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ON THE q-DYSON ORTHOGONALITY PROBLEM

YUE ZHOU

Abstract. By combining the Gessel–Xin method with plethystic substitutions, we obtain a
recursion for a symmetric function generalization of the q-Dyson constant term identity also
known as the Zeilberger–Bressoud q-Dyson theorem. This yields a constant term identity
which generalizes the non-zero part of Kadell’s orthogonality ex-conjecture and a result of
Károlyi, Lascoux and Warnaar.
Keywords: q-Dyson constant term identity, Kadell’s orthogonality conjecture, symmetric
function

1. Introduction

The study of constant term identities can be traced back to a 1962 paper on random
matrices and the theory of statistical levels of complex systems by Freeman Dyson [5]. In
the course of this work he conjectured that for non-negative integers a0, . . . , an,

(1.1) CT
x

∏

0≤i 6=j≤n

(1− xi/xj)
ai =

(a0 + · · ·+ an)!

a0! · · ·an!
,

where CT
x

denotes taking the constant term with respect to x := (x0, . . . , xn). Dyson’s con-

jecture was soon proved by Gunson [11] and Wilson [26]. Subsequently, an elegant proof
using Lagrange interpolation was given by Good [9], and much later, Zeilberger gave a com-
binatorial proof using tournaments [29]. These days Dyson’s ex-conjecture is usually referred
as the Dyson constant term identity.
In this introduction, we first briefly review the history of the Dyson constant term identity

and some of its generalizations. Then we state our main result, a symmetric function general-
ization of the Dyson constant term identity, related to Kadell’s orthogonality (ex-)conjecture.
We conclude the introduction by outlining the main new ideas used in this paper.
In 1975 Andrews [1] conjectured the following q-analogue of (1.1):

(1.2) CT
x

∏

0≤i<j≤n

(xi/xj ; q)ai(qxj/xi; q)aj =
(q; q)a0+···+an

(q; q)a0(q; q)a1 · · · (q; q)an
,

where (z; q)k := (1 − z)(1 − zq) . . . (1 − zqk−1) is a q-shifted factorial. Andrews’ q-Dyson
conjecture was first proved in 1985 by Zeilberger and Bressoud [30], who generalized Zeil-
berger’s method of tournaments mentioned above. Twenty years later Gessel and Xin [8]
gave a second proof using formal Laurent series, and then, in 2014, Károlyi and Nagy [17]
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2 YUE ZHOU

discovered a very short and elegant proof using multivariable Lagrange interpolation. Finally,
an inductive proof was found by Cai [3] by adding additional parameters to the problem.
In 1982, Macdonald realised that the equal parameter case of the q-Dyson identity, i.e.,

a0 = a1 = · · · = an = k, can be formulated as a combinatorial identity for the root system
An. This led him to conjecture a constant term identity for arbitrary root systems [20]:

CT
∏

α∈R+

(e−α; q)k(qe
α; q)k =

r
∏

i=1

[

dik

k

]

.

Here R is a reduced irreducible finite root system of rank r, R+ is the set of positive roots,
d1, . . . , dr are the degrees of the fundamental invariants, and

[

n
k

]

is a q-binomial coefficient.
Initially, many cases of Macdonald’s conjecture were proven on a case by case basis [2, 7,
12, 14, 30]. A uniform proof for q = 1 was first found by Opdam [24] using hypergeometric
shift operators. Eventually, a case-free proof of the full conjecture was given by Cherednik [4]
based on his double affine Hecke algebra. For more on the extensive literature of Macdonald’s
constant term conjecture we refer the reader to [6] and references therein.
Let λ = (λ0, . . . , λn) be a partition. In 1988, Macdonald [21, 22] introduced a family of

symmetric functions Pλ(q, t) = Pλ(x0, . . . , xn; q, t), now called Macdonald polynomials. Given
the scalar product on the ring of symmetric functions in x0, . . . , xn

〈f, g〉q,qk :=
1

(n+ 1)!
CT
x

f(x0, . . . , xn)g(x
−1
0 , . . . , x−1

n )
∏

0≤i 6=j≤n

(xi/xj ; q)k,

Macdonald established the orthogonality
〈

Pλ(q, q
k), Pµ(q, q

k)
〉

q,qk
= 0 if λ 6= µ,

for k a positive integer. Moreover, he showed that the quadratic norm evaluation is given
by [22, page 373]

〈

Pλ(q, q
k), Pλ(q, q

k)
〉

=
∏

0≤i<j≤n

(qλi−λj+1+(j−i)k; q)k−1

(qλi−λj+1+(j−i−1)k; q)k−1

.

For λ = 0 the Macdonald polynomials trivialise to 1, so that

〈

1, 1
〉

q,qk
=

n+1
∏

i=1

[

ik − 1

k − 1

]

.

By a simple transformation, it is not difficult to show that this is equivalent to the equal
parameter case of (1.2). This provides a satisfactory explanation for the a0 = a1 = · · · = an =
k case of the q-Dyson constant term identity in terms of orthogonal polynomials. Finding a
similar such explanation for the full q-Dyson identity is an important open problem.
The first step towards a resolution of this problem was made by Kadell [15], who formulated

an orthogonality conjecture which we will describe next. Let X = (x0, x1, . . . ) be an alphabet
of countably many variables. Then the rth complete symmetric function hr(X) may be



ON THE q-DYSON ORTHOGONALITY PROBLEM 3

defined in terms of its generating function as

(1.3)
∑

r≥0

zrhr(X) =
∏

i≥0

1

1− zxi
.

More generally, for the complete symmetric function indexed by a composition (or partition)
v = (v0, v1, . . . , vk)

hv := hv0 · · ·hvk .

For a := (a0, a1, . . . , an) a sequence of non-negative integers, let x(a) denote the alphabet

(1.4) x(a) = (x0, x0q, . . . , x0q
a0−1, . . . , xn, xnq, . . . , xnq

an−1)

of cardinality |a| := a0 + · · ·+ an, and define the generalized q-Dyson constant term

(1.5) Dv,λ(a) = CT
x

x−vhλ

(

x(a)
)

∏

0≤i<j≤n

(xi/xj ; q)ai(qxj/xi; q)aj .

Here v = (v0, . . . , vn) ∈ Zn+1, xv denotes the monomial xv0
0 · · ·xvn

n and λ is a partition such
that |v| = |λ|. (Note that if |v| 6= |λ| then Dv,λ(a) = 0.) For the constant term (1.5), Kadell
formulated the following conjecture [15, Conjecture 4].

Conjecture 1.1. For r a positive integer and v a composition such that |v| = r,

(1.6) Dv,(r)(a) =















q
∑n

i=k+1 ai(1− qak)(q|a|; q)r
(1− q|a|)(q|a|−ak+1; q)r

n
∏

i=0

[

ai + · · ·+ an
ai

]

if v = (0k, r, 0n−k),

0 otherwise.

In fact Kadell only considered v = (r, 0n) in his conjecture, but the more general statement
given above is what was proved by Károlyi, Lascoux and Warnaar in [16, Theorem 1.3] using
multivariable Lagrange interpolation and key polynomials. If for a sequence u = (u0, . . . , un)
of integers we denote by u+ the sequence obtained from u by ordering the ui in weakly
decreasing order (so that u+ is a partition if u is a composition), then Károlyi et al. also
proved a closed-form expression for Dv,v+(a) in the case when v is a composition all of whose
parts have multiplicity one, i.e., vi 6= vj for all 0 ≤ i < j ≤ n. Subsequently, Cai [3] gave
an inductive proof of Kadell’s conjecture. He also showed that the following more general
orthogonality holds.

Theorem 1.2. Let v ∈ Zn+1 and λ a partition such that |v| = |λ|. If Dv,λ(a) is non-
vanishing, then v+ ≥ λ in dominance order.

We note that the converse of Theorem 1.2 also appears to be true. This is trivially the
case for n = 0, and for n = 1 we used Maple to verify that Dv,λ(a) 6= 0 for |v| ≤ 23 and
v+ ≥ λ.
In this paper, we are concerned with the λ = v+ case of Dv,λ(a). For this case we obtain

a recursion for Dv,λ(a) provided that the largest part of v occurs with multiplicity one.
Given a sequence s = (s0, . . . , sn) and an integer k such that 0 ≤ k ≤ n, define s(k) :=
(s0, . . . , sk−1, sk+1, . . . , sn).
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Theorem 1.3. Let v = (v0, . . . , vn) be a composition such that its largest part has multiplicity
one in v. Fix a non-negative integer k by vk = max{v}. Then

(1.7) Dv,v+(a) = q
∑n

i=k+1 ai

[

vk + |a| − 1

ak − 1

]

Dv(k),(v(k))+

(

a(k)
)

.

For example, if v = (0, 2, 3, 2, 1), then v+ = (3, 2, 2, 1, 0), k = 2 and v(2) = (0, 2, 2, 1). If all
the non-zero parts of v have multiplicity one, then we can iterate (1.7). Together with the
q-Dyson identity (1.2) this yields a closed-form formula for Dv,v+(a).

Corollary 1.4. Let v = (v0, . . . , vn) be a composition all of whose positive parts have mul-
tiplicity one, and set l := ℓ(v), the number of the non-zero parts of v. Let σ ∈ Sn+1 be any
permutation for which σ(v) := (vσ(0), . . . , vσ(n)) = v+. Then

(1.8) Dv,v+(a) = qc
l−1
∏

i=0

[

vσ(i) + |a| − aσ(0) − · · · − aσ(i−1) − 1

aσ(i) − 1

] n
∏

i=l

[

aσ(i) + · · ·+ aσ(n)
aσ(i)

]

,

where

c =

l−1
∑

i=0

n
∑

j=σ(i)+1

j /∈{σ(0),...,σ(i−1)}

aj .

Clearly, there are (n− l + 1)! admissible permutations σ ∈ Sn+1. Since the product
n
∏

i=l

[

aσ(i) + · · ·+ aσ(n)
aσ(i)

]

=
(q; q)aσ(l)+···+aσ(n)

(q; q)aσ(l)
· · · (q; q)aσ(n)

is symmetric in aσ(l), . . . , aσ(n) each such σ results in the same expression for Dv,v+(a). When
l = 1 Corollary 1.4 reduces to the non-zero part of Kadell’s (ex)-conjecture, and when l = n
or l = n + 1 it reduces to a result by Károlyi, Lascoux and Warnaar [16, Proposition 4.5].

The method employed to prove Theorem 1.3 is based on the well-known fact that two
polynomials of degree at most d are equal if they are equal at d + 1 distinct points. This
method was used previously to prove several constant term identities, such as in the Gessel–
Xin proof of the q-Dyson identity [8] or in the proof of what are known as first-layer formulas
for q-Dyson products [19].
It is not difficult to show that Dv,v+(a) is a polynomial of degree vk + |a| − ak in qak .

Assuming the conditions of Theorem 1.3, it is also not hard to show that this polynomial
vanishes if −ak ∈ {0, 1, . . . , vk + |a| − ak − 1}. However, since Dv,v+(a) is not actually
defined for negative integer values of ak, we need to extend the definition to all integers ak.
For this, we require the theory of iterated Laurent series, developed in [27]. In the field of
iterated Laurent series, Dv,v+(a) is well-defined for all ak ∈ Z and can again be viewed as a
polynomial in qak . To prove the above vanishing properties of Dv,v+(a) (again with v as in
the theorem), we combine the Gessel–Xin method with plethystic substitutions, a powerful
tool from the theory of symmetric functions. It trivially follows that the right-hand side of
(1.7) satisfies the same polynomiality and vanishing properties. By degree considerations,
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one may conclude that the left and right-hand sides of (1.7) are equal if they agree at one
additional point.
The remainder of this paper is organised as follows. In the next section we introduce some

basic notation used throughout this paper. In Sections 3 and 4 we introduce the two main
tools used in this paper—plethystic notation and substitutions, and iterated Laurent series
respectively. In Section 5 we give a proof of Theorem 1.3.

2. Basic notation

In this section we introduce some basic notation used throughout this paper.
For v = (v0, v1, . . . , vn) a sequence, we write |v| for the sum of its entries, i.e., |v| =

v0 + · · · + vn. Moreover, if v ∈ Rn+1 then we write v+ for the sequence obtained from v
by ordering its elements in weakly decreasing order. If all the entries of v are non-negative
integers, we refer to v as a (weak) composition. A partition is a sequence λ = (λ0, λ1, . . . )
of non-negative integers such that λ0 ≥ λ1 ≥ · · · and only finitely-many λi are positive. The
length of a partition λ, denoted ℓ(λ) is defined to be the number of non-zero λi (such λi are
known as the parts of λ). We adopt the convention of not displaying the tails of zeros of
a partition. We say that |λ| = λ0 + λ1 + · · · is the size of the partition λ. We adopt the
standard dominance order on the set of partitions of the same size. If λ, µ are partitions such
that |λ| = |µ| then λ ≥ µ if λ0+ · · ·+λi ≥ µ0+ · · ·+µi for all i ≥ 0. Similarly, for two integer
sequences v = (v0, . . . , vn) and u = (u0, . . . , um), we write v ≥ u if v0+ · · ·+ vi ≥ u0+ · · ·+ui

for all i ≥ 0, where we set vi = 0 for i > n and uj = 0 for j > m. Note here that we do not
require that |v| = |w|. As usual, we write λ > µ if λ ≥ µ but λ 6= µ, and v > u if v ≥ u but
v 6= u.
The infinite q-shifted factorial is defined as

(z)∞ = (z; q)∞ :=

∞
∏

i=0

(1− zqi),

where, typically, we suppress the base q. Then, for k an integer,

(z)k = (z; q)k :=
(z; q)∞
(zqk; q)∞

.

Note that

(z)k =











(1− z)(1− zq) · · · (1− zqk−1) if k ≥ 0,

1

(1− zqk)(1− zqk+1) · · · (1− zq−1)
if k < 0.

Using the above we can define the q-binomial coefficient as
[

n

k

]

=
(qn−k+1)k

(q)k

for n an arbitrary integer and k a non-negative integer.
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3. Plethystic notation

Plethystic or λ-ring notation is a device to facilitate computations in the ring of symmetric
functions. The notion was introduced by Grothendieck [10] in the study of Chern classes.
Nowadays plethystic notation has become an indispensable computational tool for organizing
and manipulating intricate relationships between symmetric functions. In this section, we
briefly introduce plethystic notation and substitutions. For more details, see [13, 18, 23, 25].
Denote by ΛF the ring of symmetric functions in countably many variables with coefficients

in a field F. For an alphabet X = (x0, x1, . . . ), we additively write X := x0 + x1 + · · · , and
use plethystic brackets to indicate this additive notation:

f(X) = f(x0, x1, . . . ) = f [x0 + x1 + · · · ] = f [X ], for f ∈ ΛF.

For r a positive integer, let pr be the power sum symmetric function in the alphabet X ,
defined by

pr =
∑

i≥0

xr
i .

In addition, we set p0 = 1. For a partition λ = (λ0, λ1, . . . ), let

pλ = pλ0pλ1 · · · .

The pr are algebraically independent over Q, and the pλ form a basis of ΛQ [22]. That is,

ΛQ = Q[p1, p2, . . . ].

Now we introduce a consistent arithmetic on alphabets in terms of the basis of power sums.
In particular, a power sum whose argument is the sum, difference or Cartesian product of
two alphabets X and Y is defined as

pr[X + Y ] = pr[X ] + pr[Y ],(3.1a)

pr[X − Y ] = pr[X ]− pr[Y ],(3.1b)

pr[XY ] = pr[X ]pr[Y ].(3.1c)

For example, for the alphabets X = x1 + x2 + · · · and Y = y1 + y2 + · · · , the sum of X and
Y is X + Y = x1+ x2 + · · ·+ y1+ y2+ · · · . In general we cannot give meaning to division by
an arbitrary alphabet and only division by 1 − t (the difference of two one-letter alphabets
with “letters” 1 and t respectively) is meaningful. In particular

(3.2) pr

[ X

1− t

]

=
pr[X ]

1− tr
.

Note that the alphabet 1/(1− t) may be interpreted as the infinite alphabet 1+ t+ t2 + · · · .
Indeed, by (3.1a) and (3.1c)

pr[X(1 + t + t2 + · · · )] = pr[X ]

∞
∑

k=0

pr[t
k] = pr[X ]

∞
∑

k=0

tkr =
pr[X ]

1− tr
.
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Having the above rules for plethystic substitutions we can view symmetric functions as
operators acting on alphabets, and by carrying out complicated substitutions we can turn
simple algebraic identities into much more complicated ones. For example, since

∑

i≤j

xixj =
1
2

(

∑

i

xi

)2

+ 1
2

∑

i

x2
i

we have
h2 =

1
2

(

p21 + p2)

as an identity in the algebra of symmetric functions. Consequently,

h2[X ] = 1
2
(p21[X ] + p2[X ])

where X can be any alphabet, obtained by combining the rules of addition, subtraction,
multiplication and division described in (3.1) and (3.2).
For r a positive integer, let the elementary symmetric function be defined as

er =
∑

0≤i1<···<ir

xi1xi2 · · ·xir .

Also set e0 = 1. By the definition of the elementary symmetric function, one can observe the
following simple fact: For r a positive integer and X an alphabet of finitely many variables,

(3.3) er[X ] = 0 if |X| < r,

where |X| denotes the cardinality of X . This simple fact plays an important role in proving
vanishing properties of expressions of the form Dv,λ(a).
Finally, we need the following two basic plethystic identities. One can find proofs in [13,

Theorem 1.27].

Proposition 3.1. Let X and Y be two alphabets. For r a non-negative integer,

hr[X + Y ] =

r
∑

i=0

hi[X ]hr−i[Y ],(3.4)

hr[−X ] = (−1)rer[X ].(3.5)

4. Constant term evaluations using iterated Laurent series

In this section we introduce some essential ingredients of the field of iterated Laurent
series and describe a basic lemma for extracting constant terms from rational functions.
Throughout this paper we let K = C(q) and work in the field of iterated Laurent se-
ries K〈〈xn, xn−1, . . . , x0〉〉 = K((xn))((xn−1)) · · · ((x0)), unless specified otherwise. Elements
of K〈〈xn, xn−1, . . . , x0〉〉 are regarded first as Laurent series in x0, then as Laurent series in x1,
and so on. The reason the field K〈〈xn, xn−1, . . . , x0〉〉 is highly suitable for proving constant
term identities is explained in [8]. For a more detailed account of the properties of this field,
see [27] and [28]. Crucial in what is to follow is that the field K(x0, . . . , xn) of rational func-
tions in the variables x0, . . . , xn with coefficients inK forms a subfield ofK〈〈xn, xn−1, . . . , x0〉〉,
so that every rational function is identified with its unique Laurent series expansion.
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The following series expansion of 1/(1− cxi/xj) for c ∈ K \ {0} forms a key ingredient in
our approach:

1

1− cxi/xj
=















∑

l≥0

cl(xi/xj)
l if i < j,

−
∑

l<0

cl(xi/xj)
l if i > j.

Thus, the constant term in xi of 1/(1− cxi/xj) is 1 if i < j and 0 if i > j. That is,

(4.1) CT
xi

1

1− cxi/xj
=

{

1 if i < j,

0 if i > j,

where, for f ∈ K〈〈xn, xn−1, . . . , x0〉〉, we use the notation CT
xi

f to denote taking the constant

term of f with respect to xi. An important property of the constant term operators defined
this way is their commutativity:

CT
xi

CT
xj

f = CT
xj

CT
xi

f.

This implies that the operation of taking the constant term in K〈〈xn, xn−1, . . . , x0〉〉 is well-
defined.
The following lemma is a basic tool for extracting constant terms from rational functions

and has appeared previously in [8].

Lemma 4.1. For a positive integer m, let p(xk) be a Laurent polynomial in xk of degree at
most m − 1 with coefficients in K〈〈xn, . . . , xk−1, xk+1, . . . , x0〉〉. Let 0 ≤ i1 ≤ · · · ≤ im ≤ n
such that all ir 6= k, and define

(4.2) f =
p(xk)

∏m
r=1(1− xk/crxir)

,

where c1, . . . , cm ∈ K \ {0} such that cr 6= cs if xir = xis. Then

(4.3) CT
xk

f =
m
∑

r=1
ir>k

(

f (1− xk/crxir)
)

∣

∣

∣

xk=crxir

.

5. Proof of Theorem 1.3

To prove Theorem 1.3, which is a recursion for Dv,v+(a), we shall first prove a similar
recursion — see Theorem 5.1 below — for a more general constant term, denoted Dv,λ(a,m)
and defined in (5.2) below. As shown in Section 5.1, using a cyclic action γ on Dv,λ(a,m),
Theorem 5.1 implies Theorem 1.3.
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5.1. The constant term Dv,λ(a,m). In this subsection we define Dv,λ(a,m) mentioned
above and show that it suffices to consider this constant term for those v = (v0, . . . , vn) ∈ Zn+1

for which max{v} = v0.
For m ∈ {0, 1, . . . , n+ 1} and a = (a0, . . . , an) a composition, define the alphabet

x(a)
m := (x0q

−1, x0, . . . , x0q
a0−2, . . . , xm−1q

−1, xm−1, . . . , xm−1q
am−1−2,

xm, xmq, . . . , xmq
am−1, . . . , xn, xnq, . . . , xnq

an−1).

Note that, plethystically,

(5.1) x(a)
m =

n
∑

i=0

1− qai

1− q
xiq

−χ(i<m),

where χ is the truth function. For v = (v0, . . . , vn) ∈ Zn+1, λ a partition such that |λ| = |v|,
and m and a as above, we define the constant term

(5.2) Dv,λ(a,m) := CT
x

x−vhλ

(

x(a)
m

)

∏

0≤i<j≤n

(xi/xj)ai(qxj/xi)aj .

Clearly, the alphabet x(a) and constant term Dv,λ(a), defined in (1.4) and (1.5) respectively,

are given by x(a) = x
(a)
0 and Dv,λ(a) = Dv,λ(a, 0). By the homogeneity of the complete

symmetric function hλ and the fact that x
(a)
n+1 = x

(a)
0 /q,

(5.3) Dv,λ(a, n+ 1) = q−|λ|Dv,λ(a, 0).

Hence, it suffices to restrict the range of m to 0 ≤ m ≤ n or 1 ≤ m ≤ n+ 1.
As in [19], for f ∈ K〈〈xn, xn−1, . . . , x0〉〉, define the cyclic action γ by

γ
(

f(x0, x1, . . . , xn)
)

= f(x1, x2, . . . , xn, x0/q).

Then CT
x

f = CT
x

γ(f), and, for 0 ≤ m ≤ n,

(5.4) γ
(

Dv,λ(a,m)
)

= qvnDγ−1(v),λ

(

γ−1(a), m+ 1
)

,

where γ(v) := (v1, . . . , vn, v0). For k ∈ {0, 1, . . . , n}, by applying (5.4) exactly n+1−k times
and also using (5.3) we find that

(5.5) Dv,λ(a,m) =







qvk+···+vnDγ−(n+1−k)(v),λ

(

γk−n−1(a), m′
)

if m ≤ k,

q−v0−···−vk−1Dγ−(n+1−k)(v),λ

(

γk−n−1(a), m′
)

if m > k,

where 1 ≤ m′ ≤ n + 1 and m′ ≡ m − k (mod n + 1). In particular, if k is an integer such
that max{v} = vk, then γ−(n+1−k)(v) = (vk, . . . , vn, v0, . . . , vk−1) has the property that its
first part is its largest part. Hence (5.5) allows us to assume without loss of generality that
v0 = max{v}. Also assuming that v is a composition such that v0 > vi for all 1 ≤ i ≤ n we
will prove the following theorem.
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Theorem 5.1. For v = (v0, . . . , vn) a composition such that v0 = max{v} has multiplicity
one in v, and m ∈ {1, 2, . . . , n+ 1},

(5.6) Dv,v+(a,m) = q
∑m−1

i=1 ai−v0

[

v0 + |a| − 1

a0 − 1

]

Dv(0) ,(v(0))+

(

a(0), m− 1
)

.

This theorem, together with (5.5), implies Theorem 1.3 in a few simple steps.

Proof of Theorem 1.3. Let k ∈ {0, 1, . . . , n} be fixed by vk = max{v}. Taking m = 0 in (5.5)
we have

(5.7) Dv,v+(a) = qvk+···+vnDγ−(n+1−k)(v),v+

(

γk−n−1(a), n+ 1− k
)

.

Here γ−(n+1−k)(v) has the property that its first part, vk, is its unique largest part. Thus we
can apply (5.6) to obtain

Dγ−(n+1−k)(v),v+

(

γk−n−1(a), n+ 1− k
)

= q
∑n

i=k+1 ai−vk

[

vk + |a| − 1

ak − 1

]

Dγ−(n−k)(v(k)),(v(k))+

(

γk−n(a(k)), n− k
)

,

where γ−(n−k)(v(k)) = (vk+1, . . . , vn, v0, . . . , vk−1) and γk−n(a(k)) = (ak+1, . . . , an, a0, . . . , ak−1).
Using (5.7) by taking (k, v, a) 7→ (k + 1, v(k), a(k)), we have

Dv(k),(v(k))+(a
(k)) = q

∑n
i=k+1 viDγ−(n−k)(v(k)),(v(k))+

(

γk−n(a(k)), n− k
)

.

As a result,

Dγ−(n+1−k)(v),v+

(

γk−n−1(a), n+ 1− k
)

= q
∑n

i=k+1 ai−
∑n

i=k vi

[

vk + |a| − 1

ak − 1

]

Dv(k),(v(k))+(a
(k)).

Substituting this into (5.7), we finally obtain

Dv,v+(a) = q
∑n

i=k+1 ai

[

vk + |a| − 1

ak − 1

]

Dv(k),(v(k))+

(

a(k)
)

,

completing the proof. �

5.2. Outline of the proof of Theorem 5.1. Our proof of Theorem 5.1 is quite lengthy
and involved, and before presenting the full details we briefly outline the three key steps.

(1) Polynomiality — We will show that, for fixed non-negative integers a1, . . . , an, the
constant term Dv,λ(a,m) is a polynomial in qa0 of degree at most a1 + · · ·+ an + v0.

(2) Determination of roots — We will show that Dv,v+(a,m) vanishes for −a0 ∈
{0, 1, . . . , a1 + · · · + an + v0 − 1} if v = (v0, . . . , vn) is a composition such that
v0 = max{v} has multiplicity one in v.
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(3) Value at a0 = 1 — Assuming the conditions of Theorem 5.1, we will show that
Dv,v+(a,m) evaluated at a0 = 1 can be expressed as the same constant term with
(n,m) 7→ (n− 1, m− 1). That is

Dv,v+(a,m)|a0=1 = q
∑m−1

i=1 ai−v0Dv(0),(v(0))+

(

a(0), m− 1
)

.

The details of these key steps will be presented in the subsections 5.3, 5.5 and 5.6 respec-
tively. Subsection 5.4 prepares some technical preliminaries needed in Subsection 5.5.

5.3. Polynomiality. As mentioned above, the aim of this subsection is to prove that the
constant term Dv,λ(a,m) is a polynomial in qa0 of degree at most a1 + · · ·+ an + v0.
We begin by recalling [19, Lemma 2.2].

Lemma 5.2. Let L(x1, . . . , xn) be an arbitrary Laurent polynomial. Then, for fixed non-
negative integers a1, . . . , an, and t an integer not exceeding a1 + · · ·+ an,

(5.8) CT
x

xt
0L(x1, . . . , xn)

∏

0≤i<j≤n

(xi/xj)ai(qxj/xi)aj

is a polynomial in qa0 of degree at most a1+ · · ·+ an − t. Moreover, if t > a1+ · · ·+ an, then
the constant term (5.8) vanishes.

We remark that the correct interpretation of the above lemma is that, for t ≤ a1+ · · ·+an,
there exists a polynomial P (x) of degree at most a1+· · ·+an−t such that, for all non-negative
integers a0,

CT
x

xt
0L(x1, . . . , xn)

∏

0≤i<j≤n

(xi/xj)ai(qxj/xi)aj = P (qa0).

Using Lemma 5.2 it is not hard to show that the constant term Dv,λ(a,m) is a polynomial
in qa0 for fixed non-negative integers a1, . . . , an. This is the content of the next proposition.

Proposition 5.3. Let a1, . . . , an be fixed non-negative integers and Dv,λ(a,m) be defined as
in (5.2). If −v0 ≤ a1 + · · · + an, then Dv,λ(a,m) is a polynomial in qa0 of degree at most
a1 + · · ·+ an + v0. If −v0 > a1 + · · ·+ an then Dv,λ(a,m) = 0.

Proof. We write

x(a)
m =

1− qa0

1− q
x0q

−χ(0<m) + x̂(a)
m ,

where

x̂(a)
m :=

n
∑

i=1

1− qai

1− q
xiq

−χ(i<m).

Then, by repeated use of (3.4) with

X 7→
1− qa0

1− q
x0q

−χ(0<m) and Y 7→ x̂(a)
m
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and the homogeneity of the complete symmetric function, the constant Dv,λ(a,m) can be
expanded as

(5.9) Dv,λ(a,m) =
∑

k

q−χ(0<m)|k|hk

[1− qa0

1− q

]

× CT
x

x
|k|−v0
0

xv1
1 · · ·xvn

n

hλ−k

[

x̂(a)
m

]

∏

0≤i<j≤n

(xi/xj)ai(qxj/xi)aj ,

where k := (k0, . . . , kℓ(λ)−1) is a composition and the sum is over 0 ≤ ki ≤ λi for 0 ≤ i ≤
ℓ(λ)− 1. Note that, generally, k and λ− k are compositions, not partitions. By Lemma 5.2
the constant term in (5.9) vanishes if a1 + · · ·+ an + v0 < |k|, and is a polynomial in qa0 of
degree at most a1 + · · · + an + v0 − |k| if a1 + · · · + an + v0 ≥ |k|. Together with the fact
that hk[(1− z)/(1− q)] is a polynomial in z of degree |k|1, each summand in (5.9) is either a
polynomial in qa0 of degree at most a1+· · ·+an+v0 or is 0. Moreover, if a1+· · ·+an+v0 < 0,
then every constant term in (5.9) vanishes and Dv,λ(a,m) = 0. �

5.4. Preliminaries for the determination of the roots of Dv,λ(a,m). In this subsection
we prepare some general results used in the next section to determine the roots of Dv,λ(a,m).

Lemma 5.4. For s a positive integer, let (b1, . . . , bs+1) and (k1, . . . , ks) be compositions such
that 1 ≤ ki ≤ b1 + · · ·+ bs+1 for 1 ≤ i ≤ s. Then at least one of the following holds:

(1) 1 ≤ ki ≤ bi for some i with 1 ≤ i ≤ s;
(2) −bj ≤ ki − kj ≤ bi − 1 for some 1 ≤ i < j ≤ s;
(3) there exists a permutation w ∈ Ss and a composition (t1, . . . , ts) such that

(5.10) kw(j) − kw(j−1) = bw(j) + tj for 1 ≤ j ≤ s.

Here k0 = w(0) := 0, the ti satisfy
∑s

j=1 tj ≤ bs+1 and tj > 0 if w(j − 1) < w(j) for
1 ≤ j ≤ s.

When bs+1 = 0 case (3) can not occur. Indeed, if (3) were to hold with bs+1 = 0 this
would imply

∑s
j=1 tj ≤ 0, contradicting the fact that t1 > 0. This special case of the lemma

corresponds to [8, Lemma 4.2] by Gessel and Xin. If (3) holds with bs+1 = 1, then t1 = 1
and tj = 0 for 2 ≤ j ≤ s. Hence w(j − 1) > w(j) for 2 ≤ j ≤ s so that w = (s, . . . , 2, 1) and
ki = 1+

∑s
j=i bj for all i. This special case of the lemma appeared previously as [19, Lemma

3.2]. We finally remark that (1) and (3) can not hold simultaneously. If (3) were to hold,
then by (5.10) we have kw(j) ≥ bw(j) + 1 for all j, contradicting to (1). Also, it is not hard to
show that (2) and (3) can not hold simultaneously.

Proof. We prove the lemma by showing that if (1) and (2) fail then (3) must hold.
Assume that (1) and (2) are both false. Then we construct a weighted tournament T

on the complete graph on s vertices, labelled 1, . . . , s, as follows. For the edge (i, j) with
1 ≤ i < j ≤ s we draw an arrow from j to i and attach a weight bi if ki − kj ≥ bi. If, on

1It is easily shown that hr[(1− z)/(1− q)] = (z)r/(q)r, see e.g., [22, page 27].
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the other hand, ki − kj ≤ −bj − 1 then we draw an arrow from i to j and attach the weight
bj + 1. Note that the weight of each edge of a tournament is non-negative.
We call a directed edge from i to j ascending if i < j. It is immediate from our construction

that (i) the weight of the edge i → j is less than or equal kj − ki, and (ii) the weight of an
ascending edge is positive.
We will use (i) and (ii) to show that any of the above-constructed tournaments is acyclic

and hence transitive. As consequence of (i), the weight of a directed path from i to j in T ,
defined as the sum of the weights of its edges, is at most kj−ki. Proceeding by contradiction,
assume that T contains a cycle C. By the above, the weight of C must be non-positive, and
hence 0. Since C must have at least one ascending edge, which by (ii) has positive weight,
the weight of C is positive, a contradiction.
Since each T is transitive, there is exactly one directed Hamilton path P in T , correspond-

ing to a total order of the vertices. Assume P is given by

P = w(1) → w(2) → · · · → w(s− 1) → w(s),

where we have suppressed the edge weights. Then kw(s)− kw(1) ≥ bw(2)+ · · ·+ bw(s), and thus

kw(s) ≥ kw(1) + bw(2) + · · ·+ bw(s)

≥ bw(1) + 1 + bw(2) + · · ·+ bw(s)

= b1 + · · ·+ bs + 1.(5.11)

Together with the assumption that kw(s) ≤ b1 + · · · + bs+1 this implies that P has at most
bs+1 − 1 ascending edges. Let (t1, . . . , ts) be a composition such that (5.10) holds. When
j = 1 this gives kw(1) = bw(1) + t1. Since (1) does not hold, kw(1) ≥ bw(1) + 1, so that t1 > 0.
For 2 ≤ j ≤ s, if w(j − 1) → w(j) is an ascending edge, then tj is a positive integer. That
is, for 2 ≤ j ≤ s if w(j − 1) < w(j) then tj > 0. Since

s
∑

j=1

(kw(j) − kw(j−1)) = kw(s) = bw(1) + · · ·+ bw(s) + t1 + · · ·+ ts

= b1 + · · ·+ bs + t1 + · · ·+ ts ≤ b1 + · · ·+ bs + bs+1,

we have t1 + · · ·+ ts ≤ bs+1. This completes the proof of the assertion that (3) must hold if
both (1) and (2) fail. �

Our next proposition concerns alphabets of the form x
(a)
m as defined in (5.1).

Proposition 5.5. For s a positive integer, let (b1, . . . , bs+1) and (k1, . . . , ks) be compositions
such that 1 ≤ ki ≤ b1 + · · · + bs+1 for 1 ≤ i ≤ s. If the ki are such that (3) of Lemma 5.4
holds, then for m a non-negative integer

(5.12) −

s
∑

i=0

1− qbi

1− q
xiq

−χ(i<m)

∣

∣

∣

∣ b0=−
∑s+1

i=1 bi,

xi=qks−ki , 0≤i≤s

= qn1 + · · ·+ qnbs+1 ,

where {n1, . . . , nbs+1} is a set of integers determined by m and the bi and kj.
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We remark that the set {n1, . . . , nbs+1} can be explicitly determined. However, since the
precise values of the ni play no role in the following, we have omitted them from the above
statement. Indeed, the important fact about the right-hand side is that, viewed as an alpha-
bet, has cardinality bs+1.

Proof. Denote the left-hand side of (5.12) by L. Carrying out the substitutions

b0 7→ −
s+1
∑

i=1

bi and xi 7→ qks−ki for 0 ≤ i ≤ s

in

−
s
∑

i=0

1− qbi

1− q
xiq

−χ(i<m),

we obtain

L = −
qks

1− q

(

(

1− q−
∑s+1

i=1 bi
)

q−χ(0<m) +
s
∑

i=1

(1− qbi)q−ki−χ(i<m)

)

= −
qks

1− q

(

(

1− q−
∑s+1

i=1 bi
)

q−χ(0<m) +
s
∑

i=1

(1− qbw(i))q−kw(i)−χ(w(i)<m)

)

,

where w ∈ Ss is any permutation such that (5.10) holds. By summing that equation over j
from 1 to i, we find

kw(i) =

i
∑

j=1

(bw(j) + tj) for 1 ≤ i ≤ s.

Hence

L = −
qks

1− q

(

(

1− q−
∑s+1

i=1 bi
)

q−χ(0<m) +

s
∑

i=1

(1− qbw(i))q−
∑i

j=1(bw(j)+tj)−χ(w(i)<m)

)

.

By rearranging the terms in the above expression this may be written as

L =
qks

1− q

(

q−
∑s+1

i=1 bi−χ(0<m)
(

1− qbs+1−
∑s

j=1 tj+χ(0<m)−χ(w(s)<m)
)

+
s
∑

i=1

qbw(i)−
∑i

j=1(bw(j)+tj)−χ(w(i)<m)
(

1− qti−χ(w(i−1)<m)+χ(w(i)<m)
)

)

.

Next we will show that

(5.13a) bs+1 −

s
∑

j=1

tj + χ(0 < m)− χ(w(s) < m) ∈ N

and

(5.13b) ti − χ(w(i− 1) < m) + χ(w(i) < m) ∈ N for 1 ≤ i ≤ s,
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where N = {0, 1, 2, . . .}. Since w(s) > 0, it is clear that χ(0 < m) ≥ χ(w(s) < m). Together
with the condition

∑s
j=1 tj ≤ bs+1, this implies that (5.13a) holds. To also show that (5.13b)

holds, it suffices to show that if χ(w(i) < m) = 0 and χ(w(i− 1) < m) = 1 for some i, then
ti is a positive integer. If χ(w(i) < m) = 0 and χ(w(i − 1) < m) = 1, then w(i) ≥ m and
w(i− 1) < m respectively. Hence w(i − 1) < w(i). It follows that ti > 0 by the conditions
on the ti in item (3) of Lemma 5.4. Consequently, (5.13b) holds as well. Since (5.13a)
and (5.13b) hold, and (1 − qn)/(1 − q) = 1 + · · · + qn−1 for n ∈ N, we may conclude that
L = qn1 + · · ·+ qnp where p is given by

p = bs+1 −
s
∑

j=1

tj + χ(0 < m)− χ(w(s) < m) +
s
∑

i=1

(

ti − χ(w(i− 1) < m) + χ(w(i) < m)
)

= bs+1,

completing the proof. �

5.5. Determination of the roots of Dv,v+(a,m). In this subsection, we will determine all
the roots of Dv,v+(a,m) if v is a composition and v0 = max{v} has multiplicity one in v.
More precisely, Dv,v+(a,m) vanishes for −a0 ∈ {0, 1, . . . , a1 + · · ·+ an + v0 − 1}.
Since Dv,λ(a,m) is a polynomial in qa0 by Proposition 5.3, we can extend the definition of

a0 to all integers. In this subsection, we are concerned with Dv,v+(a,m) for a0 a non-positive
integer. Thus, for simplicity we denote the Laurent series of Dv,v+(a,m) by Q(−a0) if a0 is
a non-positive integer. That is, for d a non-negative integer

(5.14) Q(d) = x−vhv+

[

1− q−d

1− q
x0q

−χ(0<m) +
n
∑

i=1

1− qai

1− q
xiq

−χ(i<m)

]

×
n
∏

i=1

(qxi/x0)ai
(q−dx0/xi)d

∏

1≤i<j≤n

(xi/xj)ai(qxj/xi)aj ,

and
CT
x

Q(d) = Dv,v+(a,m)|a0=−d.

Therefore, instead of determining the roots of Dv,v+(a,m), we prove

CT
x

Q(d) = 0 for d ∈ {0, 1, . . . , a1 + · · ·+ an + v0 − 1}.

Here and in the following of this subsection, we assume that v is a composition, v0 = max{v}
has multiplicity one in v, and m ∈ {0, 1, . . . , n+1}, unless specified otherwise. Furthermore,
we assume n is a positive integer, since the n = 0 case for Q(d) is trivial.
We begin by showing that CTx Q(0) = 0. Since v0 is the unique largest part of v, it is a

positive integer. By a degree consideration in x0 of Q(0), it is easy to see that CTxQ(0) = 0.
In the remainder of this subsection, we will prove CTxQ(d) = 0 for d ∈ {1, . . . , a1 + · · · +
an + v0 − 1} by combining the Gessel–Xin method with plethystic substitutions. The main
process of the Gessel–Xin method is to recursively apply Lemma 4.1 to a rational function
of the form (4.2) to extract the constant term in one variable each time, until eliminating all
the variables of the rational function.
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To apply Lemma 4.1 to Q(d), we need to show that Q(d) is of the form (4.2) with respect
to x0. The denominator of Q(d) —

∏n
i=1(q

−dx0/xi)d — is of the form

nd
∏

r=1

(1− x0/crxir),

which has degree nd in x0. Here c1, . . . , cnd ∈ K \ {0} satisfy cr 6= cs if xir = xis . To get the
degree in x0 of the numerator of Q(d), we need the next result.

Proposition 5.6. Let d and r be non-negative integers, and {n1, . . . , nd} be a set of integers.
For z an arbitrary letter and Y an alphabet independent of z,

(5.15) hr

[

−(qn1 + · · ·+ qnd)z + Y
]

is a polynomial in z of degree at most min{r, d}. In particular, if Y = 0 and d < r then
(5.15) vanishes.

Proof. By (3.4) we can expand (5.15) as

r
∑

i=0

zihi

[

−(qn1 + · · ·+ qnd)
]

hr−i[Y ].

By (3.5) it becomes
r
∑

i=0

(−z)iei
[

qn1 + · · ·+ qnd
]

hr−i[Y ].

Since ei
[

qn1 + · · ·+ qnd

]

= 0 for i > d by (3.3), the above sum reduces to

min{r,d}
∑

i=0

(−z)iei
[

qn1 + · · ·+ qnd
]

hr−i[Y ],

which is a polynomial in z of degree at most min{r, d}.
If Y = 0 then (5.15) becomes

hr

[

−(qn1 + · · ·+ qnd)z
]

= (−z)rer
[

qn1 + · · ·+ qnd
]

.

The above equation holds by (3.5). It vanishes for d < r by (3.3). �

For d a positive integer

1− q−d

1− q
= −(q−1 + q−2 + · · ·+ q−d).

Thus, for r a non-negative integer

hr

[

1− q−d

1− q
x0q

−χ(0<m) +
n
∑

i=1

1− qai

1− q
xiq

−χ(i<m)

]
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is of the form (5.15) with

x0 7→ z,

n
∑

i=1

1− qai

1− q
xiq

−χ(i<m) 7→ Y, ni = −i− χ(0 < m) for i = 1, . . . , d.

By Proposition 5.6 it is a polynomial in x0 of degree at most min{r, d}. It follows that the
Laurent polynomial in x0 of the numerator of Q(d)

x−vhv+

[

1− q−d

1− q
x0q

−χ(0<m) +
n
∑

i=1

1− qai

1− q
xiq

−χ(i<m)

] n
∏

i=1

(qxi/x0)ai ·D

has degree
n
∑

i=0

min{vi, d} − v0

in x0. Here

D :=
∏

1≤i<j≤n

(xi/xj)ai(qxj/xi)aj

is independent of x0. For n a positive integer the degree
n
∑

i=0

min{vi, d} − v0 ≤ v1 − v0 + nd < nd.

The last inequality holds because v1 < v0 by the fact that v0 is the unique largest part
of v. The above inequality shows that the degree in x0 of the numerator of Q(d) —
∑n

i=0min{vi, d} − v0 — is strictly less than nd, the degree in x0 of the denominator of
Q(d). Therefore, Q(d) is of the form (4.2). Then, by applying Lemma 4.1 to Q(d) with
respect to x0 we obtain

(5.16) CT
x0

Q(d) =
∑

0<u1≤n,
1≤k1≤d

Q(d | u1; k1),

where

Q(d | u1; k1) = Q(d)
(

1−
x0

xu1q
k1

)

∣

∣

∣

∣

x0=xu1q
k1

.

For each term in (5.16) we extract the constant term in xu1 , and then perform further
constant term extractions, eliminating one variable at each step. In order to keep track of
the terms we obtain, we introduce some notation from [8].
Let f be a rational function of x0, . . . , xn. For s a positive integer, let k = (k1, . . . , ks) and

u = (u1, . . . , us) be compositions such that 0 < u1 < · · · < us ≤ n. Define Eu,kf to be the
result of replacing xui

in f with xus
qks−ki for i = 0, . . . , s− 1, where u0 = k0 := 0. Then, for

d a positive integer and 0 < ki ≤ d,

(5.17) Q(d | u; k) := Q(d | u1, . . . , us; k1, . . . , ks) = Eu,k

(

Q(d)
s
∏

i=1

(

1−
x0

xui
qki

)

)

.
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Note that the product on the right-hand side of (5.17) cancels all the factors in the denomi-
nator of Q(d) that would be taken to zero by Eu,k.

Lemma 5.7. Let v be a composition such that v0 is its unique largest part, a1, . . . , an be
non-negative integers and m ∈ {0, 1, . . . , n+ 1}. For d ∈ {1, . . . , a1 + · · ·+ an + v0 − 1}, the
rational functions Q(d | u; k) defined as in (5.17) have the following properties:

(i) If 1 ≤ ki ≤ au1 + · · ·+ aus
for all i with 1 ≤ i ≤ s ≤ n, then Q(d | u; k) = 0.

(ii) If ki > au1 + · · ·+ aus
for some i ∈ {1, . . . , s}, then

(5.18) CT
xus

Q(d | u; k) =











∑

us<us+1≤n,
1≤ks+1≤d

Q(d | u1, . . . , us, us+1; k1, . . . , ks, ks+1) for us < n;

0 for us = n.

In particular,

(5.19) CT
xn

Q(d | 1, . . . , n; k1, . . . , kn) = 0.

Proof of (i). Taking bi 7→ aui
for i = 1, . . . , s and bs+1 = 0 in Lemma 5.4, we have the

following result. If 1 ≤ ki ≤ au1 + · · ·+ aus
for i = 1, . . . , s, then either 1 ≤ ki ≤ aui

for some
i, or −auj

≤ ki − kj ≤ aui
− 1 for some i < j. If 1 ≤ ki ≤ aui

for some i, then Q(d | u; k) has
the factor

Eu,k

(

(qxui
/x0)aui

)

=

(

xus
qks−ki

xus
qks

q

)

aui

= (q1−ki)aui = 0.

If −auj
≤ ki − kj ≤ aui

− 1 for some i < j, then Q(d | u; k) has the factor

Eu,k

(

(xui
/xuj

)aui (qxuj
/xui

)auj

)

= Eu,k

(

q(
auj

+1

2
)(−xuj

/xui
)auj (q−aujxui

/xuj
)aui+auj

)

,

which is equal to

q(
auj

+1

2
)(−qki−kj)auj (qkj−ki−auj )aui+auj

= 0.

Proof of (ii). Note that since d ≥ ki for all i, the hypothesis implies that d > au1 + · · ·+ aus
.

Let

(5.20) d =
s
∑

i=1

aui
+ b

for a positive integer b. Then 1 ≤ ki ≤
∑s

i=1 aui
+ b for all i = 1, . . . , s. If we take bi 7→ aui

for 1 ≤ i ≤ s and bs+1 7→ b in Lemma 5.4, then at least one of the following three cases holds:

(1) 1 ≤ ki ≤ aui
for some i with 1 ≤ i ≤ s;

(2) −auj
≤ ki − kj ≤ aui

− 1 for some 1 ≤ i < j ≤ s;
(3) there exists a permutation w ∈ Ss and a composition (t1, . . . , ts) such that

kw(j) − kw(j−1) = auw(j)
+ tj for 1 ≤ j ≤ s.

Here k0 = w(0) := 0, the ti satisfy
∑s

j=1 tj ≤ b and tj > 0 if w(j − 1) < w(j) for
1 ≤ j ≤ s.
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If either (1) or (2) holds, then Q(d | u; k) = 0 for 1 ≤ s ≤ n by the same argument as that
in part (i). In addition, (5.18) holds if the ki satisfy (1) or (2) since both sides vanish. It
remains to show that (5.18) holds if the ki satisfy (3). We discuss this according to the
following three cases: (a) s = n; (b) 1 ≤ s < n and us = n; (c) 1 ≤ s < n and us < n.
If s = n, then ui = i for i = 1, . . . , n. In this case, we prove (5.18) by showing that

(5.21) CT
xn

Q(d | 1, . . . , n; k1, . . . , kn) = 0

for the ki satisfy (3) and d > a1 + · · · + an. By (5.20) if s = n then b = d − a1 − · · · − an.
Together with d < a1 + · · ·+ an + v0 yields b < v0 for s = n. If the ki satisfy (3), then by
Proposition 5.5 with s 7→ n, bi 7→ ai for i = 1, . . . , n and bn+1 7→ b,

x(a)
m

∣

∣

∣ a0=−
∑n

i=1 ai−b,

xi=xnqkn−ki ,0≤i≤n

is of the form
−(qn1 + · · ·+ qnb)xn.

Here {n1, . . . , nb} is a set of integers. It follows that

(5.22) hv0

(

x(a)
m

)

∣

∣

∣ a0=−
∑n

i=1 ai−b,

xi=xnqkn−ki ,0≤i≤n

is of the form
hv0

[

−xn(q
n1 + · · ·+ qnb)

]

,

which vanishes for b < v0 by Proposition 5.6. Therefore, Q(d|1, . . . , n; k1, . . . , kn) = 0 because
it has (5.22) as a factor. Consequently, (5.21) holds.
To prove (5.18) for 1 ≤ s < n and the ki satisfy (3), we need Proposition 5.8. It shows that

Q(d | u; k) is a rational function of the form (4.2) with respect to xus
. Then we can apply

Lemma 4.1 to eliminate the variable xus
in Q(d | u; k).

If 1 ≤ s < n and us = n, then applying Lemma 4.1 yields CTxn
Q(d | u; k) = 0, since there

is no variable in Q(d | u; k) with index larger than n. Therefore, (5.18) holds for this case.
For 1 ≤ s < n and us < n, (5.18) holds if we can show that

(5.23) CT
xus

Q(d | u; k) =
∑

us<us+1≤n,
1≤ks+1≤d

Q(d | u1, . . . , us, us+1; k1, . . . , ks, ks+1).

For any rational function F of xus
and integers j and z, let Tj,zF be the result of replacing

xus
with xjq

z−ks in F . Since Q(d | u; k) is a rational function of the form (4.2) with respect
to xus

by Proposition 5.8, applying Lemma 4.1 gives

(5.24) CT
xus

Q(d | u; k) =
∑

us<us+1≤n
1≤ks+1≤d

Tus+1,ks+1

(

Q(d | u; k)
(

1−
xus

qks

xus+1q
ks+1

)

)

.

To prove (5.23), it suffices to show that

Q(d | u′; k′) = Tus+1,ks+1

(

Q(d | u; k)
(

1−
xus

qks

xus+1q
ks+1

)

)

,
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where u′ = (u1, . . . , us, us+1) and k′ = (k1, . . . , ks, ks+1). The equality follows easily from the
identity

(5.25) Tus+1,ks+1 ◦ Eu,k = Eu′,k′.

To see that (5.25) holds, we have

(Tus+1,ks+1 ◦ Eu,k) xui
= Tus+1,ks+1

(

xus
qks−ki

)

= xus+1q
ks+1−ki = Eu′,k′ xui

,

and if j /∈ {u0, u1, . . . , us} then (Tus+1,ks+1 ◦ Eu,k) xj = xj = Eu′,k′ xj . �

We complete the proof of Lemma 5.7 by proving the next proposition.

Proposition 5.8. Let a1, . . . , an be non-negative integers. Let s, d, u, k and Q(d | u; k) be
defined as in (5.17) such that 1 ≤ s < n and d > au1 + · · ·+ aus

. If the ki satisfy (3) in the
proof of Lemma 5.7, then Q(d | u; k) is a rational function of the form (4.2) with respect to
xus

.

Proof. Write Q(d | u; k) as N/D, in which N (the “numerator”) is

Eu,k

(

hv+

[

1− q−d

1− q
x0q

−χ(0<m) +

n
∑

i=1

1− qai

1− q
xiq

−χ(i<m)

]

× x−v
n
∏

j=1

(qxj/x0)aj
∏

1≤i,j≤n
j 6=i

(qχ(i>j)xi/xj)ai

)

,

and D (the “denominator”) is

Eu,k

( n
∏

j=1

(q−dx0/xj)d

/ s
∏

i=1

(1− q−kix0/xui
)

)

.

Since d > au1 + · · ·+ aus
, let d = au1 + · · ·+ aus

+ b for a positive integer b. Notice that

(5.26) Eu,k

(

hv+

[

1− q−d

1− q
x0q

−χ(0<m) +

n
∑

i=1

1− qai

1− q
xiq

−χ(i<m)

]

)

can be written as

hv+(x
(a)
m )
∣

∣

∣a0=−d=−
∑s

i=1 aui−b,

xui
=xusq

ks−ki ,0≤i≤s

.

It is of the form

hv+
[

−xus
(qn1 + · · ·+ qnb) + Y

]

by Proposition 5.5 with bi 7→ aui
for i = 1, . . . , s and bs+1 7→ b if the ki satisfy (3) in the proof

of Lemma 5.7. Here {n1, . . . , nb} is a set of integers and Y =
∑

i/∈U(1− qai)xiq
−χ(i<m)/(1− q)

is an alphabet independent of xus
, where U := {u0, u1, . . . , us} and u0 = 0. Thus, (5.26) is a
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polynomial in xus
of degree at most

∑n
i=0min{vi, b} by Proposition 5.6. It follows that the

parts of N contributing to the degree in xus
,

Eu,k

(

hv+

[

1− q−d

1− q
x0q

−χ(0<m) +

n
∑

i=1

1− qai

1− q
xiq

−χ(i<m)

]

×
∏

i∈U

x−vi
i

s
∏

i=1

∏

j /∈U

(qχ(ui>j)xui
/xj)aui

)

,

has degree at most
n
∑

i=0

min{vi, b} −
∑

i∈U

vi + (n− s)(au1 + · · ·+ aus
).

The parts of D contributing to the degree in xus
are

Eu,k

(

∏

j /∈U

(q−dx0/xj)d

)

,

which has degree (n− s)d. Let TD be the difference between the degrees in xus
of N and D.

TD : =
n
∑

i=0

min{vi, b} −
∑

i∈U

vi + (n− s)(au1 + · · ·+ aus
− d)

=
n
∑

i=0

min{vi, b} −
∑

i∈U

vi − (n− s)b.

Denote λ = (λ0, . . . , λn) = v+. Since v0 is the unique largest part of v, λ0 = v0 > λi for
i = 1, . . . , n. For 1 ≤ s < n

TD ≤
n
∑

i=n−s

min{λi, b} − λ0 −
n
∑

i=n−s+1

λi ≤
n
∑

i=n−s

λi − λ0 −
n
∑

i=n−s+1

λi = λn−s − λ0 < 0.

Consequently, Q(d | u; k) is a rational function of the form (4.2) with respect to xus
. �

Now we are ready to determine the roots of Dv,v+(a,m).

Lemma 5.9. Let (a1, . . . , an) and v = (v0, . . . , vn) be compositions such that v0 = max{v}
has multiplicity one in v. For −a0 ∈ {0, 1, . . . , a1+· · ·+an+v0−1} and m ∈ {0, 1, . . . , n+1},

(5.27) Dv,v+(a,m) = 0.

Note that Dv,v+(a,m) is a polynomial in qa0 of degree at most a1 + · · ·+ an + v0 for fixed
non-negative integers a1, . . . , an by Proposition 5.3. Assuming the conditions of Lemma 5.9,
for Dv,v+(a,m) viewed as a polynomial in qa0 , we find all its roots.

Proof. Since CT
x

Q(−a0) = Dv,v+(a,m), we prove the lemma by showing that

CT
x

Q(d) = 0
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for d ∈ {0, . . . , a1 + · · ·+ an + v0 − 1} under the assumptions of this lemma. We have shown
that CT

x
Q(0) = 0.

We prove by induction on n− s that

CT
x

Q(d | u; k) = 0 for d ∈ {1, . . . , a1 + · · ·+ an + v0 − 1}.

When s = 0 this is what we need. Note that taking constant term with respect to a variable
that does not appear has no effect. We may assume that s ≤ n and 0 < u1 < · · · < us ≤ n,
since otherwise Q(d | u; k) is not defined. If s = n then ui = i for i = 1, 2, . . . , n. Thus,

CT
x

Q(d | u1, . . . , un; k1, . . . , kn) = CT
x

Q(d | 1, . . . , n; k1, . . . , kn) = 0

for d ∈ {1, . . . , a1 + · · ·+ an + v0 − 1} by (5.19).
Now suppose 0 ≤ s < n. If part (i) of Lemma 5.7 applies, then Q(d | u; k) = 0. Otherwise,

part (ii) of Lemma 5.7 applies and (5.18) holds. Therefore, applying CT to both sides of
(5.18) gives

CT
x
(d | u; k) =











∑

us<us+1≤n
1≤ks+1≤d

CT
x

Q(d | u1, . . . , us, us+1; k1, . . . , ks, ks+1) for us < n,

0 for us = n.

By induction, every term in the above sum is zero, and so is the sum. �

Note that we can obtain a more general result by the similar argument as that about
Dv,v+(a,m) in this subsection: Let λ = (λ0, λ1, . . . ) be a partition and v = (v0, v1, . . . , vn) be
a composition such that λ ≥ v+, v0 = max{v} and λ0 > max{vi | i = 1, . . . , n}. Then

(5.28) Dv,λ(a,m) = 0 for −a0 ∈ {0, . . . , a1 + · · ·+ an + λ0 − 1}.

Furthermore, forDv,λ(a,m) viewed as a polynomial in qa0 , if λ0 > v0 then the number of roots
exceeds its degree. It follows that the polynomial Dv,λ(a,m) is identically zero. Together
with (5.4), we can conclude that Dv,λ(a,m) ≡ 0 for a partition λ and a composition v such
that λ ≥ v+ and λ0 > max{v}. This contains the vanishing part of Conjecture 1.1 as a
special case. For v ∈ Zn+1, the argument about Dv,λ(a,m) in this subsection is no longer
valid in general. For these cases, Cai obtained an orthogonality result, see Proposition 5.10
in the next subsection.

5.6. The value of Dv,v+(a,m) at a0 = 1. To determine Dv,v+(a,m), the last step is to
obtain its one non-vanishing value at an additional point. In this subsection, we characterize
the value of Dv,v+(a,m) at a0 = 1, and complete the proof of Theorem 5.1. We need a few
results first.
By (5.4), it is easy to see that Theorem 1.2 by Cai is equivalent to the next result.

Proposition 5.10. Let v ∈ Zn+1 and λ a partition such that |v| = |λ|. If Dv,λ(a,m) is
non-vanishing, then v+ ≥ λ.
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Note that we have a way to avoid using Proposition 5.10 hinted by Cai’s result in this
paper, but the method is too complicated to present here.
By Proposition 5.10, we show that the following constant terms vanish.

Lemma 5.11. Let (a1, . . . , an) and (v1, . . . , vn) be compositions. For r an integer such that
r > max{vi | i = 1, . . . , n}+ 1,
(5.29)

CT
x

hr[x̂
(a)
m ]

xr
0x

v1
1 · · ·xvn

n

n
∏

i=1

hvi [x0/q + x̂(a)
m ](1− x0/xi)(qxi/x0)ai

∏

1≤i<j≤n

(xi/xj)ai(qxj/xi)aj = 0,

where

x̂(a)
m :=

n
∑

i=1

1− qai

1− q
xiq

−χ(i<m),

and m ∈ {1, 2, . . . , n+ 1}.

Proof. By repeated use of (3.4) with X 7→ x0/q and Y 7→ x̂
(a)
m we can expand

∏n
i=1 hvi [x0/q+

x̂
(a)
m ] as

∑

0≤ki≤vi
1≤i≤n

(x0/q)
∑n

i=1 ki

n
∏

i=1

hvi−ki[x̂
(a)
m ].

Together with the expansion

n
∏

i=1

(1− x0/xi) =
n
∑

s=0

∑

1≤t1<···<ts≤n

(−1)s
xs
0

xt1 · · ·xts

,

the constant term in (5.29) becomes

∑

(−1)sqz CT
x

hµ[x̂
(a)
m ]

x∆
0 x

v1
1 · · ·xvn

n xt1 · · ·xts

n
∏

i=1

(qxi/x0)ai
∏

1≤i<j≤n

(xi/xj)ai(qxj/xi)aj ,(5.30)

where

z = −
n
∑

i=1

ki, µ = (r, v1 − k1, . . . , vn − kn)
+, and ∆ = r − s−

n
∑

i=1

ki,

and the sum is over all integers ki, ti and s such that 0 ≤ ki ≤ vi for 1 ≤ i ≤ n, 0 ≤ s ≤ n
and 1 ≤ t1 < · · · < ts ≤ n. Let C be a constant term in (5.30). We show that every C equals
0 according to the sign of ∆.
If ∆ > 0, then C = 0 by a degree consideration in x0.
If ∆ = 0, then

C = CT
x

hµ[x̂
(a)
m ]

xv1
1 · · ·xvn

n xt1 · · ·xts

n
∏

i=1

(qxi/x0)ai
∏

1≤i<j≤n

(xi/xj)ai(qxj/xi)aj .



24 YUE ZHOU

By a degree consideration in x0, it reduces to

C = CT
x

hµ[x̂
(a)
m ]

xv1
1 · · ·xvn

n xt1 · · ·xts

∏

1≤i<j≤n

(xi/xj)ai(qxj/xi)aj .

Let w = (w1, . . . , wn) be the vector such that xw1
1 · · ·xwn

n = xv1
1 · · ·xvn

n xt1 · · ·xts . Then C can
be written as

Dw,µ(a
(0), m− 1).

Since the largest part of µ is r, which exceeds the largest part of w (that is at most max{vi|i =
1, . . . , n}+ 1), w+ ≥ µ can not hold. Thus, we can conclude C = 0 by Proposition 5.10.
For ∆ < 0, let w = (w0, w1, . . . , wn) be the vector such that xw = x∆

0 x
v1
1 · · ·xvn

n xt1 · · ·xts .
Then

C = Dw,µ(a,m) | a0=0.

Because of the same reason as that for the ∆ = 0 case, w+ ≥ µ can not hold. Thus,
Dw,µ(a,m) = 0 by Proposition 5.10. It follows that

C = Dw,µ(a,m) | a0=0 = 0.

In summary, every summand in (5.30) equals 0 and so is the sum. �

Using Lemma 5.11 and the generating function of complete symmetric functions (1.3), we
can characterize the value ofDv,v+(a,m) at a0 = 1 for v a composition such that v0 = max{v}
has multiplicity one in v.

Lemma 5.12. Let v = (v0, . . . , vn) be a composition such that v0 is its unique largest part.
For m ∈ {1, 2, . . . , n+ 1}

(5.31) Dv,v+(a,m)|a0=1 = q−v0+
∑m−1

i=1 aiDv(0),(v(0))+(a
(0), m− 1).

Proof. By the definition of Dv,v+(a,m), for m ∈ {1, 2, . . . , n+ 1}

Dv,v+(a,m)|a0=1 = CT
x

hv+
[

x0/q + x̂
(a)
m

]

xv

n
∏

i=1

(1− x0/xi)(qxi/x0)aiDn(a
(0)),

where x̂
(a)
m :=

∑n
i=1 xi(1− qai)q−χ(i<m)/(1− q) and Dn(a

(0)) :=
∏

1≤i<j≤n(xi/xj)ai(qxj/xi)aj .

By (3.4) with X 7→ x0/q and Y 7→ x̂
(a)
m , expand hv0 [x0/q + x̂

(a)
m ] as

v0
∑

r=0

(x0/q)
v0−rhr[x̂

(a)
m ].

Then

Dv,v+(a,m)|a0=1 = q−v0

v0
∑

r=0

CT
x

hr[x̂
(a)
m ]h(v(0))+ [x0/q + x̂

(a)
m ]

(x0/q)rx
v1
1 · · ·xvn

n

n
∏

i=1

(1− x0/xi)(qxi/x0)aiDn(a
(0)).
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If r > v0, then r > max{vi | i = 1, . . . , n} + 1 because v0 is the unique largest part of v.
Hence, by Lemma 5.11 the constant term in the above sum equals 0 if r > v0. It follows that
Dv,v+(a,m)|a0=1 can be written as

q−v0 CT
x

∞
∑

r=0

hr[x̂
(a)
m ]h(v(0))+ [x0/q + x̂

(a)
m ]

(x0/q)rx
v1
1 · · ·xvn

n

n
∏

i=1

(1− x0/xi)(qxi/x0)aiDn(a
(0)).

By the generating function of complete symmetric functions (1.3) this becomes

q−v0 CT
x

h(v(0))+ [x0/q + x̂
(a)
m ]
∏n

i=1(1− x0/xi)(qxi/x0)aiDn(a
(0))

∏m−1
i=1 (xi/x0)ai

∏n
i=m(qxi/x0)aix

v1
1 · · ·xvn

n

.

Cancelling the same factors yields

q−v0 CT
x

h(v(0))+ [x0/q + x̂
(a)
m ]

xv1
1 · · ·xvn

n

m−1
∏

i=1

(1− x0/xi)(1− qaixi/x0)

1− xi/x0

n
∏

i=m

(1− x0/xi)Dn(a
(0))

= q−v0 CT
x

h(v(0))+ [x0/q + x̂
(a)
m ]

xv1
1 · · ·xvn

n

m−1
∏

i=1

(qai − x0/xi)

n
∏

i=m

(1− x0/xi)Dn(a
(0)).

By a degree consideration in x0, it further reduces to

q−v0+
∑m−1

i=1 ai CT
x

h(v(0))+ [x̂
(a)
m ]

xv1
1 · · ·xvn

n

Dn(a
(0)),

which can be written as

q−v0+
∑m−1

i=1 aiDv(0),(v(0))+(a
(0), m− 1). �

Now we obtain all the ingredients for characterizing Dv,v+(a,m) if v is a composition such
that v0 = max{v} has multiplicity one in v, and m ∈ {1, 2, . . . , n + 1}. By Proposition 5.3,
Dv,v+(a,m) is a polynomial in qa0 of degree at most a1 + · · ·+ an + v0 for fixed non-negative
integers a1, . . . , an. By Lemma 5.12

Dv,v+(a,m)|a0=1 = q−v0+
∑m−1

i=1 aiDv(0),(v(0))+(a
(0), m− 1).

By Lemma 5.9

Dv,v+(a,m) = 0

for −a0 ∈ {0, 1, . . . , a1 + · · ·+ an + v0 − 1}. Hence, the above properties uniquely determine
Dv,v+(a,m) as

(5.32) Dv,v+(a,m) = q−v0+
∑m−1

i=1 ai

[

v0 + |a| − 1

a0 − 1

]

Dv(0),(v(0))+(a
(0), m− 1).

This completes the proof of Theorem 5.1.
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