Similarly we can prove that given ξ ∈ Hi, s ≤ i ≤ n − 1 then n 

i+1KdVi+1(us, c ) =ki(c1 − ξ1) + · · · + k1(ci − ξi) + k0ci+1. 

Therefore Hi × {0} ⊂ Hi+1 and (18) follows. 

The previous proposition shows that the fag of constants of a KdV potential us of KdV level 

s is determined by Hs = {c̄
s}. We call c̄s the basic constants vector of us. 

Example 4.3. As a frst example, let us consider ũ = 6/x 2 in K = C(x). One can easily check 

that ũ is a KdV potential of level 2. It does not verify KdV1(u, c1) = kdv1(u) + c1kdv0(u) = 0 for 

any c1 ∈ C but KdV2(ũ, (0, 0)) = kdv2(ũ) = 0 and KdVn(u, cn) = 0, n > 2 is satisfed by u = ũ 
n 2for infnitely many choices of c ∈ Cn. Its basic constant vector is c̄ = (0, 0). More examples 

can be found in Section 7. 

The computation of the basic constants vector is algorithmic at least for a big family of 

potentials, as we explain in the next section. 

4.2. Computing the integration constants 

We designed an algorithm that decides if a potential ũ in K is a KdV potential and returns its 
slevel s and basic constants vector c̄ . For this purpose we restrict to the case of potentials ũ that 

are rational functions in an element η in K. Let C(η) be the feld of rational functions in η, we 

assume that ũ ∈ C(η). Furthermore we assume that (η ′ )2 ∈ C(η). This request is necessary for 

a hamiltonian algebraization in order to preserve the Galoisian behavior of the factors, see [1]. 

This situation is satisfed by the three families of KdV potentials that we will use to illustrate all 

the results of this paper in Section 7. 

We can distinguish two cases. If η ′ ∈ C(η) then Chũi ⊂ C(η). If (η ′ )2 ∈ C(η) but η ′ < C(η) 

then Chũi is contained in the linear space V = C(η) ⊕ η ′ C(η). 

Lemma 4.4. Let us consider a ∈ V. 

′ 1. If a ∈ η ′ C(η) then a ∈ C(η). 
′ 2. a ∈ C(η) if and only if a ∈ η ′ C(η). 

11 



�

′ ′ Proof. Clearly, if a ∈ η ′ C(η) then a ∈ C(η) and also if a ∈ C(η) then a ∈ η ′ C(η). Let us 
′ assume a ∈ η ′ C(η), with a = h0 + h1η ′ , h0, h1 ∈ C(η) and h1 , 0. Then ∂(a − h0) = ∂(η ′ h1) ∈ 

C(η) ∩ η ′ C(η) = 0 thus η ′ h1 is a constant which contradict that η ′ < C(η). 

Recall that vn is the di erential polynomial in C{u} given by (5). After replacing u = ũ in vn 

we obtain an element of K that will be denoted by vn(ũ). If η ′ ∈ C(η) then kdvn(ũ) ∈ C(η) and 

also vn(ũ) ∈ C(η), for all n ∈ N. 

Lemma 4.5. Let us consider a potential ũ ∈ C(η). Then kdvn(ũ) ∈ η ′ C(η) and vn(ũ) ∈ C(η), for 

all n. 

Proof. Given ũ ∈ C(η) we can easily prove that ∂n(ũ) belongs to η ′ C(η) for n odd and belongs 

to C(η) for n even. Observe that v2(ũ) ∈ C(η) (see Section 3.3) and thus kdv1(ũ) ∈ η ′ C(η) by 

Lemma 4.4, since kdv1 = ∂(v2). Let us assume that kdvn(ũ) = ∂(vn+1)(ũ) ∈ η ′ C(η), then Lemma 

4.4 implies vn+1 ∈ C(η). Since kdvn+1 = R(kdvn) we have 

1 1 ′ ∂2kdvn+1(ũ) = − (kdvn(˜ ukdvn u) + u u),u)) + ˜ ( ˜ ˜ vn+1(˜ 
4 2 

which is the sum of terms in η ′ C(η), hence kdvn+1(ũ) ∈ η ′ C(η). 

From the previous lemmas and (15), the next result follows. 

Proposition 4.6. Given ũ ∈ C(η) then 

 

pn(η) 
 

 if η ′ ∈ C(η),
n  (η)KdVn(ũ, c ) = 

 

qn 
(η) (21) 

 η ′ pn 
 if (η ′ )2 ∈ C(η), η ′ < C(η),

qn(η) 

P 

where pn = d ldη
d and qn ∈ C[η] are polynomials in η, with ld linear expressions in c1, . . . , cn 

over C. 

We are ready to give the announced algorithm. 

Algorithm 4.7. (Basic Constants Vector) Let η ∈ K be such that (η ′ )2 ∈ C(η). 

∗• Given ũ ∈ C(η) and s ≥ 1. 

∗• Decide if ũ is a KdV potential of KdV level smaller than or equal to s and return the KdV 
slevel s and its basic constants vector c̄ . 

1. Set n := 1. 
pn(η)

2. Replace u by ũ in KdVn(u, cn) to obtain , as in Proposition 4.6. 
qn(η) 

3. Collect the coeÿcients in η of pn to obtain a nonhomogeneous system Sn of linear equa-

tions over C in the unknowns c1, . . . cn. 
s4. If Sn has a solution ξ ∈ Cn, return s := n and c̄ := ξ. 

∗ 5. If n = s return ”it is not a KdV potential up to the required level”. 

6. Set n := n + 1 and go to Step 2. 

See examples in Sections 7.2 and 7.3. 

12 



�

�

�

�

�

5. Spectral curves of KdV Schrödinger operators 

In this section we will study the centralizers of Schrödinger operators Ls = L(us) = −∂
2 + us, 

swhere us is a KdV potential of KdV level s and basics constant vector c̄ ∈ Cs , as defned in 

Section 4.1. We will call Ls a KdV Schrödinger operator or KdVs for short. This will allow 

us to defne the spectral curve of Ls by means of an operator of order 2s + 1 commuting with 

Ls. For this purpose we need to study the centralizer of the operator Ls. We will show that this 

centralizer is generated by Ls and another operator A2s+1. This pair, {Ls, A2s+1}, will be the one 

we use to calculate an equation of the spectral curve associated with Ls. 

5.1. Centralizers and Burchnall-Chaundy polynomials 

To start we summarize some results from [15] about centralizers of di erential operators. Let 

P = an∂
n + · · · + a1∂ + a0 be an operator in E[∂]. Let us denote by CE(P) the centralizer of P in 

E[∂], that is 

CE(P) = {Q ∈ E[∂] | PQ = QP}. 

By [15], Theorem 4.1, if n and an are non zero divisors in E then CE(P) is commutative. Let C∞ 

be the ring of infnitely-many times di erentiable complex-valued functions on the real line. By 

[15], Corollary 4.4, CC∞ (P) is commutative if and only if there is no nonempty open interval on 

the real line on which the functions ∂(a0), a1, . . . , an all vanish. 

Details of the evolution of these results from various previous works are given in [15]. We 

chose this reference because it simplifes the existing methods and applies them in as wide a 

context as reasonable. Precursors of the commutativity results are Schur [27], Flanders [12], 

Krichever [16], Amitsur [2], Carlson and Goodearl [8]. Results describing centralizers CR(P) as 

a free module of fnite rank appear in [12], [2], [8] and in Ore’s well known paper [23]. 

Recall that a commutative ring E is called reduced if it has no nonzero nilpotent element. 

Observe that C∞ is not a feld, but it is a reduced ring whose ring of constants is the feld C. 

Theorem 5.1. Let E be a reduced di erential ring whose subring F of constants is a feld. Let 

us assume that n is invertible in F and an is invertible in E. 

1. ([15], Theorem 4.2) CE(P) is a commutative integral domain. 

2. ([15], Theorem 1.2) Let X be the set of those i in {0, 1, 2, . . . , n − 1} for which CE(P) 

contains an operator of order congruent to i module n. For each i ∈ X choose Qi such that 

ord(Qi) ≡ i(mod n) and Qi has minimal order for this property (in particular 0 ∈ X, and 

Q0 = 1). Then CE(P) is a free F[P]-module with basis {Qi | i ∈ X}. Moreover, the rank t 

of CE(P) as a free F[P]-module is a divisor of n. 

We are ready now to describe the centralizer CK(Ls) in K[∂] of the KdV Schrödinger operator 

Ls. We do so by generalizing an example in [15], Section 1.2. In addition, by [8], Theorem 1.6 

we know that CK (Ls) has rank 2 as a free C[Ls]-module. 

n s sReplacing u by us and c by c̄ = (c̄ , 0, . . . , 0) in the family of KdV di erential operators n 

P̂2n+1(u, cn) defned in (10), we obtain a family of di erential operators in K[∂] 

ˆ sA2n+1 := P2n+1(us, c̄ ), for all n ≥ s. (22) n 

As a consequence of (11) and Proposition 4.2 we have 

s[A2n+1, Ls] = KdVn(us, c̄ ) = 0, for all n ≥ s. (23) n 
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Thus A2n+1 ∈ CK(Ls), for all n ≥ s. The next result shows that A2s+1 has an important role in the 

description of the centralizer of Ls, it is the di erential operator that determines the centralizer 

of Ls. 

Theorem 5.2. Let Ls be a KdV Schrödinger operator. The centralizer of Ls in K[∂] equals the 

free C[Ls]-module of rank 2 with basis {1, A2s+1}, that is 

CK (Ls) = {p0(Ls) + p1(Ls)A2s+1 | p0, p1 ∈ C[Ls]} = C[Ls]h1, A2s+1i. 

Proof. We will prove that there does not exist an operator of odd order smaller that 2s + 1 in 

CK (Ls). By Theorem 5.1, 2, this implies that CK(Ls) = C[Ls]h1, A2s+1i. 

Let us consider a monic di erential operator Q ∈ K[∂] of order 2n+1 with n < s. Let P2n+1(u) 

be the family of KdV di erential operators defned in (7) and denote by Ps := P2n+1(us). Since 
2n+1 

{Ps and {Li }i≤n are families of operators in K[∂] of odd and even orders less than 2n + 1s2i+1
}i≤n 

respectively, we divide Q by those families and write 

n n 
X X 

Q = q2i+1Ps + q2iL
i 

2i+1 s 

i=0 i=0 

with q2n+1 = 1 and q2i+1, q2i ∈ K. To compute [Q, Ls], observe that [a, Ls] = ∂
2(a) + 2∂(a)∂, for 

a ∈ K and 

[q2i+1P2 
s
i+1, Ls] = −∂

2(q2i+1)Ps − 2∂(q2i+1)∂Ps + q2i+1kdvi(us)2i+1 2i+1 

and 

[q2iL
i , Ls] = [q2i, Ls]L

i = (∂2(q2i) + 2∂(q2i)∂)L
i . s s s 

Thus in [Q, Ls] the only term of order 2i + 2 is the leading term of ∂Ps and the only term of 
2i+1 

order 2i + 1 is the leading term of ∂Li . If [Ls, Q] = 0 then ∂(q2i) = 0 and ∂(q2i+1) = 0. Therefore s 

[q2iL
i , Ls] = 0 and q2i+1 ∈ C, i = 0, . . . , n implies that s 

n 
X 

0 = [Q, Ls] = q2i+1kdvi(us) 

i=0 

contradicting that us has KdV level s. We conclude that Q < CK (Ls), which proves the result. 

A polynomial f (λ, µ) with constant coeÿcients satisfed by a commuting pair of di erential 

operators P and Q is called a Burchnall-Chaundy (BC) polynomial of P and Q, since the frst 

result of this sort appeared is the 1923 paper [7] by Burchnall and Chaundy. Generalizations 

(more general rings E) were later studied in [16], [8] and [26]. The next result shows that 

associated to the centralizer of a di erential operator P there are as many BC polynomials as 

operators in the centralizer. We will compute these polynomials using di erential resultants, as 

it will be explained in Section 3.2. 

Theorem 5.3. ([15], Theorem 1.13) Let E be a reduced di erential ring whose subring F of 

constants is a feld. Given any operator Q ∈ CE(P) there exist polynomials p0(P),. . . ,pt−1(P)∈ 
F[P] such that 

p0(P) + p1(P)Q + · · · + pt−1(P)Qt−1 + Qt = 0. 

That is, there exists a nonzero polynomial fQ(λ, µ) ∈ F[λ, µ] such that fQ(P, Q) = 0. 

14 
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5.2. Computing spectral curves 

The relation between Burchnall and Chaundy polynomials (see Section 5.1) and di erential 

resultants was given by E. Previato in [25]. Next, we state Previato’s theorem in the general 

case of di erential operators in K[∂] (5.4) and we give an alternative proof using the Poisson 

formula for the di erential resultant (Proposition 3.5). Then we will compute BC polynomials 

of KdV Schrödinger operators. We we will apply Previato’s Theorem 5.4 to the computation of 

the spectral curve of the Lax pair {Ls, A2s+1}, showing the algebraic structure of the irreducible 

polynomials fs(λ, µ) defning the spectral curve �s. 

First observe that whenever the operators P − λ and Q − µ have coeÿcients in the di erential 

ring (K[λ, µ], ∂) (see Section 2 ), by means of the di erential resultant, Proposition 3.4, 1, it is 

ensured that we compute a nonzero polynomial, 

m n − bn λm∂Res(P − λ, Q − µ) = a µ + · · · (24) n m 

in the elimination ideal (P − λ, Q − µ) ∩ K[λ, µ]. The next result implies that if P and Q commute 

then 

∂Res(P − λ, Q − µ) ∈ (P − λ, Q − µ) ∩ C[λ, µ]. 

Theorem 5.4 (E. Previato, [25]). Given P, Q ∈ K[∂] such that [P, Q] = 0 then 

g(λ, µ) = ∂Res(P − λ, Q − µ) ∈ C[λ, µ] 

and also g(P, Q) = 0. 

Proof. Let y1, . . . , yn be a fundamental system of solutions of (P − λ)(Y) = 0. Since 0 = [P, Q] = 

[P− λ, Q− µ] we have (P− λ)(Q− µ)(yi) = (Q− µ)(P− λ)(yi) = 0 then (Q− µ)(yi), i = 1, . . . , n are 

solutions of (P − λ)(Y) = 0. Then, there exists a matrix M with entries in the algebraic closure C 
of C(λ, µ) such that there exists a matrix M with entries in C such that 

W((Q − µ)(y1), . . . , (Q − µ)(yn)) = W(y1, . . . , yn)M. 

By Proposition 3.5, 

w((Q − µ)(y1), . . . , (Q − µ)(yn)) w(y1, . . . , yn) det(M)
∂Res(P − λ, Q − µ) = = = det(M), 

w(y1, . . . , yn) w(y1, . . . , yn) 

which belongs to K[λ, µ] ∩ C = C[λ, µ]. 
The last statement of this theorem follows from the fact that g(λ, µ) = ∂Res(P − λ, Q − µ) 

belongs to the di erential ideal generated by P − λ and Q − µ in K[λ, µ][∂]. Therefore 

g(λ, µ) = A(P − λ) + B(Q − µ), with A, B ∈ K[λ, µ][∂]. 

Since P and Q commute then g(P, Q) = 0. 

The previous theorem shows that BC polynomials (defned in Section 5.1) can be computed 

using di erential resultants. Let us suppose that [P, Q] = 0 and let f (λ, µ) be the square free part 

of ∂Res(P − λ, Q − µ) ∈ C[λ, µ] (i.e. the product of the di erent irreducible components of g). 

The aÿne plane algebraic curve defned by f 

� := {(λ, µ) ∈ C2 | f (λ, µ) = 0} (25) 
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is known as the spectral curve of the pair {P, Q}. 

Let us suppose that f (λ, µ) is an irreducible polynomial in K[λ, µ] and denote by ( f ) the 

prime ideal generated by f in K[λ, µ]. As a polynomial in C[λ, µ] is also irreducible and the ideal 

generated by f in C[λ, µ] is also prime, abusing the notation we will also denote it by ( f ) and 

distinguish it by the context. Let us denote by C(�) and K(�) the fraction felds of the domains 

C[λ, µ]/( f ) and K[λ, µ]/( f ) respectively. Observe that C(�) and K(�) are usually interpreted as 

rational function on �. 

Remark 5.5. As di erential operators in K[λ, µ][∂], the operators P− λ and Q− µ have no com-

mon nontrivial solution, see (24), but as elements of K(�)[∂] they have a common non constant 

factor. By Theorem 3.6 the frst nonzero subresultant Lr = gcrd(P − λ, Q − µ) is the greatest 

common divisor of P − λ and Q − µ in K(�)[∂]. We will use subresultants in Section 6 to compute 

factorizations of KdV Schrödinger operators. 

Let us consider the KdV Schrödinger operators Ls = L(us) = −∂
2 + us, where us is a KdV 

spotential of KdV level s and basic constants vector c̄ , as defned in Section 4.1. Let A2s+1 be the 

di erential operator that determines the centralizer of Ls, see (22). 

Corollary 5.6. The spectral curve �s of the pair {Ls, A2s+1} is defned by the polynomial in 

C[λ, µ], 
2fs(λ, µ) := ∂Res(Ls − λ, A2s+1 − µ) = −µ − R2s+1(λ), 

where R2s+1(λ) is a polynomial of degree 2s + 1 in C[λ]. The polynomial fs(λ, µ) is irreducible 

in K[λ, µ]. In addition, the coeÿcients of R2s+1(λ)(u, c̄s, λ) in Proposition 3.8 are frst integrals 

of KdVs(u, c̄s). 

sProof. By (23), [A2n+1, Ls] = KdVn(us, c̄ ) = 0. Thus by Theorem 5.4, fs ∈ C[λ, µ]. In addition, n 

by Remark 3.8, fs = −µ 2 − R2s+1(λ), which can be easily proved to be irreducible in K[λ, µ] 
because it has odd degree in λ. 

Defnition 5.7. The spectral curve of Ls is defned as the plain algebraic curve �s given by 

fs(λ, µ) = 0, with fs as defned in Corollary 5.6. 

6. Factors of KdV Schrödinger operators over spectral curves 

sLet us be a KdV potential of KdV level s and basic constants vector c̄ . Let A2s+1 be the 

di erential operator that determines the centralizer of the KdV Schrödinger Ls = −∂
2 + us as 

in Theorem 5.2. By Corollary 5.6, the spectral curve �s of the pair {Ls, A2s+1} is defned by the 

irreducible polynomial 

2fs(λ, µ) = ∂Res(Ls − λ, A2s+1 − µ) = µ − R2s+1(λ) ∈ C[λ, µ]. 

Let C(�s) and K(�s) be the fraction felds of the domains C[λ, µ]/( fs) and K[λ, µ]/( fs). In this 

section, we explain how to factor Ls − λ as an operator in K(�s)[∂]. 
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6.1. KdV factors on �s 

In this section, we consider the operators Ls − λ and A2s+1 − µ as elements of K(�s)[∂]. Let 

L1 = ϕ2∂ + ϕ1 be the subresultant of Ls − λ and A2s+1 − µ as in Section 3.2.2. 

Theorem 6.1. The greatest common factor of the di erential operators Ls − λ and A2s+1 − µ in 

K(�s)[∂] is the order one operator L1. 

Proof. Since L0 = ∂Res(Ls −λ, A2s+1 −µ) is zero in K(�s) by Theorem 3.6 the result follows. 

We can take the monic greatest common factor of Ls − λ and A2s+1 − µ to be 

ϕ1
∂ − φs, where φs = − . 

ϕ2 

The fact that ∂ − φs is a right factor implies that 

Ls − λ = (−∂ − φs)(∂ − φs), in K(�s)[∂] 

and moreover φs is a solution of the Ricatti equation associated to the Schödinger operator Ls − λ 

∂(φ) + φ2 = us − λ (26) 

on the spectral curve �s. Therefore, we compute a solution of (26) by means of the di erential 

subresultant L1. We will give next some details about φs. 

Lemma 6.2. The following formula holds 

µ + α(λ)
φs = , (27) 

ϕ(λ) 

where α and ϕ are nonzero polynomials in K[λ]. Moreover φs is nonzero in K(�s). 

Proof. By (13),(14), we have that ϕ1 = det(S 0(Ls − λ, A2s+1 − µ)) and ϕ2 = det(S 1(Ls − λ, A2s+1 −1 1 

µ)). Now by Remark 3.8, ϕ1 = −µ − α and α, ϕ = ϕ2 are nonzero polynomials in K[λ]. Observe 

that φs = 0 in K(�s) if and only if µ + α + ( fs) = 0 in K[�s]. But this is not possible since fs, 

which has degree 2 in µ, is not a factor of µ + α in K[λ, µ]. This proves the last claim. 

To keep notation as simple as possible, we will also write φs to denote the element φs in 

K(�s). The next algorithm takes as an input a KdV potential to obtain the factor ∂ − φs of Ls − λ 
in K(�s)[∂]. 

Algorithm 6.3. (Factorization) 

• Given us a KdV potential of KdV level s and given c̄s the basic constants vector of us. 

• Return the defning polynomial fs of the spectral curve �s and the monic greatest common 

divisor ∂ − φs of Ls − λ and A2s+1 − µ in K(�s)[∂]. 

1. Defne Ls := −∂
2 + us and A2s+1 := P̂2s+1(us, c̄s) as in (22). 

2. Compute fs = ∂Res(Ls − λ, A2s+1 − µ), the defning polynomial of the spectral curve �s. 

3. Compute L1 = ϕ1 + ϕ2∂, the subresultant of Ls − λ and A2s+1 − µ as in Section 3.2.2. 
ϕ14. Defne φs := − .
ϕ2 
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5. Return fs and ∂ − φs. 

Remark 6.4. Observe that we are computing φs in closed form as the quotient of two determi-

nants −ϕ1/ϕ2, which is a well defned function over the spectral curve. As far as we know, there 

were no algorithms to obtain the factors ∂ − φs of Ls − λ over the spectral curve. In [14], there 

are some di erential recursive expressions for the factorization of Ls − λ0 for each point (λ0, µ0) 

of �s. Note that our factorization algorithm is defned in K(�s)[∂]. 

We would like to obtain a univariate expression of φs using a parametric representation of 

�s, whenever it is possible. This will allow us to give a functional representation of φs and as a 

byproduct, we will obtain a domain of defnition of the solutions of Ls − λ, see Sections 6.2, and 

6.3. 

6.2. Factorization for parametrizable spectral curves 

Once the factorization problem over K(�s) has been solved, in Algorithm 6.3, what remains 

is to replace (λ, µ) by a parametric representation (χ1(τ), χ2(τ)) of �s. We are not aware of a 

previous work where a global treatment of the factorization is achieved. This procedure strongly 

depends on the genus of the algebraic curve �s. We summarize next what are the parametrization 

possibilities (as far as we know) and emphasize on the algorithmic aspects of the process. 

A key point to have a one-parameter form factorization algorithm is to obtain a global 

parametrization of the spectral curve. How complicated is to obtain a global parametrization 

depends on the genus of the curve. There are algorithms to compute the genus of an algebraic 

curve [24]. In the case of rational curves there are algorithms to obtain a global parametrization 

[24]. For elliptic curves we can defne a meromorphic parametrization by means of the Weier-

strass ℘-function. For all other cases, as far as we know, there are no algorithms to obtain a global 

parametrization. An aÿne algebraic curve � admits at any point P ∈ � a local parametrization 

in the feld of Puiseux series, see for instance [24], Section 2.5 but in this paper we would like to 

talk only about the global treatment of the curve. 

If an aÿne algebraic curve � in C2 is rational (has genus zero) then � can be parametrized by 

rational functions. Let ℵ(τ) = (χ1(τ), χ2(τ)) in C(τ)2 be a (global) parametrization of �, that is: 

1. For all τ0 ∈ C, but a fnite number of exceptions, the point (χ1(τ0), χ2(τ0)) is on �, and 

2. for all (λ0, µ0) ∈ �, but a fnite number of exceptions, there exists τ0 ∈ C such that 

(λ0, µ0) = (χ1(τ0), χ2(τ0)). 

A rational parametrization ℵ(τ) of � gives an isomorphism from C(�) to the feld of rational 

functions C(τ), see [24], Section 4.1. This can be extended to an isomorphism K(�) ≃ K(τ). 

More over, K(τ) is isomorphic to the fraction feld F = K(χ1(τ), χ2(τ)) of the polynomial ring 

K[χ1(τ), χ2(τ)]. Since τ is an algebraic indeterminate over K, by condition 2, it is natural to 

assume that ∂(χ1(τ)) = 0 and ∂(χ2(τ)) = 0, which allows to extend the derivation ∂ of K to have 

a di erential feld (F , ∂). 
We defne φ̃ s := ρ(φs). Observe that φ̃ s is a nonzero element of F since by Lemma 6.2 φs is 

nonzero in K(�s). We have naturally an isomorphism ρ between the rings of di erential operators 

̺ : K(�s)[∂] −→ F [∂] as follows: 

 

X 

 

 

 

 

X 

a j∂
j ρ(a j)∂

j  

 ̺   = . 
  

  

j j 
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For instance ̺(Ls − λ) = Ls − χ1(τ) and ̺(∂ − φs) = ∂ − φ̃ s. Furthermore, since the isomorphism 

respects the ring structure, we have 

Ls − χ1(τ) = (−∂ − φ̃ s)(∂ − φ̃ s) 

where φ̃ s is a solution of the Ricatti equation ∂(φ)+φ2 = us−χs(τ), since ρ respects the di erential 

feld structure. 

6.3. Factors at smooth points of �s 

So far in this paper λ and µ were algebraic variables over K, furthermore ∂λ = 0 and ∂µ = 0. 

In this section we will talk about the specialization process of (λ, µ) to a point P0 = (λ0, µ0) of 

the spectral curve �s. In this manner we recover the classical factorization problem of Ls − λ0 as 

an operator in K[∂], see for instance [14], [1]. 

Proposition 6.5. Given P0 = (λ0, µ0) in �s the di erential operators Ls − λ0 and A2s+1 − µ0 have 

a common factor over K. Furthermore 

Ls − λ0 = (−∂ − φ0)(∂ − φ0) (28) 

where φ0 = φs(P0) with φs as in (27) and 

ϕ1(P0) µ0 + α(λ0)
φ0 = − = (29) 

ϕ2(P0) ϕ2(λ0) 

with ϕ2(λ0) , 0. 

Proof. By Proposition 3.4, 2, the di erential operators Ls − λ0 and A2s+1 − µ0 in K[∂] have a 

common factor since 

∂Res(Ls − λ0, A2s+1 − µ0) = fs(λ0, µ0) = 0. 

With the notation of Lemma 6.2, observe that ϕ1(P0) + ϕ2(P0)∂ is the subresultant of Ls − λ0 and 

A2s+1 − µ0 as in Section 3.2.2. We will prove next that L1 is an operator of order one and then by 

Theorem 3.6, we have the factorization 

Ls − λ0 = (−∂ − φ0)(∂ − φ0), 

where φ0 = φs(P0) and the given formula follows by Lemma 6.2. 

Let us suppose that L1 is the zero operator. Then the second subresultant L2 equals to Ls −λ0. 

Hence Ls − λ0 is a factor of A2s+1 − µ0. That is 

A2s+1 − µ0 = Q(Ls − λ0) 

for some monic di erential operator Q of order 2s − 1 in K[∂]. Computing the commutator with 

Ls we obtain 

0 = [A2s+1 − µ0, Ls] = [QLs, Ls] − [λ0, Ls] = [Q, Ls]Ls. 

Since K[∂] is a domain [Q, Ls] = 0 and Q belong to the centralizer of Ls in K[∂], which contra-

dicts Theorem 5.2 since Q has even order less than 2s + 1. We have proved that L1 is an operator 

of order one, in other words ϕ2(λ0) , 0. 

Remark 6.6. Observe that if φ0 = 0 then, due to the Ricatti equation, us is the constant potential 

λ0, and conversely. From now on we will assume that us is not a constant potential. 
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We must distinguish two di erent types of points in the curve, the ones with µ0 , 0 and those 

with µ0 = 0, that is the fnite set 

Zs = �s ∩ (C × {0}) = {(λ, 0) | R2s+1(λ) = 0}. 

Observe that Zs contains all the aÿne singular points of �s. 

For a given point P0 = (λ0, µ0) ∈ C2 of the curve �s, we will assume µ0 , 0 from now on. 

Let us consider φ0 as in (29), in this section we will use the following notation 

µ0 + α(λ0) −µ0 + α(λ0)
φ0+ = φ0 = and φ0− = , (30) 

ϕ2(λ0) ϕ2(λ0) 

pointing out that φ0+ , φ0− since µ0 , 0. Applying Proposition 6.5 to the point (λ0, −µ0) we 

obtain the following factorization of Ls − λ0 

Ls − λ0 = (−∂ − φ0−)(∂ − φ0−). 

Let us consider nonzero solutions 0+ and 0− respectively of the di erential equations 

∂( ) = φ0+ and ∂( ) = φ0− . (31) 

Then the equality 
w( 0+, 0−) 2 

= φ0+ − φ0− = µ0 , 0. 
0+ 0− ϕ2(λ0) 

implies that W0 = w( 0+, 0−) , 0 in C. Therefore { 0+, 0−} is a fundamental set of solutions 

of (Ls − λ0)( ) = 0. Moreover 

ϕ2(λ0)W0 
0+ 0− = ∈ K, 

2µ0 

hence 

Kh 0+, 0−i = Kh 0+i. (32) 

In the next section we will show by means of examples the type of factors that may appear 

depending on the type of curve. Even at each smooth point of the spectral curve the feld Kh 0+i 
can be very complicated. These situations deserve a more detailed study that we will present in 

a future work. 

7. Schrödinger operators for KdV solitons. Computed examples 

Our algorithms 4.7 ,for computation of constants, and 6.3, for the factorization of the Schrödinger 

operator, are now ready to be implemented with any symbolic computation software, we did it 

in Maple 18. We will illustrate their performance by means of three well known families of 

potentials in [31]. The frst one is a family of rational potentials, the second one is a family of 

Rosen-Morse potentials and both are degenerate cases of a third family of hyperelliptic poten-

tials. 

Rational Rosen-Morse Elliptic 

s(s + 1) −s(s + 1) 
us = us = us = s(s + 1)℘(x; g2, g3)

2x cosh2(x) 

We will factor Ls − λ, with Ls = −∂
2 + us, as an operator in K(�s)[∂], where �s is the spectral 

curve of Ls. 
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7.1. Rational KdV solitons 

2Let us consider the family of rational potentials us = s(s + 1)/x , s ≥ 1, in K = C(x) 

with ∂ = d/dx. It is well known that the KdV level of us is s and its basic constants vector 
s c̄ = (0, . . . , 0), we checked this result using Algorithm 4.7. 

2 + λ2s+1The spectral curve �s is defned by the polynomial fs = µ . We computed the factor 

∂ − φs of Ls − λ in K(�s)[∂] using Algorithm 6.3. For s = 1, 2, 3 the results obtained coincides 

with the ones in [14], Example 1.30. We show our result for the next level s = 4: 

9 6 4 2−µ x + 10 λ3 x + 270 λ2 x + 4725 λ x + 44100 
φ4 = − � � . 

x λ4 x8 + 10 λ3x6 + 135 λ2x4 + 1575 λ x2 + 11025 

Then, we obtain the factorization: 

L4 − λ = (−∂ − φ4)(∂ − φ4) 

2in K(�4)[∂] where K(�4) is the fraction feld of the domain K[λ, µ]/(µ + λ9). 

Next we observe that the curves �s have all genus zero and a global parametrization is 

� � 

ℵs(τ) = (χ1(τ), χ2(τ)) = −τ2 , −τ2s+1 . 

Following Section 6.2, the one-parameter form of the factor ∂ − φ̃4 of 

L4 − χ1(τ) = −∂2 + 
20 
+ τ2 

2x 

is given by 
6 2τ9 x 9 − 10 τ6 x + 270 τ4 x 4 − 4725 τ2 x + 44100 

φ̃4(x, τ) = − � � . 
x τ8 x8 − 10 τ6x6 + 135 τ4x4 − 1575 τ2x2 + 11025 

Then, we obtain the global factorization: 

L4 − χ1(τ) = (−∂ − φ̃4)(∂ − φ̃4) 

in K(τ)[∂] = C(x, τ)[∂]. A factorization using a global parametrization of the spectral curves is 

our main contribution to the study of this family of potentials. 

7.2. Rosen-Morse KdV solitons 
−s(s+1) 

Let us consider the family of Rosen-Morse potentials us = , s ≥ 1, in the di erential 
cosh2(x) 

feld K = C(ex) = Chcosh(x)i with ∂ = d/dx. 

We show how to obtain the basic constants vector c̄s for level s = 3 using Algorithm 4.7. We 

observe that us belongs to C(η) with η = cosh(x) and that (η ′ )2 = η2 − 1, thus the hypothesis of 

the algorithm hold. For the frst three iterations of the algorithm, the system Sn, n = 0, 1, 2 has 

no solution. In fact, we have 

η ′ η ′ � � 

1KdV0(u3) = −24 , KdV1(u3, c ) = −24 −15 + (−1 + c1)η2 , 
η3 η5 

η ′ � � 

2KdV2(u3, c ) = 12 −225 + (30c1 − 150)η2 + (−2c2 + 2c1 − 2)η4 . 
η7 
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Thus KdV0(u3) , 0 and KdVn(u3, c̄n) , 0 for all c̄n ∈ Cn , n = 1, 2. For n = 3 we obtain 

3) =η ′ 
p3(η)

KdV3(u3, c 
q3(η) 

η ′ � � 

= − 12 −3150 + 225c1 + (150c1 − 630 − 30c2)η2 + (−2c2 + 2c1 + 2c3 − 2)η4 . 
η7 

From the coeÿcients in η of p3(η) we obtain the triangular system 

S3 = {−3150 + 225c1 = 0, 150c1 − 630 − 30c2 = 0, −2c2 + 2c1 + 2c3 − 2 = 0}. 

3The unique solution of this system is the basic constant vector c̄ = (14, 49, 36). Then, u3 is a 

solution of the di erential equation 

3KdV3(u, c̄ ) = kdv3 + 14kdv2 + 49kdv1 + 36kdv0 = 0. 

2 sThe defning polynomial fs of �s is known to be equal to fs = µ + λ2 Q 

(λ + κ2)2, see κ=1 

for instance [14], Example 1.31. We checked these results using our implementation of the 

di erential resultant ∂Res(Ls − λ, A2s+1 − µ). 
sThe next table shows the level s, the basic constant vector c̄ , computed with Algorithm 4.7, 

and the computation of the factor ∂ − φs using the Factorization Algorithm 6.3 for the operator 

Ls − λ in K(�s)[∂]: 

s s c̄ φs 

µ cosh(x)3 + sinh(x)
1 (1) 

cosh(x)(λ cosh(x)2 + cosh(x)2 − 1) 
µ cosh(x)5 + 3 cosh(x)2 sinh(x)λ + 12 sinh(x) cosh(x)2 − 18 sinh(x)

2 (5, 4) 
(cosh(x)4λ2 + 5 cosh(x)4λ + 4 cosh(x)4 − 3λ cosh(x)2 − 12 cosh(x)2 + 9) cosh(x) 

µ + α(λ)
3 (14, 49, 36) 

ϕ(λ) 

with 

6 cosh(x)4 sinh(x)λ2 + 78 cosh(x)4 sinh(x)λ − 90 cosh(x)2 sinh(x)λ + a 
α = , 

cosh(x)7 

a = 27 sinh(x)(8 cosh(x)4 − 30 cosh(x)2 + 25), 

cosh(x)6λ3 + 14 cosh(x)6λ2 + 49 cosh(x)6λ − 6 cosh(x)4λ2 − 78 cosh(x)4λ + 45 cosh(x)2λ + b 
ϕ = , 

cosh(x)6 

b = 9 sinh(x)2(4 cosh(x)4 − 20 cosh(x)2 + 25). 

All the curves �s for this family are rational, in particular they admit a polynomial global 

parametrization 

  

s 
Y 

  

  

 ℵs(τ) = (χ1(τ), χ2(τ)) = −τ2 , −τ (τ2 − κ2) . (33) 
  

κ=1 

The next table shows φ̃ s: 
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˜s φs 
� � � � 

2τ2 − τ w + 2 τ2 − 4 w + τ2 + τ 
1 

((τ − 1) w + τ + 1) (w + 1) 
3 2 a3(τ)w + b2(τ)w + a1(τ)w + a0(τ)

2 � � 

b2(τ)w2 + b1(τ)w + b0(τ) (w + 1) 
4 3 2 c4(τ)w + c3(τ)w + c2(τ)w + c1(τ)w + c0(τ)

3 � � 

d3(τ)w3 + d2(τ)w2 + d1(τ)w + d0(τ) (w + 1) 

where w = e 2x , 

a3 = −τ
3 − 3 τ2 − 2 τ, a2 = −3 τ3 − 3 τ2 + 18 τ + 24, a1 = −3 τ3 + 3 τ2 + 18 τ − 24, 

a0 = −τ
3 + 3 τ2 − 2 τ, b2 = τ

2 + 3 τ + 2, b1 = 2 τ2 − 8, b0 = τ
2 − 3 τ + 2. 

and 

c4 = τ
4 − 6 τ3 + 11 τ2 − 6 τ, c3 = 4 τ4 − 12 τ3 − 40 τ2 + 168 τ − 144, c2 = 6 τ4 − 102 τ2 + 432, 

c1 = 4 τ4 + 12 τ3 − 40 τ2 − 168 τ − 144, c0 = τ
4 + 6 τ3 + 11 τ2 + 6 τ, d3 = τ

3 − 6 τ2 + 11 τ − 6, 

d2 = 3 τ3 − 6 τ2 − 27 τ + 54, d1 = 3 τ3 + 6 τ2 − 27 τ − 54, d0 = τ
3 + 6 τ2 + 11 τ + 6. 

Hence, we obtain the global factorization by means of the global parametrization (33): 

Ls − χ1(τ) = (−∂ − φ̃ s)(∂ − φ̃ s) 

in K(τ)[∂] = C(ex, τ)[∂]. These factorizations, using a global parametrization of the spectral 

curves for this family of potentials, are new as far as we know. 

7.3. Elliptic and Hyperelliptic KdV solitons 

Next we consider the family of elliptic potentials us = s(s + 1)℘(x; g2, g3), s ≥ 1, where 

℘ is the Weierstrass ℘-function for g2, g3, satisfying (℘ ′ )2 = 4℘3 − g2℘ − g3. In this case 

K = Ch℘i = C(℘, ℘ ′ ) with ∂ = d/dx. 

The requirements of Algorithm 4.7 are satisfed since us belongs to C(η) for η = ℘ and 
s(η ′ )2 = 4η3 − g2η − g3 ∈ C(η). Thus we used Algorithm 4.7 to compute c̄ . For s = 1, 2 we could 

check that the results obtained coincide with the ones in [14], Example 1.32. 

Next, we show our computations for s = 3. Using Algorithm 4.7, we checked that KdV0(u3) , 
0 and KdVn(u3, c̄n) , 0 for all c̄n ∈ Cn , n = 1, 2. From 

3) =η ′ 
p3(η)

KdV3(u3, c 
q3(η) 
� � 

=η ′ (−5670g2 − 360c2)η2 − 2700c1η − 153g2c1 − 1782g3 − 24c3 . 

we obtain the triangular linear system in c1, c2 and c3 

S3 = {−5670g2 − 360c2 = 0, 2700c1 = 0, −153g2c1 − 1782g3 − 24c3 = 0}, 

3whose unique solution is c̄ = (0, −63g2/4, −297g3/4). Then, u3 is a solution of the di erential 

equation 
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63g2 297g33KdV3(u, c̄ ) = kdv3 − kdv1 − kdv0 = 0. 
4 4 

Then, we compute the defning polynomial fs of �s with our implementation of the di er-
2ential resultant ∂Res(Ls − λ, A2s+1 − µ). Here we obtain the polynomial f3(λ, µ) = µ + R7(λ) 

where 

2 3 2 = 
1 
λ(−16λ6 + 504g2λ

4 + 2376g3λ
3 − 4185g λ2 + 3375g − 36450g2g3λ − 91125g ).R7

16 2 2 3 

Using Algorithm 6.3, we computed the factor ∂ − φs of the operator Ls − λ in K(�s)[∂]. For 

s = 1, 2 the results coincide with the ones obtained in [14], Example 1.32. We show here 

� � 

675 ℘2 − 225 µ + ℘ ′ g2 + 45℘λ + 3λ2 
2 8 

φ3 = 
λ3 + 6℘λ2 + (45℘2 − 15g2)λ − 225℘ ′2 

where ℘ and ℘ ′ denote ℘(x; g2, g3) and ℘ ′ (x, g2, g3) respectively. Then, we obtain the factoriza-

tion: 

L3 − λ = (−∂ − φ3)(∂ − φ3) 

2in K(�3)[∂] where K(�3) is the fraction feld of the domain K[λ, µ]/(µ + R7(λ)). 

It is well known that the curves �s for this family are not rational, they have genus s. In the 
� � 

1 case of the elliptic potential u1 = 2℘(x; g2, g3) one can easily prove that ℵ1(τ) = −℘(τ), ℘ ′ (τ)
2 

is a global parametrization of the spectral curve �1 whose defning polynomial is the irreducible 

polynomial f1 = −µ 2 − λ3 + (1/4)g2λ − (1/4)g3 . In this case 

−1 (℘ ′ (x) − ℘ ′ (τ)) 
2

φ̃1 = . 
℘(x) − ℘(τ) 

Hence, we obtain the global factorization by means of the given global parametrization: 

L1 + ℘(τ) = (−∂ − φ̃1)(∂ − φ̃1) 

in Ch℘(x), ℘(τ)i[∂]. For s ≥ 2, as far as we know there are no e ective algorithms to compute a 

global parametrization (χ1(τ), χ2(τ)) of �s. This is a diÿcult open problem. Some contributions 

have been made in this direction, for instance by Y.V. Brezhnev in [4]. 
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