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SIGNED MAHONIAN ON PARABOLIC QUOTIENTS OF

COLORED PERMUTATION GROUPS

SEN-PENG EU, TUNG-SHAN FU, AND YUAN-HSUN LO

Abstract. We study the generating polynomial of the flag major index with each one-
dimensional character, called signed Mahonian polynomial, over the colored permutation group,
the wreath product of a cyclic group with the symmetric group. Using the insertion lemma of
Han and Haglund–Loehr–Remmel and a signed extension established by Eu et al., we derive the
signed Mahonian polynomial over the quotients of parabolic subgroups of the colored permuta-
tion group, for a variety of systems of coset representatives in terms of subsequence restrictions.
This generalizes the related work over parabolic quotients of the symmetric group due to Caselli
as well as to Eu et al. As a byproduct, we derive a product formula that generalizes Biagioli’s
result about the signed Mahonian on the even signed permutation groups.

1. Introduction

The enumeration of the major index with sign over the symmetric group Sn studied by
Gessel and Simion (see [14, Corollary 2]) yields a remarkable factorization formula in terms of
q-factorials, called signed Mahonian polynomial,

∑

σ∈Sn

sign(σ)qmaj(σ) = [1]q[2]−q · · · [n](−1)n−1q, (1.1)

where [k]q = 1 + q + · · · + qk−1 = (1 − qk)/(1 − q). Adin, Gessel, and Roichman [2] extended
(1.1) to the signed permutation group Bn, using the flag major index (fmaj) defined by Adin
and Roichman [3],

∑

β∈Bn

sign(β)qfmaj(β) = [2]−q[4]q · · · [2n](−1)nq. (1.2)

Biagioli and Caselli studied the generating polynomial of the flag major index with each
one-dimensional character χǫ,h over the wreath product Gr,n := Zr ≀ Sn of a cyclic group with
the symmetric group, and derived the following formula in the context of projective reflection
group (cf. [7, Theorem 4.1]),

∑

π∈Gr,n

χǫ,h(π)q
fmaj(π) = [r]ζhq[2r]ǫζhq · · · [nr]ǫn−1ζhq, (1.3)

where ǫ ∈ {1,−1}, 0 ≤ h ≤ r − 1 and ζ is a fixed primitive rth root of unity.
For k < n, Caselli derived the signed Mahonian over the parabolic quotient of symmetric

group Sn by the subgroup Sk [9, Corollary 3.4], which includes (1.1) as a special case,
∑

σ∈Sn(n−k+1:n)

(−1)inv(σ)qmaj(σ) = [k + 1](−1)nk+n+kq[k + 2](−1)k+1q[k + 3](−1)k+2q · · · [n](−1)n−1q,

(1.4)
where Sn(n − k + 1 : n) := {σ ∈ Sn : σ−1(n − k + 1) < σ−1(n − k + 2) < · · · < σ−1(n)} is
a system of representatives of the cosets of Sk in Sn. Namely, Sn(n − k + 1 : n) ⊂ Sn is the
subset of permutations containing the word (n− k + 1, n − k + 2, . . . , n) as a subsequence. Eu
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et al. derived broader results on the permutations with varied subsequence restrictions [10,
Theorem 1.2], and suggested extending the results further to the signed permutation group Bn,
in the spirit of [9, Problem 5.9].

In the realm of parabolic quotients of Gr,n, Caselli obtained the distribution of the flag major
index on the quotient of Gr,n by the subgroup Gr,k [9, Corollary 5.6],

∑

π∈Ck

qfmaj(π−1) = [(k + 1)r]q[(k + 2)r]q · · · [nr]q, (1.5)

where Ck is a system of representatives of the cosets of Gr,k in Gr,n. In order to unify (1.4) and
(1.5), Caselli suggested studying further a signed analogue of (1.5) [9, Problem 5.9],

∑

π∈Ck

χǫ,h(π
−1)qfmaj(π−1), (1.6)

which includes (1.3) as a special case. The purpose of this paper is to study the signed Mahonian
on the parabolic quotients of Gr,n by the subgroups Gr,k and Sk, respectively, for a variety of
systems of coset representatives in terms of subsequence restrictions. See Theorems 2.2, 2.3
and 2.5 for the main results.

2. Preliminaries and Main Results

A permutation σ ∈ Sn will be denoted by σ = (σ1, . . . , σn), where σi = σ(i) for all i ∈ [n].
The inversion number of σ is defined by inv(σ) := #{(i, j) : σi > σj and 1 ≤ i < j ≤ n}.
The set of descents of σ is Des(σ) := {i : σi > σi+1 and 1 ≤ i ≤ n − 1}. The descent number
(des) and major index (maj) of σ are defined by des(σ) = |Des(σ)| and maj(σ) =

∑

i∈Des(σ) i,

respectively. We will write [m,n] := {m,m+ 1, . . . , n} for integers m < n and set [n] := [1, n].

2.1. The colored permutation groups. The group Gr,n of wreath product Zr ≀ Sn consists
of all permutations π of [n]× [0, r−1] such that π(a, 0) = (b, j) ⇒ π(a, i) = (b, i+j), where i+j
is computed modulo r, with composition of permutations as the group operation of Zr ≀Sn. The
group Gr,n reduces to the symmetric group Sn when r = 1 and the signed permutation group
Bn when r = 2. Members of Gr,n are represented as colored permutations on [n] by couples
(σ, z), where σ = (σ1, . . . , σn) ∈ Sn, z = (z1, . . . , zn) ∈ [0, r− 1]n and zk is the color assigned to
σk. We also write π = (σ, z) in window notation with entries in colored integers,

π = (π1, π2, . . . , πn) = (σz1
1 , σz2

2 , · · · , σzn
n ),

where πi = π(i, 0) for all i ∈ [n]. If zi = 0, it is usually omitted. Sometimes π = (π1, . . . , πn)
is called a (colored) word. Let |π| := (|π1|, . . . , |πn|), where |πi| = σi is the absolute value of πi.
The color weight (col) of π is defined by

col(π) := z1 + z2 + · · ·+ zn. (2.1)

There are 2r one-dimensional characters of the group Gr,n, which are of the form

χǫ,h(π) := ǫinv(|π|)ζh·col(π), (2.2)

where ǫ ∈ {1,−1}, h ∈ [0, r − 1], and ζ is a fixed primitive rth root of unity.

Definition 2.1. We use the following order for the flag major index

F : 1r−1 < · · · < nr−1 < · · · < 11 < · · · < n1 < 1 < · · · < n. (2.3)

The major index (majF ) and flag major index (fmaj) of π are defined by

majF (π) :=
∑

πi>πi+1

i and fmaj(π) := r ·majF (π) + col(π). (2.4)
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For example, if r = 3 and π = (42, 21, 51, 1, 31) ∈ G3,5 then col(π) = 5, majF (π) = 4, and
fmaj(π) = 17.

2.2. Main results. For two integers a, b ∈ [n], a < b, let Gr,n(a : b) ⊂ Gr,n denote the subset
of colored words containing (a, a+1, . . . , b) as a subsequence. We observe that the subgroup of
Gr,n given by

{π ∈ Gr,n : π = (10, . . . , (n − k)0, πn−k+1, . . . , πn)}

is isomorphic to Gr,k for all k < n, and that

Ck := {(π1, . . . , πn−k, σ
0
n−k+1, . . . , σ

0
n) ∈ Gr,n : σn−k+1 < · · · < σn}

is a system of coset representatives of the subgroup in Gr,n. Moreover, Gr,n(n − k + 1 : n) =
{π−1 : π ∈ Ck}. We obtain the following unified result.

Theorem 2.2. Let χǫ,h be a one-dimensional character of Gr,n. For 1 ≤ k ≤ n− 1, k ≤ b ≤ n
and b ≡ n (mod 2), the following results hold.

(i) If n− k ≡ 0 (mod 2) then
∑

π∈Gr,n(b−k+1 : b)

χǫ,h(π)q
fmaj(π) = [(k + 1)r]ǫkζhq · · · [nr]ǫn−1ζhq.

(ii) If n− k ≡ 1 (mod 2) then
∑

π∈Gr,n(b−k+1 : b)

χǫ,h(π)q
fmaj(π) =

(

[k + 1]ǫqr [r]ζhq

)

[(k + 2)r]ǫk+1ζhq · · · [nr]ǫn−1ζhq.

Moreover, we also obtain the signed Mahonian on the remaining cases Gr,n(b−k : b−1) with
the one-dimensional characters χ−1,h. Neat formulae are unlikely available; however, we provide
a formula for computing the signed Mahonian of Gr,n(b−k : b−1) from that of Gr,n(b−k+1 : b).

Theorem 2.3. For 1 ≤ k ≤ n−1, k+1 ≤ b ≤ n and b ≡ n (mod 2), let U and V be the words
given by

U = (b− k, b− k + 1, . . . , b− 1) and V = (b− k + 1, b− k + 2, . . . , b).

The following results hold.

(i) If k is odd then
∑

π∈Gr,n(U)

χ−1,h(π)q
fmaj(π) +

∑

π∈Gr,n(V )

χ−1,h(π)q
fmaj(π)

=







2[k + 1]−qr [(k + 2)r]ζhq[(k + 3)r](−1)k+2ζhq · · · [nr](−1)n−1ζhq for n even;

2
(

[k + 1]−qr [k + 2]qr [r]ζhq

)

[(k + 3)r](−1)k+2ζhq · · · [nr](−1)n−1ζhq for n odd.

(ii) If k is even then
∑

π∈Gr,n(U)\Gr,n(V )

χ−1,h(π)q
fmaj(π) +

∑

π∈Gr,n(V )\Gr,n(U)

χ−1,h(π)q
fmaj(π)

=







2[k + 1]−qr

(

[r]ζhq − 1
)

[(k + 2)r](−1)k+1ζhq · · · [nr](−1)n−1ζhq for n odd;

2f(r; q) · [k + 1]qr [k + 2]−qr [(k + 3)r](−1)k+2ζhq · · · [nr](−1)n−1ζhq for n even,

where f(r; q) = −
(
ζhq
)
[r − 1](−1)rζhq[r](−1)r−1ζhq.
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Definition 2.4. For any w ∈ Sn, let Gr,n(w) := {π ∈ Gr,n : |π| = w}. For a, b ∈ [n], a < b, we
define

Hr,n(a : b) :=
⋃

w∈Sn(a:b)

Gr,n(w),

namely, Hr,n(a : b) consists of colored permutations π such that |π| contains (a, a+1, . . . , b) as
a subsequence.

Regarding the signed Mahonian on the parabolic quotient of Gr,n by the subgroup Sk, we
obtain the following result.

Theorem 2.5. For 1 ≤ k ≤ n− 1 and k ≤ b ≤ n, the following results hold.

(i) If k is odd then

∑

π∈Hr,n(b−k+1 : b)

χ−1,h(π)q
fmaj(π) =

[r]ζhq[2r]−ζhq · · · [nr](−1)n−1ζhq

[1]ζhq[2]−ζhq · · · [k](−1)k−1ζhq

.

(ii) If k is even and n− b ≡ 0 (mod 2) then

∑

π∈Hr,n(b−k+1 : b)

χ−1,h(π)q
fmaj(π) =

[r]ζhq[2r]−ζhq · · · [nr](−1)n−1ζhq

[1]ζhq[2]−ζhq · · · [k + 1](−1)kζhq

· [k + 1](−1)nζhq.

(iii) If k is even and n− b ≡ 1 (mod 2) then

∑

π∈Hr,n(b−k+1 : b)

χ−1,h(π)q
fmaj(π) =

[r]ζhq[2r]−ζhq · · · [nr](−1)n−1ζhq

[1]ζhq[2]−ζhq · · · [k + 1](−1)kζhq

(

2− [k + 1](−1)nζhq

)

.

The rest of the paper is organized as follows. Section 3 and Section 4 are devoted to the
proofs of Theorems 2.2 and 2.3, respectively. In Section 5 we derive a factorization formula for
the signed Mahonian on the set Gr,n(w) (Theorem 5.1), which allows us to prove Theorem 2.5.
In Section 6 we obtain a product formula that generalizes Biagioli’s result about the signed
Mahonian on the even signed permutation groups (Theorem 6.1). Finally, we close with two
remarks.

3. Proof of Theorem 2.2

In this section we shall study the signed Mahonian over the quotient of the parabolic subgroup
Gr,k in Gr,n, and prove Theorem 2.2.

For any finite set A = {a1, . . . , an} of positive integers, let SA denote the set of permutations
of {a1, . . . , an} and let Gr,A := Zr ≀ SA, the group of colored permutations of A. For any word
W ∈ Gr,A, the inversion number of |W | is calculated using the natural order a1 < · · · < an
of integers, and the flag major index of W is computed with respect to the following order of
colored integers

ar−1
1 < · · · < ar−1

n < · · · < a11 < · · · < a1n < a1 < · · · < an.

3.1. Insertion Lemma. The insertion lemma of Han [12] and Haglund–Loehr–Remmel [11]
describes the increment of major index resulting from the insertion of an additional element
into a given permutation, which works just as well for colored integers in the order (2.3).

Definition 3.1. Given a set A ⊂ [n] and a colored word W ∈ Gr,A, let Gr,n(W ) denote the
subset of Gr,n consisting of the members containing the word W as a subsequence. By abuse
of notation, we will use χǫ,h to denote the following statistic of W

χǫ,h(W ) := ǫinv(|W |)ζh·col(W ).
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Moreover, for any m ∈ [n] \ A, let T (W ;mt) denote the set of words obtained from W by
inserting mt for some t ∈ [0, r − 1].

Remarks: To distinguish Gr,n(W ) from the notation Gr,n(w) in Definition 2.4, we shall use
an upper case letter, say W , for a colored word restriction.

For any m ∈ [n], let W be a word of Gr,A, where A = {1, . . . ,m − 1,m + 1, . . . , n}. Every
member of Gr,n(W ) can be obtained from W by inserting the colored integer mt for some
t ∈ [0, r − 1]. Haglund, Loehr and Remmel [11, Corollary 4.2] proved that no matter what is
the relative order of mt with respect to the entries of W

∑

π∈T (W ;mt)

qmajF (π) = qmajF (W )[n]q. (3.1)

This leads to the following results for ǫ = 1.

Theorem 3.2. The following results hold.

(i) For any m ∈ [n] and any word W ∈ Gr,{1,...,m−1,m+1,...,n}, we have

∑

π∈Gr,n(W )

χ1,h(π)q
fmaj(π) = χ1,h(W )qfmaj(W )[nr]ζhq.

(ii) For any k ∈ [n− 1] and any word W ∈ Gr,{n−k+1,...,n}, we have

∑

π∈Gr,n(W )

χ1,h(π)q
fmaj(π) = χ1,h(W )qfmaj(W )[(k + 1)r]ζhq · · · [nr]ζhq.

Proof. (i) Note that χ1,h(π) = ζh·col(π) and col(π) = col(W ) + t. By (2.4) and (3.1), we have
∑

π∈T (W ;mt)

χ1,h(π)q
fmaj(π) =

∑

π∈T (W ;mt)

ζh·col(π)qr·majF (π)+col(π)

=
∑

π∈T (W ;mt)

qr·majF (π)
(
ζhq
)col(π)

=
(
ζhq
)col(W )+t

·
(
qr
)majF (W )

[n]qr

=
(
ζhq
)t

· χ1,h(W )qfmaj(W )[n]qr .

Hence

∑

π∈Gr,n(W )

χ1,h(π)q
fmaj(π) =

r−1∑

t=0




∑

π∈T (W ;mt)

χ1,h(π)q
fmaj(π)





= χ1,h(W )qfmaj(W )[n]qr
(

1 + ζhq + · · ·+
(
ζhq
)r−1

)

= χ1,h(W )qfmaj(W )[nr]ζhq,

where the last identity is due to the fact that ζr = 1.
(ii) We shall prove the assertion by reverse induction on k. The initial case k = n − 1 is

proved in (i) when m = 1. Suppose the assertion holds for k ≥ j. Given W ∈ Gr,{n−j+2,...,n},

we partition Gr,n(W ) into the subsets Gr,n(W
′) for every word W ′ of the set

T (W ) :=

r−1⋃

t=0

T (W ; (n− j + 1)t).
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By (i), (3.1) and induction hypothesis,

∑

π∈Gr,n(W )

χ1,h(π)q
fmaj(π) =

∑

W ′∈T (W )




∑

π∈Gr,n(W ′)

χ1,h(π)q
fmaj(π)





=
∑

W ′∈T (W )

(

χ1,h(W
′)qfmaj(W ′)[(j + 1)r]ζhq · · · [nr]ζhq

)

=




∑

W ′∈T (W )

χ1,h(W
′)qfmaj(W ′)



 [(j + 1)r]ζhq · · · [nr]ζhq

= χ1,h(W )qfmaj(W )[jr]ζhq[(j + 1)r]ζhq · · · [nr]ζhq.

The results follow. �

3.2. Extended Insertion Lemma. Eu et al. [10, Theorem 1.3] derived the generating poly-
nomial for the increment of major index with sign resulting from inserting an additional pair
of consecutive elements in any place of a given permutation.

Definition 3.3. Given A ⊂ [n] with m,m+1 /∈ A and a word W ∈ Gr,A, let T (W ;ms, (m+1)t)
denote the set of words obtained from W by inserting ms and (m + 1)t adjacently for some
s, t ∈ [0, r − 1].

For any m ∈ [n−1], let W = (W1, . . . ,Wn−2) ∈ Gr,A, where A = {1, . . . ,m−1,m+2, . . . , n}.
Every member of Gr,n(W ) can be obtained from W by inserting ms and (m + 1)t for some
s, t ∈ [0, r − 1]. Let Fr,n(W ) ⊂ Gr,n(W ) denote the subset of members such that the elements
m,m+ 1 are adjacent and have the same color, i.e.,

Fr,n(W ) :=

r−1⋃

t=0

T (W ;mt, (m+ 1)t).

Given π = (π1, . . . , πn) ∈ Gr,n(W ) \ Fr,n(W ), let πi = mzi and πj = (m + 1)zj , for some
zi, zj ∈ [0, r − 1]. Notice that πi, πj are either adjacent and zi 6= zj , or not adjacent. There is
an immediate involution π 7→ π′ on the set Gr,n(W ) \ Fr,n(W ), with |inv(|π′|) − inv(|π|)| = 1,
col(π′) = col(π) and majF (π

′) = majF (π), such that π′ is obtained from π by replacing the

ordered pair (πi, πj) with ((m + 1)zi ,mzj). Since χ−1,h(π) = (−1)inv(|π|)ζh·col(π) and fmaj(π) =
r ·majF (π) + col(π), we have

∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π) =

∑

π∈Fr,n(W )

χ−1,h(π)q
fmaj(π) (3.2)

The right hand side of (3.2) can be derived by using the proof of the result in [10, Lemma 4.3].
We describe the method below.

Every member of Fr,n(W ) can be obtained from W by inserting mt, (m+ 1)t adjacently, for
some t ∈ [0, r− 1], to the left of W , between two entries of W , or to the right of W , i.e., one of
the n− 1 spaces of W . These spaces are indexed by 0, 1, . . . , n− 2 from left to right. Using the
order (2.3), the jth space, which is between Wj and Wj+1 is called a RL-space of W relative
to mt if it satisfies one of the following conditions:

• j = n− 2 and Wn−2 < mt,
• j = 0 and mt < W1

• 0 < j < n and Wj > Wj+1 > mt,
• 0 < j < n and mt > Wj > Wj+1, or
• 0 < j < n and Wj < mt < Wj+1.
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Any space which is not a RL-space is called a LR-space (relative to mt). Suppose there are d
RL-spaces of W relative to mt, we label the RL-spaces from right to left with 0, 1, . . . , d − 1
and label the LR-spaces from left to right with d, d+1, . . . , n− 2. By the same argument as in
the proof of [10, Lemma 4.3], we have the following result.

Lemma 3.4. If π is obtained from W by inserting the pair (x1, x2) adjacently at the jth space
of W (0 ≤ j ≤ n − 2), where (x1, x2) is either (mt, (m + 1)t) or ((m + 1)t,mt) for some
t ∈ [0, r − 1], then we have

majF (π) =

{
majF (W ) + aj + bj if (x1, x2) = (mt, (m+ 1)t),
majF (W ) + aj + bj + j + 1 if (x1, x2) = ((m+ 1)t,mt),

(3.3)

where aj is the label of the jth space and bj is the number of RL-spaces relative to mt appearing
to the right of the jth space.

By Lemma 3.4 and the proof of [10, Theorem 1.3], we have
∑

π∈T (W ;mt,(m+1)t)

(−1)inv(|π|)qmajF (π) = (−1)inv(|W |)qmajF (W )[n− 1](−1)nq[n](−1)n−1q. (3.4)

Note that (3.1) and (3.4) hold for each t ∈ [0, r − 1] since the proofs of [11, Corollary 4.2] and
[10, Theorem 1.3] work well for individual relative order of mt with respect to the entries of W .
This leads to the following signed analogue of Theorem 3.2 for ǫ = −1.

Theorem 3.5. The following results hold.

(i) For any m ∈ [n− 1] and any word W ∈ Gr,{1,...,m−1,m+2,...,n}, we have
∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π) = χ−1,h(W )qfmaj(W )[(n− 1)r](−1)nζhq[nr](−1)n−1ζhq.

(ii) For 1 ≤ k ≤ ⌊n−1
2 ⌋ and any word W ∈ Gr,{2k+1,...,n}, we have

∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π) = χ−1,h(W )qfmaj(W )[(n − 2k + 1)r](−1)n−2kζhq · · · [nr](−1)n−1ζhq.

Proof. (i) Note that χ−1,h(π) = (−1)inv(|π|)ζh·col(π) and col(π) = col(W ) + 2t. By (2.4) and
(3.4), we have

∑

π∈T (W ;mt,(m+1)t)

χ−1,h(π)q
fmaj(π)

=
∑

π∈T (W ;mt,(m+1)t)

(−1)inv(|π|)qr·majF (π)
(
ζhq
)col(π)

=
(
ζhq
)col(W )+2t

· (−1)inv(|W |)
(
qr
)majF (W )

[n− 1](−1)nqr [n](−1)n−1qr

=
(
ζhq
)2t

· χ−1,h(W )qfmaj(W )[n− 1](−1)nqr [n](−1)n−1qr .

Hence
∑

π∈Fr,n(W )

χ−1,h(π)q
fmaj(π)

=
r−1∑

t=0




∑

π∈T (W ;mt,(m+1)t)

χ−1,h(π)q
fmaj(π)





= χ−1,h(π)q
fmaj(W )[n− 1](−1)nqr [n](−1)n−1qr

(

1 +
(
ζhq
)2

+ · · ·+
(
ζhq
)2(r−1)

)

= χ−1,h(W )qfmaj(W )[(n − 1)r](−1)nζhq[nr](−1)n−1ζhq.
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Along with (3.2), the assertion (i) follows.
(ii) Using a similar argument to that for the proof of Theorem 3.2(ii), the assertion (ii) can

be proved by induction on k. �

3.3. Proof of Theorem 2.2. The following lemma will be used in the proof of Theorem 2.2.

Lemma 3.6. For 1 ≤ k ≤ n− 1, let W be the word (n− k+ 1, . . . , n) in Gr,{n−k+1,...,n}. Then

r−1∑

t=0




∑

W ′∈T (W ;(n−k)t)

χ−1,h(W
′)qfmaj(W ′)



 = [k + 1]−qr [r]ζhq.

Proof. For each t ∈ [0, r − 1], notice that (n − k)t is less than every entry of W and that the
leftmost space of W is the unique RL-space of W relative to (n − k)t. Moreover, inv(W ) = 0,
col(W ) = 0, and majF (W ) = 0. If W ′ is obtained from W by inserting (n−k)t at the jth space
from left to right, 0 ≤ j ≤ k, then inv(|W ′|) = j, col(W ′) = t and majF (W

′) = j. Hence
∑

W ′∈T (W ;(n−k)t)

χ−1,h(W
′)qfmaj(W ′) =

∑

W ′∈T (W ;(n−k)t)

(−1)inv(|W
′|)qr·majF (W ′)

(
ζhq
)col(W ′)

=
(
ζhq
)t

k∑

j=0

(−1)j
(
qr
)j

=
(
ζhq
)t
[k + 1]−qr .

Hence

r−1∑

t=0




∑

π∈T (W ;(n−k)t)

χ−1,h(π)q
fmaj(π)



 = [k + 1]−qr

(

1 + ζhq + · · · +
(
ζhq
)r−1

)

.

The result follows. �

For any integer d and a wordW = ((σ1, . . . , σk), z) ∈ Gr,k, letW+d := ((σ1+d, . . . , σk+d), z),
a member of Gr,{d+1,...,d+k}. The following result, derived from Theorems 3.2(i) and 3.5(i), will
be used in the proof of Theorem 2.2.

Corollary 3.7. For 1 ≤ k ≤ n− 2, k + 2 ≤ b ≤ n, and any word W ∈ Gr,{b−k+1,...,b}, we have
∑

π∈Gr,n(W−2)

χǫ,h(π)q
fmaj(π) =

∑

π∈Gr,n(W )

χǫ,h(π)q
fmaj(π).

Proof. We first prove the case ǫ = −1. Consider the following two sets Gr,{3,...,n}(W ) and
Gr,{1,...,n−2}(W − 2). The map U 7→ V from Gr,{3,...,n}(W ) onto Gr,{1,...,n−2}(W − 2) defined by
V = U − 2 is a bijection such that inv(|V |) = inv(|U |), col(V ) = col(U) and fmaj(V ) = fmaj(U).
We partition Gr,n(W −2) into subsets Gr,n(V ) for all V ∈ Gr,{1,...,n−2}(W −2). Note that every

member of Gr,n(V ) is obtained from V by inserting (n − 1)s and nt for some s, t ∈ [0, r − 1].
By Theorem 3.5(i), we have

∑

π∈Gr,n(V )

χ−1,h(π)q
fmaj(π) = χ−1,h(V )qfmaj(V )[(n− 1)r](−1)nζhq[nr](−1)n−1ζhq.

Moreover, we partition Gr,n(W ) into subsets Gr,n(U) for all U ∈ Gr,{3,...,n}(W ). Note that

every member of Gr,n(U) is obtained from U by inserting 1s and 2t for some s, t ∈ [0, r − 1].
Likewise, we have

∑

π∈Gr,n(U)

χ−1,h(π)q
fmaj(π) = χ−1,h(U)qfmaj(U)[(n− 1)r](−1)nζhq[nr](−1)n−1ζhq.
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By the bijection between Gr,{3,...,n}(W ) onto Gr,{1,...,n−2}(W − 2) mentioned above, we have

∑

π∈Gr,n(W−2)

χ−1,h(π)q
fmaj(π)

=
∑

V ∈Gr,{1,...,n−2}(W−2)




∑

π∈Gr,n(V )

χ−1,h(π)q
fmaj(π)





=




∑

V ∈Gr,{1,...,n−2}(W−2)

χ−1,h(V )qfmaj(V )



 [(n− 1)r](−1)nζhq[nr](−1)n−1ζhq

=




∑

U∈Gr,{3,...,n}(W )

χ−1,h(U)qfmaj(U)



 [(n − 1)r](−1)nζhq[nr](−1)n−1ζhq

=
∑

U∈Gr,{3,...,n}(W )




∑

π∈Gr,n(U)

χ−1,h(π)q
fmaj(π)





=
∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π).

This proves the case ǫ = −1 of the assertion. Using Theorem 3.2(i) and a similar argument, we
obtain

∑

π∈Gr,n(W−1)

χ1,h(π)q
fmaj(π) =

∑

π∈Gr,n(W )

χ1,h(π)q
fmaj(π).

By iteration, the case ǫ = 1 of the assertion is proved. �

We now prove Theorem 2.2.

Proof of Theorem 2.2. Let W = (n− k + 1, . . . , n). Consider the parities of n and k.
Case 1: n− k ≡ 0 (mod 2). By Theorems 3.2 and 3.5, for ǫ ∈ {1,−1} we have

∑

π∈Gr,n(W )

χǫ,h(π)q
fmaj(π) = [(k + 1)r]ǫkζhq · · · [nr]ǫn−1ζhq.

Case 2: n− k ≡ 1 (mod 2). For the case ǫ = 1, by Theorem 3.2, we also have

∑

π∈Gr,n(W )

χ1,h(π)q
fmaj(π) = [(k + 1)r]ζhq[(k + 2)r]ζhq · · · [nr]ζhq. (3.5)

For the case ǫ = −1, we partition Gr,n(W ) into subsets Gr,n(W
′), where W ′ ranges over all

words obtained from W by inserting (n − k)t for some t ∈ [0, r − 1]. By Theorem 3.5(ii), we
have

∑

π∈Gr,n(W ′)

χ−1,h(π)q
fmaj(π) = χ−1,h(W

′)qfmaj(W ′)[(k + 2)r](−1)k+1ζhq · · · [nr](−1)n−1ζhq.
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Moreover, let T (W ) :=
⋃r−1

t=0 T (W ; (n− k)t). We have
∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)

=
∑

W ′∈T (W )




∑

π∈Gr,n(W ′)

χ−1,h(π)q
fmaj(π)





=
∑

W ′∈T (W )

(

χ−1,h(W
′)qfmaj(W ′)[(k + 2)r](−1)k+1ζhq · · · [nr](−1)n−1ζhq

)

=

r−1∑

t=0




∑

W ′∈T (W ;(n−k)t)

χ−1,h(W
′)qfmaj(W ′)



 [(k + 2)r](−1)k+1ζhq · · · [nr](−1)n−1ζhq.

Hence by Lemma 3.6, we have
∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π) =

(

[k + 1]−qr [r]ζhq

)

[(k + 2)r](−1)k+1ζhq · · · [nr](−1)n−1ζhq. (3.6)

Combining (3.5) and (3.6), for ǫ ∈ {1,−1} we have
∑

π∈Gr,n(W )

χǫ,h(π)q
fmaj(π) =

(

[k + 1]ǫqr [r]ζhq

)

[(k + 2)r]ǫk+1ζhq · · · [nr]ǫn−1ζhq.

Notice that [k + 1]ǫqr [r]ζhq = [(k + 1)r]ζhq if ǫ = 1. By Corollary 3.7, for 1 ≤ d ≤ ⌊k2⌋ we have
∑

π∈Gr,n(W−2d)

χǫ,h(π)q
fmaj(π) =

∑

π∈Gr,n(W−2d+2)

χǫ,h(π)q
fmaj(π). (3.7)

The proof of Theorem 2.2 is completed. �

4. Proof of Theorem 2.3

In this section we study the relation between the signed Mahonian polynomials on the sets
Gr,n(b − k + 1 : b) and Gr,n(b − k : b− 1). In the following we compose permutations right to
left.

Proposition 4.1. For 1 ≤ k ≤ n− 1 and k + 1 ≤ b ≤ n, let U and V be the words given by

U = (b− k, b− k + 1, . . . , b− 1) and V = (b− k + 1, b− k + 2, . . . , b).

Then there is a bijection π 7→ π′ of Gr,n(U) \ Gr,n(V ) onto Gr,n(V ) \ Gr,n(U) with Des(π′) =
Des(π), col(π′) = col(π) and the following property.

• If π contains the entry bt for some t ∈ [1, r− 1] then π′ contains the entry (b− k)t and
inv(|π′|)− inv(|π|) ≡ k (mod 2).

• Otherwise, π (π′, respectively) contains the entry b (b− k, respectively) and inv(|π′|)−
inv(|π|) ≡ k − 1 (mod 2).

Proof. (i) Given a word π ∈ Gr,n(U) \Gr,n(V ) with the entry bt for some t ∈ [1, r − 1], let

π′ =

(
b− k b− k + 1 · · · b− 1 bt

b− k + 1 b− k + 2 · · · b (b− k)t

)

π.

Notice that if bt appears to the right (left, respectively) of b− 1 (b− k, respectively) in π then
inv(|π′|)− inv(|π|) = k (−k, respectively). Moreover, if bt appears between b− j − 1 and b− j
for some j (1 ≤ j ≤ k − 1) then inv(|π′|) − inv(|π|) = k − 2j. Hence inv(|π′|) and inv(|π|) have
the same (opposite, respectively) parity if k is even (odd, respectively).
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(ii) Note that Gr,n(U) ∩Gr,n(V ) = Gr,n(b− k : b). Given a word π ∈ Gr,n(U) \Gr,n(V ) with
the entry b, notice that b appears to the left of b− 1. There are two cases.

Case 1. If b appears to the left of b− k in π, then set

π′ =

(
b b− k b− k + 1 b− k + 2 · · · b− 1

b− k + 1 b− k b− k + 2 b− k + 3 · · · b

)

π.

Note that inv(|π′|)− inv(|π|) = 1− k.
Case 2. Otherwise, b appears between b − j − 1 and b − j for some j (1 ≤ j ≤ k − 1). If in

particular j = 1 then set

π′ =

(
b− k · · · b− 2 b b− 1

b− k + 1 · · · b− 1 b b− k

)

π,

otherwise 2 ≤ j ≤ k − 1 and set

π′ =

(
b− k · · · b− j − 1 b b− j b− j + 1 · · · b− 1

b− k + 1 · · · b− j b− j + 1 b− k b− j + 2 · · · b

)

π.

Note that in the former case inv(|π′|) − inv(|π|) = k − 1, while in the latter case inv(|π′|) −
inv(|π|) = k− 2j + 1. Hence inv(|π′|) and inv(|π|) have the same (opposite, respectively) parity
if k is odd (even, respectively).

The inverse map π′ 7→ π can be constructed by composing π′ with the inverse of the permu-
tation. The assertion follows. �

Now we prove Theorem 2.3.

Proof of Theorem 2.3. By Corollary 3.7, it suffices to consider U = (n − k, . . . , n − 1) and
V = (n − k + 1, . . . , n). Notice that Gr,n(U) ∩Gr,n(V ) = Gr,n(n− k : n).

(i) For k odd, by Proposition 4.1 we have

∑

W∈T (U ;n)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)



 =
∑

W∈T (V ;n−k)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)



 ,

∑

W∈T (U ;nt)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)



 = −
∑

W∈T (V ;(n−k)t)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)



 ,

for each t ∈ [1, r − 1]. Hence
∑

π∈Gr,n(U)

χ−1,h(π)q
fmaj(π) +

∑

π∈Gr,n(V )

χ−1,h(π)q
fmaj(π)

= 2
∑

W∈T (V ;n−k)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)



 .

(4.1)

Case 1. n is even. Then n− k ≡ 1 (mod 2). We have

∑

W∈T (V ;n−k)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)





=
∑

W∈T (V ;n−k)

(

χ−1,h(W )qfmaj(W )[(k + 2)r](−1)k+1ζhq · · · [nr](−1)n−1ζhq

)

.

(4.2)

Moreover,
∑

W∈T (V ;n−k)

χ−1,h(W )qfmaj(W ) = 1− qr + · · ·+ (−1)kqr = [k + 1]−qr . (4.3)
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By (4.1), (4.2) and (4.3), the assertion (i) is proved for n even.
Case 2. n is odd. Then n − k ≡ 0 (mod 2). By Theorem 3.5, it suffices to consider the

members in Gr,n(V ) containing (n− k− 1)s and n− k adjacently for each s ∈ [0, r− 1]. Hence

∑

W∈T (V ;n−k)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)





=

r−1∑

s=0




∑

W∈T (V ;(n−k−1)s,n−k)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)









=
r−1∑

s=0




∑

W∈T (V ;(n−k−1)s,n−k)

(

χ−1,h(W )qfmaj(W )[(k + 3)r](−1)k+2ζhq · · · [nr](−1)n−1ζhq

)



 .

(4.4)
Moreover,

r−1∑

s=0




∑

W∈T (V ;(n−k−1)s,n−k)

χ−1,h(W )qfmaj(W )





=




∑

τ∈T (V ;n−k−1,n−k)

χ−1,h(τ)q
fmaj(τ)





(

1 + ζhq + · · ·+
(
ζhq
)r−1

)

= [k + 1]−qr [k + 2]qr [r]ζhq.

(4.5)

By (4.1), (4.4) and (4.5), the assertion (i) is proved for n odd.
(ii) For k even, by Proposition 4.1 we have

∑

W∈T (U ;n)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)



 = −
∑

W∈T (V ;n−k)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)



 ,

∑

W∈T (U ;nt)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)



 =
∑

W∈T (V ;(n−k)t)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)



 ,

for each t ∈ [1, r − 1]. Hence

∑

π∈Gr,n(U)\Gr,n(V )

χ−1,h(π)q
fmaj(π) +

∑

π∈Gr,n(V )\Gr,n(U)

χ−1,h(π)q
fmaj(π)

= 2

r−1∑

t=1




∑

W∈T (V ;(n−k)t)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)







 .

(4.6)

Case 1. n odd. The assertion can be proved by the argument of Case 1 of the proof of (i),
regarding the members of Gr,n(V ) containing the entry (n− k)t for each t ∈ [1, r − 1].
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Case 2. n even. It suffices to consider the members in Gr,n(V ) containing (n − k − 1)s and
(n− k)t adjacently for each s ∈ [0, r − 1] and t ∈ [1, r − 1]. Hence

∑

W∈T (V ;(n−k)t)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)





=

r−1∑

s=0




∑

W∈T (V ;(n−k−1)s,(n−k)t)




∑

π∈Gr,n(W )

χ−1,h(π)q
fmaj(π)









=

r−1∑

s=0




∑

W∈T (V ;(n−k−1)s,(n−k)t)

(

χ−1,h(W )qfmaj(W )[(k + 3)r](−1)k+2ζhq · · · [nr](−1)n−1ζhq

)



 .

(4.7)
For each s ∈ [0, r − 1], there is a bijection W 7→ W ′ of T (V ; (n − k − 1)t, (n − k)t) onto

T (V ; (n − k − 1)s, (n− k)t) such that

χ−1,h(W
′)qfmaj(W ′) =

{

χ−1,h(W )qfmaj(W )
(
ζhq
)s−t

if s ≥ t;

χ−1,h(W )qfmaj(W )
(

−
(
ζhq
)s−t

)

if s < t.
(4.8)

The bijection is established as follows. Let (n − k)t and (n − k − 1)t appear at the entries
Wj,Wj+1 of W for some j. The corresponding word W ′ is obtained from W according to the
following rule. If (Wj ,Wj+1) is an ascent, i.e., (Wj ,Wj+1) = ((n−k−1)t, (n−k)t), then replace
the ordered pair by ((n − k − 1)s, (n − k)t) if s ≥ t and by ((n − k)t, (n − k − 1)s) if s < t.
Moreover, if (Wj ,Wj+1) is descent, i.e., (Wj,Wj+1) = ((n− k)t, (n− k − 1)t), then replace the
ordered pair by ((n − t)t, (n − k − 1)s) if s ≥ t and by ((n− k − 1)s, (n− k)t) if s < t.

It follows that

r−1∑

s=0




∑

W ′∈T (V ;(n−k−1)s,(n−k)t)

χ−1,h(W
′)qfmaj(W ′)





=




∑

W∈T (V ;(n−k−1)t,(n−k)t)

χ−1,h(W )qfmaj(W )





×
(

1 + ζhq + · · ·+
(
ζhq
)r−t−1

−
(
ζhq
)−1

− · · · −
(
ζhq
)−t
)

=




∑

W∈T (V ;n−k−1,n−k)

χ−1,h(W )qfmaj(W )




(
ζhq
)2t

×
(

1 + ζhq + · · ·+
(
ζhq
)r−t−1

−
(
ζhq
)−1

− · · · −
(
ζhq
)−t
)

= [k + 1]qr [k + 2]−qr
(
ζhq
)t
(

− 1− ζhq − · · · −
(
ζhq
)t−1

+
(
ζhq
)t

+ · · · +
(
ζhq
)r−1

)

.

(4.9)
The assertion follows from (4.6), (4.7) and (4.9), where the factor f(r; q) is given by

f(r; q) :=

r−1∑

t=1

(
ζhq
)t
(

− 1− ζhq − · · · −
(
ζhq
)t−1

+
(
ζhq
)t

+ · · · +
(
ζhq
)r−1

)

.

That f(r; q) = −
(
ζhq
)
[r − 1](−1)rζhq[r](−1)r−1ζq can be proved by induction on r. �
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Specifically, for r = 1 and the sign character χ−1,0(σ) = (−1)inv(σ), we derive the following
results from Theorems 2.2 and 2.3, which have been established in [10, Theorem 1.2]. We make
use of the notation [n]±q! := [1]q[2]−q · · · [n](−1)n−1q.

Theorem 4.2. (Eu et al. [10]) For 1 ≤ k ≤ n− 1 and k ≤ b ≤ n, the following results hold.

(i) If k is odd then we have

∑

σ∈Sn(b−k+1 : b)

(−1)inv(σ)qmaj(σ) =
[n]±q!

[k]±q!
.

(ii) If k is even and n− b ≡ 0 (mod 2) then

∑

σ∈Sn(b−k+1 : b)

(−1)inv(σ)qmaj(σ) =
[n]±q!

[k + 1]±q!
· [k + 1](−1)nq.

(iii) If k is even and n− b ≡ 1 (mod 2) then

∑

σ∈Sn(b−k+1 : b)

(−1)inv(σ)qmaj(σ) =
[n]±q!

[k + 1]±q!

(
2− [k + 1](−1)nq

)
.

5. Proof of Theorem 2.5

In this section we shall study the signed Mahonian on the set Gr,n(w) := {π ∈ Gr,n : |π| = w}
for every w ∈ Sn, and prove Theorem 2.5.

We shall show that each Gr,n(w) contains a unique member w̃ = (w̃1, . . . , w̃n) with the least
flag major index, and fmaj(w̃) = maj(w). We make use of a hierarchy of Gr,n(w), established
by a sequence of nested subsets,

G(0)
r,n(w) ⊂ G(1)

r,n(w) ⊂ · · · ⊂ G(n)
r,n(w) = Gr,n(w), (5.1)

where G
(0)
r,n(w) := {w̃} and for k = 1, 2, . . . , n,

G(k)
r,n(w) := {(x1, . . . , xk, w̃k+1, . . . , w̃n) : xj ∈ {wj , w

1
j , . . . , w

r−1
j }, j = 1, . . . , k}.

We observe that the structure (5.1) realizes the following factorization.

Theorem 5.1. For any w ∈ Sn, we have
∑

π∈Gr,n(w)

χǫ,h(π)q
fmaj(π) = ǫinv(w)(ζhq)maj(w) · [r]ζhq[r](ζhq)2 · · · [r](ζhq)n .

Given a w ∈ Sn, there is a member w̃ of Gr,n(w) with fmaj(w̃) = maj(w), which can be
determined by the following procedure. That w̃ is the unique member of Gr,n(w) with the least
flag major index follows from Lemma 5.4(i).

Algorithm A.

(i) If w contains no descent then w = (1, 2, . . . , n) and let w̃ = (w, (0, . . . , 0)).
(ii) Otherwise, with respect to the descents of w, we decompose w into des(w)+1 increasing

runs, indexed by 0, 1, . . . , des(w) from right to left. Then w̃ is obtained from w by
assigning a color t ∈ [0, r − 1] to each entry in the run indexed by j if j ≡ t (mod r)
for j = 0, 1, . . . , des(w).

For example, let w = (8, 9, 7, 1, 6, 2, 4, 3, 5) ∈ S9. Note that w has five increasing runs (8, 9),
(7), (1, 6), (2, 4) and (3, 5), and maj(w) = 17. For r = 3, we have w̃ = (81, 91, 7, 12, 62, 21, 41,
3, 5) and fmaj(w̃) = 17. For r = 2, we have w̃ = (8, 9, 71, 1, 6, 21, 41, 3, 5) and fmaj(w̃) = 17.
We have the following observation.

Lemma 5.2. For any w ∈ Sn, we have
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(i) fmaj(w̃) = maj(w);

(ii) χǫ,h(w̃) = ǫinv(w)ζh·maj(w).

Proof. (i) For 1 ≤ i ≤ des(w) + 1, let ai be the number of entries of the ith increasing run of
w from left to right, and let bi = a1 + · · · + ai. Suppose des(w) + 1 = dr + t for some d and t,
0 ≤ t ≤ r − 1. Notice that

maj(w) = b1 + b2 + · · ·+ bdes(w)

majF (w̃) = bt + br+t + · · ·+ b(d−1)r+t.
(5.2)

We observe that the color weight of w̃ is

col(w̃) = (t− 1)a1 + (t− 2)a2 + · · ·+ at−1

+
d∑

i=1

(
(r − 1)a(i−1)r+t+1 + (r − 2)a(i−1)r+t+2 + · · · + a(i−1)r+t+r−1

)

= b1 + · · ·+ bt−1 +
d∑

i=1

((
b(i−1)r+t+1 − b(i−1)r+t

)
+ · · ·+

(
b(i−1)r+t+r−1 − b(i−1)r+t

))

= b1 + · · ·+ bt−1 +

d∑

i=1

((
b(i−1)r+t+1 + · · · + b(i−1)r+t+r−1

)
− (r − 1)b(i−1)r+t

)
.

(5.3)
By (5.2) and (5.3), we have

fmaj(w̃) = r ·majF (w̃) + col(w̃) = b1 + b2 + · · · + bdr+t−1 = maj(w).

(ii) By the assertion (i), we have maj(w) = fmaj(w̃) = r ·majF (w̃)+col(w̃), and thus maj(w) ≡
col(w̃) (mod r). Note that |w̃| = w. Hence

χǫ,h(w̃) = ǫinv(|w̃|)ζh·col(w̃) = ǫinv(w)ζh·maj(w).

The results follow. �

Consider the sequence of nested subsets of Gr,n(w) in (5.1). We define maps π 7→ ϕ(π; k, t)

from G
(k−1)
r,n to G

(k)
r,n by a color increment of t on each entry of the prefix of length k of π.

Definition 5.3. For 1 ≤ k ≤ n, t ∈ [0, r − 1] and any π = (σ, (z1, . . . , zn)) ∈ G
(k−1)
r,n , let

ϕ(π; k, t) := (σ, (z1 + t, . . . , zk + t, zk+1, . . . , zn)).

For example, if r = 3 and π = (42, 2, 51, 1, 3), we have ϕ(π; 3, 2) = (41, 22, 5, 1, 3). Note

that G
(k)
r,n(w) = {ϕ(π; k, t) : π ∈ G

(k−1)
r,n (w) and t = 0, 1, . . . , r − 1}. We observe the following

connection between G
(k−1)
r,n (w) and G

(k)
r,n(w).

Lemma 5.4. For 1 ≤ k ≤ n, t ∈ [0, r − 1] and any word π ∈ G
(k−1)
r,n (w), we have

(i) fmaj(ϕ(π; k, t)) = fmaj(π) + k · t.
(ii) χǫ,h(ϕ(π; k, t)) = χǫ,h(π)ζ

h·k·t.

Proof. (i) If t = 0 then ϕ(π; k, t) = π and the assertion holds. For a fixed t ≥ 1 and any

π = (π1, . . . , πn) = (σ, (z1, . . . , zn)) ∈ G
(k−1)
r,n (w), note that πj = w̃j for k ≤ j ≤ n. For

1 ≤ i ≤ k−1, we observe that in the order (2.3) if zi, zi+1 ∈ [0, r− t−1] or zi, zi+1 ∈ [r− t, r−1]
then the position i is a descent of both (neither, respectively) of π and ϕ(π; k, t); otherwise
the position i is a descent of either π or ϕ(π; k, t). We partition the prefix π1, . . . , πk of π into
alternating sections of maximal sequences of consecutive entries with a color in [0, r − t − 1]
and consecutive entries with a color in [r − t, r − 1]. Let a0, a1, . . . , a2d be the lengths of these
sections (from left to right), where either d = 0, or a0 ≥ 0 and a1, . . . , a2d > 0 for some d ≥ 1.
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Note that a0 + a1 + · · · + a2d = k. For 0 ≤ j ≤ 2d, let bj = a0 + a1 + · · · + aj . Consider the
following cases of the prefix π1, . . . , πk.

Case 1. zk ∈ [0, r − t− 1]. Then the colors of π1, . . . , πk are of the form

π1, . . . , πk : [0, r − t− 1]
︸ ︷︷ ︸

a0

, [r − t, r − 1]
︸ ︷︷ ︸

a1

, [0, r − t− 1]
︸ ︷︷ ︸

a2

, . . . , [r − t, r − 1]
︸ ︷︷ ︸

a2d−1

[0, r − t− 1]
︸ ︷︷ ︸

a2d

.

If the position k is a descent of π, i.e., πk = w̃k > w̃k+1 = πk+1, then by the construction of
w̃ in Algorithm A, we have zk = 0 and zk+1 = r − 1. It follows that the position k is also
a descent of ϕ(π; k, t). Otherwise, the position k is not a descent of π, i.e., either k = n or
πk < πk+1. In the case k < n, we observe that either σk < σk+1 and zi = zk+1, or σk > σk+1

and zk = zk+1 + 1. Hence the position k is not a descent of ϕ(π; k, t) either. We have

fmaj(ϕ(π; k, t)) − fmaj(π) =



r ·
d∑

j=1

(a0 + a1 + · · · + a2j−1) + t ·
d∑

j=0

a2j − (r − t) ·
d∑

j=1

a2j−1





− r ·
d−1∑

j=0

(a0 + a1 + · · ·+ a2j)

= t(a0 + a1 + · · ·+ a2d)

= k · t.

Case 2. zk ∈ [r − t, r − 1]. Then the colors of π1, . . . , πk are of the form

π1, . . . , πk : [r − t, r − 1]
︸ ︷︷ ︸

a0

, [0, r − t− 1]
︸ ︷︷ ︸

a1

, [r − t, r − 1]
︸ ︷︷ ︸

a2

, . . . , [0, r − t− 1]
︸ ︷︷ ︸

a2d−1

[r − t, r − 1]
︸ ︷︷ ︸

a2d

.

Note that k < n and that either σk < σk+1 and zk = zk+1, or σk > σk+1 and zk = zk+1 + 1.
Hence the position k is not a descent of π. Since zk ∈ [r− t, r− 1], zk + t ≡ zk + t− r (mod r)
and zk + t− r < zk. Hence the position k is always a descent of ϕ(π; k, t). We have

fmaj(ϕ(π; k, t)) − fmaj(π) =



r ·

d∑

j=1

(a0 + a1 + · · ·+ a2j) + t ·

d∑

j=1

a2j−1 − (r − t) ·

d∑

j=0

a2j





− r ·

d−1∑

j=1

(a0 + a1 + · · ·+ a2j−1)

= t(a0 + a1 + · · · + a2d)

= k · t.

The assertion (i) follows.
(ii) Let π′ = ϕ(π; k, t). Note that |π′| = |π| and col(π′) ≡ col(π) + k · t (mod r). Hence

χǫ,h(ϕ(π; k, t)) = ǫinv(|π|)ζh(col(π)+k·t) = χǫ,h(π)ζ
h·k·t.

The assertion (ii) follows. �

Now, we prove Theorem 5.1.

Proof of Theorem 5.1. For 0 ≤ k ≤ n, we shall prove
∑

π∈G
(k)
r,n(w)

χǫ,h(π)q
fmaj(π) = ǫinv(w)(ζhq)maj(w) · [r]ζhq[r](ζhq)2 · · · [r](ζhq)k (5.4)
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by induction on k. By Lemma 5.2, for k = 0 we have
∑

π∈G
(0)
r,n(w)

χǫ,h(π)q
fmaj(π) = χǫ,h(w̃)q

fmaj(w̃) = ǫinv(w)(ζhq)maj(w). (5.5)

Moreover, by Lemma 5.4, for k ≥ 1 we have

∑

π∈G
(k)
r,n(w)

χǫ,h(π)q
fmaj(π) =

∑

π∈G
(k−1)
r,n (w)





r−1∑

j=0

χǫ,h(ϕ(π; k, j))q
fmaj(ϕ(π;k,j))





=
∑

π∈G
(k−1)
r,n (w)





r−1∑

j=0

χǫ,h(π)ζ
h·k·jqfmaj(π)+k·j





=
(

1 +
(
ζhq
)k

+ · · ·+
(
ζhq
)(r−1)k

) ∑

π∈G
(k−1)
r,n (w)

χǫ,h(π)q
fmaj(π)

= [r](ζhq)k
∑

π∈G
(k−1)
r,n (w)

χǫ,h(π)q
fmaj(π).

By induction hypothesis, (5.4) follows. The proof of Theorem 5.1 is completed. �

Using (1.1) and Theorems 4.2 and 5.1, we now prove Theorem 2.5.

Proof of Theorem 2.5. By Theorem 5.1, we have
∑

π∈Hr,n(b−k+1:b)

χ−1,h(π)q
fmaj(π)

=
∑

w∈Sn(b−k+1:b)




∑

π∈Gr,n(w)

χ−1,k(π)q
fmaj(π)





=




∑

w∈Sn(b−k+1:b)

(−1)inv(w)
(
ζhq
)maj(w)



 [r]ζhq[r](ζhq)2 · · · [r](ζhq)n .

(5.6)

By (5.6) and Theorem 4.2, we have the following results.
(i) If k is odd then

∑

π∈Hr,n(b−k+1:b)

χ−1,k(π)q
fmaj(π) =

[n]±ζhq!

[k]±ζhq!
· [r]ζhq[r](ζhq)2 · · · [r](ζhq)n

=
[r]ζhq[2r]−ζhq · · · [nr](−1)n−1ζhq

[1]ζhq[2]−ζhq · · · [k](−1)k−1ζhq

.

(ii) If k is even and n− b ≡ 0 (mod 2) then

∑

π∈Hr,n(b−k+1:b)

χ−1,k(π)q
fmaj(π) =

[n]±ζhq!

[k + 1]±ζhq!
· [k + 1](−1)nζh · [r]ζhq[r](ζhq)2 · · · [r](ζhq)n

=
[r]ζhq[2r]−ζhq · · · [nr](−1)n−1ζhq

[1]ζhq[2]−ζhq · · · [k + 1](−1)kζhq

· [k + 1](−1)nζhq.
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(iii) If k is even and n− b ≡ 1 (mod 2) then

∑

π∈Hr,n(b−k+1:b)

χ−1,k(π)q
fmaj(π) =

[n]±ζhq!

[k + 1]±ζhq!

(
2− [k + 1](−1)nq

)
· [r]ζhq[r](ζhq)2 · · · [r](ζhq)n

=
[r]ζhq[2r]−ζhq · · · [nr](−1)n−1ζhq

[1]ζhq[2]−ζhq · · · [k + 1](−1)kζhq

(
2− [k + 1](−1)nζhq

)
.

The results are established. �

6. A Byproduct

In this section we study the signed Mahonian over the subgroup of Gr,n given by

G∗
r,n := {π ∈ Gr,n : col(π) ≡ 0 (mod r)}, (6.1)

which is a special complex reflection group [7], denoted by G(r, r, n). By (2.2) and (6.1), it is

known that the group G∗
r,n has 2 one-dimensional characters, ǫinv(|π|) for ǫ ∈ {1,−1}. For a

π = (π1, . . . , πn) ∈ G∗
r,n, let Dmaj(π) denote the statistic of π defined by

Dmaj(π) := fmaj((π1, . . . , πn−1, |πn|)), (6.2)

following the notion ofD-major index for the even signed permutation groups defined by Biagioli
and Caselli [6]. For any w ∈ Sn, define

G∗
r,n(w) := {π ∈ G∗

r,n : |π| = w}.

We obtain the following results.

Theorem 6.1. For ǫ ∈ {1,−1}, the following results hold.

(i) For any w ∈ Sn, we have
∑

π∈G∗
r,n(w)

ǫinv(|π|)qDmaj(π) = ǫinv(w)qmaj(w) · [r]q[r]q2 · · · [r]qn−1 .

(ii) We have
∑

π∈G∗
r,n

ǫinv(|π|)qDmaj(π) = [r]q[2r]ǫq · · · [(n− 1)r]ǫnq[n]ǫn−1q.

Note that for r = 2 in Theorem 6.1(ii), we obtain [4, Theorem 4.8]. For any word π =
(σ, (z1, . . . , zn)) ∈ Gr,n, let π

∗ ∈ G∗
r,n denote the word given by

π∗ := (σ, (z1, . . . , zn−1, z
∗
n)), (6.3)

where z∗n ≡ −(z1+ · · ·+ zn−1) (mod r). For any w ∈ Sn, let w̃ = (w̃1, w̃2, . . . , w̃n) ∈ Gr,n(w) be
the word obtained from w by Algorithm A, and let w̃∗ be determined from w̃ by (6.3). Note
that w̃∗ is the unique member of G∗

r,n(w) with the minimum Dmaj by Lemma 6.3.

Lemma 6.2. For any w ∈ Sn, we have Dmaj(w̃∗) = maj(w).

Proof. By (6.2), (6.3) and Lemma 5.2, we have Dmaj(w̃∗) = fmaj(w̃) = maj(w). �

We associate w̃∗ with a sequence of nested subsets of G∗
r,n(w),

G∗(0)
r,n (w) ⊂ G∗(1)

r,n (w) ⊂ · · · ⊂ G∗(n−1)
r,n (w) = G∗

r,n(w),

where G
∗(0)
r,n (w) = {w̃∗} and for k = 1, 2, . . . , n− 1,

G∗(k)
r,n (w) = {(x1, . . . , xk, w̃k+1, . . . , w̃n−1, w

z∗n
n ) : xj ∈ {wj , w

1
j , . . . , w

r−1
j }, j = 1, . . . , k}.

By the same argument as in the proof of Lemma 5.4, we have the following connection between

G
∗(k−1)
r,n (w) and G

∗(k)
r,n (w).
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Lemma 6.3. For 1 ≤ k ≤ n− 1, t ∈ [0, r − 1] and any word π ∈ G
∗(k−1)
r,n (w), we have

Dmaj(ϕ(π; k, t)∗) = Dmaj(π) + k · t.

Proof. By (6.2), (6.3) and Lemma 5.4, we have

Dmaj(ϕ(π; k, t)∗) = fmaj(ϕ(π; k, t)) = fmaj(π) + k · t = Dmaj(π) + k · t.

The result follows. �

Proof of Theorem 6.1. (i) By Lemma 6.2, we have
∑

π∈G
∗(0)
r,n (w)

ǫinv(|π|)qDmaj(π) = ǫinv(|w̃
∗|)qDmaj(w̃∗) = ǫinv(w)qmaj(w). (6.4)

Moreover, by (6.4) and Lemma 6.3, we have

∑

π∈G
∗(k)
r,n (w)

ǫinv(|π|)qDmaj(π) =
∑

π∈G
∗(k−1)
r,n (w)





r−1∑

j=0

ǫinv(|ϕ(π;k,j)
∗|)qDmaj(ϕ(π;k,j)∗)





=
(
1 + qk + · · · + q(r−1)k

) ∑

π∈G
∗(k−1)
r,n (w)

ǫinv(|π|)qDmaj(π)

=

(
k∏

i=1

(
1 + qi + · · · + q(r−1)i

)

)
∑

π∈G
∗(0)
r,n (w)

ǫinv(|π|)qDmaj(π)

= ǫinv(w)qmaj(w) ·

k∏

i=1

(
1 + qi + · · ·+ q(r−1)i

)
.

By induction, the assertion (i) of Theorem 6.1 follows.
(ii) By (1.1) and the assertion (i), we have

∑

π∈G∗
r,n

ǫinv(|π|)qDmaj(π) =
∑

w∈Sn




∑

π∈G∗
r,n(w)

ǫinv(|π|)qDmaj(π)





=

(
n−1∏

i=1

(
1 + qi + · · · + q(r−1)i

)

)
∑

w∈Sn

ǫinv(w)qmaj(w)

=

(
n−1∏

i=1

(
1 + qi + · · · + q(r−1)i

)

)

[1]q[2]ǫq · · · [n]ǫn−1q

= [r]q[2r]ǫq · · · [(n − 1)r]ǫn−2q[n]ǫn−1q.

The proof of Theorem 6.1 is completed. �

7. Two Remarks

Biagioli and Caselli derived the result (1.3) in the context of projective reflection group (cf.
[7, Theorem 4.1]. One of the key ingredients of Biagioli and Caselli’s method is to prove the
following formula [7, Theorem 4.4]

∑

π∈Gr,n

(−1)inv(|π|)qfmaj(π) = [r]q[2r]−q · · · [nr](−1)n−1q, (7.1)

using the decomposition Gr,n = UnSn, where Un := {π ∈ Gr,n : π1 < · · · < πn}, i.e., every
π ∈ Gr,n has a unique factorization π = τσ with τ ∈ Un and σ ∈ Sn. This approach is also
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used in [1, 2, 8]. See [8, Proposition 4.1] for a proof. Using (1.1), the following intermediate
stage is deduced

∑

π∈Gr,n

(−1)inv(|π|)qfmaj(π) =
∑

τ∈Un

(−1)inv(|τ |)qcol(τ)[1]qr [2]−qr · · · [n](−1)n−1qr . (7.2)

We present an alternative proof of (1.3), using (1.1) and Theorem 5.1, as follows.

∑

π∈Gr,n

χǫ,h(π)q
fmaj(π) =

∑

w∈Sn




∑

π∈Gr,n(w)

χǫ,h(π)q
fmaj(π)





= [r]ζhq[r](ζhq)2 · · · [r](ζhq)n
∑

w∈Sn

ǫinv(w)(ζhq)maj(w)

= [r]ζhq[r](ζhq)2 · · · [r](ζhq)n · [1]ζhq[2]ǫζhq · · · [n]ǫn−1ζhq

= [r]ζhq[2r]ǫζhq · · · [nr]ǫn−1ζhq.

The proof of (1.3) is completed.
In this paper, we study the signed Mahonian on the quotients of the parabolic subgroup Gr,k

of Gr,n. We observe that two systems T and T ′ of coset representatives of Gr,k may share the
same signed Mahonian polynomials. We write T ∼ T ′ if the following relation between T and
T ′ holds.

∑

π∈T

χǫ,h(π)q
fmaj(π) =

∑

π∈T ′

χǫ,h(π)q
fmaj(π).

Theorem 2.2 indicates that Gr,n(b− k− 1 : b− 2) ∼ Gr,n(b− k+1 : b) for each one-dimensional
character, and Theorem 2.5 implies that for ǫ = −1, Hr,n(b− k : b− 1) ∼ Hr,n(b− k + 1 : b) if
k is odd and Hr,n(b− k − 1 : b− 2) ∼ Hr,n(b− k + 1 : b) if k is even.

For any word α = (α1, . . . , αk) on the set [n], let Sn(α) ⊂ Sn be the subset of permutations
containing α as a subsequence, and let

Hr,n(α) :=
⋃

w∈Sn(α)

Gr,n(w).

For ǫ = 1, using Theorem 5.1, we have

∑

π∈Hr,n(α)

χ1,h(π)q
fmaj(π) =

∑

w∈Sn(α)




∑

π∈Gr,n(w)

χ1,h(π)q
fmaj(π)





= [r]ζhq[r](ζhq)2 · · · [r](ζhq)n
∑

w∈Sn(α)

(

ζhq
)maj(w)

= [r]ζhq[r](ζhq)2 · · · [r](ζhq)n ·
(

ζhq
)maj(α)

[k + 1]ζhq[k + 2]ζhq · · · [n]ζhq

=
(

ζhq
)maj(α)

·
[r]ζhq[2r]ζhq · · · [nr]ζhq
[1]ζhq[2]ζhq · · · [k]ζhq

.

Hence for any word α = (α1, . . . , αk) on the set [n− 1], we actually have Hr,n(α) ∼ Hr,n(α+1)
for ǫ = 1. We are interested in a bijective proof of the above relations.
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