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LIMITS FOR EMBEDDING DISTRIBUTIONS

JINLIAN ZHANG, XUHUI PENG, AND YICHAO CHEN

Abstract. In this paper, we first establish a central limit theorem which is new in probability,

then we find and prove that, under some conditions, the embedding distributions of H-
linear family of graphs with spiders are asymptotic normal distributions. As corollaries,
the asymptotic normality for the embedding distributions of path-like sequence of graphs
with spiders and the genus distributions of ladder-like sequence of graphs are given. We
also prove that the limit of Euler-genus distributions is the same as that of crosscap-number
distributions. The results here can been seen a version of central limit theorem in topological
graph theory.

1. Introduction

A graph is a pair G = (V,E), where V = V (G) is the set of vertices, and E = E(G) is the
set of edges. In topological graph theory, a graph is permitted to have both loops and multiple
edges. A surface S is a compact connected 2-dimensional manifold without boundary. The
orientable surface Ok(k ≥ 0) can be obtained from a sphere with k handles attached, where k

is called the genus of Ok, and the non-orientable surface Nj(j ≥ 1) with j crosscaps, where j is
called the crosscap-number of Nj . The Euler-genus γE of a surface S is given by

γE =

{
2k, if S = Ok,

j, if S = Nj .

We use Si to denote the surface S with Euler-genus i, for i ≥ 0.

A graph G is embeddable into a surface S if it can be drawn in the surface such that any
edge does not pass through any vertex and any two edges do not cross each other. If G is
embedded on the surface S, then the components of S −G are the faces of the embedding. A
graph embedding is called a 2-cell cellular embedding if any simple closed curve in that face can
be continuously deformed or contracted in that face to a single point. All graph embeddings in
the paper are 2-cell cellular embeddings.

A rotation at a vertex v of a graph G is a cyclic ordering of the edge-ends incident at v. A
(pure) rotation system ρ of a graph G is an assignment of a rotation at every vertex of G. A
general rotation system for a graph G is a pair (ρ, λ), where ρ is a rotation system and λ is a
map on E(G) with values in {0, 1}. If λ(e) = 1, then the edge e is said to be twisted ; otherwise
λ(e) = 0, and we call the edge e untwisted. If λ(e) = 0, for all e ∈ E(G), then the general
rotation system (ρ, λ) is a pure rotation system. It is well-known that any graph embedding can
be described by a general rotation system. Let T be a spanning tree of G, a T -rotation system
(ρ, λ) of G is a general rotation system (ρ, λ) such that λ(e) = 0, for every edge e ∈ E(T ). For a
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fixed spanning tree T , two embeddings of G are considered to be equivalent if their T -rotation
systems are combinatorially equivalent. It is known that there is a sequence of vertex-flips that
transforms a general rotation system into a T -rotation system.

The number of (distinct) cellular embeddings of a graph G on the surfaces Ok, Nj , and Si are
denoted by γk(G), γ̃j(G), and εi(G), respectively. By the genus distribution of a graph G we
mean the sequence

γ0(G), γ1(G), γ2(G), · · · ,
and the genus polynomial of G is

ΓG(x) =

∞∑

k=0

γk(G)xk.

Similarly, we have the crosscap-number distribution {γ̃i(G)}∞n=1 and the Euler-genus distribution

{εi(G)}∞n=1. The crosscap-number polynomial Γ̃G(x) and the Euler-genus polynomial EG(x) of
G are defined analogously.

For a deeper discussion of the above concepts, we may refer the reader to [3, 4]. The following
assumption will be needed throughout the paper. When we say embedding distribution of a graph
G, we mean its genus distribution, crosscap-number distribution or Euler-genus distribution.

Usually, the embedding distribution of a graph G with tractable size can been calculated
explicitly, we still concern the global feature of the embedding distribution of G. For example:
(1) Log-concavity. For this aspect, we refer to [10, 12, 13, 14, 29] etc. (2) Average genus,
average crosscap-number and average Euler-genus. The average genus of graph G is given by

γavg(G) =
Γ′
G(1)

ΓG(1)
=

∞∑

k=0

k · γk(G)

ΓG(1)
,

the average crosscap-number γ̃avg(G) and average Euler-genus εavg(G) of a graph G is similarly
defined. The study of average genus, average crosscap-number and average Euler-genus received
many attentions in topological graph theory. For researches on this aspect, one can see [2, 26, 33]
etc. There is also a notation of variance. For example, see that in [30]. The variance of the
genus distribution of the graph G is given by

γvar(G) =

∞∑

k=0

(
k − γavg(G)

)2 · γk(G)

ΓG(1)
.

We define the variance of crosscap-number distribution γ̃var(G) and of Euler-genus distribution
εvar(G) similarly.

The motivation of this article is as follows. Let {G◦
n}∞n=1 be a sequence of linear family of

graphs with spiders whose definition is given in subsection 3.1, and we denote the embedding
distribution of graph G◦

n by {pi(n)}∞i=0. The normalized sequence of {pi(n)}∞i=0 is

pi(n)∑∞
k=0 pk(n)

, i = 0, 1, · · · .

Then, the above sequence is a distribution in probability, we denote it by Fn. One problem
appears, when n is big enough, whether the distribution Fn will look like some well-known
distribution in probability. If the answer is yes, then it demonstrates the outline of embedding
distribution for graph G◦

n when n is big enough. In the point of mathematics, this is to seek the
limit for Fn or the embedding distribution of graph G◦

n.
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In this paper, we make researches on the embedding distributions which are closely related
to the above problem. Under some weak conditions, we show the embedding distributions
(genus, crosscap-number or Euler-genus distributions) of G◦

n are asymptotically normal distri-
bution when n tends to infinity. We say the embedding distributions (genus, crosscap-number
or Euler-genus distributions) of G◦

n are asymptotically normal distribution with mean µn and
variance σ2

n if

lim
n→∞

sup
x

∣∣∣∣∣∣

∑

i≤σnx+µn

pi(n)−
1√
2π

∫ x

−∞
e−t2/2dt

∣∣∣∣∣∣
= 0.

Since normal distributions have many very good properties, the genus distributions (crosscap-
number or Euler-genus distributions) of G◦

n also have many good properties when n is big
enough. Such as: (1) Symmetry, normal distributions are symmetric around their mean. (2)
Normal distributions are defined by two parameters, the mean µ and the standard deviation σ.
Approximately 95% of the area of a normal distribution is within two standard deviations of the
mean. This implies that the genus distributions of G◦

n are mainly concentrated on the interval

(γavg(G
◦
n)−2

√
γvar(G◦

n), γavg(G
◦
n)+2

√
γvar(G◦

n)] when n is big enough. Similar results also hold
for crosscap-number and Euler-genus distributions. We also show that the genus distributions
(crosscap-number or Euler-genus distributions) of G◦

n are not always asymptotically normal
distribution. This is the first time someone prove the embedding distributions of some families
of graphs are asymptotically normal.

In Section 2, we establish a central limit theorem which is also new in probability. In Section
3, we apply this central limit theorem to the embedding distributions of G◦

n and give their limits.
In Section 4, some examples are demonstrated.

2. A central limit theorem

For a non-negative integer sequence{pi(n)}∞i=0, let Pn(x) =
∞∑
i=0

pi(n)x
i, x ∈ R. In this section,

we always assume Pn(x) satisfies a kth-order homogeneous linear recurrence relation

Pn(x) = b1(x)Pn−1(x) + b2(x)Pn−2(x) + · · ·+ bk(x)Pn−k(x),(2.1)

where bj(x)(1 ≤ j ≤ k) are polynomials with integer coefficients. We define a polynomial
associated with (2.1)

F (x, λ) = λk − b1(x)λ
k−1 − b2(x)λ

k−2 · · · − bk−1(x)λ − bk(x).(2.2)

Obviously, for any x ∈ R, there exist some r = r(x) ∈ N, m1(x), · · · ,mr(x) ∈ N with∑r
i=1 mi(x) = k, and numbers λi(x), i = 1, · · · , r with |λ1(x)| ≥ |λ2(x)| ≥ |λ3(x)| ≥ · · · |λr(x)|

such that

F (x, λ) = (λ− λ1(x))
m1(x) · · · (λ− λr(x)

mr(x).(2.3)

And the general solution to (2.1) is given by

Pn(x) =

r∑

i=1

λn
i (x)

(
ai,0(x) + ai,1(x)n + · · ·+ ai,mi(x)−1(x)n

mi(x)−1
)
.(2.4)

Let

e =
λ′
1(1)

D
, v =

−
(
λ′
1(1)

)2
+D · λ′′

1 (1) +D · λ′
1(1)

D2
.(2.5)



4 JINLIAN ZHANG, XUHUI PENG, AND YICHAO CHEN

where D = λ1(1). For any n ∈ N, let Xn be a random variable with distribution

P(Xn = i) =
pi(n)

Pn(1)
, i = 0, 1, · · · ,

The remainder of this section is devoted to the proof of the following theorem.

Theorem 2.1. Let Pn(x) =
∑∞

i=0 pi(n)x
i, n ≥ k + 1 be polynomials satisfying (2.1). At x = 1,

suppose the multiplicity of maximal root for polynomial (2.2) is 1. Then the following results
hold depending on the value of v.

Case I: v > 0. The law of Xn is asymptotically normal with mean e ·n and variance v · n
when n tends to infinity. That is,

lim
n→∞

sup
x∈R

∣∣∣∣P(
Xn − e · n√

v · n ≤ x)−
∫ x

−∞

1√
2π

e−
1
2u

2

du

∣∣∣∣ = 0.

In particular, we have

lim
n→∞

sup
x∈R

∣∣∣∣∣∣
1

Pn(1)

∑

0≤i≤x
√
v·n+e·n]

pi(n)−
∫ x

−∞

1√
2π

e−
1
2u

2

du

∣∣∣∣∣∣
= 0.

Case II: v < 0. This case is impossible to appear.
Case III: v = 0. For any α > 1

3 , the law of Xn−e·n
nα is asymptotically one-point distribution

concentrated at 0. In more accurate words, the following holds.

lim
n→∞

P

(
Xn − e · n

nα
≤ x

)
=

{
1, if x ≥ 0,

0, else.

Furthermore, if all these functions b1(x), · · · , bk(x) are constant, then the limits of the
law of Xn is a discrete distribution. That is, for some κ ∈ N and ωj , j = 0, · · · , κ with
κ∑

j=1

ωj = 1, we have

lim
n→∞

P(Xn = j) = ωj , j = 0, · · · , κ.(2.6)

Proof. One arrives at that

D = λ1(1) > |λ2(1)| ≥ |λ3(1)| ≥ · · · |λr(1)| and m1(1) = 1.(2.7)

By [21] and the smooth of F , for i = 1, · · · , r, λi(x) are continuous. Thus, for some δ > 0, we
have

λ1(x) > |λ2(x)| ≥ |λ3(x)| ≥ · · · |λr(x)|, ∀x ∈ (1− δ, 1 + δ).(2.8)

For m1(x) and λ1(x), we have the following fact.

Fact: for some δ > 0, we have λ1(x) is smooth on (1− δ, 1 + δ) and

m1(x) = 1, ∀x ∈ (1 − δ, 1 + δ).(2.9)

One easily sees that

F (1, λ) = (λ− λ1(1))(λ − λ2(1))
m2(1) · · · (λ− λr(1))

mr(1).

and

∂F (x, λ)

∂λ

∣∣∣
x=1,λ=λ1(1)

6= 0.(2.10)
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Actually, λ1(x) can be seen an implicit function decided by

F (x, λ) = 0.

By the smooth of F and the implicit function theorem, λ1(x) is smooth on (1 − ε, 1 + ε) for
some ε > 0. By the smooth of F and (2.10), for some ε > 0, we have

∂F (x, λ)

∂λ
6= 0, ∀x ∈ (1− ε, 1 + ε), ∀λ ∈ (λ1(1)− ε, λ1(1) + ε)

which yields the desired result (2.9).

Combining (2.7), the general solution to (2.1) is given by

Pn(x) = a(x)λn
1 (x)

+
r∑

i=2

λn
i (x)

(
ai,0(x) + ai,1(x)n+ · · ·+ ai,mi(x)−1(x)n

mi(x)−1
)
.

(2.11)

We consider the following three different cases.

Case I: v > 0. Let Yn = Xn−en√
vn

and φYn
(t) = EeitYn be the characteristic function of Yn,

where i is a complex number with i

2 = −1.

In order to prove

lim
n→∞

sup
x∈R

∣∣∣∣P(Yn ≤ x)−
∫ x

−∞

1√
2π

e−
u2

2 du

∣∣∣∣ = 0,

by [22, Chapter 1] and the continuity theory([9, Chapter 15]) for characteristic function in
probability, we only need to prove

lim
n→∞

φYn
(t) = lim

n→∞
Ee

i·tXn−en√
vn =

∫

R

ei·tu
1√
2π

e−
u2

2 du = e−
t2

2 , ∀t.(2.12)

We will give a proof of this.

Let an = 1√
vn

, bn =
√

e2n
v and y = eant. By these definitions, one easily sees that

nλ′
1(1)

D
an − bn = ne

1√
vn

−
√

e2n

v
= 0,

n
λ′
1(1)D + λ′′

1 (1)D − λ′(1)2

2D2
a2n = n · v

2
· 1

vn
=

1

2
.

(2.13)

By Taylor formula, we have

ln
λ1(y)

D
=

λ′
1(1)

D
(y − 1) +

1

2D2

[
λ

′′

1 (1)D − (λ′
1(1))

2
]
(y − 1)2 + o((y − 1)2),

and

y = 1 + ant+
a2nt

2

2
+ o(a2nt

2).
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Therefore, by lim
n→∞

y = 1, it holds that

ln
λ1(y)

D
=

λ′
1(1)

D

(
ant+

1

2
a2nt

2 + o(a2nt
2)
)

+
1

2D2

[
λ

′′

1 (1)D − (λ′
1(1))

2
](
ant+

1

2
a2nt

2 + o(a2nt
2)
)2

+o
((

ant+
1

2
a2nt

2 + o(a2nt
2)
)2)

.

=
λ′
1(1)

D

(
ant+

1

2
a2nt

2
)
+

1

2D2

[
λ

′′

1 (1)D − (λ′
1(1))

2
]
a2nt

2 + o(
1

n
),

where in the last equality, we have used a2nt
2 = t2

vn . By (2.7) and the above equality, we obtain

lim
n→∞

Ee
tXn−en√

vn = lim
n→∞

EeantXn−bnt = lim
n→∞

Pn(e
ant)e−bnt

Pn(1)
= lim

n→∞

Pn(y)e
−bnt

a(1)Dn

= lim
n→∞

λn
1 (x)a(y)

a(1)Dn
e−bnt = lim

n→∞

λn
1 (y)

Dn
e−bnt = lim

n→∞
exp{n ln

λ1(y)

D
− bnt}

= lim
n→∞

exp

{
nλ′

1(1)

D

(
ant+

1

2
a2nt

2
)
+

n

2D2

[
λ

′′

1 (1)D − (λ′
1(1))

2
]
a2nt

2− bnt+ n·o( 1
n
)

}

= e
t2

2 ,

where in the last equality, we have used (2.5).

In the above equality, we replace t by it. Then, we get

lim
n→∞

Ee
i·tXn−en√

vn = e−
t2

2

which finishes the proof of (2.12).

Case II: v < 0. Let Yn = Xn−en√
−vn

and φYn
(t) = EeitYn . Set an = 1√

−vn
, bn =

√
e2n
−v and

y = eant.

By Taylor formula, we have

ln
λ1(y)

D
=

λ′
1(1)

D

(
ant+

1

2
a2nt

2
)
+

1

2D2

[
λ

′′

1 (1)D − (λ′
1(1))

2
]
a2nt

2 + o(
1

n
).

Then, by (2.7), we have

lim
n→∞

Ee
tXn−en√

−vn = lim
n→∞

EeantXn−bnt = lim
n→∞

Pn(e
ant)e−bnt

a(1)Dn
= lim

n→∞

Pn(y)e
−bnt

a(1)Dn

= lim
n→∞

λn
1 (y)a(y)

a(1)Dn
e−bnt = lim

n→∞

λn
1 (y)

Dn
e−bnt = lim

n→∞
exp{n ln

λ1(y)

D
− bnt}

= lim
n→∞

exp

{
nλ′

1(1)

D

(
ant+

1

2
a2nt

2
)
+

n

2D2

[
λ

′′

1 (1)D − (λ′
1(1))

2
]
a2nt

2− bnt+ n·o( 1
n
)

}

= e−
t2

2 .

In the above equality, we replace t by it and get

lim
n→∞

Ee
i·tXn−en√

vn = e
t2

2 .(2.14)

On the other hand, by the properties of characteristic function, one sees
∣∣Eei·t

Xn−en√
vn

∣∣ ≤ 1
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which contradicts with (2.14) and gives the desired result.

Case III: v = 0. Let Yn = Xn−en
nα , an = n−α, bn = en1−α and y = eant.

By Taylor formula and v = 0, we have

ln
λ1(y)

D
=

λ′
1(1)

D
(y − 1) +

1

2D2

[
λ

′′

1 (1)D − (λ′
1(1))

2
]
(y − 1)2 +O((y − 1)3)

=
λ′
1(1)

D
(ant+

1

2
a2nt

2) +
1

2D2

[
λ

′′

1 (1)D − (λ′
1(1))

2
]
a2nt

2 +O(n−3α)

=
λ′
1(1)

D
ant+O(n−3α) = en−αt+O(n−3α).

Therefore,

lim
n→∞

exp{n ln
λ1(y)

D
− bnt} = lim

n→∞
exp{n · en−αt+ n ·O(n−3α)− en1−αt} = 1.

Then, by (2.7), we have

lim
n→∞

Eet
Xn−en

nα = lim
n→∞

EetanXn−bnt = lim
n→∞

Pn(y)e
−bnt

a(1)Dn
= lim

n→∞

Pn(y)e
−bnt

a(1)Dn

= lim
n→∞

λn
1 (y)a(y)

a(1)Dn
e−bnt = lim

n→∞

λn
1 (y)

Dn
e−bnt = lim

n→∞
exp{n ln

λ1(y)

D
− bnt}= 1.

In the above equality, we replace t by it and get

lim
n→∞

Eei·t
Xn−en

nα = 1

which yields the desired result.

Now we give a proof of (2.6). Noting (2.11), we have

Pn(x) = a(x)λn
1 +

r∑

i=2

(ai,0(x) + ai,1(x)n + · · ·+ ai,mi(x)−1(x)n
mi(x)−1)λn

i ,

where mi(x) = mi, i = 2, · · · , r are constants. Since Pn(x) is a polynomial of x and λi, i =
1, · · · , r are constant, a(x) is also a polynomial of x. Assume

a(x) =

κ∑

j=0

cjx
j .

then,

lim
n→∞

EetXn = lim
n→∞

Pn(e
t)

Pn(1)
= lim

n→∞

a(et)Dn

a(1)Dn
=

a(et)

a(1)
=

κ∑

j=0

ωje
jt,

where ωj =
cj

a(1) . In the above equality, we replace t by it and get

lim
n→∞

Eei·tXn =
κ∑

j=0

ωje
ijt.(2.15)

By the continuity theory([9, Chapter 15]) for characteristic function in probability, we obtain
the desired result. �

By (2.6), the condition v > 0 is necessary to ensure the asymptotic normality. In the end of
this section, we give a remark here to explain the e, v appeared in Theorem 2.1.
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Remark 2.2. In the special case, when Pn(x) = a(x)λn
1 (x), it holds that

EXn =
P ′
n(1)

Pn(1)
= e · n+O(1)

and

V ar(Xn) =
P ′′
n (1) + P ′

n(1)

Pn(1)
−
(P ′

n(1)

Pn(1)

)2
= v · n+O(1).

Since λ1(x) > λi(x), i = 2, · · · , k, we can expect that for the Pn(x) in (2.11) and Pn(x) =
a(x)λn

1 (x), they have the same asymptotic mean and variance when n tends to infinity.

3. The limits for embedding distributions

In this section, we consider the limit for embedding distributions of H-linear family of graphs
with spiders {G◦

n}∞n=1. In subsection 3.1, we give a definition of G◦
n. In subsection 3.2, we briefly

describe the production matrix. Then we give the limit of embedding distribution for graph G◦
n

in subsection 3.3. Finally, we demonstrate the relation between the limit of crosscap-number
distributions and Euler-genus distributions in subsection 3.4.

3.1. H-linear family of graphs with spiders. The definition of H-linear family of graphs
with spiders, gave by Chen and Gross [6], is a generalization of H-linear family of graphs intro-
duced by Stahl [27]. SupposeH is a connected graph.Let U = {u1, · · · , us} and V = {v1, · · · , vs}
be two disjoint subsets of V (H). For i = 1, 2, · · · , suppose Hi is a copy of H and let fi : H → Hi

be an isomorphism. For each i ≥ 1 and 1 ≤ j ≤ s, we set ui,j = fi(uj) and vi,j = fi(vj). An
H-linear family of graphs, denoted by G = {Gn}∞n=1, is defined as follows:

• G1 = H1.

• Gn is constructed by Gn−1 and Hn be amalgamating the vertex vn−1,j of Gn−1 with
the vertex un,j of Hn for j = 1, · · · , s.

Figure 3.1. The graph G2 in a generic H-linear sequence

Figure 3.1 shows an example for the graphs H1, H2 and G2.

Now, we inroduce the definition of H-linear family of graphs with spiders. For 1 ≤ j ≤ s, let
(Jj , tj,i′) and (Jj , tj,i′) be graphs in which {tj,i′}, {tj,i′}, respectively, are sets of root-vertices.
For 1 ≤ i ≤ s, Ii and Īi are subsets of {1, · · · , s}. A graph {G◦

n}∞n=1is constructed from Gn by
amalgamating the vertex u1,i of Gn with the vertex tj,i′ of Jj for j ∈ Ii, and amalgamating the

vertex vn,i of Gn with tj,i′ of Jj for j ∈ Īi. The graphs (Jj , tj,i′) and (Jj , tj,i′) are called spiders
for the sequence G. The resulting sequence of graphs is said to be an H-linear family of graphs
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with spiders and is denoted by Go. We call G◦ ring-like, if there is a spider among J1, J2, . . . , Js
that coincide with a spider among J1, J2, . . . , Js. The graphs in Figure 3.2 demonstrate an
example of ring-like, in which s = 1 and J̄1 = J1.

Figure 3.2. Using a spider to construct G◦
3

3.2. Production matrix. By permutation-partition pairs, Stahl [27] showed that the calcula-
tion of genus polynomial of Gn can be converted to a (transfer) matrix method. Such matrices
are also called production matrices [11] or transfer matrix [20] (using different techniques and
methods). Here we briefly describe the production matrix of G (or G◦). For more details on
this, see [20, 11] etc. We refer to [3] for face-tracing algorithm.

We suppose that there are k embedding types for the graph Gn with roots u1,1, u1,2, . . . , u1,s,

vn,1, vn,2, . . . , vn,s. For 1 ≤ j ≤ k, let γ
j
k(Gn) be the number of embeddings of Gn in Ok with

type j and

Γj
Gn

(x) =
∑

i≥0

γ
j
i (Gn)x

i.

From the definition H-linear family of graphs and face-tracing algorithm, we obtain

(Γ1
Gn

(x),Γ2
Gn

(x), · · · ,Γk
Gn

(x))T = M(x) · (Γ1
Gn−1

(x),Γ2
Gn−1

(x), · · · ,Γk
Gn−1

(x))T .

(3.1)

where αT is the transpose of the vector α and

M(x) =




m1,1(x) m1,2(x) · · · m1,k(x)
m2,1(x) m2,2(x) · · · m2,k(x)

...
...

. . .
...

mk,1(x) mk,2(x) · · · mk,k(x)




is the transfer matrix [20] or production matrix [11] of genus distribution of G (or G◦). In
[11], the authors showed that the production matrix M(x) can been calculated with a computer
program.

Let

VGn
(x) = (Γ1

Gn
(x),Γ2

Gn
(x), · · · ,Γk

Gn
(x))T ,

another property for the genus polynomial of H-linear sequence with spiders is that there exists
a k-dimensional row-vector

V = (v1(x), · · · , vk(x))
such that ΓG◦

n
(x) = V · VGn

(x). Note that if there are no spiders, that is G◦ = G, then V =
(1, 1, · · · , 1).

For the case of Euler-genus polynomials, there also has the production matrix of Euler-genus
distribution of G (or G◦). We take [4] as an example of this.
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Example 3.1. Suppose Pn is the path graph on n vertices. An ladder graph Ln is obtained by
taking the graphical cartesian product of the path graph Pn with P2, i.e. Ln = Pn✷P2. From
Section 3 in [4], the 2 × 2 production matrix of Euler-genus distribution of the ladder graph is
given by

M(x) =

[
2 4

2x+ 4x2 4x

]
.

It follows that

M(1) =

[
2 4
6 4

]
.

The maximum genus, maximum non-orientable genus and maximum Euler-genus of a graph
G, denoted by γmax(G), γ̃max(G) and εmax(G), respectively, are given by γmax(G) = max{i|γi(G) >
0}, γ̃max(G) = max{i|γ̃i(G) > 0} and εmax(G) = max{i|εi(G) > 0} respectively. One can see
that εmax(G) = max{2γmax(G), γ̃max(G)}. A cactus graph, also called a cactus tree, is a con-
nected graph in which any two graph cycles have no vertex in common. Recall that a graph
G with orientable maximum genus 0 if and only if G is the cactus graph, and a graph H of
maximum Euler-genus 0 if and only if H is homeomorphic to the path graph Pn on n vertices
for n > 1.

The following two basic properties are followed by the definition of H-linear family of graphs
with spiders.

Proposition 3.1. For 1 ≤ j ≤ k,

k∑

i=1

mij(1) are all the same constant D. Moreover, for any

n ≥ 2, we have Pn(1)
Pn−1(1)

= D, where Pn(x) = ΓG◦
n
(x) or EG◦

n
(x).

Remark 3.2. In the proof of Theorem 3.5 below, we will see D have the same meaning as that
appeared in Section 2, so we use the same notation.

Proposition 3.3. Suppose M(x) is the production matrix of genus distribution (Euler-genus
distribution) of G, then M(x) is a constant if and only if the maximum genus (maximum
Euler-genus) of Gn equals 0, ∀n ∈ N.

3.3. The limits for embedding distributions of H-linear families of graphs with spi-
ders. A square matrix A = (ai,j)

k
i,j=1 is said to be non-negative if

ai,j ≥ 0, ∀i, j = 1, · · · , k.
Let A be a non-negative k×k matrix with maximal eigenvalue r and suppose that A has exactly
h eigenvalues of modulus r. The number h is called the index of imprimitivity of A. If h = 1, the
matrix A is said to be primitive; otherwise, it is imprimitive. A square matrix A = (ai,j)

k
i,j=1 is

said to a stochastic matrix if
k∑

i=1

aij = 1, j = 1, · · · , k.

The following property of primitive stochastic matrix can be found in Proposition 9.2 in [1].

Proposition 3.4. Every eigenvalue λ of a stochastic matrix A satisfies |λ| ≤ 1. Furthermore, if
the stochastic matrix A is primitive, then all other eigenvalues of modulus are less than 1, and
algebraic multiplicity of 1 is one.
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Theorem 3.5. Consider the sequence of graphs G◦ = {G◦
n}∞n=1. Let {pi(n), i = 0, 1 · · · , } be the

genus polynomial (Euler-genus polynomial) of graph G◦
n, Pn(x) be the genus polynomial (Euler-

genus polynomial) of G◦
n and M(x) be the production matrix for G◦. If the matrix M(1) is

primitive, then the results of Theorem 2.1 hold. Furthermore, if M(x) is a constant, then the
limit of the law for embedding distributions of G◦

n is a discrete distribution.

Proof. Suppose that the characteristic polynomial of the production matrix M(x) is

F (x, λ) = λk − b1(x)λ
k−1 − b2(x)λ

k−2 · · · − bk−1(x)λ− bk(x),

where bj(x)(1 ≤ j ≤ k) are polynomials with integer coefficients. We also assume F (x, λ) =

(λ − λ1(x))
m1(x) · · · (λ − λr(x)

mr(x). Then, by the results in [6] ([4]), the sequence of genus
polynomials (Euler-genus polynomial) of H-linear family of graphs with spiders G◦

n satisfy the
following kth-order linear recursion

Pn(x) = b1(x)Pn−1(x) + b2(x)Pn−2(x) + · · ·+ bk(x)Pn−k(x).

By Proposition 3.1 and Proposition 3.4, if M(1) is primitive, we have

D = λ1(1) > |λ2(1)| ≥ |λ3(1)| ≥ · · · |λr(1)| and m1(1) = 1.

For any n ∈ N, we denote the embedding distribution of graph G◦
n by {pi(n), i = 0, 1, 2, · · · , }

and let Xn be a random variable with distribution

P(Xn = i) =
pi(n)

Pn(1)
, i = 0, 1, · · · ,

and

e =
λ′
1(1)

D
, v =

−
(
λ′
1(1)

)2
+D · λ′′

1 (1) +D · λ′
1(1)

D2
.(3.2)

So following the lines in the proof of Theorem 2.1, we finish our proof. Furthermore if M(x) is a
constant, then all these functions b1(x), · · · , bk(x) are constant. Noting the case III in Theorem
2.1, this theorem follows. �

The primitive of the matrix M(1) is very important in our proof. For this, we give the
following example.

Example 3.2. Let

M(x) =

[
x+ 1 0
0 2x

]
.

M(1) is imprimitive. By calculation, we obtain

λ1(x) =
3x+ 1 + |x− 1|

2
, λ2(x) =

3x+ 1− |x− 1|
2

.

In this case, we even don’t have the differentiability of λ1(x) at x = 1.

Remark 3.6. As pointed by Stahl [27], in all known cases, the production matrix M(x) for the
genus distributions of any H-linear family of graphs is primitive at x = 1. Currently, we don’t
know whether this is true for general (or most) linear families of graphs.
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In the rest of this subsection, we apply Theorem 3.5 to path-like and ladder-like sequences of
graphs.

A vertex with degree 1 is called a pendant vertex, and the edge incident with that vertex
is called a pendant edge. If a pendant vertex u of a graph G is chosen to be a root, then the
vertex u is called a pendant root. Suppose (H,u, v) is a connected graph with two pendant
roots u, v. For i = 1, 2, . . . , n, let (Hi, ui, vi) be a copy of (H,u, v). By the way in subsection
3.1, we construct a (H,u, v)-linear family of graphs and a (H,u, v)-linear family of graphs with
spiders (J1, t1,i′) and (J1, t1,i′), where (J1, t1,i′) and (J1, t1,i′) be two connected graphs with
roots t1,i′ , t1,i′ respectively. For the (H,u, v)-linear family of graphs with spiders or not, they
have the same production matrix. Therefore, we use the same notation {PH

n }∞n=1 to denote
them. For convenience, we call the graph PH

n path-like. Figure 3.3 demonstrate the graphs H
and PH

n , the shadow part of H can be any connected graph.

Figure 3.3. Graph H (left), and path-like graph PH
n (right)

Corollary 3.7. The genus distributions (Euler-genus distributions) of the path-like sequence of
graphs {PH

n }∞n=1 with spiders are asymptotic normal distribution if the maximum genus (maxi-
mum Euler-genus) of (H,u, v) is greater than 0.

Proof. Let (H,u, v) be a graph with two pendant roots u and v. We introduce the following
two partial genus distributions (partial Euler-genus distributions) for (H,u, v). Let di(H) be the
number of embeddings of (H,u, v) in the surface Oi (Si) such that u and v lie on different face-
boundary walks. In this case, we say that the embedding has type d. Similarly, let si(H) be the
number of embeddings of (H,u, v) in Oi (Si) such that u, v lie on the same face-boundary walk,
and we call the embedding has type s. The two partial genus polynomials (partial Euler-genus

polynomials) of (H,u, v) are given by DH(x) =
∑

i≥0

di(H)xi, and SH(x) =
∑

i≥0

si(H)xi. Clearly,

PH(x) = DH(x) + SH(x),(3.3)

where PH(x) is the genus polynomial (Euler-genus polynomial) of (H,u, v). By face-tracing and
Euler formula, we have the following claim.

Claim: If the graph (PH
n−1, u1, vn−1) and (Hn, un, vn) embed on surfaces Oi (Si) and

Oj (Sj), respectively, then the graph PH
n embeds on Oi+j (Si+j).

By using the claim above, we will build recurrence formulas for the partial genus polynomials
of PH

n . There are four cases.

Case 1: If both the embeddings of PH
n−1 and (Hn, un, vn) have type d, then the embedding

of PH
n has type d. This case contributes to DPH

n
(x) the term DPH

n−1
(x)DHn

(x).

Case 2: If the embeddings of PH
n−1 and (Hn, un, vn) have type d and s, respectively,

then the embedding of PH
n has type d. This case contributes to DPH

n
(x) the term

DPH
n−1

(x)SHn
(x).

Case 3: If the embedding of PH
n−1 has type s and the embedding of (Hn, un, vn) has type

d, then the embedding of PH
n has type d, this case contributes to DPH

n
(x) the term

SPH
n−1

(x)DHn
(x).



LIMITS FOR EMBEDDING DISTRIBUTIONS 13

Case 4: If both the embeddings of PH
n−1 and (Hn, un, vn) have type s, then the embedding

of PH
n has type s. This case contributes to SPH

n
(x) the term SPH

n−1
(x)SHn

(x).

The following linear recurrence system of equations summarizes the four cases above.

DPH
n
(x) = (DHn

(x) + SHn
(x))DPH

n−1
(x) +DHn

(x)SPH
n−1

(x),(3.4)

SPH
n
(x) = SHn

(x)SPH
n−1

(x).(3.5)

Rewriting the equations above as

[
DPH

n
(x)

SPH
n
(x)

]
=

[
DHn

(x) + SHn
(x) DHn

(x)
0 SHn

(x)

] [
DPH

n−1
(x)

SPH
n−1

(x)

]
.

Since (Hn, un, vn) be a copy of (H,u, v), thus the production matrix M(x) of the genus ( Euler-
genus) distributions of {PH

n }∞n=1 is
[

DH(x) + SH(x) DH(x)
0 SH(x)

]
.

For simplicity of writing, we use D(x), S(x) and P (x) to denote DH(x), SH(x) and PH(x),
respectively. Obviously, the eigenvalues of matrix M(x) are given by

λ1(x) = D(x) + S(x), λ2(x) = S(x).

Since the graph H is connected, S(x) = 0 is impossible. We make the following discussions on
the D(x)

If D(x) = 0, then H is the path graph Pm on m vertices (m ≥ 2). In this case, the maximum
genus (maximum Euler-genus) of (H,u, v) is equal 0.

Now we consider the case D(x) 6= 0. Under this situation, λ1(1) > λ2(1) and the matrix M(1)
is primitive. By direct calculation, we get

e =
D′(1) + S′(1)

D(1) + S(1)
,

v =
−(D′(1) + S′(1))2 +

(
D(1) + S(1)

)(
D′′(1) + S′′(1) +D′(1) + S′(1)

)

(D(1) + S(1))2
.

We assume P (x) =
∑

m cmxm. By Cauchy-Schwarz inequality,

(
∑

m

mcm

)2

≤
∑

m

m2cm ·
∑

m

cm =

(
∑

m

(m2 −m)cm +
∑

m

mcm

)
·
∑

m

cm,

which implies P ′(1)2 ≤ (P ′′(1) +P ′(1)) ·P (1). By this inequality and (3.3), one easily sees that
v ≥ 0. Therefore, v = 0 is equivalent to the above Cauchy-Schwarz inequality becomes equality,
that is

(
∑

m

mcm

)2

=
∑

m

m2cm ·
∑

m

cm.

Since P (x) 6= 0, we have cm > 0 for some m ≥ 0. The above equality is also equivalent to that
for some x ∈ R

m
√
cm + x

√
cm = 0, ∀m ≥ 0.
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Therefore, v = 0 if and only if γmax(H) = γmin(H) (εmax(H) = εmin(H)) . Noting that, a
known fact in the topological graph theory says that γmax(H) = γmin(H) (εmax(H) = εmin(H))
implies that H is the cactus graph (H is the path graph), we complete our proof.

�

Figure 3.4. Graph H (left), and ladder-like graph LH
n (right)

Given any graph (H,u, v) whose root-vertices u and v are both 1-valent, as in Figure 3.4,
we construct a ladder-like sequence of graphs {(LH

n , un, vn)}∞n=1 [7]. The shadow part of H can
be any connected graph, and the ladder-like sequences are a special case of H-linear family of
graphs.

Corollary 3.8. The genus distributions of the ladder-like sequence of graphs {LH
n }∞n=1 are

asymptotic normal distribution.

Proof. By [7], the production matrix for genus distributions of the ladder-like sequence of graphs
LH
1 , LH

2 , LH
3 , · · · is

M(x) = p(x)





4x 2x 0
0 0 0
0 2x 4x



+ q(x)





0 0 0
0 2 4
4x 2x 0



 ,

where p(x), q(x) ∈ Z(x) are the partial genus polynomials for H . Also by [7], q(x) = 0 is impossible.

Obviously, D = 4(p(1) + q(1)) and the eigenvalues of matrix M(1) are given by

λ1 = 4(p(1) + q(1)), λ2 = 4p(1)− 2q(1), λ3 = 0.

By p(1) ≥ 0 and q(1) > 0, one easily sees that

λ1 > |λ2|, λ1 > |λ3|

and the matrix M(1) is primitive.

With the help of a computer, one arrives at that

e =
3 (p′(1) + q′(1)) + 3p(1) + q(1)

3(p(1) + q(1))
,

v =
4

27(p(1) + q(1))

[

2q(1)2 − 27
(

p
′(1) + q

′(1)
)2

+9q(1)
(

3p′′(1) + 3q′′(1) + 3q′(1) + 7p′(1)
)

+p(1)
(

27p′′(1) + 27p′(1) + 27q′′(1)− 9q′(1) + 14q(1)
)]

.

In the rest of this corollary, we will prove v > 0. Assume

p(x) =
∑

m

amx
m
, q(x) =

∑

m

bmx
m
.

Using Cauchy-Schwarz inequality again, we see that p′(1)2 ≤ (p′′(1)+ p′(1)) · p(1) and q′(1)2 ≤ (q′′(1)+
q′(1)) · q(1). Therefore, in order to prove v > 0, it is suffice to show that

54p′(1)q′(1) + 9p(1)q′(1) < 2q(1)2 + 9q(1)
(

3p′′(1) + 7p′(1)
)

+ p(1)
(

27q′′(1) + 14q(1)
)

,
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which is equivalent to
∑

i,j

[

54ijaibj + 9aijbj

]

< 2q(1)2 +
∑

i,j

[

27(i2 − i) + 63i + 27(j2 − j) + 14
]

aibj .

The above inequality is due to

2q(1)2 +
∑

i,j

[

27(i− j)2 + 36(i− j) + 14
]

aibj = 2q(1)2 +
∑

i,j

(

27
(

i− j +
2

3

)2

+ 2
)

aibj > 0.

We complete the proof of v > 0.

By Theorem 3.5, the genus distributions of the ladder-like sequence {LH
n }∞n=1 are asymptotic normal

distribution with mean e · n and variance v · n. �

3.4. Limits for crosscap-number distributions of graphs. We demonstrate the relation-
ship between the limits of crosscap-number distributions and Euler-genus distributions.

Theorem 3.9. Let an =
ΓG◦

n
(1)

EG◦
n
(1) , bn = 1− an. If lim

n→∞
an = 0, we have

lim
n→∞

sup
x∈R

∣∣∣
∑

0≤i≤x

εi(G
◦
n)

EG◦
n
(1)

−
∑

0≤i≤x

γ̃i(G
◦
n)

Γ̃G◦
n
(1)

∣∣∣ = 0,(3.6)

which implies that the limits of crosscap-number distributions are the same as that of Euler-genus
distributions.

Proof. Since an =
ΓG◦

n
(1)

EG◦
n
(1) , then bn = 1−an =

Γ̃G◦
n
(1)

EG◦
n
(1) . Let Un, Ũn,Wn be three random variables

with distributions given by the genus, crosscap-number and Euler-genus respectively, that is

P(Un = i) =
γi(G

◦
n)

ΓG◦
n
(1)

, P(Ũn = i) =
γ̃i(G

◦
n)

Γ̃G◦
n
(1)

, P(Wn = i) =
εi(G

◦
n)

EG◦
n
(1)

, i = 0, 1 · · · .

Since

EG(x) = ΓG(x
2) + Γ̃G(x),

for any i ∈ N, we have

EG◦
n
(1) · P(Wn = i) = εi(G

◦
n) = γ i

2
(G◦

n) + γ̃i(G
◦
n)

= P(Un =
i

2
) · ΓG◦

n
(1) + P(Ũn = i) · Γ̃G◦

n
(1),

here γ i
2
(G◦

n) is defined as 0 when i is an odd number. Therefore, it holds that

P(Wn = i) = anP(2Un = i) + bnP(Ũn = i)

By this, for any x ≥ 0, we have

P(Wn ≤ x)− P(Ũn ≤ x) = anP(2Un ≤ x) + (bn − 1)P(Ũn ≤ x).

Thus ∣∣∣P(Wn ≤ x) − P(Ũn ≤ x)
∣∣∣ ≤ an + (1− bn).

By the definitions of Wn, Ũn, the above inequality implies (3.6). �

By (3.6), once the limits of Euler-genus distributions is obtained, the limits of crosscap-
number distributions is also known.

With the same method as that in Theorem 3.9, we obtain the following corollary.
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Corollary 3.10. Let {Gn}∞n=1 be any sequence of graphs, which is not required to be H-linear

family of graphs with spiders. If lim
n→∞

ΓGn (1)
EGn (1) = 1

2β(Gn) = 0 or lim
n→∞

β(Gn) = ∞, we have

lim
n→∞

sup
x∈R

∣∣∣
∑

0≤i≤x

εi(Gn)

EGn
(1)

−
∑

0≤i≤x

γ̃i(Gn)

Γ̃Gn
(1)

∣∣∣ = 0.

4. More examples and some research problems

The graphs, which have explicit formulas for their embedding distributions, mainly are linear
families of graphs with spiders, see [4, 6, 8, 11, 29] for details. There are many linear families of
graphs with spiders which satisfy the conditions of Theorem 2.1 or Theorem 3.5. However, we
give a few examples to demonstrate the theorems, including the famous Möbius ladders, Ringel
ladders and Circular ladders.

Example 4.1. Let Yn be the iterated-claw graph of Figure 4.1.

Figure 4.1. The claw Y1 (left), and the iterated-claw graph Yn (right)

The genus polynomial for the iterated-claw graph Yn [14] is given by

ΓYn
(x) = 20xΓYn−1(x) − 8(−3x+ 8x2)ΓYn−2(x) − 384x3ΓYn−3(x).

Since

F (x, λ) = λ3 − 20xλ2 + 8(8x2 − 3x)λ+ 384x3,

F (1, λ) = (λ− 16)
(
λ− 2(1−

√
7)
)(
λ− 2(

√
7 + 1)

)
,

the conditions of Theorem 2.1 hold for Pn(x) = ΓYn
(x) and λ1(1) = D = 16. By the derivative

rule of implicit function and with the help of Maple, one sees

e =
6

7
, v =

8

147
> 0.

For the constants e, v given above, we have

lim
n→∞

sup
x∈R

∣∣∣∣∣∣
1

ΓYn
(1)

∑

0≤i≤x
√
v·n+e·n

γi(Yn)−
∫ x

−∞

1√
2π

e−
1
2u

2

du

∣∣∣∣∣∣
= 0.

By [4], the Euler-genus polynomials of Yn satisfy the following three-order recurrence relation

EYn
(x) = 2(3x+ 28x2)EYn−1(x) − 16(−3x2 − 12x3 + 4x4)EYn−2(x) − 3072x6EYn−3(x).

Set Pn(x) = EYn
(x) and

F (x, λ) = λ3 − 2(3x+ 28x2)λ2 + 16(−3x2 − 12x3 + 4x4)λ+ 3072x6.

Since F (1, λ) = (λ− 64)(λ− 6)(λ+8), the conditions of Theorem 2.1 hold and D = λ1(1) = 64.
By the derivative rule of implicit function and with the help of Maple, one sees

e =
160

87
, v =

269092

1975509
> 0.
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For the constants e, v given above, the Euler-genus distributions of Yn are asymptotic normal
distribution with mean e·n and variance v·n. By Theorem 3.9, the crosscap-number distributions
of Yn are also asymptotic normal distribution with mean e · n and variance v · n.
Example 4.2. Let Gn = Pn✷P3 be the grid graph [17]. The genus polynomials for the grid
graph Gn are given by the recursion

ΓGn
(x) = (1 + 30x)ΓGn−1(x)− 42(−x+ 4x2)ΓGn−2(x)

−72(x2 + 14x3)ΓGn−3(x) + 1728x4ΓGn−4(x).

With the help of Maple, the conditions of Theorem 2.1 hold for Pn(x) = ΓGn
(x) and

D = λ1(1) = 24, e =
34

41
, v =

4816

68921
> 0.

The Euler-genus polynomials for the grid graphs Gn [4] satisfy the recursion

EGn
(x) = (1 + 11x+ 84x2)EGn−1(x) + 12x2(7 + 30x− 28x2)EGn−2(x)

−288x4(1 + 4x+ 32x2)EGn−3(x) + 27648x8EGn−4(x).

With the help of Maple, the conditions of Theorem 2.1 hold for Pn(x) = EGn
(x) and

D = λ1(1) = 96, e =
5488

3037
, v =

4819233780

28011371653
> 0.

By the discussions above, the embedding distributions of the grid graph Gn are asymptotic
normal distributions.

Example 4.3. Suppose that n is a positive integer. Let Cn be the cycle graph on n vertices.
The Ringel ladder Rn is obtained by adding an edge joining the two vertices of the leftmost edge
and rightmost edge of the ladder graph Ln. A circular ladder CLn is the graphical Cartesian
product CLn = Cn✷P2. The Möbius ladder MLn is formed from an 2n-cycle by adding edges
connecting opposite pairs of vertices in the cycle. i.e., the Möbius ladder can be described as a
circular ladder with a half-twist. It is known in [6] that the Ringel ladder, circular ladder, and
Möbius ladder are ring-like families of graphs. Let Hn be the Ringel ladder Rn, circular ladder
CLn, or Möbius ladder MLn.

By Theorem 3.1 in [6], the genus polynomials for Hn [6] satisfy the recursion

ΓHn
(x) = 4ΓHn−1(x) + (−5 + 20x)ΓHn−2(x) + (−56x+ 2)ΓHn−3(x)

−4(32x− 11)xΓHn−4(x) + 8(28x− 1)xΓHn−5(x)

+32(8x− 3)x2ΓHn−6(x) − 256x3ΓHn−7(x).

Since

F (x, λ) = λ7 − 4λ6 − (−5 + 20x)λ5 − (−56x+ 2)λ4

+4(32x− 11)xλ3 − 8(28x− 1)xλ2 − 32(8x− 3)x2λ+ 256x3

= (λ− 1)(λ+ 2
√
x)(λ − 2

√
x)(λ− 1 +

√
1 + 8x)(λ − 1−

√
1 + 8x)

∗
(
λ− 1

2
(1−

√
32x+ 1)

)(
λ− 1

2
(1 +

√
32x+ 1)

)
,

the conditions of Theorem 2.1 hold for Pn(x) = ΓHn
(x) and λ1(x) =

√
8x+ 1+1, D = λ1(1) = 4.

With the help of Maple, one easily sees

e =
1

3
, v =

2

27
> 0.



18 JINLIAN ZHANG, XUHUI PENG, AND YICHAO CHEN

By Theorem 2.1, for the constants e, v given above , we have

lim
n→∞

sup
x∈R

∣∣∣∣∣∣
1

ΓHn
(1)

∑

0≤i≤x
√
v·n+e·n

γi(Hn)−
∫ x

−∞

1√
2π

e−
1
2u

2

du

∣∣∣∣∣∣
= 0.

The Euler-genus polynomials for Hn [4] are given by the recursion

EHn
(x) = (12x+ 4)EHn−1(x) + (−12x2 − 34x− 5)EHn−2(x)

+(−240x3 − 20x2 + 26x+ 2)EHn−3(x)

+4(80x3 + 128x2 + 14x− 1)xEHn−4(x)

+16(112x3 + 8x2 − 14x− 1)x2EHn−5(x)

−128(8x2 + 18x+ 3)x4EHn−6(x)

−2048(2x+ 1)x6EHn−7(x).

Since

F (x, λ) = λ7 − (12x+ 4)λ6 − (−12x2 − 34x− 5)λ5 − (−240x3 − 20x2 + 26x+ 2)λ4

−4(80x3 + 128x2 + 14x− 1)xλ3 − 16(112x3 + 8x2 − 14x− 1)x2λ2

+128(8x2 + 18x+ 3)x4λ+ 2048(2x+ 1)x6,

F (1, λ) = (λ + 2)2(λ− 3)(λ− 4)(λ− 8)
(
λ− 1

2
(5−

√
89)
)(
λ− 1

2
(5 +

√
89)
)
,

the conditions of Theorem 2.1 hold for Pn(x) = EHn
(x) and D = λ1(1) = 8. With the help of

Maple, we have

λ1(x) =
√
20x2 + 4x+ 1 + 2x+ 1, e =

4

5
, v =

22

125
> 0.

By Theorem 2.1, for the constants e, v given above, the Euler-genus distributions of Hn is
asymptotic normal distribution with mean e · n and variance v · n.

4.1. Some researches problems. In the end of this paper, we demonstrate some research
problems.

Question 4.1. In our paper, the limits of the embedding distributions for graphs are normal
distributions or some discrete distributions. Can we prove that the limit of the embedding dis-
tributions for any H-linear family of graphs is a normal distribution or a discrete distribution.
Furthermore, if the maximum genus (Euler-genus) εmax(G) of H is great than 0, do we have the
limit for the genus distributions (Euler-genus distribution) for any H-linear family of graphs is
a normal distribution?

Question 4.2. Suppose that {G̃n}∞n=1 is a family of graphs with β(G̃n) → ∞ (orientable max-

imum genus γM (G̃n) → ∞). Are the crosscap-number distributions (genus distributions) of G̃n

asymptotic normal.

A bouquet of circles Bn is define as a graph with one vertex and n edges. A dipole Dn is
a graph with two vertices joining by n multiple edges. In [15], Gross, Robbins, and Tucker
obtained a second-order recursion for the genus distributions of Bn. The genus distributions of
Dn were obtained by Rieper in [25], and independently by Kwak and Lee in [16]. The wheel Wn

is a graph formed by connecting a single vertex to each of the vertices of a n-cycle. The genus
distribution of Wn was obtained in [5] by Chen, Gross and Mansour. The following special case
of question 4.2 is may not hard.
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Question 4.3. Are the embedding distributions of Bn, Dn and Wn asymptotic normal?

The following question is for the complete graph Kn on n vertices and complete bipartite
graph Km,n.

Question 4.4. Are the embedding distributions of Kn, and Km,n asymptotic normal?

Another question is the following.

Question 4.5. Is the embedding distribution of a random graph on n vertices asymptotic nor-
mal?
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