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Abstract. There exists a well established differential topological theory of
singularities of ordinary differential equations. It has mainly studied scalar
equations of low order. We propose an extension of the key concepts to ar-
bitrary systems of ordinary or partial differential equations. Furthermore, we
show how a combination of this geometric theory with (differential) algebraic
tools allows us to make parts of the theory algorithmic. Our three main results
are firstly a proof that even in the case of partial differential equations regular
points are generic. Secondly, we present an algorithm for the effective detection
of all singularities at a given order or, more precisely, for the determination of
a regularity decomposition. Finally, we give a rigorous definition of a regular
differential equation, a notoriously difficult notion ubiquitous in the geometric
theory of differential equations, and show that our algorithm extracts from
each prime component a regular differential equation. Our main tools are on
the one hand the algebraic resp. differential Thomas decomposition and on the
other hand the Vessiot theory of differential equations.

1. Introduction

Many different forms of singular behaviour appear in the context of differential
equations and many different views have been developed for them. Most of them
are related to singularities of individual solutions of a given differential equation
like blow-ups or shocks, i. e. either a solution component or some derivative of
it becomes infinite. By contrast, we will be concerned with singularities of the
differential equation itself. Using the geometric theory of differential equations
[41, 43], (systems of) differential equations are identified with subsets of suitable
jet bundles and singularities are special points on these subsets.

Within differential topology, singularities of smooth maps between manifolds
[2, 18] have been much studied. The geometric singularities of differential equations,
which is our main topic here, may be viewed as a special case (overviews over some
basic results can be found in [1] or [36]). The main emphasis in the literature has
been on the classification of singularities (see e. g. [9]) and on the construction of
local normal forms for them. Of course, such questions can be reasonably treated
only in sufficiently small dimensions and hence most works consider only scalar
ordinary differential equations of first or second order. With similar techniques,
singularities of solutions of partial differential equations have been studied e. g. in
[17, 30], but as already mentioned this represents a different problem.

By contrast, we are concerned with the effective treatment of general systems of
differential equations, i. e. also of under- or overdetermined systems of ordinary or
partial differential equations. For this purpose, we extend the needed concepts from
differential topology to systems which are not of finite type and we combine them
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with (differential) algebraic algorithms to make them effective. Such a combination
of geometric and algebraic approaches to singularities appeared already in the work
of Hubert [20] on scalar first-order ordinary differential equations. However, we
cover much more general situations than she did; in particular, we admit systems,
equations of arbitrary order and partial differential equations.

We concentrate in this work on the definition and the algorithmic detection
of singularities of general differential systems. The analysis of the local solution
behaviour around a singularity represents a much harder problem that probably
cannot be solved at the same level of generality or effectivity. The algebraic tech-
niques employed by us require that we work over the complex numbers and that
we restrict to differential equations with polynomial nonlinearities. From the point
of view of applications, the latter restriction is not very serious, as most differential
systems arising in applied sciences are polynomial.

Studying fully nonlinear or implicit systems is not at all straightforward and
we need to address several challenges. For systems of differential equations, the
corresponding subsets of jet bundles are no longer hypersurfaces leading to a much
more complicated relation between the given differential system and the surfaces
defined by it. As a further complication, general systems of differential equations
may hide integrability conditions, which must be exhibited explicitly before state-
ments about the existence and uniqueness of solutions can be made. These facts
make case distinctions (which are related to the appearance of singularities) un-
avoidable. Furthermore, in the case of partial differential equations the completion
may require to move to higher-order jet bundles, so that a priori it is not even clear
at what order any further analysis should be performed.

Our approach proceeds in two steps: a differential one and an algebraic one.
In the first step, we use the differential Thomas decomposition [49, 50] (see [4, 5,
15, 16, 40] for modern treatments) to split the input system into a finite set of
so-called simple differential systems. Besides the splitting, the differential step also
takes care of the just mentioned problem of hidden integrability conditions, as it
includes a completion procedure. Each of the arising simple differential systems
is then analysed separately. This decomposition also addresses singular integrals,
which are automatically isolated into separate simple systems, whereas the general
integral corresponds to other systems. However, we do not claim to detect whether a
system corresponds to singular integrals, a problem which seems hard and is closely
connected to the so-called Ritt problem [25, §IV.9]. An alternative to the Thomas
decomposition is the Rosenfeld-Gröbner algorithm [6]; the splittings it performs,
however, do not in general result in decompositions of the solution set into pairwise
disjoint subsets. An elimination method for differential algebra based on splittings
analogous to Thomas’ ones was developed by Seidenberg [42].

For the algebraic step, we must first choose a suitably high order in which we
want to analyse the simple differential system. We associate with the differen-
tial system a polynomial radical ideal in the coordinate ring of the jet bundle of
the chosen order and introduce this way algebraic jet sets as a geometric model
of the differential system (Definition 2.1). Over such sets, we study their Vessiot
cones which are fundamental for defining geometric singularities. Using the al-
gebraic Thomas decomposition, we partition algebraic jet sets with respect to the
behaviour of the Vessiot cones and show that such a decomposition is equivalent to
the identification of all geometric singularities. For finding algebraic singularities,
we augment this procedure with a suitable version of the Jacobian criterion from
algebraic geometry.

In the algebraic step, we must study more general situations than usually con-
sidered in the differential topological approach to singularities. Hence, we extend
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this approach in several directions. We provide a more general definition of geomet-
ric singularities that can also handle partial differential equations (Definition 4.1).
This requires a considerably more involved definition taking into account a whole
neighbourhood of the studied point, whereas the classical definitions use pointwise
criteria. In the case of systems, one can no longer expect that singularities are
isolated points, as it is traditionally done at least for irregular singularities. There-
fore, we introduce the novel notion of a regularity decomposition of an algebraic jet
set (Definition 5.2) as a partitioning into subsets on which the relevant geometric
structures (the Vessiot and symbol cones) show a uniform behaviour.

Our first two main results concern these generalisations. Theorem 4.7 proves that
the regular points form a Zariski open and dense subset and thus justifies calling
the other points singular. In the situations traditionally considered in differential
topology or analysis, i. e. for differential equations of finite type, this statement is
fairly trivial. As we also include equations which are not of finite type, we must
prove the existence of a smooth regular involutive distribution of the right dimen-
sion on some neighbourhood of any regular point which requires the application of
advanced results from the geometric theory of differential equations. Our second
main result concerns the existence of regularity decompositions for arbitrary dif-
ferential systems. We provide here a constructive proof by providing an explicit
algorithm for the effective construction of such decompositions (Algorithms 5.3 and
5.14) and proving its correctness (Theorem 5.13).

Our third and final main result concerns an old problem in the geometric theory
of differential equations. There one usually considers only regular differential equa-
tions. However, in many cases not even a precise definition of this term is given
and an effective test for regularity is still unknown to the best of our knowledge,
as it involves considering not only one order, but all orders. Hence, we first pro-
vide a rigorous definition of this notion within our framework (Definition 6.1) and
then Theorem 6.3 asserts that our algorithm for the construction of a regularity de-
composition automatically identifies in each irreducible component a Zariski dense
subset that is a regular differential equation.

This article is structured as follows. In Sections 2 and 3, we combine differential
algebraic concepts with the geometric theory of differential equations, leading to
algebraic jet sets. In Section 4 we extend the classical definition of singularities to
arbitrary systems of differential equations, including partial differential equations,
and show that regular points are dense. The subsequent Section 5 introduces our
concept of a regularity decomposition of a differential system and presents an algo-
rithm to compute this decomposition. Then, Section 6 looks at regular behaviour
in prolongations and where it appears in our decomposition. Section 7 treats some
examples in detail. Finally, some conclusions are given in Section 8.

2. Connecting Algebra and Geometry

In this section, we lay the groundwork to formalise and effectively prove the
theorems of the later sections, by adapting and combining the geometric theory of
differential equations and methods from (differential) algebra. For the convenience
of the reader, we briefly summarise some basic concepts of the geometric theory in
Appendix C and (differential) algebra in Appendices A and B.

This combination of methods represents a non-trivial task, as the philosophies
behind the used geometric and algebraic approaches are very different. In differen-
tial algebra, one always considers all orders simultaneously by studying differential
ideals. This implies that one has to deal with infinitely many variables. Such an ap-
proach is particularly adapted to tackle completion questions, i. e. the construction
of hidden integrability conditions, for which it is unclear how geometric approaches
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could be extended in the presence of singularities.1 By contrast, in the geometric
theory one works typically in a jet bundle of fixed order which allows to define
singularities as points with special properties, whereas the Kolchin topology in dif-
ferential algebra employs a rather generic notion of points not suitable to describe
singularities.

As our algebraic tools require that the underlying field is algebraically closed, we
consider throughout complex differential equations, i. e. all variables are assumed to
be complex-valued. While the starting point of the geometric theory is an arbitrary
fibred manifold π : E → X , we consider exclusively trivial bundles with total space
E = Cn × Cm, base space X = Cn and π the projection on the first factor. As
all our work is of a local nature, this restriction is not serious. But it allows us to
identify the total spaces of the jet bundles J`π with affine spaces Ad

C
of suitable

dimensions d and thus apply standard concepts from algebraic geometry to these
spaces. We use two topologies on J`π, namely the Zariski topology and the standard
topology induced by the Euclidean metric. To avoid confusions, we will always write
explicitly Zariski respectively metric open or closed.

Definition 2.1. An algebraic jet set of order ` is a locally Zariski closed subset
J` ⊆ J`π of a jet bundle of order ` (i. e. the difference of two varieties in J`π).
It is an algebraic differential equation of order `, if in addition the metric closure
of π`(J`) is the whole base Cn. An algebraic jet set or an algebraic differential
equation is called irreducible, if it is an irreducible locally Zariski closed subset.

Compared with the classical geometric Definition C.2 of a differential equation,
varieties are used here instead of manifolds which is simultaneously a generalisation
and a restriction. On one side, we permit that the differential equation J` contains
singular points in the sense of algebraic geometry. On the other side, we consider
exclusively differential equations which can be globally described as the solution
set of an algebraic system on J`π with polynomials pi, qj ∈ D` (see Appendices A
and B for notations and definitions).

Definition C.2 furthermore requires that the restriction of the canonical projec-
tion π` : J`π → X to the set J` is a surjective submersion. We are relaxing this
requirement in two directions: surjectivity is replaced by a closure condition for
the image and we do not impose a maximal rank condition. The second relaxation
is crucial for the definition of geometric singularities. Surjectivity of the restricted
projection represents a geometric way of saying that the independent variables are
indeed independent, as otherwise our differential equation could imply relations
between them. However, this idea is also captured by our condition on the metric
closure of its image and for an equation like xu′ = 1 surjectivity represents too
strong a condition. We use the metric closure here instead of the Zariski one, as
for the analysis of the local solution behaviour around singularities (which we will
not do in this work) it is important that exceptional points may be considered as
the limit of a sequence of points in π`(J`).

In applications, the typical starting point is a differential system of the form
S = { p1 = 0, . . . , ps = 0, q1 6= 0, . . . , qt 6= 0 } as introduced in (D) in Appendix B
rather than an algebraic differential equation as defined above. Thus we start on
the differential algebraic side and discuss now how we can obtain geometric objects
(and algebraic descriptions of them). It turns out that this process involves a
number of subtleties requiring a careful discussion.

1A fundamental problem arises already in the geometric definition of a prolonged equation, if
the given equation is not a manifold but only a variety. Thus basic notions like formal integrability
or involution are highly non-trivial to generalise to equations admitting singularities and to our
knowledge nobody has done this so far.
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We associate with such a differential system S the differential ideal

Îdiff(S) := 〈p1, . . . , ps〉∆ ⊆ D

generated by the equations in S. It induces for any order ` ∈ N0 the algebraic ideal

Î`(S) := Îdiff(S) ∩ D` ⊆ D`
as the corresponding finite-dimensional truncation. Note that this ideal automati-
cally contains all hidden integrability conditions up to order `. The inequations in
the differential system S are also used to define for any order ` ∈ N0 an algebraic
ideal,2 however, in a slightly different manner:

K`(S) := 〈Q̂`〉D` with Q̂` =

t∏
j=1

ord (qj)≤`

qj .

These ideals lead then to the algebraic jet sets

(1) Ĵ`(S) := Sol
(
Î`(S)

)
\ Sol

(
K`(S)

)
⊆ J`π

consisting of all points of J`π satisfying both the equations and the inequations
in S interpreted as algebraic equations in J`π. Since their definition is based
on the differential ideal Îdiff(S), these sets satisfy for any k > 0 the inclusions
π`+k`

(
Ĵ`+k(S)

)
⊆ Ĵ`(S). In fact, we always have π`+k`

(
Sol
(
Î`+k(S)

))
= Sol

(
Î`(S)

)
,

but the inequations may lead to a strict inclusion of the above jet sets [29].

Remark 2.2. While it is possible to define the ideals Î`(S) and the algebraic jet
sets Ĵ`(S) for any order ` ∈ N0, these ideals and sets are really meaningful only if
no equation pi in the underlying differential system is of an order greater than `.
Assuming that the system S is solvable and the sets Ĵ`(S) are algebraic differential
equations, their solution sets are otherwise not comparable, as all equations in S
of order greater than ` are ignored in the construction of Ĵ`(S). In particular, for
different values of ` the corresponding equations Ĵ`(S) may have different solution
sets. Note that the orders of the inequations in S are irrelevant here, as they should
be more considered as conditions on allowed initial data. From now on, we always
assume that ` is sufficiently large.

While this construction of the algebraic jet sets Ĵ`(S) appears very natural, it
faces a number of serious challenges making it inadequate for our purposes:

(i) There may exist differential polynomials vanishing on every solution in
Sol (S), but not contained in the differential ideal Îdiff(S).

(ii) It is not so easy to study the algebraic jet sets Ĵ`(S), as e. g. the ideals
Î`(S) are generally not radical—this is a consequence of (i)—and thus not
the vanishing ideals of the underlying variety. In particular, it is not imme-
diately obvious whether the algebraic jet sets are non-empty. Furthermore,
the algebraic jet sets Ĵ`(S) are not necessarily algebraic differential equa-
tions, as it is not guaranteed that their projection π`

(
Ĵ`(S)

)
satisfies the

closure condition of Definition 2.1.
(iii) The effective determination of bases for the algebraic ideals Î`(S) is non-

trivial, because of the possible existence of hidden integrability conditions.

2Note that it is pointless to introduce a differential ideal defined by the inequations, as differ-
entiating an inequation does not lead to a condition that has to be satisfied by any holomorphic
or formal solution of the differential system S.
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(iv) The algebraic jet sets Ĵ`(S) may be too small, as interpreting differential
inequations as algebraic ones leads to a change in their semantics elimi-
nating many “interesting” points. Assume for simplicity that the system S
contains the inequation ux 6= 0. It entails that the x-derivative of any so-
lution of S can never be the zero function. Nevertheless, it is well possible
that the x-derivative of a solution possesses zeros and thus the correspond-
ing jets of this solution have a vanishing ux-coordinate. However, no point
on a set Ĵ`(S) with ` > 0 can have a vanishing ux-coordinate [29].

Challenge (i) requires a differential Nullstellensatz for differential systems, i. e.
an extension of Theorem B.1 that also includes inequations. [40, Lemma 2.2.62]
asserts that the vanishing ideal of Sol (S) is given by the differential ideal

(2) Idiff(S) :=

√
Îdiff(S) : Q̂∞ ⊆ D with Q̂ =

t∏
j=1

qj .

Hence as first step we must replace the differential ideal Îdiff(S) by this ideal. How-
ever, using directly the above definition of Idiff(S) makes its explicit determination
rather expensive because of the required radical computation (so that Challenge (iii)
becomes even more pronounced).

Our next step towards overcoming the mentioned difficulties consists of restrict-
ing to simple differential systems. For any differential system S, a differential
Thomas decomposition provides us with simple differential systems S1, . . . , Sk such
that Sol(S) is the disjoint union of the sets Sol(Si). Hence after such a decomposi-
tion we may analyse instead of the original system S one by one the simple systems
S1, . . . , Sk. Recall, however, that such a decomposition is not unique.

So we assume from now on that S is a simple differential system. For simple sys-
tems, [40, Prop. 2.2.72] entails that the ideal Idiff(S) defined in (2) may alternatively
be constructed via a simple saturation without an explicit radical computation:

(3) Idiff(S) = Îdiff(S) : Q∞ with Q =

s∏
i=1

(init (pi) · sep (pi)) .

Note that now we do not saturate with respect to the inequations in S but with
respect to the product of the initials and separants of all the equations in the
differential system S.3 As before, we use the differential ideal Idiff(S) to introduce
for any sufficiently large order ` (see Remark 2.2) the algebraic ideal

(4) I`(S) := Idiff(S) ∩ D` ⊆ D` .

Since the differential ideal Idiff(S) is radical, the same is true for all the finite
truncations I`(S) which greatly simplifies the study of their varieties. Our steps so
far suggest to consider instead of the sets Ĵ`(S) the algebraic jet sets

(5) J`(S) := Sol
(
I`(S)

)
\ Sol

(
K`(S)

)
⊆ J`π .

Lemma 2.3. Given a simple differential system S, these algebraic jet sets satisfy
πk+`
`

(
J`+k(S)

)
= J`(S) for all prolongation orders k > 0.

3Given an arbitrary differential system S, let S1, . . . , Sk be the simple systems of any differential
Thomas decomposition of it. Then [40, Prop. 2.2.72] yields the ideal decomposition

Idiff(S) =
k⋂

i=1

Îdiff(Si) : Q
∞
i

where Qi is the product of the initials and separants of the equations in Si. This intersection is
in general not minimal, but no effective way is known to decide whether or not an ideal in this
intersection is superfluous, which is again the so-called Ritt problem [25, §IV.9].
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Proof. As already mentioned above, the fact that the algebraic ideals I`(S) stem
from a differential ideal entails that πk+`

`

(
Sol
(
I`+k(S)

))
= Sol

(
I`(S)

)
. Since we

are now dealing with a simple differential system, no leader of an inequation is a
derivative of a leader of an equation and the leaders of all equations and inequations
are pairwise different. Hence we also have πk+`

`

(
Sol
(
K`+k(S)

))
= Sol

(
K`(S)

)
. �

Note that this result resembles the definition of formal integrability in the geo-
metric theory of differential equations [43, Def. 2.3.15]. However, many regular-
ity assumptions are made in the geometric theory and given a fibred submanifold
J` ⊆ J`π its prolongation J`+k ⊆ J`+kπ is defined via an intrinsic geometric
process. Formal integrability is then a special property of some submanifolds J`
encoding the absence of hidden integrability conditions. In our approach, it is an
automatic consequence of the use of a differential ideal and the simplicity of the
defining differential system.

Remark 2.4. From a geometric point of view, saturations as they appear in (2) and
(3), respectively, have the following meaning: Sol(I : J∞) is the Zariski closure of
the set Sol(I) \ Sol(J). Thus, since the same ideal Idiff(S) appears in (2) and (3),
the variety Sol

(
I`(S)

)
is the Zariski closure of the set obtained by removing from

Sol
(
Î`(S)

)
either all points at which a separant or an initial of an equation in the

system S vanishes or Sol(K`). In both cases, the Zariski closure restores many of
the removed points. This is important for us, as most of the singularities we are
interested in are actually such points.

However, if a whole irreducible component of Sol
(
Î`(S)

)
consists only of such

removed points, then it remains removed. Indeed, there are two possibilities for
such a component. Either it does not define an algebraic differential equation on
its own. Then it trivially cannot have any solutions and there is no point in looking
for singularities. Or if it is an algebraic differential equation, then we analyse it
elsewhere. Indeed, recall that we obtained a simple system only by computing a dif-
ferential Thomas decomposition of our original system and the removed component
corresponds to some other simple system arising in this decomposition.

By [27, Thm. 1.94], the ideal I`(S) is furthermore equidimensional in the sense
that all of its associated primes possess the same dimension which excludes in
particular the existence of embedded prime components. This represents a further
simplification entailed by the restriction to simple systems.

Remark 2.5. It follows from [27, Cor. 1.96] that the set of equations in any sim-
ple differential system forms a regular chain. Hence the ideals I(S) and I`(S) are
(differentially resp. algebraically) characterisable, i. e. ideals defined by character-
istic sets (cf. [21, 22] for a survey of the properties of such ideals and [28] for an
application).

Even after this replacement, Challenge (iv) remains open and indicates that
we should enlarge the sets J`(S). However, for a general algebraic differential
equation J` we face another challenge. If we consider the subset of J` obtained
as the union of the images of all prolongations j`σ of classical solutions of the
equation, then this subset may cover only a small part of J` (this happens in
particular, if hidden integrability conditions exist). As one of the main aspects of
singularities is an analysis of the local solution behaviour in their neighbourhood,
we only want situations where this subset lies dense in the considered differential
algebraic equation. This motivates the following notion.

Definition 2.6. The algebraic differential equation J` ⊂ J`π is locally integrable,
if J` contains a Zariski open and dense subset R` ⊆ J` such that for every point
ρ ∈ R` at least one classical solution σ exists with ρ ∈ im j`σ.
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In general, it is difficult to decide whether a given algebraic differential equation
J` ∈ J`π is locally integrable, as this obviously requires an existence theory for
solutions. In particular, such a decision cannot be made by a purely geometric
analysis of J`, but requires the considerations of higher-order equations, too (large
parts of [43] are concerned with this question in the regular case). However, the
situation is different under our assumption of a simple differential system, as for
such systems the local integrability is essentially part of their definition. More
precisely, we obtain the following result which already indicates how the above
defined algebraic jet sets J`(S) can be enlarged without losing this property.

Proposition 2.7. Let S be a simple differential system with respect to a Riquier
ranking and consider for an arbitrary order ` ∈ N the above defined algebraic jet set
J`(S). Then its Zariski closure J`(S) is a locally integrable algebraic differential
equation.

Proof. Obviously, J`(S) is Zariski dense in J`(S) and it suffices to prove that J`(S)
is a locally integrable algebraic differential equation. The proof of the local integra-
bility essentially boils down to an extension of Remark B.5 where the construction
of formal power series solutions is discussed. We consider the Zariski open subset
R` ⊆ J`(S) consisting of all smooth points at which no separant or initial of an
equation in S vanishes. By the considerations in Remark 2.4, R` is even Zariski
dense in J`. As remarked in [16, Cor. 11], one can now straightforwardly adapt
the proof of Riquier’s Theorem B.2 and conclude that the formal power series con-
structed in Remark B.5 converges to a holomorphic solution σ defined on some
open subset of Cn. �

We are thus lead to consider the Zariski closure J`(S) instead of J`(S). Since
it is a Zariski closed set in J`π and thus a variety, we are obviously interested
in its vanishing ideal. Since I`(S) is a radical ideal and we are working over an
algebraically closed field, it is a classical result in algebraic geometry that it is
given by the quotient ideal I`(S) : Q̂` (cf. e. g. [8, Chapt. 4, Sect. 4, Thm. 7]). The
following lemma shows that in our case this quotient simply means to ignore the
inequations in the system.

Lemma 2.8. For any order ` ∈ N we have J`(S) = Sol
(
I`(S)

)
.

Proof. Our assertion is equivalent to the following equality:(√
Îdiff(S) : Q̂∞ ∩ D`

)
: Q̂` =

√
Îdiff(S) : Q̂∞ ∩ D` .

The inclusion “⊇” is clear. For the reverse inclusion, we first note that, since Q̂`
divides Q̂, we have Q̂ = Q̂`Q̃ for some Q̃ ∈ D. Let P ∈ D` be such that (PQ̂`)

k ∈
Îdiff(S) : Q̂∞ for some positive integer k. Then there exists an exponent r ∈ N0

such that P kQ̂k` Q̂
r ∈ Îdiff(S). Multiplication by Q̃k yields that P kQ̂r+k ∈ Îdiff(S).

Hence P k ∈ Îdiff(S) : Q̂∞ and thus P lies in the radical. �

By definition, the equations in a simple differential system define a passive sys-
tem. This observation allows us to resolve Challenge (ii). Passivity implies consis-
tency making it impossible that an equation pi depends only on the independent
variables xj . Hence for each algebraic jet set Sol

(
I`(S)

)
it is clear that its image

under the canonical projection π` satisfies the closure condition of Definition 2.1
and thus that it is an algebraic differential equation. Furthermore, a passive system
cannot contain a constant implying via Hilbert’s Nullstellensatz that all these sets
are non-empty.
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Remark 2.9. The passivity of the equations also allows us to solve the remaining
Challenge (iii): the explicit construction of generators for the algebraic ideals I`(S)

which we now use instead of Î`(S). The definition of passivity is based on the notion
of (non-)multiplicative variables [15, 40]. Consider now for any ` the following set

(6) B≤` :=
{
δµpi | 1 ≤ i ≤ s, |µ|+ ord (pi) ≤ `,

µj = 0 if j not Janet multiplicative for pi
}

obtained by differentiating each equation in S with respect to its multiplicative
variables until the order ` is reached. It provides us with an explicit generating set
of the ideal Î`(S).

We define an algebraic system S≤` by taking the elements of B≤` as the equations
and keeping all inequations of S with order less than or equal to `. Since S is
assumed to be a simple differential system, it is easy to see that S≤` is a simple
algebraic system (both the initial and the separant of a derivative δkpi are simply
the separant of pi). In [27, Lemma 1.93], it is shown that Ialg(S≤`) = I`(S),
where the ideal Ialg(S≤`) is defined in Equation (20). Recall from (20) that the
determination of Ialg(S≤`) requires a saturation. Thus an explicit basis of I`(S) is
obtained by saturating the ideal generated by B≤` by the product of the initials of
the elements of B≤`. This operation can be done effectively using Gröbner bases.
It follows from Remark 2.4 and the definition (20) of Ialg that Sol (S≤`) = J`(S).

Example 2.10. To demonstrate in particular the effect of the saturation in the def-
inition of the ideal Idiff(S), we consider the following differential system consisting
of two partial differential equations for an unknown function u(x, y):

(7) p1 := uux − yu− y2 , p2 := yuy − u .

Adding the inequation sep (p1) = u 6= 0 yields the only simple differential system S
appearing in a differential Thomas decomposition of the system (7). If we start
with the differential ideal Îdiff(S) = 〈p1, p2〉∆, then the algebraic ideal Î1(S) =

Îdiff(S) ∩ D1 has the prime decomposition Î1(S) = 〈p2, p3〉 ∩ 〈u, y〉 where

(8) p3 := uyux − u− y

and hence also Îdiff(S) cannot be a prime. The saturation by Q := yu used in
the definition (3) of Idiff(S) removes the prime component 〈u, y〉 of Î1(S), more
precisely Idiff(S) = 〈p2, p3〉∆ and thus I1 = 〈p2, p3〉 ⊂ D1 (note that p1 = yp3 −
uxp2). Indeed, if we compare for any order ` > 0 the algebraic jet sets Sol (I`(S)) ⊂
Sol (Î`(S)) ⊂ J`π, then we see that at all removed points the separants of the
equations (7) vanish.

In this particular case, the generators of the removed prime component do not
define a consistent differential system, as one of them is the independent vari-
able y. Hence we are not losing any solutions by its removal. In other examples, we
may remove components defining consistent systems. However, in such cases the
properties of the differential Thomas decomposition ensure that the corresponding
solutions appears in some other simple differential system.

Remark 2.11. Riquier’s Theorem B.2 asserts that a certain initial value problem
adapted to the choice of leaders in the equations of the system possesses a unique
holomorphic solution (the explicit construction of the corresponding initial condi-
tions is explained in more modern terms in [47]; see also [43, Sect. 9.3]). If the
system S≤` is of finite type, then the coordinates of the considered point ρ ∈ J`
provide all required initial data and in this case the holomorphic solution σ such
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that ρ ∈ im j`σ is uniquely determined. Otherwise, the coordinates of the con-
sidered point ρ ∈ J` provide only values for a finite subset of the infinitely many
arbitrary Taylor coefficients of the series constructed in Remark B.5. Hence, in this
case infinitely many different holomorphic solutions σ exist such that ρ ∈ im j`σ,
all of which possess the same Taylor expansion up to order `.

3. Vessiot Cones and Generalised Solutions

In Appendix C, we recall some basic concepts of Vessiot’s approach to a solution
theory for differential equations. Again some adaptions are required, as we are now
using a more general notion of differential equations. Furthermore, it turns out
useful for the study of singularities to introduce a more general concept of solutions
than the classical solutions of Definition C.3.

The Vessiot space Vρ[J`] (cf. Definition C.4) at a point ρ on a differential equation
J` consists of the tangential part of the contact distribution at ρ. As an algebraic jet
set J` is a locally Zariski closed subset which may contain non-smooth points, the
question arises how this definition should be extended. One could continue to apply
it without changes using the tangent space TρJ` in the sense of algebraic geometry.
Then one would still obtain linear spaces; however, their dimension would be too
high. We prefer therefore another extension. Given a classical solution σ of J`
such that ρ ∈ im j`σ, it follows from a well-known characterisation of the tangent
cone as limit of secants (see e. g. [8, §9.7, Thm. 6]) that actually Tρ(im j`σ) ⊆ CρJ`
where CρJ` denotes the tangent cone of J` at ρ. This observation motivates the
following extension of Vessiot spaces.

Definition 3.1. The Vessiot cone Vρ[J`] of the algebraic jet set J` ⊆ J`π at a
point ρ ∈ J` is the set Vρ[J`] = TρJ` ∩ C`|ρ.

We continue to denote the family of all Vessiot cones by V[J`]. At smooth
points, the tangent cone and the tangent space coincide and therefore we still
speak of Vessiot spaces at such a point. The following elementary result recalls
how Vessiot spaces can be easily computed at smooth points. As a consequence of
it, we still often call V[J`] the Vessiot distribution of J` in the sequel, although,
strictly speaking, this terminology is not correct, as a cone is generally not a linear
space, but only a union of one-dimensional linear spaces.

Proposition 3.2. Let J` be an irreducible algebraic jet set. Then the family of
Vessiot cones V[J`] define on a Zariski open and dense subset OV ⊆ J` a smooth
regular distribution.

Proof. The subset of all smooth points of J` is Zariski open and dense and defines
a connected complex manifold [19, Sect. 0.2]. At any point ρ of this manifold,
the tangent space TρJ` and thus the Vessiot space Vρ[J`] can be computed using
linear algebra. As a locally Zariski closed set, the algebraic jet set J` is a Zariski
open subset of the zero set of some polynomial functions Φτ : J`π → C. Since, by
definition, the Vessiot spaces are contained in the contact distribution, we make for
any vector V ∈ Vρ[J`] the ansatz

V =
∑
i

aiC
(`)
i |ρ +

∑
|µ|=`

∑
α

bαµC
µ
α |ρ(9)

with yet to be determined coefficients ai, bαµ ∈ C. At a smooth point ρ, such a
vector is tangential to J`, if and only if it satisfies dΦτ |ρ(V) = 0 for all τ . Hence,
we obtain a homogeneous linear system for the coefficient vectors a, b,

D(ρ)a +M`(ρ)b = 0 ,(10)
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where the entries of the matrices D, M` are given by4

Dτ
i (ρ) = C

(`)
i (Φτ )(ρ) , (M`)

τµ
α (ρ) = Cµα(Φτ )(ρ) .(11)

In general, the behaviour of (10) varies over J`; e. g. the dimension of Vρ[J`] may
jump. However, considered as functions of ρ, the solutions of (10) are smooth out-
side of a Zariski closed set and—by potentially enlarging this set—we may even as-
sume that the dimension remains constant, being an upper semicontinuous function.
Thus on a Zariski open and dense set we obtain a smooth regular distribution. �

In an analogous way, we extend the notion of a symbol space to that of a symbol
cone. Again it is straightforward to show that on a Zariski open subset of J` the
symbol spaces Nρ[J`] define a smooth regular distribution N[J`]. At a smooth
point ρ ∈ J`, the symbol space Nρ[J`] consists of those solutions of (10) for which
all coefficients a vanish. Hence, at smooth points we can always decompose the
Vessiot space as a direct sum of linear subspaces,

Vρ[J`] = Nρ[J`]⊕Hρ ,(12)

with some π`-transversal complement Hρ which is not uniquely determined.

Remark 3.3. If one computes for a differential equation J` order by order a formal
power series solution around some expansion point, then one obtains for the Taylor
coefficients of order `+ 1 an inhomogeneous linear system with a matrix and right
hand side depending on the lower order coefficients (see [43, Sect. 2.3] for more
details). One can show that the linear system (10) is a homogenised form of this
linear system [43, Rem. 9.5.6]. Let us assume that it is possible to solve (10) in
such a way that the coefficients a remain undetermined (this is actually what we
expect to happen generically). Then we can relate the solutions of (10) with the
derivatives uαν of order ` + 1 of the power series solution. Indeed, in this case we
must find for each value 1 ≤ i ≤ n a solution ā, b̄ such that āj = δji and b̄

α
µ = uαµ+1i .

Conversely, one can see that if no such solution exists for (10) at some point ρ ∈ J`,
then no smooth solution σ with ρ ∈ im j`σ can exist, as at least one derivative of
order `+ 1 becomes infinite.

In the decomposition (12), we can choose at any smooth point ρ ∈ J` an arbitrary
complement Hρ. A solution σ with ρ ∈ im j`σ can exist only, if the complement Hρ
is n-dimensional (cf. Proposition C.5). This raises the question whether it is possible
to correlate the choices in the neighbourhood of a point in such a way that the
chosen complements form an involutive distribution. If this is possible at all, then
for most systems, there are actually infinitely many ways to do this (parametrised
by the symbol). Only for a special class of differential equations—comprising in
particular most ordinary differential equations—only a unique possibility exists.

Definition 3.4. An algebraic differential equation J` is of finite type, if it contains
a Zariski open and dense subset F` ⊆ J` such that at all points ρ ∈ F` the symbol
cone Nρ[J`] vanishes.

In the literature, one can find many alternative names for equations of finite
type. In the theory of linear systems, the term holonomic system is very popular.
Another common terminology, in particular for partial differential equations, is
maximally overdetermined system. From a geometric point of view, (regular first-
order) equations of finite type correspond to connections over the fibration π (see
[43, Remark 2.3.6]).

4The columns of the matrix M` are labelled by τ and the rows by the pairs (µ, α).
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For the analysis of singularities, it turns out to be convenient to introduce more
general kinds of solutions directly as geometric objects without reference to a sec-
tion. The following definition simply relaxes some of the conditions on the subdis-
tribution H in the second part of Proposition C.5. Note that such a generalised
solution lives in the jet bundle J`π and not in the total space E of the fibration π
like a section, but it can be projected to E = J0π.

Definition 3.5. Let J` ⊆ J`π be an algebraic differential equation in n independent
variables. A generalised solution of J` is an n-dimensional submanifold N ⊆ J`
such that TN ⊆ V[J`]|N . A geometric solution of J` is the projection π`0(N ) ⊆ E
of a generalised solution N .

If the section σ : X → E defines a solution of J`, then im j`σ is automatically
a generalised solution with imσ as the corresponding geometric solution; this fol-
lows immediately from the definition of the Vessiot distribution. However, if the
differential equation J` has geometric singularities as defined below, then not every
geometric solution is the image of a section σ : X → E (in fact, generally it is not
even a manifold).

4. Singularities of General Differential Equations

In classical analysis, one usually studies singularities like a blow-up or a shock.
Thus the singular behaviour refers to an individual solution and consists of either
the solution itself or some derivative of it becoming infinite at some finite point
x ∈ X . By contrast, we study singularities of the differential system S itself: we
define singularities as points ρ ∈ J` for some sufficiently high order ` such that
generalised solutions in the sense of Definition 3.5 in the neighbourhood show a
“special” behaviour. If J` is a differential equation of finite type, then we expect
that on any sufficiently small neighbourhood of a regular point ρ ∈ J` a unique fo-
liation of the neighbourhood by generalised solutions exists and that all generalised
solutions are the image of prolonged classical solutions. If the equation is not of
finite type, then around regular points still such foliations exist, but they are no
longer unique. In fact, infinitely many foliations exist.

Definition 4.1. Let J` ⊆ J`π be a locally integrable algebraic differential equation
in n independent variables. A non-smooth point ρ ∈ J` is called an algebraic
singularity of J`. A smooth point ρ ∈ J` is called

(i) regular, if a metric open neighbourhood ρ ∈ U ⊆ J` exists such that
the Vessiot distribution V[J`] is regular on U and can be decomposed as
V[J`] = N[J`]⊕H with an n-dimensional, transversal, involutive, smooth
distribution H ⊆ TU ;

(ii) regular singular, if a metric open neighbourhood ρ ∈ U ⊆ J` exists such
that the Vessiot distribution V[J`] is regular on U but at the point ρ
no n-dimensional complement to the symbol Nρ[J`] exists, i. e. we have
dimVρ[J`]− dimNρ[J`] < n;

(iii) irregular singular, if the Vessiot spaces do not form a regular distribution on
any metric open neighbourhood ρ ∈ U ⊆ J`; i. e. any such neighbourhood
contains at least one point ρ̄ such that dimVρ̄[J`] < dimVρ[J`].

An irregular singularity ρ ∈ J` is called purely irregular, if an n-dimensional com-
plement to the symbol space Nρ[J`] exists, i. e. dimVρ[J`]− dimNρ[J`] = n.

The notion of a purely irregular singularity is new and becomes necessary only
for equations not of finite type. At generic singularities such a distinction is not
necessary: generically the dimension of the symbol space Nρ[J`] jumps at a singu-
larity only by one and in this case any irregular singularity is automatically purely
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irregular. At points where no n-dimensional transversal complement to the sym-
bol space exists, not even a formal power series solution can exist. Hence pure
irregularity is important for any kind of solution theory around singularities.

Example 4.2. As a concrete example where all different types of points appearing
in the above definition occur, we consider the following second-order system of semi-
linear partial differential equations for one unknown function u in two independent
variables x, y:

x2uxx + xux + (x− 1)2u = 0 ,

(1− y2)uyy + 2yuy + 2u = 0 .

If we consider the algebraic differential equation J2 ⊂ J2π defined by it, then one
must distinguish seven different cases in the analysis of the linear system defining
the Vessiot spaces:

(1) Regular points on J2 are characterised by the conditions x 6= 0 and y2−1 6=
0. They have a three-dimensional Vessiot space.

(2) Points where x = 0, y2 − 1 6= 0 and either ux 6= 0 or uy 6= 0 are regular
singular. They also possess a three-dimensional Vessiot space. As the
coefficients a1 and a2 in (9) must satisfy the equation 2uxa1 + uya2 = 0,
only a one-dimensional transversal complement exists.

(3) Basically the same holds for points where y2 − 1 = 0, x 6= 0 and either
yux + uxy 6= 0 or u 6= 0: they are regular singular and have a three-
dimensional Vessiot space with a one-dimensional transversal complement
defined by the equation (yux + uxy)a1 − 2ua2 = 0.

(4) Points where x = 0, y2 − 1 = 0 and either ux 6= 0 or yuxy + ux 6= 0 are
irregular singularities which are not purely irregular: the Vessiot space is
four-dimensional with a one-dimensional transversal complement defined
by the condition a1 = 0.

(5) Points where x = 0, ux = 0, uy = 0 and y2− 1 6= 0 are purely irregular sin-
gular and possess a four-dimensional Vessiot space defined by the equation
(y2 − 1)b02 − 2yuxya1 = 0.

(6) The same behaviour is shown by points with y2 − 1 = 0, u = 0, uy = 0,
x 6= 0, but with the Vessiot space defined by the equation x2b20 + (x2 −
xy − 2x− 1)uxa1 = 0.

(7) Finally, the points where x = 0, y2 − 1 = 0, uxy = 0 and u = 0 are also
purely irregular singular but now with a five-dimensional Vessiot space.

Note that the cases 2, 3 and 4 do not correspond to an algebraic jet set but the
union of two such sets, because of the disjunctions in their defining conditions.
Hence, if one applies the algorithm we present in the next section to this example,
then one obtains actually 10 = 7 + 3 cases.

Remark 4.3. For differential equations of finite type (and thus in particular for all
not underdetermined ordinary differential equations), Definition 4.1 can be consid-
erably simplified, as it is no longer necessary to consider neighbourhoods. For a
passive equation of finite type, it is a priori clear that the expected dimension of
the Vessiot space at a regular point is n. Thus singularities can be recognised by
a simple comparison with this value (see [24] for such a definition of regular and
irregular singularities). Our more complicated approach via neighbourhoods is the
prize to be paid for the fact that Definition 4.1 is to our knowledge the first at-
tempt to provide a systematic taxonomy of the singularities of arbitrary systems of
partial differential equations. We do not claim that our definition provides already
a complete taxonomy, however it appears very natural from the point of view of
the geometric theory of differential equations, as it takes all fundamental geometric
objects (Vessiot and symbol spaces) into account.
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Remark 4.4. If we ignore the requirement that in the neighbourhood of a regular
point the complement H must be involutive, then the three cases in Definition 4.1
correspond to the analysis of the linear system (10). A necessary condition for a
point ρ ∈ J` to be regular is that the symbol matrixM`(ρ) has its maximal possible
rank and that this rank coincides with the maximal possible rank of the augmented
matrix

(
D(ρ) |M`(ρ)

)
. At a regular singular point, the augmented matrix has still

the maximal possible rank, but the rank of the symbol matrix has dropped. At an
irregular singular point even the rank of the augmented matrix has dropped.

In the case of ordinary differential equations, any complement H can only be
one-dimensional and thus is trivially involutive wherever it defines a regular distri-
bution. Hence for ordinary differential equations Definition 4.1 provides a complete
taxonomy of all points on J`. For partial differential equations, it is in general
difficult to prove the involutivity of H around points where the above mentioned
necessary condition for a regular point is satisfied.

We always study algebraic jet sets coming from simple differential systems pro-
duced by a differential Thomas decomposition. Here it is possible to prove for
generic points that they are regular. For the other points satisfying the above nec-
essary condition, two possibilities arise. If they are regular (which we are not able
to prove), then there are (prolonged) solutions going through them. By the proper-
ties of the differential Thomas decomposition, they must belong to the solution set
of another simple differential system arising in the decomposition. Hence one can
argue that they are irrelevant in the analysis of the given simple differential system.
If they are not regular, then they fall outside the taxonomy of Definition 4.1. It
is unclear whether this case is actually possible; at least we do not know of any
concrete example where such points appear. They could be related to novel kinds
of singular behaviour that only exist in partial differential equations, but they also
could simply be accidentially introduced by taking the Zariski closure.

Remark 4.5. Regular and irregular singularities may be considered as geometric
singularities in the sense that they represent the critical points of the restriction of
the canonical projection π``−1 : J`π → J`−1π to the considered subset J`, i. e. of the
map π̂``−1 : J` → π``−1(J`) ⊆ J`−1π. In other words, they are the points ρ where
the tangent map Tρπ̂

`
`−1 is not surjective. Indeed, at smooth points the symbol

spaces are the kernels of the restricted projection π̂``−1. Hence, one may say that
geometric singularities are those points where the dimension of the symbol space
jumps. This is the classical approach to define singularities of implicit ordinary
differential equations, as one can find it e. g. in [1].

Definition 4.1 is really meaningful only, if we can show that the regular points
form a Zariski dense subset and thus really represent the “regular” behaviour. The
main problem in proving this fact consists in establishing the existence of a smooth
distribution H possessing all the required properties. As this is much easier for
systems of finite type, we treat this case separately.

Proposition 4.6. Let S be a simple differential system, with respect to a Riquier
ranking, comprising no equation of an order greater than ` ∈ N for which the
associated algebraic differential equation J`(S) defined in (5) is of finite type. Then
the regular points in its Zariski closure J`(S) contain a Zariski open and dense
subset.

Proof. By Proposition 2.7, J`(S) is a locally integrable algebraic differential equa-
tion. In the proof of that proposition it was shown that every point ρ in a Zariski
open and dense subset R` ⊆ J`(S) lies in the image of a prolonged classical solu-
tion σ. In Remark 2.11, it was discussed that for an equation of finite type this
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solution σ is uniquely determined by ρ. This implies in particular that for different
such solutions the images of their prolongations cannot intersect in a sufficiently
small neighbourhood of ρ. Hence these images define a foliation of such a neigbour-
hood with n-dimensional leaves and the tangent spaces of the points on the leaves
are just the Vessiot spaces there. This observation implies that the Vessiot distri-
bution restricted to this neighbourhood is integrable and hence by the Frobenius
Theorem involutive. Therefore all smooth points ρ ∈ R` are regular in the sense of
Definition 4.1. �

Note that this proof also tells us precisely the local solution behaviour near a
regular point: the neighbourhood of the point is foliated by n-dimensional transver-
sal leaves which are generalised solutions projecting on geometric solutions which
are the images of classical solutions. The generalisation to arbitrary systems re-
quires the use of the Vessiot theory of differential equations introduced originally
in [52]. A modern presentation relating it to the geometric theory of differential
equations can be found in [13] (see also [14] or [43, Sects. 9.5/6]). These references
are concerned with the existence of flat Vessiot connections. The horizontal bundle
of such a connection is nothing but a smooth distribution H with all the properties
required in the definition of a regular point.

Theorem 4.7. Let S be a simple differential system, with respect to a Riquier
ranking, comprising no equation of an order greater than ` ∈ N and J`(S) the
associated algebraic differential equation defined in (5). Then the regular points in
the Zariski closure J`(S) contain a Zariski open and dense subset.

Proof. As in the proof of Proposition 4.6, we consider again the Zariski open and
dense subset R` ⊆ J`(S). As a smooth point, any point p ∈ R` lies on exactly
one irreducible component of J`(S). The intersection of R` with this irreducible
component is a manifold which, by the proof of Proposition 2.7, defines a formally
integrable differential equation in the sense of the geometric theory, since local
integrability trivially entails formal integrability. The equations in a simple system
form by definition a (differential) Janet basis and it is easy to see that consequently
their principal parts (introduced in Appendix C) define at any point ρ ∈ R` a
(polynomial) Janet basis of the principal symbol moduleM[ρ]. The maximal degree
of a generator in this basis is at most `. By [43, Thm. 5.4.12, Rem. 5.4.13], this Janet
basis induces a free resolution ofM[ρ] and the form of this resolution implies that
the Castelnuovo-Mumford regularity of M[ρ] is at most `. By [43, Rem. 6.1.23],
this implies that the symbol Nρ[J`] is involutive at any point ρ ∈ R`, as the
order at which a symbol becomes involutive is determined by the regularity of the
principal symbol module. Hence the manifold defines even an involutive differential
equation in the sense of the geometric theory. Now [14, Thm. 3] (or equivalently [43,
Thm. 9.6.11]) asserts the existence of a smooth distribution H with the required
properties in a neighbourhood of p, so that p is indeed a regular point. �

It should be emphasised that the distributionH appearing at the end of the proof
is never unique for a system which is not of finite type. Again, each particular
choice of a distribution H induces a foliation of a neighbourhood of the regular
point with n-dimensional transversal leaves which are the images of generalised
solutions coming from classical solutions. However, for a system not of finite type
there always exist infinitely many such choices and hence infinitely many different
foliations. Nevertheless, we may still say that regular points are characterised by
the existence of at least one such foliation.

Example 4.8. It should be noted that the notions introduced in Definition 4.1 are
relative in the sense that they obviously depend on the choice of the differential
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equation J`. In some situations one may have more than one option and then
obtains different results for certain points. As a simple concrete example, we may
consider the Clairaut equation u = xu′ + f(u′); the corresponding algebraic jet
set is shown in Figure 1 in blue. It represents a classical instance of a differential
equations with a singular integral. Its general solution is given by the straight
lines u(x) = cx+ f(c) with a parameter c (some lines are shown in green in the fig-
ure). Their envelope is the singular integral given parametrically by x(τ) = −f ′(τ),
u(τ) = −τf ′(τ) + f(τ) (shown in red). The singular integral is the sole solution of
the overdetermined system u = xu′ + f(u′) and f ′(u′) + x = 0 (the separant of the
first equation). If we choose as J1 the whole blue surface, then all points on the sin-
gular integral are irregular singularities, as the Vessiot spaces are two-dimensional
there. If we choose instead only the curve defined by the prolonged singular inte-
gral (which represents an algebraic differential equation in its own right5), then all
points on it are regular, as now for the overdetermined system the Vessiot space
is always one-dimensional and coincides with the tangent space of the curve. This
effect is captured in Definition 4.1 by the use of a metric open neighbourhood of
the considered point. Depending on the choice of J`, the dimension of the neigh-
bourhood as a smooth manifold may vary and the neighbourhood decides what is
considered as regular and what as singular.

Figure 1. Clairaut equation for f(s) = − 1
4s

2 with the singular
integral in red. Left: generalised solutions in J1π. Right: solution
graphs in x-u plane.

5. Regularity Decomposition of a Differential System

The geometric theory of differential equations considers usually exclusively “reg-
ular” equations, although it is not so easy to provide a rigorous definition of what
this regularity should be and even harder to verify effectively whether or not a
given equation is regular. Very often, one only finds generic statements that all
assertions are valid outside of some (unspecified) hypersurface (see e. g. [31] and
references therein). We now define first a rigorous notion of a regular algebraic
jet set. For such jet sets, we can extend the pointwise decomposition (12) to a
global one: V[J`] = N[J`]⊕H with some smooth vector bundle H. We study the
generalisation to a regular differential equation in the sense of the geometric theory
of differential equations in the following Section 6.

5With the notation from below, the Clairaut equation can be decomposed into two primary
components: the general solution and the singular integral. This decomposition can be seen when
prolonging to order two.
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Definition 5.1. An algebraic jet set J` ⊆ J`π is regular, if
(i) it consists only of smooth points, i. e. J` is a smooth manifold,
(ii) its Vessiot distribution V[J`] defines a smooth vector bundle over J` and
(iii) its symbol N[J`] defines a smooth vector bundle over J`.

Let S be a differential system. As discussed in Section 2, as a first step we
compute a differential Thomas decomposition of S into simple differential systems
each of which we then treat separately. Thus we assume from now on that S is
already a simple differential system. We choose a sufficiently high order ` and
consider the associated algebraic jet set J`(S) ⊂ J`π. In general, it might be a
reducible variety. As any point contained in the intersection of two irreducible
components of J`(S) is automatically an algebraic singularity, we prefer to study
each irreducible component separately. We then want to express each irreducible
component as a disjoint union of regular algebraic jet sets.

Definition 5.2. Let S ⊂ D be a simple differential system and J`(S) ⊂ J`π
the associated algebraic jet set in a sufficiently high order `. Let furthermore
J`(S) = J`,1∪· · ·∪J`,t be its decomposition into irreducible varieties. A regularity
decomposition of the variety J`,k represents it as a disjoint union of finitely many
regular algebraic jet sets J (1)

`,k , . . . ,J
(r)
`,k , the regularity components of J`,k, and of

the set ASing
(
J`(S)

)
of algebraic singularities.

If we classify the points on the irreducible variety J`,k according to Definition 4.1,
then if one point on a regularity component J (i)

`,k is a regular (irregular) singularity,
then all other points on this component are regular (irregular) singularities, too.
Indeed, Definition 5.1 implies that at all points on a regular algebraic jet set the
symbol and the Vessiot space, respectively, have the same dimension. The situation
is more involved for regular points (of partial differential equations) as discussed in
Remark 4.4. However, as a consequence of Remark 2.4 and Theorem 4.7, we may
conclude that the regular points contain on each prime component J`,k a Zariski
open and dense subset. If a point lies in the intersection of several irreducible
components, then we classify it separately with respect to each of these components.
It is well possible that one obtains here different results (see Examples 4.8 or 7.3
for concrete instances).

We now prove the existence of regularity decompositions by providing an algo-
rithm for their construction. For at least one component of the obtained decompo-
sition (which contains a Zariski open and dense subset), we prove that it consists of
regular points. As discussed in Remark 4.4, we cannot exclude the possibility that
in some other regularity components the Vessiot and the symbol space have at all
points the dimension expected for a regular point, but we are unable to prove the
involutivity of the complement H. We say that such points are of unknown type.

The first step of our algorithm consists of determining a generating set {p1, . . . , ps}
of the algebraic ideal I`(S) according to Remark 2.9. As second step, we determine
the minimal prime decomposition I`(S) =

⋂t
k=1 I`,k of the ideal I`(S) which is

radical by definition. According to Lemma 2.8, J`(S) = Sol (I`(S)) and, by con-
struction, Sol (I`(S)) =

⋃t
k=1 Sol (I`,k). We then determine for each irreducible

component Sol (I`,k) separately a regularity decomposition.
For the determination of these regularity decompositions, we exploit that our tax-

onomy of regular and singular points (Definition 4.1) is mainly based on the proper-
ties of the linear system (10) determining the Vessiot distribution. If {pk,1, . . . , pk,sk}
is a generating set of the prime component I`,k, then we use these polynomials for
setting up the linear system (10), as it simply encodes a condition of tangency to
the irreducible component J`,k = Sol (I`,k).
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In addition, we set up a second linear system for the detection of the algebraic
singularities defined by

(13) J(pk,r) :=

∑
|µ|=`

∑
α

cαµ∂uαµ +
∑
j

dj∂xj

 pk,r = 0, r = 1, . . . , sk.

The left hand side is obtained by multiplying the Jacobian matrix of pk,1, . . . , pk,sk
by the vector of auxiliary indeterminates cαµ and dj . The equations in the combined
linear system may be considered as elements of the extended polynomial ring D ex

` =
D`[a,b, c,d] where we have adjoined the auxiliary indeterminates a, b of the ansatz
(9) and c, d of (13). Furthermore, we consider this combined linear system only
at points on J`,k and thus add the equations pk,1, . . . , pk,sk ∈ D` ⊂ D ex

` . We
compute an algebraic Thomas decomposition of the combined system in D ex

` using
an ordering satisfying the following conditions: (i) d > c > b > a > u > x,
(ii) restricted to the variables u the ordering corresponds to an orderly ranking (cf.
Subsection B) and (iii) the variables cαµ and bαµ , respectively, are ordered among
themselves in the same way as the derivatives uαµ .

Let Sex
k,i be one of the resulting simple algebraic systems. If Sex

k,i has less than
codim Sol (I`,k) equations with leader among the auxiliary indeterminates c, d, we
remove all equations with leader among a, b, c, d and obtain the simple system Sk,i
over D` which contributes Sol (Sk,i) to ASing

(
J`(S)

)
. Otherwise, again removing

all equations with leader among a, b, c, d, we obtain a simple algebraic system
Sk,i in D` which contributes the regularity component J (i)

`,k = Sol (Sk,i). In a more
formal language, we arrive at Algorithm 5.3.

Algorithm 5.3 (Regularity Decomposition of a Simple Differential System).

Input: a simple differential system S overK{U} and a sufficiently high order ` ∈ N
Output: a regularity decomposition for each prime component I`,k(S) of the ideal
I`(S) ⊂ D`

Algorithm:
1: compute a generating set {p1, . . . , ps} of the radical ideal I`(S) according to

Remark 2.9
2: compute a prime decomposition I`(S) = I`,1(S) ∩ . . . ∩ I`,t(S) of I`(S) and a

generating set {pk,1, . . . , pk,sk} for each prime component I`,k(S)

3: for k ∈ {1, . . . , t} do
4: compute an algebraic Thomas decomposition Sex

k,1, . . . , Sex
k,rk

with respect
to a total order d > c > b > a > u > x satisfying the above mentioned
conditions of the algebraic system

(14)

 J(pk,j) = 0 ,
V(pk,j) = 0 ,

pk,j = 0 ,

 j = 1, . . . , sk

defined over D ex
` , where

V =
∑
i

ai C
(`)
i +

∑
|µ|=`

∑
α

bαµ C
µ
α and J =

∑
µ

∑
α

cαµ∂uαµ +
∑
i

di∂xi

5: od
6: return the systems Sk,i consisting of those equations p = 0 and inequations
q 6= 0 in Sex

k,i with p ∈ D` and q ∈ D`



SINGULARITIES OF ALGEBRAIC DIFFERENTIAL EQUATIONS 19

The remainder of this section is dedicated to explaining this algorithm and prov-
ing its correctness.

Remark 5.4. Algorithm 5.3 is in principle not yet completely specified, as we say
nothing about how the algebraic Thomas decomposition in Step 4 is computed. In
fact, the correctness of the algorithm depends on whether this Thomas decomposi-
tion has been computed in a “good” way (this is made precise in Proposition 5.11).
As any reasonable implementation automatically satisfies this condition, we have
not mentioned it in the algorithm. It also should be noted that the output of our
algorithm depends not only on details of the implementation of the Thomas decom-
position, but strongly on the used ranking. In a system with several independent
variables x or several differential unknowns u, very different results can be obtained
for different orderings inside each of the blocks x and u, respectively. In particular,
the obtained regularity decomposition is often overly complicated, i. e. consist of
too many different components, as in Step 4 we implicitly compute a Thomas de-
composition of the variety Sol

(
I`,k(S)

)
which might entail many case distinctions

that are not necessary for our purposes. In a post processing step these unnecessary
case distinctions could be conflated by comparing for all cases with smooth points
the linear part corresponding to the system V(pk,j) = 0 and combining all cases
where equivalent equations have been obtained.

In Remark 2.9 it was already mentioned that the ideal I`(S) can be generated by
a simple algebraic system. Now [27, Thm. 1.94] entails that this ideal is equidimen-
sional in the strong sense that all its associated primes have the same dimension.6

In particular, no embedded primes can exist. Because of the assumptions that S
is a simple differential system and that ` is sufficiently large, the prime decompo-
sition of I`(S) computed in the second step of our algorithm induces also a prime
decomposition of the differential ideal Idiff(S), as we show below. Note, however,
that even if the prime decomposition of I`(S) is minimal, there is no guarantee that
also the differential prime decomposition is minimal. Here, we encounter again the
well-known Ritt problem [25, §IV.9] in differential algebra: no algorithm is known
to decide whether one differential prime ideal is contained in another one.

For the next proof, it is important to discuss the relationship between the notion
of a simple differential system as defined in Definition B.3 and the notion of a
regular differential system often used in differential algebra – see e. g. [22, Def. 4.7].
The following lemma and its proof entail that we may always assume without loss
of generality that a simple differential system is also regular, as the only difference
between these two notions is the extent to which autoreduction has been performed.
[22, Def. 4.7] uses partial reductions, i. e. only reductions using derived equations are
performed but no purely algebraic reductions. However, it is always assumed that
the whole differential polynomial is reduced. By contrast, the conditions imposed
in Definitions A.1 and B.3 require only head reductions, but algebraic reductions
are also performed. From a theoretical point of view, it is irrelevant whether or not
tail reductions are performed. From a computational point of view, they are often
expensive and thus it is better to omit them.

Lemma 5.5. Let S be a simple differential system as in (D). Then S is equivalent
to a regular differential system in the sense that some tail (pseudo) reductions turn
S into a regular system with the same leaders and the same saturated multiplicatively
closed set generated by the initials and separants.

Proof. From S we collect the left hand sides of the equations and inequations,
respectively, in the two sets P and Q. The first two properties in Definition B.3

6Some authors call such ideals unmixed dimensional and speak of equidimensional ideals al-
ready when all minimal primes have the same dimensions.
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entail that modulo tail reduction P is a differential triangular set. The second
property also ensures that all ∆-polynomials that can be formed with elements of
P reduce to zero modulo P . The first and third property imply that modulo tail
reduction each inequation is partially reduced with respect to P . Finally, denote
by Q∞ the smallest subset of D that contains 1 and Q and has the property that
q, q̃ ∈ Q∞ is equivalent to qq̃ ∈ Q∞, i. e. the saturated multiplicatively closed set
generated by Q. Note that tail (pseudo) reduction amongst elements of P might
change their initials and separants, by multiplying them by the initial or separants
of the reducing polynomial. Finally, any separant of an equation in P lies in Q∞,
up to reduction by P . Thus all conditions in the definition [22, Def. 4.7] of a regular
differential system are satisfied. �

Proposition 5.6. Assume that S does not contain any equation or inequation of
order greater than ` and denote by q the product of all separants of the equations
in S. Then the differential ideals 〈pk,1, . . . , pk,sk〉∆ : q∞ (in the notation of Algo-
rithm 5.3) for 1 ≤ k ≤ t represent all essential prime components of the differential
ideal Idiff(S).

Proof. By Lemma 5.5, we may assume that S is a regular differential system. The
statement follows then immediately from [22, Thm. 4.13]. �

Remark 5.7. When setting up the linear equations describing the Vessiot spaces in
Step 4, it suffices to consider only those generators pk,j that depend on some jet
variables of order `, as all other generators would only contribute the trivial equation
0 = 0. Indeed, if p is a generator of lower order, then we have trivially Cµα(p) = 0

and it follows from (22) that C(`)
i (p) = Dip. Since by Proposition 5.6 the ideal

I`,k(S) is the truncation of a differential ideal, the formal derivative Dip (defined
in Appendix C) can be written as a linear combination of the generators pk,j . Hence
V(p) vanishes modulo I`,k(S), i. e. it is zero at all considered points.

As preparation for showing the correctness of Algorithm 5.3, we prove some
results about the simple algebraic systems Sex

k,i produced by the algorithm relating
them to algebraic singularities and the Vessiot and symbol spaces. Furthermore,
we provide a technical proposition needed for the correctness proof.

Proposition 5.8. Given any subset Sol (Sk,i) ⊆ V`,k = Sol (I`,k), either all points
contained in it are smooth in V`,k or all are algebraic singularities of V`,k.

Proof. By substituting the coordinates of a point ρ ∈ V`,k into (13), we obtain
a system of linear equations in c, d whose solution space is the tangent space to
V`,k at ρ. The point ρ is smooth in V`,k, if and only if this tangent space has
dimension dimV`,k, and singular otherwise. The algebraic system (14) consists
only of equations, and the equations which involve the indeterminates c, d are
homogeneous of degree one in these indeterminates. Since c, d are ranked higher
than the indeterminates u, x, we conclude that the simple algebraic system Sex

k,i

obtained in Step 4 of Algorithm 5.3 contains no inequations with a leader among
c, d and every equation which involves the indeterminates c, d is homogeneous
of degree one in these indeterminates. Consider now those equations with leader
among c, d in Sex

k,i. Due to the linearity and the triangularity of the system, the
number of these equations is equal to the codimension of the tangent space and this
codimension is independent of the choice of ρ ∈ Sol(Sk,i), because Sex

k,i is simple.
Hence, Sol(Sk,i) consists entirely of smooth points, if and only if the number of
equations with leader among c, d is equal to the codimension of V`,k, and entirely
of singular points otherwise. �
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Remark 5.9. No equation in the system (14) contains simultaneously indeterminates
from a, b and from c, d. Since the algebraic Thomas decomposition method does
not apply polynomial division to a pair of equations involving different sets of
indeterminates from a, b and c, d, respectively, the correctness does not depend
on the choice of how a, b, c, d are ordered.

Proposition 5.10. Let Sex
k,i be a simple algebraic system obtained in Step 4 of

Algorithm 5.3 such that Sol (Sk,i) consists entirely of smooth points. Denote by
Na and Nb the number of equations with a leader among the variables a and b,
respectively. Then at any point ρ ∈ Sol (Sk,i) ⊆ Sol (I`,k) the dimension of the
symbol space and of the Vessiot space, resp., is given by

dimVρ
[
Sol (I`,k(S))

]
= m

(
`+ n− 1

`

)
+ n−Nb −Na ,(15)

dimNρ
[
Sol (I`,k(S))

]
= m

(
`+ n− 1

`

)
−Nb .(16)

Furthermore, an n-dimensional complement Hρ to the symbol space Nρ
[
Sol (I`,k(S))

]
exists in the Vessiot space Vρ

[
Sol (I`,k(S))

]
, if and only if Na = 0. Finally, the set

Sol (Sk,i) is a regular algebraic jet set.

Proof. The algebraic system (14) consists only of equations and the equations which
involve the indeterminates a and b are homogeneous of degree one in these inde-
terminates and independent of the indeterminates c and d. Thus, for notational
simplicity, we may ignore in the sequel the equations containing c and d. Since a
and b are ranked higher than the indeterminates u, x, the simple algebraic system
Sex
k,i cannot contain inequations with a leader in a or b and every equation which

involves the indeterminates a and b is still homogeneous of degree one in these
indeterminates. The triangularity of Sex

k,i means that these equations correspond to
a reduced row echelon form of the determining equations of the Vessiot distribu-
tion. This row echelon form is preserved for any choice of the point ρ ∈ Sol(Sk,i).
Since the dimensions of the vectors b and a are m

(
`+n−1

`

)
and n, respectively, the

claimed expression for the dimension of the Vessiot spaces follows immediately from
the linearity of the equations.

We consider next the symbol spaces. Let ρ = (u,x) be a point on Sol (Sk,i).
The symbol space Nρ

[
Sol (I`,k(S))

]
consists of all solutions of Sex

k,i of the form
(b,0,u,x). We rank b higher than a. Hence any equation with a leader in a
is independent of the indeterminates b and can be ignored when the symbol is
computed, as it is automatically satisfied by homogeneity. This observation entails
the claimed expression for the dimension of the symbol space.

The dimension of any complement Hρ is trivially the difference of the dimensions
of the Vessiot and the symbol space. Hence, by the just derived expressions for these
dimensions, it is given by n−Na which proves the last assertion. Finally, we note
that by the above mentioned independence of the pivots in the row echelon form
of the chosen point ρ ∈ Sol (Sk,i), the dimensions of the Vessiot and the symbol
spaces are constant over Sol (Sk,i). Hence this set is a regular algebraic jet set. �

One key point in proving the correctness of Algorithm 5.3 concerns the last step
when we move from the systems Sex

k,j including the indeterminates a, b, c, d to
the projected systems Sk,j . The next proposition asserts that the disjointness is
preserved by this operation. We consider the following generalisation of our set-up.
Let R = C[y1, . . . , ym][z1, . . . , zn] be a polynomial ring equipped with the ranking
z1 > z2 > . . . > zn > y1 > y2 > . . . > ym. Let S be a (not necessarily simple)
algebraic system over R which does not contain any inequation with a leader in
{z1, . . . , zn} and whose equations with a leader in {z1, . . . , zn} are homogeneous
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of degree one as polynomials in z1, . . . , zn. Applying any judicious algorithm
computing a Thomas decomposition – e. g. the one from [4] – to S computes an
output of this form (for the necessity of this form see Remark 5.12 below), since
both the initials and the discriminants of the homogeneous polynomials of degree
one are polynomials in the variables y and hence no case distinction with respect
to any polynomial in the variables z is necessary. Moreover, let S1, . . . , Sr be an
algebraic Thomas decomposition of S with respect to a ranking > such that no
Si contains an inequation with a leader in {z1, . . . , zn}. Our situation is recovered
by identifying the variables z with the parameters a, b, c, d and the variables y
with the appearing jet variables. In the sequel, we denote by (Si)<zj the algebraic
subsystem consisting of all equations and inequations in the simple system Si with
a leader less than zj . Thus (Si)<zn corresponds to the projected system without
any of the variables z.

Proposition 5.11. The solution sets Sol((S1)<zn), Sol((S2)<zn), . . . , Sol((Sr)<zn)
of the projected systems are also pairwise disjoint.

Proof. We first note that any subsystem (Si)<zj is also simple. By the properties
of simple algebraic systems [40, Subsect. 2.2.1], every solution

(αj+1, αj+2, . . . , αn, β1, . . . , βm) ∈ C(n+m)−j

of the subsystem (Si)<zj can be extended to a solution

(αj , αj+1, αj+2, . . . , αn, β1, . . . , βm) ∈ C(n+m)−(j−1)

of the larger subsystem (Si)<zj−1 . Indeed, the subsystem (Si)<zj−1 can differ from
(Si)<zj by at most one additional equation or inequation with leader zj−1 which
then restricts the possible values for αj . In the case of j = 1, we set (Si)<z0 := Si.

For β = (β1, . . . , βm) ∈ Cm, we define the intersections

Vβ := Sol(S) ∩
{

(z1, . . . , zn, β1, . . . , βm) | z1, . . . , zn ∈ C
}

and for i ∈ {1, . . . , n} and (αi+1, αi+2, . . . , αn) ∈ Cn−i set

Vα,β :=
{

(αi, αi+1, . . . , αn, β1, . . . , βm) | αi ∈ C and

∃α1, . . . , αi−1 ∈ C : (α1, . . . , αn, β1, . . . , βm) ∈ Sol(S)
}
.

Since the equations in S with a leader in {z1, . . . , zn} are homogeneous of degree one
as polynomials in z1, . . . , zn, for each β = (β1, . . . , βm) ∈ Cm the set Vβ is either
empty or an affine subspace of Cn+m. For the same reason, for each i ∈ {1, . . . , n}
and α = (αi+1, αi+2, . . . , αn) ∈ Cn−i the set Vα,β is also either empty or an affine
subspace of C(n+m)−(i−1).

Assume that Sol((Si1)<zn) and Sol((Si2)<zn) are not disjoint for i1 6= i2. Let
(β1, . . . , βm) ∈ Sol((Si1)<zn) ∩ Sol((Si2)<zn). Since both Si1 and Si2 are sim-
ple algebraic systems, the point (β1, . . . , βm) can be extended to solutions ρ =

(α
(i1)
1 , α

(i1)
2 , . . . , α

(i1)
n , β1, . . . , βm) and (α

(i2)
1 , α

(i2)
2 , . . . , α

(i2)
n , β1, . . . , βm) of Si1 and

Si2 , respectively. The disjointness of the solution sets Sol(Si1) and Sol(Si2) implies
that there exists k ∈ {1, . . . , n} such that α(i1)

k 6= α
(i2)
k . Let k be maximal with

that property. Hence, (α
(i1)
k , . . . , α

(i1)
n , β1, . . . , βm) and (α

(i2)
k , . . . , α

(i2)
n , β1, . . . , βm)

are two distinct elements of the affine subspace Vα,β of C(n+m)−(k−1), where α =

(α
(i1)
k+1, α

(i1)
k+2, . . . , α

(i1)
n ) = (α

(i2)
k+1, α

(i2)
k+2, . . . , α

(i2)
n ). Therefore, Vα,β is not finite.

We introduce the index set

I(ρ, k) =
{
i ∈ {1, . . . , r} | (α(i1)

k+1, . . . , α
(i1)
n , β1, . . . , βm) ∈ Sol((Si)<zk)

}
.
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Then we have i1, i2 ∈ I(ρ, k) and

Vα,β =
⋃

i∈I(ρ,k)

Sol((Si)<zk−1
).

Since the affine subspace Vα,β of C(n+m)−(k−1) is not finite, but I(ρ, k) is finite,
there exists j1 ∈ I(ρ, k) such that Sol((Sj1)<zk−1

) is infinite. Hence, Sj1 contains
no equation with a leader zk. However, by assumption, Sj1 contains no inequation
with a leader zk either. By exchanging the roles of i1 and i2 if necessary, we may
assume without loss of generality that j1 6= i1. We conclude that (Si1)<zk−1

and
(Sj1)<zk−1

have the common solution (α
(i1)
k , . . . , α

(i1)
n , β1, . . . , βm).

If k = 1, this observation contradicts the disjointness of Sol(Si1) and Sol(Sj1).
Otherwise, the thus obtained common solution can be extended to a solution
(α

(j1)
1 , α

(j1)
2 , . . . , α

(j1)
k−1, α

(i1)
k , . . . , α

(i1)
n , β1, . . . , βm) of Sj1 . By a similar reasoning

as above, the disjointness of the solution sets Sol(Si1) and Sol(Sj1) implies that
there exists l ∈ {1, . . . , k − 1} such that α(i1)

l 6= α
(j1)
l . Let l be maximal with

that property. Then Vα′,β is not finite, where α′ = (α
(i1)
l+1, α

(i1)
l+2, . . . , α

(i1)
n ). Hence,

there exists j2 ∈ I(ρ, l) such that Sj2 neither contains an equation with a leader
zl nor an inequation with a leader zl. Without loss of generality, we may assume
j2 6= i1. Then (α

(i1)
l , . . . , α

(i1)
n , β1, . . . , βm) is a common solution of (Si1)<zl−1

and
(Sj2)<zl−1

. If l = 1, this is a contradiction. Otherwise, this argument can be re-
peated to obtain a contradiction. Hence, the sets Sol((S1)<zn), Sol((S2)<zn), . . . ,
Sol((Sr)<zn) are pairwise disjoint. �

Remark 5.12. The assumption in Proposition 5.11 about the absence of inequations
with leader in {z1, . . . , zn} cannot be omitted. For example, let R = C[y][z1, z2]
and z1 > z2 > y and consider the system S = {z1 = 0}. Then the systems

S1 :

{
z1 = 0

z2 = 0
S2 :


z1 = 0

z2 6= 0

y = 0

S3 :


z1 = 0

z2 6= 0

y 6= 0

provide a Thomas decomposition of S with respect to >, where Sol((S1)<z2) and
Sol((S2)<z2) are not disjoint and Sol((S1)<z2) and Sol((S3)<z2) are not disjoint
either. Note, however, that this Thomas decomposition involves case distinctions
which would not occur in an application of the Thomas algorithm to S. In fact, the
original algebraic system S is already simple. The assumption of Proposition 5.11
is automatically satisfied by any comprehensive Thomas decomposition which also
can be computed algorithmically [3, Alg. 3.80].

Theorem 5.13. Algorithm 5.3 terminates and is correct.

Proof. The termination is obvious, as only terminating subalgorithms are used.
For the correctness, it is sufficient to show that the output is correct for any prime
component I`,k(S) of I(S`). Let k ∈ {1, . . . , t}. We argue first that the output
systems Sk,1, . . . , Sk,rk form a Thomas decomposition. Since Sk,i is obtained from
the simple algebraic system Sex

k,i by omitting the equations and inequations with
a leader among d, c, b, a, the algebraic system Sk,i is simple. In the proofs of
Proposition 5.8 and 5.10, it was shown that we are in a situation where Proposi-
tion 5.11 is applicable to the Thomas decomposition Sex

k,1, . . . , S
ex
k,rk

. Hence, the
output systems Sk,1, . . . , Sk,rk have pairwise disjoint solution sets Sol(Sk,i) which
either consist entirely of algebraic singularities by Proposition 5.8 or are regular
algebraic jet sets by Proposition 5.10. �
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Finally, we describe how one determines a regularity decomposition of a general
differential system S in some order ` ∈ N. The first step is to compute a differential
Thomas decomposition of S into simple differential systems S1, . . . , Sr. For each
simple system one needs to check that the order ` we have chosen for the regularity
decomposition is sufficiently high. This means that we need to guarantee that
no equation or inequation in a simple differential system Si is cut off when going
from Si to the algebraic ideal I`(Si). If the simple differential systems S1, . . . ,
Sr do contain an equation or inequation of order greater than `, then a regularity
decomposition in this order is not possible. In this case one needs to adjust the
order `. If the order is high enough then one computes in a last step a regularity
decomposition of each simple differential system Si in order ` with Algorithm 5.3.
A formal summary of this process is Algorithm 5.14 below.

Algorithm 5.14 (Regularity Decomposition of a General Differential System).

Input: a differential system S defined over K{u} and order ` ∈ N
Output: regularity decompositions in order ` of the irreducible components of the

algebraic jet sets of the simple systems in a differential Thomas decomposition
of S

Algorithm:
1: compute a differential Thomas decomposition S1, . . . , Sr of the differential

system S

2: if one of the systems Si has an equation or an inequation of order greater than
` then

3: error: order ` too small.
4: fi
5: return the regularity decompositions in order ` of the simple differential sys-

tems Si determined by Algorithm 5.3.

6. Regular Differential Equations

A basic assumption in most of the geometric theory of differential equations is
that one is dealing with a regular equation. This means that not only the given
differential equation J` ⊂ J`π but also all its prolongations to higher order are
smooth manifolds on which symbol and Vessiot spaces define vector bundles. For
nonlinear systems, it is generally very hard to verify these infinitely many conditions
and no effective method is known. We now provide a definition of regular differential
equation adapted to our framework and prove that we can identify in the output
of Algorithm 5.3 one unique regular equation for each irreducible component and
that this equation lies dense in the irreducible component.

The key problem encountered here is that the definition of a regular differential
equation requires to look at prolongations. So far we could avoid prolongations, as
we assumed throughout that we start with a differential system S and then associate
with it at any order ` an algebraic jet set defined via the differential ideal Idiff(S).
The problem of computing prolongations then corresponds to explicitly constructing
the polynomial ideals I`(S), a question which has been settled above. By contrast,
we assume now that we start with an algebraic differential equation J` ⊂ J`π
which is a regular algebraic jet set in the sense of Definition 5.1. The geometric
theory describes an intrinsic prolongation process which, however, assumes that
one is dealing with a fibred submanifold. In our framework, this assumption is not
necessarily satisfied and thus we must develop another approach.



SINGULARITIES OF ALGEBRAIC DIFFERENTIAL EQUATIONS 25

As a locally Zariski closed subset of J`π, we may consider J` as the solution
set of an algebraic system S in the jet variables up to order `. Identifying the
jet variables with the derivatives of the dependent variables, we can also interpret
S as a differential system which we associate with J`. Forming the differential
ideal Idiff(S) corresponds to adding all differential consequences of the equations
describing J`. Obviously, this construction is independent of the choice of the
algebraic system S.

It may happen that 1 ∈ Idiff(S). In this case, the system S is differentially
inconsistent and any further differential analysis is pointless. Otherwise, we consider
for any k ≥ 0 the algebraic jet sets J`+k(S). It may happen that J`(S) ( J`,
namely if some of the differential consequences are of an order less than or equal
to ` (i. e. if hidden integrability conditions exist in S). In this case, it is again
pointless to analyse J`: one should study J`(S) instead. Otherwise, we call the
algebraic jet set J`+k = J`+k(S) the k-th prolongation of J`.

Definition 6.1. The algebraic differential equation J` ⊂ J`π is called regular, if
the differential system S associated with it satisfies

(i) Idiff(S) is a prime differential ideal,
(ii) J`(S) = J` and
(iii) for all k ≥ 0 the algebraic jet sets J`+k(S) are regular and algebraic differ-

ential equations.

Given an algebraic differential equation J` ⊂ J`π, it is not obvious how one can
effectively verify that it is regular, since the above definition comprises infinitely
many condition as in the geometric theory. We now show that Algorithm 5.3
solves this problem to some extent, as one can always identify in its output regular
differential equations.

Proposition 6.2. For each prime component I`,k(S) arising in Algorithm 5.3,
there exists among the simple systems Sk,i in the output a unique distinguished
system Sgen

`,k such that Sol (Sgen
`,k ) is Zariski dense in J`,k.

Proof. System (14) comprises the equations pk,1 = 0, . . . , pk,sk = 0 defining the
irreducible variety J`,k and linear equations in the auxiliary indeterminates a, b,
c, d. Hence, the variety defined by (14) is trivially fibred over J`,k and therefore
irreducible. By [40, Cor. 2.2.66], any Thomas decomposition for an irreducible
variety contains a unique simple system whose solution set is dense in that variety.
Therefore there exists a unique index i such that Sol(Sex

k,i) is a dense subset of the
variety defined by (14). Since Sex

k,i contains no inequations with leader among the
a, b, c, d and the equations involving a, b, c, d are homogeneous of degree one,
the projected system Sk,i has the claimed property. �

Theorem 6.3. In the notation of Proposition 6.2, the set Sol (Sgen
`,k ) is a regular

differential equation.

Proof. Assume for notational simplicity that already Idiff(S) is a prime differential
ideal so that we can drop the index k. In this case, the ideal I`(S) is generated
by the triangular set B≤` defined in (6) followed by a saturation with respect
to the inequations in S (cf. Equations (2) and (3)). Since our ordering of the
variables c and b, respectively, is linked to an orderly ranking of the derivatives
u, the two linear subsystems of (14) arise now immediately in a row echelon form7

and its pivots are separants of the equations in B≤`. Furthermore, in the generic

7Recall from Remark 2.4 that the saturation only eliminates unwanted points. Hence at the re-
maining points we can use for the construction of the tangent space the equations in the triangular
set B≤` instead of some ideal generators obtained after the saturation.
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system Sgen
` of the algebraic Thomas decomposition the separants and initials of the

equations in B≤` are implied being non-zero. It is now trivial to see that Sol (Sgen
`,k )

is a regular algebraic jet set.
We now show that the same holds for Sol (Sgen

`+1), the generic branch obtained
by applying our algorithm at the next order. By induction, we obtain that the
generic branch defines at any prolongation order a regular algebraic jet set and
thus our claim. By the same arguments as above, the ideal I`+1(S) is generated
by the triangular set B≤`+1 followed by a saturation. Since we assume that S
contains no equations or inequations of an order greater than `, B≤`+1 is obtained
by augmenting B≤` by certain formal derivatives (defined in Appendix C) of its
elements of order `. By the properties of the formal derivative, the new elements
are linear in their leaders and their initials (and thus also their separants) are the
separants of the elements of B≤` from which they are derived. This implies that
no new separants or initials arise during the prolongation. Again, these separants
and initials are implied to be non-zero by the algebraic Thomas decomposition.
Since again the linear subsystems of (14) arise immediately in triangular form with
separants as pivots, the made observation about the separants entails trivially that
Sol (Sgen

`+1) is a regular algebraic jet set, too.
For the general case, we exploit again that, by Lemma 5.5, we may assume that

S is a regular differential system. [22, Thm. 4.13] asserts that any characteristic
set C describing a prime component of Idiff(S) has the same leaders as the dif-
ferential system S. In Algorithm 5.3, we first compute in Step 2 some basis for
each prime component I`,k(S) and then in Step 4 perform an algebraic Thomas de-
composition. The generic branch of this decomposition determines a characteristic
set C`,k describing I`,k(S), namely the equations in Sgen

`,k . Furthermore, among the
inequations in Sgen

`,k we must find the initials and separants of C. As in the proof
of Proposition 5.6, [22, Thm. 4.13] allows us to interpret C also as a differential
characteristic set. By definition of a simple differential system, S is passive for the
Janet division. This implies that C must also be passive for the Janet division.
Indeed, otherwise C would induce integrability conditions and any characteristic
set of the ideal induced by C would require additional leaders which contradicts [22,
Thm. 4.13]. But now we can apply to C exactly the same reasoning as in the special
case above and conclude that Sol (Sgen

`,k ) is a regular differential equation. �

Corollary 6.4. For any index k, the set Sol (Sgen
`,k ) consists entirely of regular points

of the algebraic differential equation J`,k.

Proof. By the considerations in the proof of Theorem 6.3, the equations in Sgen
`,k

are passive for the Janet division. Since Sgen
`,k arises from an algebraic Thomas

decomposition, it is a simple algebraic system. No leader of an inequation is the
derivative of the leader of an equation, as all (suitable, cf. Equation (6)) derivatives
of the differential equations have been added as algebraic equations. Hence, Sgen

`,k

is also simple as a differential system. It follows now from Theorem 4.7 that the
regular points form a Zariski dense subset of J`,k. Since Sol (Sgen

`,k ) is also Zariski
dense in J`,k by Proposition 6.2, it contains regular points. By Proposition 5.10,
this means that at all of its points the Vessiot and symbol spaces have the right
dimensions. Furthermore, we have seen above that at the points in Sol (Sgen

`,k ) no
initial or separant vanishes. Hence, we can conclude as in the proof of Theorem 4.7
that Sol (Sgen

`,k ) is actually an involutive differential equation and thus that around
each point the required involutive complement to the symbol spaces exists. �
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7. Examples

Example 7.1. We continue Example 2.10. There it was already mentioned that a
differential Thomas decomposition of the differential system defined by the partial
differential equations p1 = 0 and p2 = 0 with p1 and p2 given by (7) yields only one
simple differential system comprising besides the two given equations the inequation
sep (p1) = u 6= 0. Now we want to apply Algorithm 5.3 for the determination of
the geometric singularities of this simple differential system in order ` = 1, or more
precisely a regularity decomposition of J1(S). All different types of singularities
introduced in Definition 4.1 appear in this example.

The first step of Algorithm 5.3 requires the saturation already discussed in Ex-
ample 2.10 which leads to the addition of a third generator p3 given by (8). The
algebraic ideal I1(S) generated by these three generators is prime. second step. It
was already mentioned above that p1 is a linear combination of p2 and p3 and thus
can in principle be omitted. As the equations p2 = 0 and p3 = 0 can be solved for u
and y, respectively, the variety J1(S) is a graph and thus no algebraic singularities
occur here. Therefore we ignore in the sequel the equations J(pk) = 0. In general,
such a redundancy is not easy to recognise and therefore we do not exploit it any
more in the following computations. The linear part of the system (14) defining
the Vessiot spaces takes here the form u 0 ux(ux − y) −2y − u+ uy(ux − y)

0 y −ux 0
uy ux −ux −1− uy

 ·

b10

b01

a1

a2

 = 0 .

The nonlinear part is given by p1 = p2 = p3 = 0. The algebraic Thomas decompo-
sition of this system performed in Step 4 yields after the projection in the last step
the following four systems

S1 :=
{
p1 = 0, p2 = 0, u 6= 0, y 6= 0

}
,

S2 :=
{
ux = 0, uy 6= 0, u = 0, y = 0

}
,

S3 :=
{
ux 6= 0, uy = 0, u = 0, y = 0

}
,

S4 :=
{
ux = 0, uy = 0, u = 0, y = 0

}
.

We now show that the corresponding algebraic jet sets J1(Si) are all regular and
thus define a regularity decomposition of our system in order 1. Obviously, J1(S1)
is a Zariski open subset of a three-dimensional variety in J1π. J1(S2) and J1(S3)
are disjoint Zariski open subsets of two-dimensional varieties lying in the Zariski
closure of J1(S1). Finally, J1(S4) is a curve lying in the intersection of the Zariski
closures of all the other systems. Of the four jet sets, only J1(S1) is an algebraic
differential equation, as for the other three systems the projections π1

(
J1(Si)

)
violate the closure condition of Definition 2.1 because of the equation y = 0.

We finally discuss the Vessiot spaces for the points on these algebraic jet sets so
that we can classify them according to the taxonomy of Definition 4.1. The Vessiot
spaces are determined by the solutions of those (homogeneous linear) equations in
the algebraic systems obtained after Step 4 that depend on a and b. We describe
them in terms of their coefficient matrices. For points on J1(S1) we have the matrix(

u3 0 y3(u+ y) −u2(y + u)
0 u −u− y 0

)
.

The two corresponding equations express b10 and b01 in terms of the unconstrained
variables a1 and a2. Thus all Vessiot spaces are two-dimensional and all symbol
spaces vanish so that the Vessiot spaces are transversal. Hence, all the points on
the algebraic jet set J1(S1) are regular points of the differential equation J1(S). By
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Figure 2. Hyperbolic gather. Left: Surface with singularities in
jet space. Right: solution graphs—note how the red curves “go
backwards” after meeting the black curve, a generic behaviour at
regular singularities.

Theorem 6.3, J1(S1) is a regular differential equation, as obviously S1 is the generic
branch in the algebraic Thomas decomposition. Thus our findings are consistent
with Corollary 6.4.

An analogous comparison of the dimensions of Vessiot and symbol spaces, re-
spectively, determines the singular character of the points on J1(S2), J1(S3) and
J1(S4). The respective Vessiot spaces are the kernels of the three matrices:

(
uy 0 0 −1− uy

)
,

(
0 ux 0 −1
0 0 1 0

)
,

(
0 0 0 1

)
.

All points on J1(S2) are purely irregular singular, as their Vessiot spaces are three-
dimensional, but still contain a two-dimensional transversal part. At points on
J1(S3), the dimension of the Vessiot spaces is still two; however, the transversal
part is only one-dimensional. Hence, they are regular singular. Finally, the Ves-
siot spaces at points on J1(S4) are three-dimensional with only one-dimensional
transversal complements to the symbol spaces. Thus, these points are irregular
singular. These considerations also prove that all sets J1(Si) are regular algebraic
jet sets and hence the four sets together define a regularity decomposition of J1(S)
in order 1.

Example 7.2. The hyperbolic gather is a classical example from catastrophe the-
ory and is defined by the differential polynomial p := (u′)3 +uu′−x. A real picture
corresponding algebraic differential equation is given by the blue surface on the left
in Figure 2 with its fold line shown in red. All singularities lie on this fold line. On
the right, Figure 2 shows some (real) solution graphs and one can see how solutions
reach a forward or backward impasse when they hit the projection of the fold line
shown in black.

The hyperbolic gather represents probably one of the simplest examples to
demonstrate the artifacts that the algebraic Thomas decomposition may introduce
in the output of Algorithm 5.3 (compare Remark 5.4). Using the implementation
presented in [4], one obtains a regularity decomposition consisting of seven compo-
nents (all composed of smooth points). One of them consists of the two irregular
singularities shown as distinguished points on the fold line in Figure 2; three other
components describe the remainder of the fold line (one of them singles out the “tip”
of the fold line, one contains only complex points not visible in the real picture).
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Figure 3. Hyperbolic gather with redundant case distinctions.

The remaining three components contain the regular points. The corresponding
extended algebraic systems are given by

Sex
1 :=

{
p = 0, 4u3 + 27x2 6= 0, x 6= 0, (3(u′)2 + u)b+ ((u′)2 − 1)a = 0

}
,

Sex
2 :=

{
(u′)3 + uu′ = 0, x = 0, u 6= 0, (3(u′)2 + u)b+ ((u′)2 − 1)a = 0

}
,

Sex
3 :=

{
uu′ + 3x = 0, 4u3 + 27x2 = 0, x 6= 0, 81x2b+ (36x2 − 4u2)a = 0

}
,

where we omitted the equations corresponding to the Jacobian criterion. Here S1

is obviously the unique distinguished system of Proposition 6.2 defining a regular
differential equation. However, if one takes the respective equations for the Vessiot
space into account, then one sees8 that the distinction between the three systems
has no meaning for our analysis of singularities.

The appearance of these unnecessary case distinctions can be easily explained
from the geometry of the corresponding algebraic jet set J1 shown once more in
Figure 3 over the real numbers. Again, the red curve shows all geometric singular-
ities of J1. The set SolS3 consists of those points of J1 which lie either above or
below the fold line and is shown in magenta. This set must be singled out by any
algebraic Thomas decomposition for the ordering u′ > u > x, as at its projection
to the x-u plane the fibre cardinality changes (this statement remains true over
the complex numbers, as the hyperbolic gather simply depicts the solutions of the
reduced cubic equation in u′ with coefficients u and −x). Finally, the set SolS2 –
shown in cyan – contains those points where the discriminant of the discriminant
of p, i. e. x, vanishes. This set has a geometric relevance only at its intersection
with the fold line, as it singles out the point where the fold line itself folds (respec-
tively where the underlying cubic equation has a triple zero). Because of the inner
working of the algorithm used to compute an algebraic Thomas decomposition, this
condition leads to a separate case.

Example 7.3. We consider now a situation where one is dealing with a reducible
variety so that the second step of Algorithm 5.3 becomes non-trivial. Its treatment
demonstrates why we prefer to consider only irreducible varieties. The starting
point is the differential system consisting of only one equation in factored form,

(17) p := (u′ − c)
(
(u′)2 + u2 + x2 − 1

)
= 0 ,

8In the case of S3, this requires that one takes the coefficients as they appear in S1 and S2

and rewrites them modulo the equations in S3.
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where c ∈ [−1, 1] is a real constant and no inequation. A differential Thomas
decomposition yields a single simple differential system S which contains besides
the equation p = 0 only the inequation sep (p) 6= 0.

Algorithm 5.3 (for ` = 1) computes in the first step the algebraic ideal I1(S)
which is here simply generated by p, as the saturation has no effect. Its prime
decomposition yields two prime ideals generated by the two factors of p: p1 = u′−c
and p2 = (u′)2 + u2 + x2 − 1. Considered over the reals, we are dealing here with a
sphere and a horizontal plane intersecting it. Obviously, both irreducible varieties
are without algebraic singularities so that we ignore in the sequel the equations
J(pk) = 0. It is trivial to see that a regularity decomposition of J1(p1) yields only
one regularity component, namely J1(p1) itself, and all points on it are regular. In
particular, J1(p1) is trivially a regular differential equation.

The second irreducible component was already analysed in [43, Ex. 9.1.12]. The
linear equation for the Vessiot spaces is 2u′b + (2uu′ + 2x)a = 0. For the ranking
b > a > u′ > u > x, the implementation presented in [4] determines an algebraic
Thomas decomposition consisting of five simple algebraic systems (since no alge-
braic singularities exist on this component, we ignore again the part stemming from
the Jacobian criterion):

Sex
1 :


u′b+ (uu′ + x)a = 0,

(u′)2 + u2 + x2 − 1 = 0,

u2 + x2 − 1 6= 0,

x2 − 1 6= 0

Sex
2 :


u′b+ (uu′ + x)a = 0,

(u′)2 + u2 = 0,

u 6= 0,

x2 − 1 = 0

Sex
3 :


a = 0,

u′ = 0,

u2 + x2 − 1 = 0,

x3 − x 6= 0

Sex
4 :


a = 0,

u′ = 0,

u = 0,

x2 − 1 = 0

Sex
5 :


u′ = 0,

u2 − 1 = 0,

x = 0

The reduced systems corresponding to the first two systems Sex
1 and Sex

2 can be
combined into one simple algebraic system leading to the following subset of the
differential equation J1(p2):

(18) R1 = Sol(S1) ∪ Sol(S2) = Sol
({
p2 = 0, u′ 6= 0

})
.

Such a combination is also possible for the third and the fourth system and yields
another subset of J1(p2) disjoint of R1:

(19) R2 = Sol(S3) ∪ Sol(S4) = Sol
({
p2 = 0, u′ = 0, u2 − 1 6= 0, x 6= 0

})
.

We have thus constructed a regularity decomposition of J1(p2) with three regularity
components: R1 and R2 as defined above and R3 = Sol(S5).

We now classify the points on these three components according to the taxonomy
of Definition 4.1. By Proposition 5.10, we have dimVρ[J1(p2)] = 1 for all points
ρ ∈ R1. Moreover, for these points we have u′ 6= 0. Since u′ is the initial of the
equation with leader b, the assumption a = 0 implies b = 0 and hence the symbol
space Nρ[J1(p2)] is trivial. We conclude that all points in R1 are regular. It follows
again from Proposition 5.10 that dimVρ[J1(p2)] = 1 also for all points ρ ∈ R2.
Since the condition a = 0 belongs to the equations describing R2, all these Vessiot
spaces are vertical, i. e. Vρ[J1(p2)] = Nρ[J1(p2)] everywhere on R2. Thus all these
points are regular singular. As the system S5 defining R3 contains no equations
depending on a or b, everywhere on R3 the Vessiot spaces are two-dimensional and
hence all points there are irregular singular.

In this example, it is not difficult to verify that R1 is a regular differential
equation, although Theorem 6.3 guarantees this only for the dense subset SolS1.
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The inequation x2 − 1 6= 0 is irrelevant for the initials and separants of S1 and the
systems Sex

1 and Sex
2 contain exactly the same equation for the coefficients a and b

in our ansatz for the Vessiot space.
We can now compare the results for J1(p1) and J1(p2) for the points on their

intersection, i. e. at points which are algebraic singularities of the original reducible
variety J1(S). If c 6= 0, then the points on J1(p1) ∩ J1(p2) have been classified
as regular for both irreducible components. However, for c = 0 the points on
the intersection are still regular with respect to J1(p1), but regular singular with
respect to J1(p2). This exemplifies again the statement made in the beginning of
Example 4.8 that the taxonomy of Definition 4.1 is relative and strongly depends
on the considered algebraic jet set.

A natural question in such a situation is whether generalised solutions exist
which lie on both components. Let us assume for simplicity that c 6= 0. Then on
each component there exists a unique generalised solution going through ρ. Over
the complex numbers, the identity theorem for holomorphic functions excludes the
possibility to combine pieces of these to new solutions. Over the real numbers,
solutions of lower regularity are admitted even if we restrict to classical solutions.
In our case, we can construct additional solutions through ρ by approaching ρ
on one of these two solutions and by then “switching” to the other one. As the
resulting curve in J1π is still continuous, it corresponds to the prolongation of a
function which is at least C1 at the value x where the switching occurs.

As the direction of the tangent of a generalised solution encodes the value of
the second derivative, a necessary and sufficient condition for the thus constructed
solution to be even C2 at x is that at the intersection point the Vessiot spaces with
respect to the two irreducible components are identical. In our case, all Vessiot
spaces Vρ[J1(p1)] are spanned by the vector ∂x+c∂u, whereas a basis of the Vessiot
space Vρ[J1(p2)] at any point ρ = (x̄, ū, p̄) /∈ R3 is given by the vector p̄(∂x +
p̄∂u)− (x̄+ ūp̄)∂p. If we assume that we are on the intersection, i. e. that p̄ = c and
ū2 + x̄2 = 1− c2, then it is easy to see that the Vessiot spaces can be identical only
for c 6= 0 and then this happens only at the two points

ρ± =

(
∓c
√

1− c2
1 + c2

,±
√

1− c2
1 + c2

, c

)
.

By analysing the next prolongation of our equation, it is not difficult to show that
the “switching” solutions are exactly C2, as the value of the second derivative jumps
at the switching point.

Thus we can conclude that over the real numbers we have through each point on
the intersection four solutions: two analytic functions with prolongations staying
completely on one component and two C1 functions switching between components.
For the points ρ± the latter two solutions are even C2; a higher regularity is not
possible for “switching” solutions. Figure 4 provides a graphical presentation of the
situation over the reals for the choice c = − 3

4 . The red curves intersect at ρ+; the
green curves at some point different from ρ±. Geometrically, ρ± are distinguished
by the fact that the value of u′ at these points represents a local extremum along the
generalised solution of J1(p2) going through it. This in turn means that the graph
of the corresponding classical solution has an inflection point there. This can be
seen in the right part of the picture where the black lines correspond to the solutions
of u′ = c and the red and green curves to solutions of (u′)2 +u2 +x2 = 1. Obviously,
the black lines are tangent to the coloured curves at the marked intersection points.
But the red curve crosses the black line, whereas the green curve stays on one side.

Example 7.4. To conclude this section, we study equations with “intrinsic” al-
gebraic singularities, i. e. singularities that are not solely due to the intersection
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Figure 4. First-order differential equation with two irreducible
components. Left: generalised solutions in J1π. Right: solution
graphs in x-u plane.

of irreducible components. Some classical examples can already be found in the
work of Ritt. He studied for instance the equation (u′)2 − 4u3 = 0 [39, II.§19].
Here, all points (x, 0, 0) are algebraic singularities, whereas all other points on the
corresponding algebraic differential equation J1 are regular. As the differential
Thomas decomposition applied in the first step of Algorithm 5.14 shows, a singular
integral, namely the solution u(x) = 0, exists here besides the generic component.
Obviously, our algebraic singularities just form the graph of the first prolongation
of this solution. When we apply Algorithm 5.3 to the generic component, then
it uses the inequations in the entered differential system only for the saturation;
otherwise they are ignored. Hence the analysed algebraic differential equation J1 is
the full variety corresponding to the given equation. In particular, J1 contains all
the algebraic singularities, but Algorithm 5.3 recovers them and puts them again
into a separate regularity component. The singular integral represents here a kind
of limit towards which all the other solutions tend asymptotically.

As a second example, we consider the cone in the first-order jet bundle, i. e. we
study the scalar differential equation J1 given by

(u′)2 − u2 − x2 = 0

which obviously possesses an isolated algebraic singularity at the origin. The regu-
larity decomposition of J1 determined with our algorithm yields two components:
one consisting solely of this algebraic singularity and one containing all other points
which are regular.

It is of obvious interest to study the local solution behaviour around this algebraic
singularity and again we find a much wider range of possibilities over the real
numbers. In our case, a real analysis can be performed with a simple ad hoc
approach. Around any regular point (x̄, ū, ū′) ∈ J1, the Vessiot distribution is
generated by the vector field X = u′∂x + (x2 + u2)∂u + (x − uu′)∂u′ . Note that
X vanishes when one approaches the origin. By restricting to either the lower or
the upper half cone, we can express u′ by x and u and project to the x-u plane
obtaining the vector field Y = ±

√
x2 + u2∂x + (x2 + u2)∂u. It can trivially be

continued to the origin where it vanishes. However, it is not differentiable at this
point. Therefore, its behaviour at this stationary point cannot be decided using
the Jacobian matrix. Transforming to polar coordinates (i. e. performing a blow
up) shows that there is a unique invariant manifold going through the algebraic
singularity which corresponds to the graph of a (prolonged) solution. We obtain
one such solution from each half cone (see the red curves in Figure 5). As the
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Figure 5. Generalised solutions going through an algebraic sin-
gularity of a real first-order differential equation. Left: situation
in J1π. Right: projection to x-u plane.

graphs of both solutions possess a horizontal tangent at the origin, it is possible to
“switch” at the singularity from one to the other. Hence, we find that our equation
possesses exactly four C1 solutions for the initial condition u(0) = 0 and u′(0) = 0.
By analysing the prolongations of our equation, it is not difficult to verify that the
solutions that stay inside of one half cone are even smooth, whereas the “switching”
solutions are only C1, as their second derivative jumps from 1 to −1 or vice versa
at x = 0. Figure 5 also shows in white the Vessiot cone at the algebraic singularity
which consists of two intersecting lines. One sees that they are indeed the tangents
to the prolonged solutions through the singularity.

8. Conclusions

We developed a framework for the detection of all singularities of an arbitrary dif-
ferential system with polynomial non-linearities at a fixed order. It is based on the
notion of an algebraic jet set (Definition 2.1) and covers both ordinary and partial
differential equations. Our framework merges concepts from differential topology
with tools from differential algebra and algebraic geometry. In particular for partial
differential equations, it provides the first general and rigorous definition of singu-
larities. While we could not prove that the taxonomy of Definition 4.1 is complete
for systems which are not of finite type, our first main result, Theorem 4.7, shows
that the definition is meaningful in the basic sense that regular points represent the
generic case.

We augmented the classical theory of singularities of differential equations by
the novel notion of a regularity decomposition (Definition 5.2), which is based on
the concept of a regular algebraic jet set and in particular allows for a rigorous han-
dling of situations where singularities are not isolated. A regularity decomposition
essentially decomposes an algebraic jet set into subsets on which all relevant geomet-
ric structures show a uniform behaviour. Our second main result, Theorem 5.13,
provides an algorithmic proof for the existence of regularity decompositions for
arbitrary simple differential systems.

Finally, we solved a long standing problem in the geometric theory of differ-
ential equations: the construction of effectively provably regular equations. Most
results in the geometric theory assume that one is dealing with a regular differen-
tial equation. However, to the best of our knowledge, nobody has so far provided
an effective criterion for checking whether or not a given differential equation is
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regular. The basic problem is that such a criterion must take into account all in-
finitely many prolongations of the considered differential equation. Our third main
result, Theorem 6.3, shows that the regularity decomposition determined by our
algorithm contains in each prime component of the given system a unique regularity
component which defines a regular differential equation.

Our approach is based on both the differential and the algebraic Thomas decom-
position and therefore fully algorithmic. An algebraic Thomas decomposition is
crucial for the detection of all singularities. However, as discussed in Example 7.2,
such a decomposition yields in general more than we really need, as it also takes into
account the geometry of the embedding of the given algebraic differential equation
into the ambient jet bundle. From a theoretical point of view, these unnecessary
case distinctions are ugly but harmless. From a computational point of view, they
considerably increase the computational costs and thus it would be useful to find
a way to avoid them. Based on the existing implementation of these decomposi-
tions in Maple [4] and the built-in Maple procedure for prime decomposition,
it is straightforward to implement our Algorithms 5.3 and 5.14 for constructing a
regularity decomposition in Maple. Indeed, one of the authors (MLH) provided
such an implementation and all examples in this work have been computed with it.

Our results lead immediately to a number of new questions. The most obvi-
ous one concerns the local solution behaviour around singularities, in particular the
existence of solutions connecting two or more regularity components. Its investi-
gation requires first an analysis of the “neighbourhood relationships” of the found
components, i. e. does a certain component lie in the Zariski closure of another com-
ponent? Such information can be straightforwardly obtained by classical Gröbner
bases techniques (cf. e. g. [8]). A deeper study of the local solution behaviour re-
quires additional methods which are beyond the scope of this work. Furthermore,
such a study can most probably not be done at the same level of generality as this
work; one has to specialise to more specific classes of systems.

For geometric singularities of ordinary differential equations considered over
the real numbers much is already known from the works in the context of dif-
ferential topology cited in the Introduction. Typical questions here are existence,
(non)uniqueness and regularity of one- and two-sided solutions. At regular singu-
larities the situation is fairly simple: they are generically either the initial or the
terminal point of two classical solutions (thus generically only one-sided solutions
exist at such points). A precise formulation covering also non-generic situations can
e. g. be found in [24, Thm. 4.1]. For the analysis of irregular singularities, one can
employ dynamical systems theory, as usually the Vessiot distribution is generated
outside of an irregular singularity by a vector field which vanishes at the singu-
larity. Generalised solutions through the singularity can then be constructed as
one-dimensional invariant manifolds and typically several (possibly even infinitely
many) solutions intersect at such a singularity.9 A detailed analysis of a specific
class of scalar quasilinear10 second-order ordinary differential equations along these
lines can be found in [45]. In particular, it is shown there how regularity questions
can be answered geometrically by studying prolongations.

For linear ordinary differential equations, the analysis of singularities over the
complex numbers has a long tradition going back at least to the classical works

9In low-dimensional situation, it is useful to be able to actually see the singularities and
solutions through and around them. In [7], a Matlab toolbox for producing corresponding 2D
and 3D plots is presented.

10It should be noted that quasilinear differential equations possess a special geometry, as here
the Vessiot distribution is projectable [44] leading to phenomena not arising in the fully nonlinear
equations usually studied in differential topology. Using classical analytical techniques, such
equations have been analysed in some detail e. g. in [34].
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of Fuchs and Frobenius which is nowadays often considered as part of differential
Galois theory (cf. [51] and references therein). Note that in this context the termi-
nology regular and irregular singularity is often used with a different meaning than
in this work. In a complex setting, the regularity of solutions is of course no issue.
Instead one studies questions like the monodromy of multivalued solutions or the
Stokes phenomenon (cf. e. g. [55] or [53]) which are both from a theoretical and an
algorithmic point of view still far from being solved.

We mentioned already in Remark 4.4 that for partial differential equations the
taxonomy of Definition 4.1 might be incomplete. The deeper problem behind this
question is to define precisely what in this case the regular behaviour should be. For
equations of finite type, the prolonged solutions lead to a foliation of the differen-
tial equation around any regular point, as in this case the vanishing of the symbol
space implies that the Vessiot distribution itself is the unique complement to the
symbol space and its integral manifolds form the leaves of a (unique) foliation by
the Frobenius theorem. If the differential equation is not of finite type, infinitely
many possible complements exist and each of them leads to a different foliation
by its integral manifolds. Here it is still unclear whether our definition is already
sufficient to avoid any possible kind of singular behaviour. For regular differential
equations, the different complements can be constructed by solving a combined
algebraic-differential system which arises out of the structure equations of the Ves-
siot distribution (see the discussion in [14]). It has not yet been studied how this
construction is affected by singularities and whether further kinds of singularities
may be hidden in the structure equations.

The study of solutions around algebraic singularities has not found much atten-
tion yet. Within differential topology, they simply do not occur, as it is always as-
sumed that one is dealing with a manifold. Recently, Falkensteiner and Sendra [12]
used the classical theory of algebraic curves to study formal power series solutions of
autonomous algebraic ordinary differential equations of first order by relating them
to places. However, an extension of their approach to higher dimensional situations
appears to be highly nontrivial. Our analysis in the non-autonomous Example 7.4
corresponding to an algebraic surface was performed in a rather ad hoc manner,
but the principal idea should be extendable to more complicated situations, as the
definition of a simple algebraic system means that each equation in the system is
solvable for its leader. Thus one can at least in principle obtain an explicit expres-
sion for a vector field generating the Vessiot distribution (for ordinary differential
equations), as we used it in the example.

Our approach studies the singularities in a fixed order `. In this work, we have
only been concerned with choosing ` sufficiently high for a meaningful analysis. An
obvious question is how regularity decompositions in order ` and in order ` + 1
are related or, more generally, the behaviour of singularities under prolongations.
It is related to classical decidability questions for power series solutions as e. g.
studied by Denef and Lipshitz [10]. It is easy to see that at a regular singularity
no power series solutions can exist, as the fibre above it is always empty. The fibre
over an irregular singularity consists entirely of singularities, but it is not clear of
which type. A power series solution can exist at such a point only, if at each order
of prolongation the corresponding fibre contains at least one irregular singularity.
Thus we meet again the problem of checking infinitely many conditions. To the
best of our knowledge, it is still unknown whether one can decide the existence of
power series solutions for given initial data with a finite algorithm.

The algorithms behind the algebraic and the differential Thomas decomposition
require that the base field is algebraically closed. For this reason, we considered in
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this work exclusively differential equations over the complex numbers. From an ap-
plication point of view, it is of great interest to have a similar theory as developed in
this work for real differential equations. A first step in this direction can be found in
[46] for ordinary differential equations. There the algebraic Thomas decomposition
is replaced by a parametric Gaussian algorithm followed by a quantifier elimina-
tion. This process represents a suitable alternative for the effective detection of
real singularities and as a by-product avoids to some extent the above mentioned
problem that the algebraic Thomas decomposition leads to unnecessary case dis-
tinctions because of the geometry of the embedding of the differential equation. As
demonstrated in [46], an analysis of Example 7.2 leads now to no redundant cases.

Appendix A. Algebraic Systems and the Algebraic Thomas
Decomposition

We fix a total ordering (or ranking) on the variables of the polynomial ring
P = C[x1, . . . , xn] by setting xi < xj for i < j. The greatest variable with respect
to < appearing in a non-constant polynomial p ∈ P is called the leader of p and
denoted by ld (p); for p ∈ C we set ld (p) = 1. We regard every polynomial p ∈ P\C
as a univariate polynomial in the indeterminate xk := ld (p). Then the coefficients
of p as a polynomial in xk are contained in C[xi | 1 ≤ i < k]. The coefficient of the
highest power of ld (p) in p is called the initial of p and denoted by init (p). Finally,
we introduce the separant of p as sep (p) := ∂p/∂xk.

An algebraic system S is a finite set of polynomial equations and inequations

(A) S =
{
p1 = 0, . . . , ps = 0, q1 6= 0, . . . , qt 6= 0

}
with polynomials pi, qj ∈ P and s, t ∈ N0. Its solution set is defined as

Sol (S) :=
{
a ∈ Cn | pi(a) = 0, qj(a) 6= 0 for all i, j

}
.

Obviously, Sol (S) is a locally Zariski closed set, namely the difference of the two
varieties Sol ({p1 = 0, . . . , ps = 0}) and Sol ({q1 · · · qt = 0}).

Definition A.1. An algebraic system S as in (A) is said to be simple (with respect
to the ranking <), if the following three conditions hold:

(i) All equations and inequations have pairwise different leaders, i. e. we have∣∣ { ld(p1), . . . , ld(ps), ld(q1), . . . , ld(qt) } \ {1}
∣∣ = s+ t (triangularity).

(ii) For every r ∈ {p1, . . . , ps, q1, . . . , qt}, the equation init (r) = 0 has no solu-
tion in Sol (S) (non-vanishing initials).

(iii) For every r ∈ {p1, . . . , ps, q1, . . . , qt}, the equation sep (r) = 0 has no solu-
tion in Sol (S) (square-freeness).

We associate with the simple algebraic system S the saturated ideal

(20) Ialg(S) := 〈p1, . . . , ps〉 : q∞ ⊂ P where q = init (p1) · · · init (ps) .

According to [40, Prop. 2.2.7], it represents the vanishing ideal of the Zariski closure
of Sol(S), i. e. the ideal of all polynomials in P which vanish on Sol(S). In particular,
Ialg(S) is always a radical ideal.

Simple systems are a special class of algebraic systems for which the solution
set can be obtained iteratively by finding zeros of univariate polynomials. First
observe that triangularity implies that the simple system S contains either at most
one equation p(x1) = 0 with leader x1 or at most one inequation q(x1) 6= 0 with
leader x1. The number of zeros of p (of q) in C is equal to the degree of p (of q,
respectively) due to square-freeness. In the former case, any zero a1 ∈ C of p can
be chosen for the coordinate x1 of a solution of S. In the latter case, all elements of
C except the zeros of q can be chosen instead. If S does not contain any equation
or inequation with leader x1, then a1 is arbitrary. We substitute a1 for x1 in the
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equation or inequation with leader x2 in S leading to a univariate polynomial in
x2. The degree of this polynomial is independent of the choice of a1 due to the
non-vanishing initial. Again because of square-freeness, the number of zeros of this
polynomial is equal to its degree. By iterating this process, we obtain a solution
(a1, a2, . . . , an) ∈ Cn of S and every solution of S can be obtained in this way. This
process makes use of the fact that the projections from the solution set of S onto
the subspace with coordinates x1, x2, . . . , xk have uniform fibre cardinality [32].

Definition A.2. Let S be an algebraic system as in (A). A Thomas decomposition
of it consists of finitely many simple algebraic systems S1, . . . , Sk such that the
solution set Sol (S) is the disjoint union of Sol (S1), . . . ,Sol (Sk).

Thomas [49, 50] proved that any algebraic system admits a (non-unique) Thomas
decomposition. Using subresultants and case distinctions, it can be algorithmically
determined [4]. An implementation in Maple is described in [5].

Appendix B. Differential Systems and the Differential Thomas
Decomposition

We proceed to the differential polynomial ring (see [38, 39, 48] for more infor-
mation on the for us relevant parts of differential algebra). Let K = C(x1, . . . , xn)
be the field of rational functions on Cn and δi the derivation ∂/∂xi. Given a set
of differential indeterminates U = {u1, . . . , um}, we define the ring of differential
polynomials as the polynomial ring K{U} := K

[
uαµ | 1 ≤ α ≤ m, µ ∈ Nn0

]
in the

infinitely many variables uαµ . The derivations δi : K → K extend to derivations
δi : K{U} → K{U} via δi(uαµ) := uαµ+1i , additivity, and the Leibniz rule. Here 1i is
the multi-index of length n whose entries are 0 except for the i-th entry which is 1.
We define δµ := δµ1

1 . . . δµnn and |µ| := µ1 + . . .+ µn, the length of any multi-index
µ ∈ Nn0 . Given differential polynomials p1, . . . , ps ∈ K{U}, we distinguish between
the algebraic ideal 〈p1, . . . , ps〉 consisting of all linear combinations of them and the
differential ideal 〈p1, . . . , ps〉∆ containing in addition all differential consequences
δµp of any element p of it.

We introduce the subring D ⊂ K{U} of those differential polynomials where
also the coefficients are polynomials in the variables xi. Moreover, for any ` ∈ N0

we consider the subalgebra

D` = C
[
xi, uαµ | 1 ≤ i ≤ n, 1 ≤ α ≤ m, |µ| ≤ `

]
which is the coordinate ring of the affine space Ad

C
where d = n+m

(
n+`
`

)
. Later,

we identify the jet bundle J`π of the geometric theory (see Section C below) with
the affine space Ad

C
and consider D` as its coordinate ring. Consequently, we call

the variables uαµ of the polynomial ring K{U} jet variables.
A ranking on the differential polynomial ring K{U} is a total ordering < on

the set of jet variables uαµ such that uα < δiu
α for all i and α, and such that

uαµ < uα
′

µ′ implies δiuαµ < δiu
α′

µ′ for all i, α, α′, µ, µ′. A ranking < is orderly, if
|µ1| < |µ2| implies uα1

µ1
< uα2

µ2
for all α1, α2, µ1, µ2. A Riquier ranking satisfies

the following property: if the relation uαµ < uαµ′ holds for one value of the index
α, then it must hold for all values of α (the meaning of this condition is discussed
in [43, p. 428]). The definitions of leader, initial and separant given above can be
extended straightforwardly.

A differential system S is given by a finite set of differential polynomial equations
and inequations

(D) S =
{
p1 = 0, . . . , ps = 0, q1 6= 0, . . . , qt 6= 0

}
with pi, qj ∈ K{U} and s, t ∈ N0. Note that by clearing denominators we may
(and will) always assume that actually pi, qj ∈ D.
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As always for differential equations, the issue arises what kind of functions are
permitted as solutions. We use here mainly local holomorphic functions f : U → C
defined on some metric open domain U ⊆ Cn. However, in our approach the
actual nature of the considered functions is not so important and we could equally
well work with formal power series or meromorphic functions. In the sequel, we
simply assume that some set of functions admissible as solutions has been fixed
and we denote by Sol (S) the set of solutions in this set. We further assume that a
differential Nullstellensatz holds for this set. This is needed to establish a one-to-
one correspondence between the solution sets of differential systems and the radical
differential ideals of the differential polynomial ring. For a system of differential
equations in K{U} with our choice of K, a differential Nullstellensatz holds for
local holomorphic functions (see e. g. [35, 38]).

Theorem B.1 (Nullstellensatz for Holomorphic Functions). Let p1, . . . , ps ∈ K{U}
be differential polynomials and I = 〈p1, . . . , ps〉∆ the differential ideal generated by
them. Moreover, let q ∈ K{U} be a differential polynomial which vanishes for all
local holomorphic solutions of I. Then some power of q is an element of I.

The concept of passivity introduced by Riquier [37] and Janet [23] represents
a differential algebraic version of completeness or formal integrability. For lack
of space, we cannot recall here all the required definitions, but refer to [15] for a
modern presentation of the form in which it is used here. Riquier [37, Chapt. VII,
§115] showed how one can formulate for a passive system an initial value problem
(see [43, Sect. 9.3] for a modern formulation of this construction) admitting an
existence and uniqueness theorem for holomorphic solutions.

Theorem B.2 (Riquier’s Theorem). Let < be an orderly Riquier ranking. Then
for a system of holomorphic differential equations which is orthonomic and passive
with respect to < the corresponding initial value problem possesses for holomorphic
initial data locally a unique holomorphic solution.

The assumption of passivity allows for the algorithmic construction of formal
power series solution for any ranking (see Remark B.5 below). In the case of an
orderly Riquier ranking, one can then prove the convergence of this series obtaining
the above theorem. Orthonomic means that each equation can be solved in a unique
manner for its leader. Obviously, a general implicit differential equation does not
satisfy this condition. For this reason, we need as in the algebraic case the notion
of a simple system permitting us the use of Riquier’s Theorem.

Definition B.3. The differential system S given by (D) is simple (with respect to
a given ranking <), if the following conditions hold:

(i) S is simple as an algebraic system (in the finitely many jet variables uαµ
which actually occur in S ordered according to <).11

(ii) {p1, . . . , ps} is a passive system (for the Janet division).
(iii) No leader of an inequation qj is an (iterated) derivative of the leader of an

equation pk.

Definition B.4. A Thomas decomposition of a differential system S consists of
finitely many simple differential systems S1, . . . , Sk such that Sol (S) is the disjoint
union of the solution sets Sol (S1), . . . ,Sol (Sk).

Thomas [49, 50] proved also in the differential case the existence of such decom-
positions. Again, it is possible to construct them algorithmically by interweaving

11We consider here the independent variables xi as part of the coefficient field. One should
also note that if only the inclusion of these variables yielded an algebraically simple system, then
S would be differentially inconsistent.
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algebraic Thomas decompositions and the Janet-Riquier theory [4]. The resulting
algorithm is implemented in Maple [5, 16].

Remark B.5. For a simple differential system S it is possible to construct system-
atically formal power series solutions. Let ` be the maximal order of an equation
or an inequation in S and add to S all partial derivatives of order at most ` of the
equations in S. Now we choose an expansion point x0 = (x1

0, . . . , x
n
0 ) ∈ Cn such

that all equations and inequations in S are defined at x = x0 and no initial and no
separant vanishes for x = x0. Hence, a formal power series solution is of the form
uα =

∑
µ∈Nn0

cαµ
(x−x0)µ

µ! . We choose cαµ ∈ C for all derivatives uαµ up to order `.
These choices must be performed in such a manner that after substituting x by x0

and all uαµ by the corresponding constants cαµ no initial or separant of an equation
or inequation vanishes and all equations and inequations are satisfied. If uαµ is the
leader of an equation, then only finitely many values are possible for cαµ . If it is
the leader of the derivative of an equation, then there is no freedom in choosing
cαµ , as any differentiated equation is linear in its leader. If uαµ is the leader of an
inequation, then all but finitely many values are possible for cαµ . For all other jet
variables uαµ up to order `, the constants cαµ can be chosen completely freely.

The jet variables uαµ of an order greater than ` can be partitioned into two
disjoint sets. For those which are not the derivative of the leader of an equation
in S, the corresponding constant cαµ can be chosen arbitrarily. For all remaining
ones the constants cαµ are uniquely determined by some derived equations, which
are quasi-linear. The properties of a simple differential system (in particular, the
passivity) ensure that now the formal power series uα =

∑
µ∈Nn0

cαµ
(x−x0)µ

µ! with
1 ≤ α ≤ m define a solution of S around x0.

Appendix C. The Geometry of Differential Equations

Since the algebraic tools used in the algorithms developed in this work require an
algebraically closed field, we concentrate on complex differential equations. Thus
in the sequel all manifolds12 are complex and all variables are to be understood as
complex-valued. Restricting to holomorphic sections, one can define jet bundles in
the familiar way and there are no changes with respect to the real theory outlined
in standard references like [26, 33, 41, 43].

The basic geometric setting is a fibred manifold π : E → X (i. e. π is a surjective
submersion). The coordinates on the base space X are the independent variables
x1, . . . , xn; the fibre coordinates u1, . . . , um represent the dependent variables or
unknown functions. The `th order jet bundle J`π consists of all Taylor polynomials
of degree `. Naturally induced coordinates on it are thus in addition all derivatives
of the ui up to order `; we use for them the usual multi-index notation uαµ where
µ ∈ Nn0 is a multi-index of length n. In the sequel, these natural coordinates are
called jet variables. For convenience, we identify E = J0π.

Functions are replaced in the geometric framework by (local) sections:13 maps
σ : U ⊆ X → E such that π ◦ σ = idU . Locally, any section can be written in the
form σ(x) =

(
x, s(x)

)
with a local holomorphic function s : Cn → Cm. Given a

section σ : X → E , prolongation yields a section of the jet bundle j`σ : X → J`π
which is locally defined by j`σ(x) =

(
x, s(x), sx(x), . . . , sx···x(x)

)
, thus we simply

add all partial derivatives of the function s up to order `.

12For us, manifolds have the same local dimension at every point and thus look locally like an
open subset of some Cd with a fixed d.

13For notational simplicity, we almost always omit the domain of definition U and use a
seemingly global notation. However, all statements in this work are of a local nature.
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The jet bundles of different orders form a natural hierarchy of fibrations via the
canonical projections π`+k` : J`+kπ → J`π which “forget” the higher order Taylor
coefficients. Of particular interest are the projections π``−1 by just one order, as
J`π is an affine bundle over J`−1π modelled on the vector bundle S`(T ∗X ) ⊗ V π
[43, Prop. 2.2.6]. The fundamental identification provides an isomorphism between
this vector bundle and the vertical bundle V π``−1 = kerTπ``−1. In addition, every
jet bundle is fibred over the base space by the canonical projection π` : J`π → X
mapping each Taylor polynomial to its expansion point. This last projection is
very important in our context: whenever we speak without further details of a
transversal or a vertical vector field, it refers to this fibration π`.

A crucial geometric structure on the jet bundle J`π is the contact distribution
C` ⊂ T (J`π). In local jet coordinates, it is generated by the following vector fields:

(21)
C

(`)
i = ∂xi +

∑
α

uαi ∂uα +
∑

0<|µ|<`

∑
α

uαµ+1i∂uαµ (1 ≤ i ≤ n) ,

Cµα = ∂uαµ (|µ| = `, 1 ≤ α ≤ m) .

The first n fields are transversal to the fibration π` and encode the chain rule,
whereas the remaining fields span the vertical bundle V π``−1. Intuitively, the con-
tact distribution encodes the different roles played by the three different kinds of
coordinates: independent variables, dependent variables, and derivatives. One way
to express this intuition formally is given by the following well-known result.

Proposition C.1. A section γ : X → J`π of the `th jet bundle is a prolongation,
i. e. of the form γ = j`σ for a section σ : X → E, if and only if T (im γ) ⊆ C`.

The following intrinsic definition of a differential equation does not distinguish
between scalar equations and systems. It automatically excludes the appearance of
singularities as studied in this work.

Definition C.2. A differential equation of order ` is a fibred submanifold J` ⊆ J`π
such that the restriction of the canonical projection π` : J`π → X to the set J` is
a surjective submersion.

Also the notion of a solution can be easily expressed in an intrinsic manner. Note
that the above definition of a differential equation does not yet entail the existence
of solutions, as it does not exclude hidden integrability conditions which may lead
to an inconsistency.

Definition C.3. A (classical) solution of the differential equation J` ⊆ J`π is a
section σ : X → E such that its prolongation satisfies im j`σ ⊆ J`.

Let σ : X → E be a classical solution of the differential equation J` ⊆ J`π.
Then, by definition, im j`σ ⊆ J` is a smooth submanifold. Hence, we find at any
point ρ ∈ im j`σ that Tρ(im j`σ) ⊆ TρJ`. Furthermore, for any prolonged section
Tρ(im j`σ) ⊆ C`|ρ by Proposition C.1. Thus the tangential part of the contact
distribution restricted to J` may be considered as the space of all infinitesimal
solutions (or integral elements).

Definition C.4. The Vessiot space14 Vρ[J`] of the differential equation J` ⊆ J`π
at a point ρ ∈ J` is the set Vρ[J`] = TρJ` ∩ C`|ρ. The family of all Vessiot spaces
is briefly denoted by V[J`].

14In particular in the Russian literature, the terminology Cartan space is more common. We
follow here the argumentation of Fackerell [11] that Vessiot put a much stronger emphasis on the
vector field side whereas Cartan prefered to work with differential forms.
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One should note that generally V[J`] does not define a smooth regular distribu-
tion, as the dimension of the Vessiot spaces may differ at different points on J`. It
is a standard assumption in the geometric theory (related to the notion of a regular
differential equation) that this should not happen.

The fibration π``−1 : J`π → J`−1π allows us to define at any point ρ ∈ J`π

the vertical space Vρπ``−1 = kerTρπ
`
`−1. We call the vertical part of the Vessiot

space at a point ρ ∈ J` the symbol space Nρ[J`] = Vρ[J`] ∩ Vρπ``−1. It is not
difficult to show that the Vessiot space can be decomposed as a direct sum of linear
subspaces, Vρ[J`] = Nρ[J`]⊕Hρ, with some π`-transversal complement Hρ which
is not uniquely determined.

The relationship between solutions and the Vessiot distribution is recalled in
the following well-known assertion (see e. g. [43, Prop. 9.5.7]). One may say that
the basic idea of Vessiot’s approach to differential equations consists of studying
certain subdistributions of the Vessiot distribution—which can to a large extent
be analysed by elementary linear algebra—instead of solutions themselves (in [14]
these subdistributions are called Vessiot connections).

Proposition C.5. Let the section σ : X → E be a solution of the differential
equation J` ⊆ J`π. Then T (im j`σ) is an n-dimensional, π`-transversal, involu-
tive, smooth subdistribution of V[J`]|im j`σ. Conversely, let H ⊆ V[J`] be an n-
dimensional, transversal, involutive, smooth subdistribution defined on some open
subset of J`. Then any n-dimensional integral manifold of H (and such manifolds
always exist by the Frobenius Theorem [43, Thm. C.3.3]) is locally of the form im j`σ
for a solution σ of J`.

Given a smooth function Φ : J`π → C, its formal derivative with respect to
the independent variable xi yields a function DiΦ : J`+1π → C which can be
conveniently defined via the contact fields (21):

(22) DiΦ = C
(`)
i (Φ) +

∑
|µ|=`

m∑
α=1

Cµα(Φ)uαµ+1i

where µ+ 1i denotes the multi-index obtained by raising the ith entry of µ by one.
Assume that Φ depends on some jet variables other than only the independent

variables xi and that k ≥ 0 is the maximal order of these jet variables. Then DiΦ
depends on jet variables up to order k + 1 and is always linear in those of the
maximal order (and thus quasi-linear). Let P = C[ξ1, . . . , ξn] be a polynomial ring
in n = dimX variables and ρ ∈ J`π an arbitrary point. We define the principal
part of Φ at the point ρ as the polynomial vector

(23) ppρ Φ =
∑
|µ|=k

m∑
α=1

∂Φ

∂uαµ
(ρ) ξµeα ∈ Pm

where eα denotes the standard basis vectors in the free module Pm over the poly-
nomial ring P = C[x1, . . . , xn] whose rank is the fibre dimension m of E . Note that
the entries of ppρ Φ are homogeneous polynomials of degree k .

Locally, the differential equation J` may be considered as the zero set of some
functions Φi : J`π → C. We choose a point ρ ∈ J` and let `i ≤ ` be the maximal
order of jet variables effectively appearing in Φi and fi = ppρ Φi ∈ Pm its principal
part at ρ. The (reduced) principal symbol module at the point ρ is now the P-module
M[ρ] = 〈f1, . . . , fs〉 spanned by all the principal parts. The degree ` component of
this module can be identified with the annihilator of the symbol space Nρ[J`] (see
[43, Rem. 7.1.18]).
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