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Abstract

We prove that the number of single element extensions ofM(Kn+1)

is 2(
n

n/2)(1+o(1)). This is done using a characterization of extensions as
“linear subclasses”.

1 Introduction

A matroid N is an extension of a matroid M if N\e =M for some element
e of N where e is not a coloop. Similarly, a matroid N is a coextension of a
matroid M if N/e =M for some element e of N where e is not a loop. Our
goal is to enumerate the extensions and coextensions of M(Kn+1), the cycle
matroid of a complete graph on n+ 1 vertices. In this paper, we prove the
following result about the number of extensions.1

Theorem 1.1. The number of extensions of M(Kn+1) is 2(
n

n/2)(1+o(1))
.

It is well known that coextensions of graphic matroids correspond to
biased graphs, which are independently well-studied [6, 7, 8]. In [4], Nelson
and Van der Pol proved that the number of biased graphs on the complete
graph Kn+1 is 2

1
2
n!(1+o(1)), which implies the following theorem.

Theorem 1.2 ([4]). The number of coextensions of M(Kn+1) is 2
1
2
n!(1+o(1)).

1In this paper, o(1) denotes a function of n which goes to 0 as n goes to infinity and
we say

(

n
x

)

:=
(

n
⌊x⌋

)

.
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The proof of Theorem 1.1 has a structure similar to the proof of The-
orem 1.2. The strategy begins by finding a natural lower bound for the
number of extensions or coextensions. This is done by finding a large set
of objects that describes an extension or coextension such that each subset
also describes an extension or coextension. An upper bound is then deter-
mined by viewing the large sets that describe extensions or coextensions as
stable sets in an auxiliary graph and applying the container method. The
Boolean lattice is used as the auxiliary graph in this paper, so known re-
sults about enumerating antichains in a Boolean lattice are used instead of
a direct application of the container method.

Cycle matroids of complete graphs, which we sometimes refer to as
cliques, are highly symmetric and dense, so we might expect the collec-
tion of extensions and coextensions to be tame and well-understood. How-
ever, Theorems 1.1 and 1.2 imply that the number of matroids that are one
contraction or deletion away from being a clique on N elements is “close”

to 22
√

N
. In comparison, the number of extensions of a projective geometry

with N elements is “close” to 2log
2 N .2 This implies that the number of

extensions and coextensions of a clique is much larger than the number of
extensions of some other classes of matroids.

For N ∈ N, let m(N) denote the number of matroids on N elements.
Knuth [3] found a large family of matroids on N elements in 1974 which
implies the lower bound log logm(N) ≥ N(1 − o(1)). This combined with
the trivial upper bound of log logm(N) ≤ N implies that m(N) is “close”

to 22
N
. Thus, the number of extensions and coextensions of a clique on N

elements is close to the total number of matroids on N elements in the sense
that they are both doubly exponential in N .

The rest of the paper is organized as follows. In Section 2, we set up the
proof of Theorem 1.1 with some preliminary definitions and lemmas. The
proof itself is then provided in Section 3.

2 Preliminaries

In this paper, we follow the definitions and notation of Oxley [5]. We begin
by reviewing a few relevant definitions. For a matroid M , let H(M) denote
the set of hyperplanes of M . A linear subclass of a matroid M is a subset
H′ ⊆ H(M) such that if two hyperplanes F,F ′ ∈ H′ intersect in a flat S of
rank r(M) − 2, then all hyperplanes F ′′ that contain S are in H′ as well.

2In this paper, log denotes the base-2 logarithm.
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In [1], Crapo proved that the linear subclasses of a matroid M parameterize
the extensions of M .

For an integer n, let [n] = {1, 2, . . . , n} and let Kn be the complete
graph on vertex set [n]. Recall that the clique M(Kn) is the cycle matroid
of Kn. Our goal is to enumerate the extensions of M(Kn+1). By using
Crapo’s parameterization, it suffices to enumerate the linear subclasses of
M(Kn+1). Note that the rank of M(Kn+1) is n. Let E(n+1) denote the set
of extensions ofM(Kn+1) and let L(n+1) denote the set of linear subclasses
of M(Kn+1). Let P(n) denote the power set of [n].

Recall that a biased graph is a pair (G,B) where G is a finite graph
and B is a collection of balanced cycles of G; that is, a collection of cycles
where there do not exist cycles C1, C2, C3 in a theta-subgraph of G for which
|{C1, C2, C3} ∩ B| = 2. This motivates the following definition. We say a
collection of sets B 6= {∅} is linear if there do not exist disjoint sets X,Y for
which |{X,Y,X ∪ Y } ∩ B| = 2. Observe that no linear set can contain the
empty set: If B is a linear set and ∅,X ∈ B, then |{∅,X,X ∪ ∅} ∩ B| = 2.
Let Q(n) denote the set of linear subsets of P(n).

The proof of the following lemma shows that linear subsets of P(n)
correspond to linear subclasses of M(Kn+1). In this proof, it is helpful to
think of flats of M(Kn+1) as partitions of vertices. We say a k-partition of
a set S is an unordered partition of S into k nonempty parts. A set F is a
rank-(n+ 1− k) flat of M(Kn+1) if and only if the subgraph ([n+1], F ) has
precisely k components, each of which is complete. Thus, rank-(n + 1 − k)
flats ofM(Kn+1) correspond to k-partitions of [n+1]. Flats F and F ′ satisfy
F ⊆ F ′ if and only if the partition corresponding to F refines the partition
for F ′.

Lemma 2.1. |E(n + 1)| = |Q(n)|.

Proof. By Crapo’s parameterization of extensions as linear subclasses, we
have that E(n+1) is in bijection with L(n+1); therefore, it suffices to prove
that there exists a bijection between L(n+ 1) and Q(n). For this proof, let
M denote M(Kn+1).

For each hyperplane H of M , let ψ(H) ⊆ [n] be the vertex set of the
unique component of ([n + 1],H) not containing the vertex (n + 1). Since,
for each nonempty X ⊆ [n], the partition {X, [n + 1] \ X} gives rise to a
hyperplane H of M with ψ(H) = X, the function ψ is a bijection from the
set of hyperplanes of M to P(n) \ {∅}.

Claim 2.1.1. Let F be a collection of at least three hyperplanes of M for

which r(∩F) = n − 2. Then |F| = 3 and there are disjoint nonempty sets
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S, T ⊆ [n] for which ψ(F) = {S, T, S ∪ T}. Moreover, all disjoint nonempty

sets S, T ⊆ [n] satisfy r(ψ−1(S) ∩ ψ−1(T ) ∩ ψ−1(S ∪ T )) = n− 2.

Proof. The intersection ∩F is a flat of rank n − 2, so it corresponds to
a 3-partition of [n + 1], say {X0,X1,X2}. Since hyperplanes correspond
to 2-partitions of [n + 1], a hyperplane that contains ∩F corresponds to a
partition with parts Xi and Xj ∪Xk where {i, j, k} = {0, 1, 2}. There are
three such partitions; thus |F| = 3. Without loss of generality, we may
assume that n+ 1 ∈ X2, hence ψ(F) = {X0,X1,X0 ∪X1}.

Now suppose S, T ⊆ [n] are disjoint nonempty sets. The partition
{S, [n + 1] \ S} corresponds to the hyperplane ψ−1(S). Similarly, we know
that {T, [n + 1] \ T} corresponds to ψ−1(T ) and {S ∪ T, [n + 1] \ (S ∪ T )}
corresponds to ψ−1(S ∪ T ). The coarsest common refinement of the parti-
tions {S, [n + 1] \ S}, {T, [n + 1] \ T}, and {S ∪ T, [n + 1] \ (S ∪ T )} is the
3-partition {S, T, [n+1]\(S ∪T )}, which corresponds to a flat of rank n−2.
Thus, it follows that r(ψ−1(S) ∩ ψ−1(T ) ∩ ψ−1(S ∪ T )) = n− 2.

Since the function ψ gives a bijection between hyperplanes of M and
nonempty subsets of [n], it remains to show that a set H′ of hyperplanes
of M is a linear subclass if and only if ψ(H′) is a linear collection of subsets
of [n]. Let H′ be a set of hyperplanes of M and let S = {ψ(H) : H ∈ H′}.

Suppose S is not linear. Thus, there exists a 3-set {X,Y,X ∪ Y } where
X and Y are disjoint and nonempty such that |S ∩{X,Y,X ∪Y }| = 2. This
implies that H′ ∩ {ψ−1(X), ψ−1(Y ), ψ−1(X ∪ Y )} = 2. By Claim 2.1.1, we
know that r(ψ−1(X) ∩ ψ−1(Y ) ∩ ψ−1(X ∪ Y )) = n − 2. Thus, exactly two
hyperplanes in H′ contain the rank-(n−2) flat ψ−1(X)∩ψ−1(Y )∩ψ−1(X ∪
Y ), so H′ is not a linear subclass.

Now, suppose H′ is not a linear subclass. Thus, there exist hyperplanes
H0,H1,H2 that contain a flat F of rank n−2 such thatH0,H1 ∈ H′ andH2 /∈
H′. By Claim 2.1.1, we know that {ψ(H0), ψ(H1), ψ(H2)} = {X,Y,X ∪ Y }
where X and Y are nonempty disjoint subsets of [n]. This implies that
|S ∩ {X,Y,X ∪ Y }| = 2, so S is not linear.

A linear set B is scarce if |{X,Y,X∪Y }∩B| ≤ 1 for all disjoint sets X,Y .
Let Qs(n) denote the set of scarce linear subsets of P(n). Since Qs(n) is a
subset of Q(n), Lemma 2.1 implies that the number of scarce linear subsets
of P(n) is a lower bound for the number of extensions of M(Kn+1).
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3 The Proof

In the previous section, we found a representation of hyperplanes of a clique
M(Kn+1) as nonempty subsets of [n], which was used to show a bijection
exists between extensions and linear subsets of P(n). In this section, we
prove Theorem 1.1 by first counting the number of scarce linear subsets of
P(n) by comparing them to antichains in the Boolean lattice. This will give
us a lower bound for the number of extensions. To complete the proof, we
show that |Q(n)|, the number of linear subsets, is not “much more” than
|Qs(n)|, the number of scarce linear subsets, thereby giving us an upper
bound for the number of extensions.

Consider the poset on P(n) partially ordered by the subset relation, also
referred to as the Boolean lattice and denoted P(n). An antichain of P(n)
is a set of elements A such that no two elements in A are comparable. An
intersecting antichain is an antichain A where X ∩ Y 6= ∅ for all X,Y ∈ A.
That is, a collection A of sets is an intersecting antichain if and only if no
two sets X,Y in A are comparable or disjoint. Let AI(n) denote the set of
intersecting antichains containing nonempty elements of P(n).

Lemma 3.1. Qs(n) = AI(n).

Proof. Scarce linear sets in Qs(n) and intersecting antichains in AI(n) are
both subsets of P(n) \ {∅}. Since two elements of P(n) \ {∅} are in a 3-
set {X,Y,X ∪ Y } for nonempty disjoint X,Y ⊆ [n] if and only if they are
comparable or disjoint, it immediately follows that a subset of P(n) \ {∅} is
a scarce linear set if and only if it is an intersecting antichain.

At this point, our goal is to determine |AI(n)|, the number of intersecting
antichains in the Boolean lattice P(n) \ {∅}.

Lemma 3.2. |AI(n)| ≥ 2(
n

⌈(n+1)/2⌉).

Proof. Let A be the collection of subsets of [n] that have size ⌊n2 ⌋+1. There
are

( n
⌊n/2⌋+1

)

such subsets, hence A has size
( n
⌊n/2⌋+1

)

.
Since all sets in A have the same size, it follows that A is an antichain

of P(n). Furthermore, since ⌊n2 ⌋+ 1 > n
2 , each pair of sets in A intersect in

a nonempty set. This implies that A is an intersecting antichain of P(n).
Notice that each subset of A is also an intersecting antichain. Therefore,

there are at least 2(
n

⌊n/2⌋+1) intersecting antichains. Since ⌊n2 ⌋ + 1 = ⌈n+1
2 ⌉,

the result follows.
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Antichains in the Boolean lattice are well studied and each intersecting
antichain is also an antichain. Thus, we use the following theorem of Kleit-
man to determine an upper bound on the number of intersecting antichains
in P(n) \ {∅}.

Theorem 3.3 ([2]). The number of antichains in P(n) is 2(
n

n/2)(1+o(1))
.

It follows from Theorem 3.3 that the number of intersecting antichains

in P(n) \ {∅} is at most 2(
n

n/2)(1+o(1))
. We are now able to determine the

number of scarce linear subsets of P(n).

Lemma 3.4. |Qs(n)| = 2(
n

n/2)(1+o(1))
.

Proof. Observe that
( n
⌈(n+1)/2⌉

)

=
( n
n/2

)

(1 + o(1)). Now it follows from

Lemma 3.2 and Theorem 3.3 that |AI(n)| = 2(
n

n/2)(1+o(1))
. Now the result

follows from Lemma 3.1.

The last step needed to prove Theorem 1.1 is to show that |Q(n)| is not
“much” larger than |Qs(n)|. To do this we use an approach similar to that
used in [4]. The strategy is to map the linear sets to scarce linear sets and
show that the number that map to a specific scarce linear set is “small”.

Recall that a linear set B of P(n) is a subset of P(n) such that if A,B ∈ B
are in a 3-set {X,Y,X ∪Y } where X and Y are disjoint and nonempty, then
the third set in the 3-set {X,Y,X ∪ Y } is in B as well. Define a triple of
sets {X,Y,X ∪ Y } to be a related triple if X and Y are disjoint nonempty
subsets of [n].

Lemma 3.5. |Q(n)| ≤ |Qs(n)| · 2
2( n

≤n/3).

Proof. For each set X ∈ P(n), let Xc denote the set [n] \ X. Let ≺ be a
linear ordering of P(n) such that X ≺ Y if min{|X|, |Xc|} < min{|Y |, |Y c|}
for X,Y ∈ P(n).

If {X0,X1,X2} is a related triple, then without loss of generality X2 =
X0 ∪ X1. Therefore, {X0,X1,X

c
2} is a tripartition of [n]. Now it follows

that at least one of X0,X1,X
c
2 has size at most n/3. This implies that |Xi|

or |Xc
i | is at most n/3 for at least one of i ∈ {0, 1, 2}.

Let S be the collection of sets X in P(n)\{∅} with min{|X|, |Xc|} ≤ n/3.
Notice that

|S| ≤ 2

⌊n/3⌋
∑

k=0

(

n

k

)

.
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Let Λ be the collection of all related triples {X0,X1,X2} where we al-
ways assume that X0 ≺ X1 ≺ X2. By the discussion above, we know
X0 ∈ S. For each linear set B ⊆ P(n), let φ(B) be obtained from B by
simultaneously removing X0 and X2 for each triple {X0,X1,X2} ∈ Λ for
which {X0,X1,X2} ⊆ B.

For all {X0,X1,X2} ∈ Λ, since |{X0,X1,X2} ∩ B| ∈ {0, 1, 3}, it follows
that |{X0,X1,X2} ∩ φ(B)| ≤ 1; hence φ(B) is a scarce linear set.

Claim 3.5.1. For each scarce linear set B′ ⊆ P(n) and each set X ⊆ S,
there exists at most one linear set B for which φ(B) = B′ and B ∩ S = X .

Proof. Suppose not. Thus, there exists a scarce linear set B′ ⊆ P(n) and
distinct linear sets B1,B2 for which φ(B1) = φ(B2) = B′ while B1∩S = B2∩S.

Let S ′ be a maximal initial segment of P(n) \ {∅} with respect to ≺ for
which B1 ∩ S ′ = B2 ∩ S ′. We have S ⊆ S ′ 6= P(n) \ {∅} by assumption.

Let S ∈ (P(n) \{∅}) \S ′ be minimal with respect to ≺. The maximality
of S ′ implies that S is in exactly one of B1,B2. Without loss of generality,
say S ∈ B1 \ B2.

Since B′ = φ(B2) ⊆ B2 and S /∈ B2, we know that S /∈ B′ = φ(B1). Since
S ∈ B1, there exists a triple {X0,X1,X2} ∈ Λ where {X0,X1,X2} ⊆ B1

and S ∈ {X0,X2}. Since X0 ∈ S and S /∈ S, we know that S = X2. By
minimality of S in (P(n) \ {∅}) \ S ′ and since X0 ≺ X1 ≺ X2, it follows
that {X0,X1} ⊆ S ′; hence {X0,X1} ∩ B2 = {X0,X1} ∩ B1 = {X0,X1}.
Now it follows that X0,X1 ∈ B2 and |{X0,X1,X2} ∩ B2| = 2, which is a
contradiction.

From the claim, we have that

|Q(n)| ≤ |Qs(n)| · 2
|S| ≤ |Qs(n)| · 2

2( n
≤n/3).

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Recall that extensions ofM(Kn+1) correspond to lin-
ear sets by Lemma 2.1. The number of linear subsets of P(n) is at least the
number of scarce linear subsets of P(n); therefore, by Theorem 3.4 we find

that the number of extensions is at least 2(
n

n/2)(1+o(1))
. By Lemma 3.5, the

number of extensions is at most

2(
n

n/2)(1+o(1))
· 2

2( n
≤n/3).
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Since 2
(

n
≤n/3

)

/
(

n
n/2

)

= o(1), it follows that the number of extensions is at

most 2(
n

n/2)(1+o(1))
. Combining the upper and lower bounds, we find that

the number of extensions of M(Kn+1) is 2
( n
n/2)(1+o(1))

.
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