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Abstract

A bipartite graph is subcubic if it is an irregular bipartite graph with maximum degree

three. In this paper, we prove that the asymptotic value of maximum spectral radius over

subcubic bipartite graphs of order n is 3−Θ(π
2

n2 ). Our key approach is taking full advantage

of the eigenvalues of certain tridiagonal matrices, due to Willms [SIAM J. Matrix Anal.

Appl. 30 (2008) 639–656]. Moreover, for large maximum degree, i.e., the maximum degree

is at least bn/2c, we characterize irregular bipartite graphs with maximum spectral radius.

For general maximum degree, we present an upper bound on the spectral radius of irregular

bipartite graphs in terms of the order and maximum degree.
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1 Introduction

The spectral radius of a graph is the largest eigenvalue of its adjacency matrix. A classical issue

in spectral graph theory is the Brualdi-Solheid problem [2], which aims to characterize graphs

with extremal values of the spectral radius in a given class of graphs. A lot of results concerning

the Brualdi-Solheid problem were presented, and some of these results were exhibited in a recent

monograph on the spectral radius by Stevanović [14].

Let G be a connected graph on n vertices with maximum degree ∆. The spectral radius of

G is denoted by ρ(G), or simply ρ when there is no scope for confusion. By Perron-Frobenius

theorem and Rayleigh quotient, it is easy to deduce a well-known upper bound ρ(G) ≤ ∆, with

equality if and only if G is regular. This also yields that the spectral radius of a connected graph

is strictly less than its maximum degree when the graph is irregular. It is natural to ask what

is the maximal value of the spectral radius of irregular graphs, which can be regarded as the

Brualdi-Solheid problem for irregular graphs. An equivalent statement of this problem is how

small ∆ − ρ can be when the graph G is irregular. A lower bound for ∆ − ρ was first given by

Stevanović in [13].

∗Corresponding author. E-mail address: rfliu@zzu.edu.cn (Liu).
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Theorem 1.1. ([13]) Let G be a connected irregular graph of order n and maximum degree ∆.

Then

∆− ρ(G) >
1

2n(n∆− 1)∆2
. (1)

Some lower bounds for ∆ − ρ(G) under other graph parameters, such as the diameter and

the minimum degree, were established in [6, 7, 8, 15, 19]. In particular, Cioabă [6] presented the

following lower bound, which confirmed a conjecture in [7].

Theorem 1.2. ([6]) Let G be a connected irregular graph with n vertices, maximum degree ∆

and diameter D. Then

∆− ρ(G) >
1

nD
. (2)

Another approach is to determine the asymptotic value of the maximum spectral radius for

irregular graphs. Denote by F(n,∆) the set of all connected irregular graphs on n vertices with

maximum degree ∆. Let ρ(n,∆) be the maximum spectral radius of graphs in F(n,∆), that is,

ρ(n,∆) = max{ρ(G) : G ∈ F(n,∆)}.

In [8], Liu, Shen and Wang proposed a conjecture for the asymptotic value of ρ(n,∆).

Conjecture 1.3. ([8]) For each fixed ∆, the limit of n2(∆−ρ(n,∆))/(∆−1) exists. Furthermore,

lim
n→∞

n2(∆− ρ(n,∆))

∆− 1
= π2.

It is obvious that the conjecture holds for ∆ = 2, since the path Pn is the only graph in

F(n, 2), and its spectral radius is 2 cos( π
n+1 ). Very recently, the conjecture has been disproved

by Liu [12]. For subcubic graphs, it was proved that limn→∞ n2(3− ρ(n, 3)) = π2/2. Moreover,

the extremal graph with maximum spectral radius is path-like, and it is always non-bipartite.

Hence it is very interesting to consider the maximum spectral radius over irregular bipartite

graphs. The asymptotic value of the maximum spectral radius for subcubic bipartite graphs is

determined. Let us denote by B(n,∆) the set of all connected irregular bipartite graphs on n

vertices with maximum degree ∆. Thus, B(n, 3) means the set of all connected subcubic bipartite

graphs with n vertices. Let λ(n,∆) be the maximum spectral radius among all graphs in B(n,∆),

that is,

λ(n,∆) = max{ρ(G) : G ∈ B(n,∆)}.

The first main result of the paper presents the limit of n2(∆− λ(n,∆)) for ∆ = 3.

Theorem 1.4. Let λ = λ(n, 3) be the maximum spectral radius among all graphs in B(n, 3).

Then

lim
n→∞

n2(3− λ) = π2.

Note that B(n, 3) ⊂ F(n, 3). This implies that λ(n, 3) < ρ(n, 3). If we take ∆ = 3, then

Conjecture 1.3 means that

lim
n→∞

n2(3− ρ(n, 3)) = 2π2.

2



However, according to Theorem 1.4, it follows that

lim
n→∞

n2(3− ρ(n, 3)) ≤ lim
n→∞

n2(3− λ(n, 3)) = π2,

which provides a counterexample to Conjecture 1.3. A simple modification of Theorem 1.4 leads

to the following consequence, which establishes an asymptotic value of the maximum spectral

radius for subcubic bipartite graphs.

Theorem 1.5. The maximum spectral radius of subcubic bipartite graphs on n vertices is 3 −
Θ(π

2

n2 ).

On the other hand, we focus on the maximum spectral radius of irregular bipartite graphs

with large maximum degree. Define an irregular bipartite graph Hn,∆ as follows.

• For 2∆ > n, Hn,∆ is isomorphic to the complete bipartite graph K∆,n−∆.

• For 2∆ = n, Hn,∆ is obtained from K∆,∆ by deleting an edge.

• For 2∆ = n − 1, Hn,∆ is obtained from K∆,∆ by deleting an edge, and then adding a new

vertex and joining it to a vertex of degree less than ∆.

When the maximum degree is at least bn/2c, the maximum spectral radius is completely

determined.

Theorem 1.6. Let G be an irregular bipartite graph on n vertices with maximum degree ∆. If

∆ ≥ bn/2c, then

ρ(G) ≤ ρ(Hn,∆),

with equality if and only if G ∼= Hn,∆.

Note that the above theorem also means that λ(n,∆) = ρ(Hn,∆) if ∆ ≥ bn/2c. Furthermore,

for general n and ∆, we provide a lower bound for ∆ − λ(n,∆), which is also an upper bound

for λ(n,∆).

Theorem 1.7. Let λ(n,∆) be the maximum spectral radius among all the graphs in B(n,∆).

Then

∆− λ(n,∆) >
2∆

n(4n+ ∆− 4)
.

The rest of the paper is organized as follows. In Section 2, we prove Theorem 1.4 by utilizing

the eigenvalue of certain tridiagonal matrices. The proof of Theorem 1.6 is presented in Section

3. In Section 4, we establish some structural properties of the irregular bipartite graph with

maximum spectral radius, and then give the proof of Theorem 1.7. In the final section, some

additional remarks are provided.
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2 Subcubic bipartite graphs

The eigenvalues and eigenvectors of a certain tridiagonal matrix were discussed in [16]. Let us

consider the tridiagonal matrix

A =



−α+ b c1

a1 b c2

a2
. . .

. . .

. . . b cn−1

an−1 −β + b


(3)

with the restriction
√
aici = d 6= 0 for 1 ≤ i ≤ n − 1. All variables appearing in the matrix

are complex. For some special cases, Willms [16] presented the eigenvalues and corresponding

eigenvectors.

Lemma 2.1. ([16]) If α = d and β = 0, then the eigenvalues of A are

λi = b+ 2d cos

(
2iπ

2n+ 1

)
,

where 1 ≤ i ≤ n.

We remark that the above lemma is one of the partial results in [16]. When α and β take the

other values, the eigenvalues and eigenvectors of A were also provided. Let us define a special

tridiagonal matrix of order n:

Mn =



1 −1

−1 2 −1

−1
. . .

. . .

. . . 2 −1

−1 2


. (4)

Obviously, the matrix Mn is obtained from A by setting α = 1, β = 0, b = 2 and ai = ci = −1

for 1 ≤ i ≤ n− 1. Using Lemma 2.1, the eigenvalues and eigenvectors of Mn can be determined

directly. In particular, we display its least eigenvalue in the following result.

Proposition 2.2. For a given positive integer n, the least eigenvalue of Mn is 4 sin2
(

π
4n+2

)
.

Let us introduce an identical equation about the trigonometric function, which will be used

in the sequel proof. A fundamental result for the trigonometric function is

cos2 α+ cos2(
π

2
− α) = sin2 α+ sin2(

π

2
− α) = 1.

Using this fact, for any integer k ≥ 3, one can see that

k−1∑
i=1

sin2

(
i

2k
π

)
=
k − 1

2
(5)
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Figure 1: Subcubic bipartite graphs.

and
k−1∑
i=0

cos2

(
2i+ 1

4k
π

)
=
k

2
. (6)

Given an irregular graph with maximum degree ∆, we say that a vertex is unsaturated if its

degree is less than ∆. The irregular graph with the maximum spectral radius cannot have many

unsaturated vertices. In [18], Xue and Liu considered the subcubic bipartite graph with maximum

spectral radius, and showed that the extremal graph contains at most two unsaturated vertices.

Let G be a bipartite graph with bipartition (X,Y ). We say that G is balanced if |X| = |Y |. For

n ≥ 6, let us define a series of bipartite graphs Bn constructed as follows.

• B6 is a balanced bipartite graph obtained from K3,3 by deleting an edge.

• If Bn is balanced, then Bn+1 is obtained from Bn by adding a vertex and joining it to an

unsaturated vertex in one part of Bn.

• If Bn is unbalanced, then Bn+1 is obtained from Bn by adding a vertex and joining it to the

unsaturated vertices of Bn.

It was proved that Bn is the unique subcubic bipartite graph with maximum spectral radius

[18]. The following lemma establishes the lower and upper bounds for the spectral radius of Bn.

Lemma 2.3. Let ρ be the spectral radius of Bn with n ≥ 6. If n is even, then

4 sin2

(
π

2n+ 2

)
≤ 3− ρ ≤ 4n+ 48

n− 2
sin2

( π
2n

)
.

Proof. Suppose that n is even, that is, n = 2k with k ≥ 3. We may label the vertices of B2k as

presented in Fig. 1. Let x be the unit eigenvector of the adjacency matrix A(B2k) corresponding

to ρ. According to the symmetry of B2k, one can see that x(ui) = x(vi) for 1 ≤ i ≤ k. Set

x(ui) = ai for 1 ≤ i ≤ k. Let L be the Laplacian matrix of B2k, and Λ be a diagonal matrix

with diagonal elements 1, 1, 0, . . . , 0. The two nonzero elements of Λ are labeled by the vertices

uk and vk. Thus,

3I −A(B2k) = L+ Λ. (7)
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Since ρ = xtA(B2k)x, we have

3− ρ = 3xtx− xtA(B2k)x = xt(3I −A(B2k))x. (8)

Combining (7) and (8), it follows that 3− ρ = xt(L+ Λ)x. Note that

xtLx = 2(a1 − a3)2 + 2

k−1∑
i=1

(ai − ai+1)2 and xtΛx = 2a2
k.

In B2k, the vertices u1 and u2 have the same neighbors, hence x(u1) = x(u2), that is, a1 = a2.

It follows that

3− ρ = xtLx + xtΛx

= 2(a1 − a3)2 + 2

k−1∑
i=1

(ai − ai+1)2 + 2a2
k

≥ 2

k−1∑
i=1

(ai − ai+1)2 + 2a2
k.

(9)

Let y = (a1, a2, . . . , ak). Suppose that Mk is the tridiagonal matrix defined in (4). Thus, one

can see that

ytMky = a2
k +

k−1∑
i=1

(ai − ai+1)2. (10)

Combining (9) and (10), we obtain that

3− ρ ≥ 2ytMky. (11)

Let λmin be the least eigenvalue of the matrix Mk. Note that yty =
∑k
i=1 a

2
i = (xtx)/2 = 1/2.

Therefore,

λmin ≤
ytMky

yty
= 2ytMky.

By Proposition 2.2, we have λmin = 4 sin2(π/(4k+2)). Combining the above equations, it follows

that

3− ρ ≥ 2ytMky ≥ λmin = 4 sin2

(
π

4k + 2

)
= 4 sin2

(
π

2n+ 2

)
. (12)

In the following, we will give an upper bound for 3− ρ. In order to prove the upper bound,

we construct a vector on the vertices of B2k. Let z be the n-vector whose entries satisfy

z(ui) = z(vi) = sin

(
k − i
2k

)
,

for 1 ≤ i ≤ k. According to (5), we can see that

ztz = 2

k∑
i=1

sin2

(
k − i
2k

π

)
= 2

k−1∑
i=1

sin2

(
i

2k
π

)
= k − 1. (13)
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Note also that

zt(L+ Λ)z = 2(z(u1)− z(u3))2 + 2z(uk)2 + 2

k−1∑
i=1

(z(ui)− z(ui+1))2

= 2

(
sin

(
k − 1

2k
π

)
− sin

(
k − 3

2k
π

))2

+ 2

k−2∑
i=0

(
sin

(
i

2k
π

)
− sin

(
i+ 1

2k
π

))2

= 8 sin2

(
2

4k
π

)
cos2

(
2k − 4

4k
π

)
+ 8 sin2

(
1

4k
π

) k−2∑
i=0

cos2

(
2i+ 1

4k
π

)

≤ 24 sin2

(
1

4k
π

)
+ 8 sin2

(
1

4k
π

) k−1∑
i=0

cos2

(
2i+ 1

4k
π

)
= (4k + 24) sin2

(
1

4k
π

)
,

(14)

where the last equality is obtained from (6). Moreover, since

ρ ≥ ztA(B2k)z

ztz
,

we obtain that

3− ρ ≤ 3ztz

ztz
− ztA(B2k)z

ztz
=

zt(L+ Λ)z

ztz
. (15)

Combining (13), (14) and (15), it follows that

3− ρ ≤
(4k + 24) sin2

(
π
4k

)
k − 1

=
4n+ 48

n− 2
sin2

( π
2n

)
, (16)

as required.

Now, we are in a position to present the proof of Theorem 1.4.

Proof of Theorem 1.4. As mentioned above, Bn is the unique bipartite graph in B(n, 3) with

the maximum spectral radius. Thus, λ = ρ(Bn). It is equivalent to show that

lim
n→∞

n2(3− ρ(Bn)) = π2.

We divide the proof into two cases according to the parity of n.

Case 1. n is even.

According to Lemma 2.3, it follows that

lim
n→∞

4n2 sin2

(
π

2n+ 2

)
≤ lim
n→∞

n2(3− ρ(Bn)) ≤ lim
n→∞

n2(4n+ 48)

n− 2
sin2

( π
2n

)
. (17)

The left limit is

lim
n→∞

4n2 sin2

(
π

2n+ 2

)
= lim
n→∞

4n2π2

(2n+ 2)2
= π2.
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On the other hand, one can see that

lim
n→∞

n2(4n+ 48)

n− 2
sin2

( π
2n

)
= lim
n→∞

n2(4n+ 48)π2

4n2(n− 2)
= π2.

Thus, the result holds in this case.

Case 2. n is odd.

Obviously, Bn is a proper subgraph of Bn+1, and Bn−1 is a proper subgraph of Bn. Using

Lemma 2.3 for Bn−1 and Bn+1, respectively, we obtain that

3− ρ(Bn−1) ≤ 4n+ 44

n− 3
sin2

(
π

2n− 2

)
and

3− ρ(Bn+1) ≥ 4 sin2

(
π

2n+ 4

)
.

Note that ρ(Bn−1) < ρ(Bn) < ρ(Bn+1). This implies that

lim
n→∞

n2(3− ρ(Bn+1)) ≤ lim
n→∞

n2(3− ρ(Bn)) ≤ lim
n→∞

n2(3− ρ(Bn−1)).

It follows that

lim
n→∞

4n2 sin2

(
π

2n+ 4

)
≤ lim
n→∞

n2(3− ρ(Bn)) ≤ lim
n→∞

n2(4n+ 44)

n− 3
sin2

(
π

2n− 2

)
,

that is,

π2 ≤ lim
n→∞

n2(3− ρ(Bn)) ≤ π2.

Hence limn→∞ n2(3− ρ(Bn)) = π2. The proof is completed. 2

3 Irregular bipartite graph with ∆ ≥ bn/2c
In this section, we consider the maximum spectral radius of irregular bipartite graphs with ∆ ≥
bn/2c. An upper bound for the spectral radius of bipartite graphs with given size was presented

by Bhattacharya, Friedland and Peled [3]. The following lemma is part of [3, Proposition 2.1].

Lemma 3.1. ([3]) Let G be a bipartite graph of size m. Then

ρ(G) ≤
√
m,

with equality if and only if G is a disjoint union of a complete bipartite graph and isolated vertices.

Note that the complete bipartite graph K∆,n−∆ is irregular if ∆ > bn/2c. Indeed, the

maximum spectral radius can be attained for the complete bipartite graph K∆,n−∆.

Lemma 3.2. Let G be an irregular bipartite graph on n vertices with maximum degree ∆. If

∆ > n−∆, then

ρ(G) ≤ ρ(K∆,n−∆),

with equality if and only if G ∼= K∆,n−∆.
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Proof. Let G be the irregular bipartite graph with maximum spectral radius. It suffices to show

that G ∼= K∆,n−∆. Suppose that the bipartition of G is (X,Y ). Without loos of generality,

assume that |X| ≤ |Y |. Since the maximum degree of G is ∆, |Y | ≥ ∆. If |Y | = ∆, then G is a

spanning subgraph of K∆,n−∆. Note that the spectral radius is strictly increasing when adding

an edge in a graph. Thus, G ∼= K∆,n−∆. If |Y | > ∆, then

|E(G)| ≤ |X| × |Y | < ∆(n−∆).

By Lemma 3.1, we obtain that ρ(G) ≤
√
|E(G)| <

√
∆(n−∆). However, the spectral radius of

K∆,n−∆ equals
√

∆(n−∆), which implies that ρ(K∆,n−∆) > ρ(G), a contradiction.

The operation of edge transformation is a classic tool in spectral graph theory. The following

lemma appeared in a number of references (see, for example, [5, 14, 17]).

Lemma 3.3. ([5, 14, 17]) Let u and v be two vertices of a connected graph G, and let S ⊆
N(u)\N(v). Let G′ = G−{wu : w ∈ S}+{wv : w ∈ S}. If x(v) ≥ x(u), where x is the principal

eigenvector of G, then ρ(G′) > ρ(G).

In the following we present the proof of Theorem 1.6. We remark that Hn,∆ is an irregular

bipartite graph on n vertices with maximum degree ∆. If 2∆ > n, then Hn,∆ contains ∆

unsaturated vertices. If 2∆ = n or n − 1, then Hn,∆ contains two unsaturated vertices. Note

also that H6,3
∼= B6 and H7,3

∼= B7 (see Fig. 1).

Proof of Theorem 1.6. Suppose that G is the bipartite graph with maximum spectral radius.

If ∆ > bn/2c, then ∆ > n−∆. For this case, it follows from Lemma 3.2 that G ∼= Hn,∆. Suppose

now that ∆ = bn/2c. We may assume that the bipartition of G is (X,Y ), where |X| ≤ |Y |.
According to the parity of n, we divide the proof into two cases.

Case 1. n is even, that is, n = 2k for some k ≥ 2.

Here, ∆ = k. Thus, one can see that |Y | ≥ k. Note that Kk,k−1 is a proper subgraph of

Hn,∆. Thus, ρ(Hn,∆) > ρ(Kk,k−1) =
√
k(k − 1). If |Y | ≥ k + 1, then |X| ≤ k − 1. Hence,

|E(G)| ≤ ∆|X| ≤ k(k − 1). By Lemma 3.1, we obtain that ρ(G) ≤
√
k(k − 1) < ρ(Hn,∆), a

contradiction. Therefore, |Y | = k, which implies that |X| = |Y | = k. Obviously, G is a proper

subgraph of Kk,k. Moreover, since the spectral radius is strictly increasing when adding edges,

then G is the graph obtained from Kk,k by deleting one edge, hence G ∼= Hn,∆.

Case 2. n is odd, that is, n = 2k + 1 for some k ≥ 2.

In this case, ∆ = k. If |Y | ≥ k+2, then |X| = n−|Y | ≤ k−1. Thus, |E(G)| ≤ ∆|X| ≤ k(k−1).

It follows from Lemma 3.1 that ρ(G) ≤
√
k(k − 1). However, since Kk,k−1 is also a proper

subgraph of Hn,∆, we have ρ(Hn,∆) > ρ(Kk,k−1) =
√
k(k − 1). Hence, ρ(Hn,∆) > ρ(G), a

contradiction. Suppose that |Y | ≤ k + 1. This implies that |X| = k and |Y | = k + 1. Let

Y ∗ = {v∗ ∈ Y : d(v∗) < k}. Thus, for any vertex v ∈ Y \Y ∗, we have d(v) = k, and hence v is

adjacent to all vertices of X. If |Y \Y ∗| ≥ k, then the subgraph of G induced by X ∪ (Y \Y ∗)
is isomorphic to Kk,|Y \Y ∗|. Thus, the maximum degree of G is greater than k, a contradiction.

Hence, |Y \Y ∗| ≤ k − 1, and so |Y ∗| ≥ 2. For vertices in Y ∗, we obtain the following claim.

9



Claim. If u and v are two vertices in Y ∗, then N(u) ∪N(v) = X and N(u) ∩N(v) = ∅.

If X\(N(u) ∪ N(v)) 6= ∅, then we choose a vertex w ∈ X\(N(u) ∪ N(v)). Thus, d(w) ≤
|Y | − 2 = k − 1. Adding the edge uw, we have the resulting graph is also an irregular bipartite

graph with maximum degree ∆. However, the spectral radius of the resulting graph is greater

than that of G, which contradicts the maximality of G. Therefore, we have N(u)∪N(v) = X. Let

x be the principal eigenvector of G. Without loos of generality, we may assume that x(u) ≥ x(v).

Since u ∈ Y ∗ and N(u) ∪N(v) = X, we can find a vertex w ∈ N(v)\N(u). If N(u) ∩N(v) 6= ∅,
then the graph G+wu−wv is also a connected irregular bipartite graph. However, according to

Lemma 3.3, it follows that ρ(G+wu−wv) > ρ(G), a contradiction. Therefore, N(u)∩N(v) = ∅.
The claim is proved.

Indeed, by Claim, it is easy to see that there are at most two vertices in Y ∗. Combining the

fact |Y ∗| ≥ 2, we know that Y ∗ contains exactly two vertices, say u and v. Suppose that x is

the principal eigenvector of G, and x(u) ≥ x(v). Let w∗ be a vertex in N(v). If |N(v)| > 1, then

we consider the graph G′ = G − {wv : w ∈ N(v)\{w∗}} + {wu : w ∈ N(v)\{w∗}}. It follows

from Lemma 3.3 that ρ(G′) > ρ(G), a contradiction. Hence |N(v)| = 1, that is, v is a pendant

vertex of G. Note also that the subgraph of G induced by X ∪ (Y \Y ∗) is isomorphic to Kk,k−1.

Combining the above observations of N(u) and N(v), one can see that G ∼= Hn,∆. Thus, we

complete the proof. 2

4 Lower bound of ∆− λ(n,∆) of irregular bipartite graphs

In this section, we present a lower bound of ∆−λ(n,∆) for irregular bipartite graphs with general

maximum degree ∆. As mentioned above, λ(n,∆) is the maximum spectral radius of irregular

bipartite graphs in B(n,∆). Let Γ be the irregular bipartite graph in B(n,∆), which attains

the maximum spectral radius. Hence ρ(Γ) = λ(n,∆). In order to establish the lower bound of

∆− λ(n,∆), it suffices to consider the lower bound of ∆− ρ(Γ). Suppose that the bipartition of

Γ is (X,Y ). Let

X∗ = {w ∈ X : d(w) < ∆} and Y ∗ = {w ∈ Y : d(w) < ∆}.

The following properties of Γ are useful.

Lemma 4.1. The irregular bipartite graph Γ satisfies the following properties.

(I) |X∗ ∪ Y ∗| ≥ 2.

(II) If |X∗| ≥ 1, |Y ∗| ≥ 1 and |X∗| + |Y ∗| ≥ 3, then the subgraph of Γ induced by X∗ ∪ Y ∗ is

isomorphic to a complete bipartite graph.

Proof. (I) Obviously, |X∗∪Y ∗| ≥ 1 since Γ is irregular. If |X∗∪Y ∗| = 1, then Γ contains exactly

one vertex of degree less than ∆. Thus,
∑
u∈X d(u) 6=

∑
v∈Y d(v). But, this is impossible, since

Γ is bipartite.

(II) Suppose, to the contradiction, that there exist two nonadjacent vertices w1 ∈ X∗ and

w2 ∈ Y ∗. Then we can obtain a new bipartite graph by adding the edge w1w2. Obviously, the

10



new bipartite graph is also irregular, since |X∗|+ |Y ∗| ≥ 3. However, the spectral radius of the

new bipartite graph is greater than that of Γ, which contradicts the maximality of Γ.

Let x be a unit eigenvector of Γ corresponding to ρ(Γ). Define

x(ŵ) = max{x(w) : w ∈ Γ} and x(w̌) = min{x(w) : w ∈ Γ}.

Note that Γ is irregular. One can see that ŵ 6= w̌. Next we estimate the distance between ŵ and

w̌ in Γ.

Lemma 4.2. The distance between ŵ and w̌ is at most 2(n− 1)/∆.

Proof. Suppose that d(w̌) = ∆. Since x is the eigenvector corresponding to ρ(Γ), we have

ρ(Γ)x = A(Γ)x. It follows that

ρ(Γ)x(w̌) =
∑

v∈N(w̌)

x(v) ≥ ∆x(w̌),

which implies that ρ(Γ) ≥ ∆, a contradiction. Therefore, we obtain that d(w̌) < ∆. Denote by

dist(ŵ, w̌) the distance between ŵ and w̌.

Case 1. ŵ and w̌ belong to the same part.

Assume that {ŵ, w̌} ⊆ X. Let P : ŵ = u0v1u1 · · · vkuk = w̌ be a shortest path from ŵ

to w̌. Thus, V (P ) ∩ X = {u0, u1, . . . , uk} and V (P ) ∩ Y = {v1, v2 . . . , uk}. We claim that

|X∗ ∩ V (P )| ≤ 3. If not, we can find two vertices up and uq in X∗ ∩ V (P ) with 1 ≤ p < q < k.

Without loos of generality, we may suppose that x(up) ≤ x(uq). Since P is a shortest path, vp

and uq are nonadjacent. It is easy to see that the graph Γ−upvp +uqvp also belongs to B(n,∆).

By Lemma 3.3, we have ρ(Γ − upvp + uqvp) > ρ(Γ), a contradiction. Note that P is a shortest

path. One can see that N(ui) ∩N(uj) = ∅ for |i− j| ≥ 2. It follows that∣∣∣∣∣∣
⋃

u∈V (P )∩X

N(u)\V (P )

∣∣∣∣∣∣ ≥
⌈
k − 2

2

⌉
(∆− 2). (18)

If |Y ∗ ∩ V (P )| ≥ 2, then it follows from Lemma 4.1 that uk is adjacent to all vertices of

Y ∗ ∩ V (P ), contradicting the fact that P is a shortest path. Therefore, |Y ∗ ∩ V (P )| ≤ 1.

According to the shortest path P , it follows that N(vi) ∩ N(vj) = ∅ for |i − j| ≥ 2. Thus, we

obtain that ∣∣∣∣∣∣
⋃

v∈V (P )∩Y

N(v)\V (P )

∣∣∣∣∣∣ ≥
⌈
k − 1

2

⌉
(∆− 2). (19)

Combining (18) and (19), it follows that

n ≥ |V (P )|+

∣∣∣∣∣∣
⋃

u∈V (P )∩X

N(u)\V (P )

∣∣∣∣∣∣+

∣∣∣∣∣∣
⋃

v∈V (P )∩Y

N(v)\V (P )

∣∣∣∣∣∣
≥ 2k + 1 +

⌈
k − 2

2

⌉
(∆− 2) +

⌈
k − 1

2

⌉
(∆− 2)

≥ k∆ + 1,
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which implies that k ≤ (n− 1)/∆. Hence dist(ŵ, w̌) = 2k ≤ 2(n− 1)/∆.

Case 2. ŵ and w̌ belong to different parts.

Assume that ŵ ∈ X and w̌ ∈ Y . Let P : ŵ = v1u1 · · · vkuk = w̌ be a shortest path from ŵ to

w̌. Thus, V (P ) ∩X = {u1, u2, . . . , uk} and V (P ) ∩ Y = {v1, v2 . . . , uk}.
If |V (P )∩X∗| ≥ 3, then there exist two vertices up and uq in V (P )∩X∗ with 1 ≤ p < q < k.

We may assume that x(up) ≤ x(uq). Since P is a shortest path, vp and uq are nonadjacent. It

is easy to see that the graph Γ− upvp + uqvp also belongs to B(n,∆). By Lemma 3.3, we have

ρ(Γ− upvp + uqvp) > ρ(Γ), a contradiction. Hence |V (P ) ∩X∗| ≤ 2.

If |V (P )∩Y ∗| ≥ 2, it follows from Lemma 4.1 that uk is adjacent to all vertices in Y ∗∩V (P ).

Hence P cannot be the shortest, a contradiction. Therefore, |V (P ) ∩ Y ∗| ≤ 1.

Similar to Case 1, we still see that∣∣∣∣∣∣
⋃

u∈V (P )∩X

N(u)\V (P )

∣∣∣∣∣∣ ≥
⌈
k − 2

2

⌉
(∆− 2),

and ∣∣∣∣∣∣
⋃

v∈V (P )∩Y

N(v)\V (P )

∣∣∣∣∣∣ ≥
⌈
k − 1

2

⌉
(∆− 2).

Combing the above inequalities, it follows that

n ≥ |V (P )|+

∣∣∣∣∣∣
⋃

u∈V (P )∩X

N(u)\V (P )

∣∣∣∣∣∣+

∣∣∣∣∣∣
⋃

v∈V (P )∩Y

N(v)\V (P )

∣∣∣∣∣∣
≥ 2k +

⌈
k − 2

2

⌉
(∆− 2) +

⌈
k − 1

2

⌉
(∆− 2)

≥ k∆.

Thus, we have dist(ŵ, w̌) = 2k − 1 ≤ (2n−∆)/∆ ≤ 2(n− 1)/∆, as required.

The next theorem presents a lower bound for ∆ − ρ(Γ). Before proceeding with the proof,

let us recall an inequality proposed by Shi [15, Lemma 1]. If a, b > 0, then

a(p− q)2 + bq2 ≥ abp2

a+ b
, (20)

with equality if and only if q = ap/(a+ b).

Theorem 4.3. The spectral radius ρ(Γ) satisfies

∆− ρ(Γ) ≥ 2∆

n(4n+ ∆− 4)
.

Proof. Let x, ŵ and w̌ be defined as above. Since x is the eigenvector corresponding to ρ(Γ), by

the Rayleigh quotient, we have

ρ(Γ) = 2
∑

uv∈E(Γ)

x(u)x(v).

12



Similar to the arguements in the proof of Lemma 2.3, we obtain that

∆− ρ(Γ) = ∆xtx− 2
∑

uv∈E(Γ)

x(u)x(v)

=
∑

uv∈E(Γ)

(x(u)− x(v))2 +
∑

v∈X∗∪Y ∗

(∆− d(v))x(v)2.
(21)

Let P be the shortest path of length k between ŵ and w̌. Using Cauchy-Schwarz inequality, it

follows that

∑
uv∈E(Γ)

(x(u)− x(v))2 ≥
∑

uv∈E(P )

(x(u)− x(v))2 ≥ 1

k

 ∑
uv∈E(P )

(x(u)− x(v))

2

=
1

k
(x(ŵ)− x(w̌))2. (22)

Recall that x(ŵ) and x(w̌) are the maximum and minimum components, respectively. One can

see that

x(w̌)2 <
1

n
< x(ŵ)2.

By Lemma 4.1, we have |X∗ ∪ Y ∗| ≥ 2, and hence∑
v∈X∗∪Y ∗

(∆− d(v))x(v)2 ≥ x(w̌)2
∑

v∈X∗∪Y ∗

(∆− d(v)) ≥ 2x(w̌)2. (23)

According to (20), it follows that

1

k
(x(ŵ)− x(w̌))2 + 2x(w̌)2 ≥ 2

2k + 1
x(ŵ)2 >

2

n(2k + 1)
. (24)

Combining Lemma 4.2 and (21)-(24), we have

∆− ρ(Γ) >
2

n(2k + 1)
≥ 2∆

n(4n+ ∆− 4)
,

which completes the proof.

By ρ(Γ) = λ(n,∆), Theorem 1.7 follows from Theorem 4.3. It should be noted that the

spectral radius of any irregular bipartite graph is not greater than that of Γ. Hence Theorem

4.3 implies immediately the following consequence.

Corollary 4.4. Let G be a connected irregular bipartite graph on n vertices with maximum degree

∆. Then

∆− ρ(G) >
2∆

n(4n+ ∆− 4)
.

Obviously, for bipartite graphs, this bound is better than the bound in Theorem 1.1, due to

Stevanović.

13



5 Concluding remarks

The maximum spectral radius of irregular bipartite graphs is considered in this paper. In order to

get a better estimation of λ(n,∆), we need to find the extremal graph in B(n,∆) with maximum

spectral radius. The extremal graph in B(n, 3) is completely determined in [18]. If ∆ ≥ bn/2c,
the extremal graph in B(n,∆) is determined in Theorem 1.6. For other cases, the extremal

graph in B(n,∆) is still unknown. Lemmas 4.1 and 4.2 present some structural properties of the

extremal graph, which may be useful for finding the extremal graph in B(n,∆).

To determine the extremal graph, it is crucial to determine its degree sequence. The degree

sequence of the extremal graph in F(n,∆) was considered by Liu and Li [9]. They conjectured

that the extremal graph in F(n,∆) has exactly one vertex of degree less than ∆. Until now,

very little progress has been made on the degree sequence of the extremal graph in F(n,∆)

(see [10, 11]). Naturally, we focus on finding possible degree sequence of the extremal graph in

B(n,∆). We have seen from Lemma 4.1 that the extremal graph in B(n,∆) has at least two

vertices of degree less than ∆.

There exists an analogous problem of finding the minimum algebraic connectivity of regular

graphs. The cubic graph with minimum algebraic connectivity was determined in [4]. Recently,

Abdi, Ghorbani and Imrich [1] obtained the asymptotic value of the minimum algebraic connec-

tivity of cubic graphs, and presented the structure of the quartic graph with minimum algebraic

connectivity. For bipartite case, we investigated the minimum algebraic connectivity of cubic

bipartite graphs. Moreover, the unique cubic bipartite graph with minimum algebraic connec-

tivity was also completely characterized. The structure of the extremal graph with minimum

algebraic connectivity is very similar to the extremal graph Bn. So we think that this is possibly

an effective approach for finding the extremal graph with maximum spectral radius in B(n,∆).
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