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Abstract. This paper focuses on the formal assessment of the properties of 
cooperation enforcement mechanisms used to detect and prevent selfish behavior of 
nodes forming a mobile ad hoc network. In the first part, we demonstrate the 
requirement for a cooperation enforcement mechanism using cooperative game theory 
that allows us to determine a lower bound on the size of coalitions of cooperating 
nodes. In the second part, using non-cooperative game theory, we compare our 
cooperation enforcement mechanism CORE to other popular mechanisms. Under the 
hypothesis of perfect monitoring of node behavior, CORE appears to be equivalent to 
a wide range of history-based strategies like tit-for-tat. Further, adopting a more 
realistic assumption taking into account imperfect monitoring due to probable 
communication errors, the non-cooperative model puts in evidence the superiority of 
CORE over other history-based schemes. 

1. Introduction 
Cooperation enforcement mechanisms have been developed recently in the attempt to cope with the 

selfish behavior of nodes in mobile ad hoc networks (MANET). As defined in [5] [6], a node is considered 
selfish when it does not participate in the basic network operation in order to save energy. As opposed to 
maliciousness, selfishness is a passive threat that does not involve any intention to damage the operation of 
networking functions by active attacks like route subversion, tampering with data, etc…. 

In this paper we present two different approaches to assess the features of our cooperation enforcement 
mechanism CORE [6] [7]. Using CORE, every node locally rates its neighbors through a monitoring  
mechanism. The observations collected by the monitoring mechanism are processed to evaluate a 
reputation value associated to each neighbor. The reputation value is used by CORE in a step-like 
cooperation policy: only nodes with a reputation that satisfy the requirement of being greater than a defined 
threshold are served (i.e. data and routing packets are forwarded), while nodes with low reputation values 
are gradually isolated from the network. 

Since a large fraction of existing cooperation enforcement schemes are based on principles akin to 
decision making and economic modeling, a natural tool that emerged to be suitable for the validation of 
such mechanisms is game theory. 

In the first part of this paper we present a model that takes into account both a node-centric and a 
network-centric perception of the interactions between nodes that participate in a MANET by using 
cooperative game theory. We first demonstrate the requirement for a cooperation enforcement mechanism 
in order to promote cooperation between self-interested nodes by showing that in the absence of such a 
mechanism the best strategy for a node would be to free ride. Moreover, we analyze which would be the 
size of a coalition of cooperating nodes based on the importance given by a node to the node-centric and 
network-centric perspective of the game. We finally suggest how the CORE mechanism could be used to 
stimulate a node to join the coalition of cooperators. The benefit from using cooperative GT derives from 
the ability of this method to seize the dynamics of large group of players: the strategy chosen by a player 
does not only depend on a self-interested perception of the game but also takes into account a group-wide  
policy of the coalition the player belongs to. 

Although the “cooperative games” approach appears to be appropriate to model the dynamics of large 
coalitions of nodes forming a MANET, the main limitation of this method is that it is based on a high-level 
representation of the reputation mechanism that does not take into account the features of CORE. To 
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overcome this weakness, we present in the second part of this paper an alternative approach based on non-
cooperative game theory [8] [9]. In this second method we use a model that describes the strategy of a self-
interested node that has to take the decision whether to cooperate or not with a randomly chosen neighbor. 
Under this model, the CORE mechanism can be translated into a strategy profile that can be compared to 
other popular strategies. Under the commonly used hypothesis of perfect monitoring, we demonstrate the 
equivalence between CORE and a wide range of history-based strategies like tit-for-tat. Further, by 
adopting a more realistic assumption that takes into account unreliable observations of nodes’ behavior due 
to communication errors, the non-cooperative model puts in evidence the superiority (in terms of stability 
and robustness) of CORE over other history-based schemes. 

Although the two methods described in this paper focus on CORE as a specific mechanism, some 
general conclusions can be drawn from this analysis towards the design of cooperation enforcement 
mechanisms in general. 

2. Related work 
Recently, much attention has been dedicated to game theoretical models for MANET in general and for 

cooperation enforcement mechanisms in particular and an increasing number of models have been 
presented to the community. It is however out of the scope of this paper to propose an extensive state of the 
art of game theoretical models of cooperation in MANET, thus we will focus on some approaches that we 
deem related to our setting. 

In an interesting approach presented in [2] the authors propose a game theoretical model in which 
energetic information is taken into account to describe the conflicting interaction between heterogeneous 
nodes involved in a forwarding game, i.e. a game in which nodes that belong to a path from a source to a 
destination have to collaboratively relay data packets. The authors study the properties of a well known 
strategy (generous-tit-for-tat, G-TFT) and demonstrate that under the energy constraints imposed to the 
nodes, G-TFT promotes cooperation if every node of the network conforms to it. The model in [2] provides 
an accurate description of the energetic constraint of a node, which is the main reason for a selfish 
behavior, but provides only high-level guidelines towards the design of a cooperation enforcement 
mechanism based on the G-TFT strategy. The main difference between the work presented in this paper 
and the research conducted in [2] is that in our model we take into account a more realistic scenario where 
the observations made by a node on her neighbors can be affected by errors. The monitoring mechanism is 
indeed the key feature of a cooperation strategy based on the observation of the opponent’s move (such as 
G-TFT) and we believe that a more accurate description of how these observations are made is 
fundamental.  

Another interesting work towards the definition of a generic game theoretical framework to study 
cooperation in MANET has been presented in [3]. The authors propose a model that takes into account both 
the available energy to a node and the traffic generated and/or directed to that node and helps derive some 
interesting guidelines towards the definition of a cooperation mechanism. The authors not only analyze 
some existing cooperation mechanisms including CORE but also propose to use the tit-for-tat (TFT) as a 
cooperation strategy. Similarly to the work presented in [3], in our paper we are able to accurately describe 
not only our cooperation strategy CORE but also a wide-range of history-based cooperation strategies (such 
as TFT). The performance analysis of the TFT strategy presented in [3] is extended in our work and we 
prove that CORE outperforms all other strategies when the imperfect monitoring assumption is made. 

In [4] the authors propose an alternative model for the forwarding behavior of a node that is part of a 
specific network topology. By using their model, the authors are able to express the equilibrium forwarding 
strategy of a selfish node as a function of topology and routing (path length) information. They also 
propose a punishment mechanism that enforces a cooperative behavior among selfish nodes. Although the 
results obtained in [4] provide a very useful description of the relation between routing, network topology 
and the cooperative behavior of a node, the proposed punishment mechanism is limited to a specific 
instance of the considered network topology and does not take into account the imperfect monitoring of the 
node behavior. 

The research presented in [2], [3], [4] and in the second part of this paper, is based on non-cooperative 
game theory: even when multiple players are considered, the strategy selection phase is always driven by a 
node-centric perception of the game. As a result, the cooperation strategies obtained through the proposed 
models take into account only the payoffs obtained by a single player. Hence, in the first part of this paper 
we propose an alternative approach based on a general model using cooperative game theory as a 



framework to study cooperation as a group initiative rather than a strategy adopted by single players. We 
believe that the “cooperative games” approach provides an appropriate way of describing the dynamics of 
group formation in MANET but needs further research in order to introduce in the model a more formal 
description of cooperation enforcement mechanism.  

3. Cooperative games approach 
In an attempt to explain cooperation and coalition formation, most theoretical models use a two-period 

structure as introduced in [12, 13]. Players must first decide whether or not to join a coalition. In a second 
step, both the coalition and the remaining agents choose their behavior non-cooperatively. A coalition is 
stable if no agent has an incentive to leave2. Simulations presented in [16], [17], [18] have shown that, 
although there is cooperation, the coalition size is rather small.  

In this paper we suggest an approach based on a preference structure as defined by the ERC-theory [11]. 
This theory explains most of the behavior of agents observed in diverse experiments but deviates little from 
the traditional utility concept. The utility of an agent is not solely based on the absolute payoff but also on 
the relative payoff compared to the overall payoff to all agents. Given a certain relative payoff share, the 
utility is strictly increasing in the own absolute payoff of the agent. Given a fixed absolute payoff, the agent 
is best off when receiving just the equal (fair) share. To both sides of this equal share, i.e. when receiving 
less or more than the fair amount, utility is lower, even if the absolute payoff does not change3. 

In section 3.2, we first study a symmetric N-node prisoner’s dilemma (PD) game in a non-cooperative 
setting, in which the agents have only two options available — cooperate or defect. We analyze Nash-
equilibrium of the non cooperative game when agents’ preferences can be described by ERC, i.e. players 
value both their absolute and their relative payoff. In particular, we look at the number of agents who play 
cooperatively. We show that non-cooperation is always an equilibrium, since — if no other node 
cooperates — a node would maximize its absolute payoff and receive the equal share by choosing to defect. 
Additionally, however, there may be Nash-equilibrium in which nodes cooperate: if, for example, the rest 
of the agents play cooperatively, a player can get the equal share by choosing to cooperate as well. Hence, 
if it values its relative payoff being close to the equal share more than its absolute payoff, it will choose to 
complete the grand coalition. Clearly, partial cooperation can also occur, whereby some nodes cooperate 
while others defect. For such equilibrium, we show that the number of cooperating nodes is rather large: 
since cooperation leads to a lower absolute payoff, for a node to choose to cooperate, playing cooperatively 
must move it closer to the equal share than defecting would. As we show, this can only be the case if at 
least half of the nodes cooperate. This result contrasts with the standard result presented in [16] which 
states that the coalition size is rather small.  

Note, however, that in the prisoner’s dilemma, the nodes have only the discrete choice of cooperating or 
defecting, but with respect to the cooperation enforcement problem, the nodes of an ad hoc network might 
choose their cooperation level4 continuously. We therefore introduce in section 3.3 a symmetric continuous 
PD-game based on the ERC preference structure. An interesting finding of this analysis is that ERC alone 
cannot improve upon the non-cooperative Nash-equilibrium with standard preferences in which only the 
absolute payoff matters to a node.  

As a further refinement, we propose the cooperative-games approach consisting in a combination 
between the ERC preference structure and the two-stage coalition formation method [12]. In contrast to the 
traditional models from the game theory literature, the ERC preference structure allows coalitions to 
involve a rather large fraction of players. Furthermore, this model allows for a precise characterization of 
conditions under which even a grand coalition can be obtained. 

Finally, in section 3.5 we propose a discussion on the relation between a coalition formation process 
and our cooperation enforcement mechanism CORE, used as an effective complementary tool to impose a 
specific ERC-type for every node participating in a cooperative setting as an ad hoc network. 
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3.1. The preference structure 
Our analysis relies on a preference structure in which players, along with their own absolute payoff, are 

motivated (non-monotonously) by the relative payoff share they receive, i.e. how their standing compares 
to that of others. We use the ERC model presented in [4] and enhance it with a complete information 
framework. Let the (non-negative) payoff to node i be denoted by yi , i, . . . , N, and the relative share by 
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The ERC-utility function is defined as follows: )()( iiii ryu σβα + where 0, ≥ii βα and u() is differentiable, 

strictly increasing and concave, and r() is differentiable, concave and has its maximum in
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Number of players N  
ERC global utility function for player i )()( iiii ryu σβα +  
ERC-types for player i 0, ≥ii βα  
Absolute payoff for player i iy  
Absolute utility function for player i ( )iyu , differentiable, strictly increasing, concave 
Relative payoff for player i iσ  
Relative utility function for player i ( )ir σ , differentiable, concave, maximum in 

Ni
1=σ  

Table 1. Summarizing table defining the game based on ERC theory. 

3.2. The prisoner’s dilemma with a discrete strategy space 
In this section we study a simple symmetric N-node prisoner’s dilemma where each mobile node can 

cooperate, ‘c’, or defect, ‘d’: this implies that the strategy set available to each player is discrete and only 
two actions are allowed. In terms of the node misbehavior problem, this means that the node either 
correctly executes the network functions or it doesn’t.  

Let the total number of cooperating nodes be denoted by k. For any given k, the payoff to a node is 
given by B(k) if the node defects (tries to free-ride). If a node plays cooperatively, it must bear some 
additional costs C(k). Its payoff is therefore given by B(k) - C(k). We assume decreasing marginal benefits 
for a node if the number of mobile nodes rises, i.e. B(k) is increasing and concave. Furthermore, the total 
cost of cooperation, kC(k), increases in k. 

In order to generate the standard incentive structure of a PD game, we make the following assumption. 
 
Assumption 1. PD structure:  B(k+1) - B(k) < C(k+1) 
 
Assumption 1 implies that playing cooperatively reduces the absolute payoff, given an arbitrary number 

of ‘c’-nodes. To make cooperation more attractive from both the social and the individual point of view, we 
make the following assumptions: 
 

Assumption 2. “Socially desirable”: )()()1()1()1( kkCkBNkCkkBN −⋅≥++−+⋅    (1) 
 

Assumption 3. “Individually desirable”: )()()1()1( kCkBkCkB −≥+−+    (2) 
 

Furthermore, we assume that payoffs for both cooperating and defecting nodes are non-negative for all 
k. 



3.2.1. The Nash equilibrium 
In the following section we analyze the Nash equilibrium in the one shot PD game under the 

assumption that all the nodes joining an existing network choose simultaneously.  
Assume that k nodes, aside from node i, play cooperatively. We want to study the condition under 

which node i, which is not part of the set of k cooperating nodes, chooses to cooperate; player i chooses to 
play ‘c’ if and only if her utility is higher than when playing ‘d’, i.e.: 
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This is equivalent to node i playing ‘c’ if and only if: 
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In order to choose ‘c’ the node must be overcompensated for the loss in absolute gain by moving closer 

to the average gain. 
The general conditions for a Nash equilibrium of a ERC-PD game [11] of N nodes whereby the number 

of cooperating nodes is k* can be used to study expression (4): 
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Conditions (5) and (6) can be used to evaluate the number of nodes k* that may possibly cooperate in a 

Nash equilibrium.  On one hand, as long as 0)1*( <−kδ , there is no chance of having a coalition of size k* 

because )1*( −> k
i
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β
α  for all types and condition (5) cannot hold for any node. On the other hand, the 

conditions for a Nash equilibrium given by (5) and (6) imply that if 0)1*( >−kδ  then there are types 
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distribution of ERC-types, 0)1*( >−kδ  is a necessary but not sufficient condition to get a coalition size of 
k*. For a given payoff structure with 0)1*( >−kδ , however, there exist ERC-types such that k* is the 
equilibrium for any coalition size. 

 
In order to find feasible coalition sizes, we must therefore study conditions under which ( )kδ  is 

positive.  
 

Note that in (4) the denominator of )(kδ  is positive due to assumption 1. The sign of the numerator, 
however, depends on the number k of cooperating nodes.  
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For k=N-1 the sign of the numerator is positive, since 
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Therefore, )1(0)0( −<< Nδδ  and no nodes unilaterally cooperate whereas all nodes playing ‘c’ can 

establish an equilibrium, provided that all nodes’ types ⎟⎟
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In general, there are equilibria where only a certain number k* of nodes cooperate. The crucial point is 
to find whether or not the numerator is positive. Remember that we previously assumed that 
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It is necessary, in order to obtain 0)( >kδ , that a node choosing ‘d’ further deviates from the equal share 

(1/N) than by playing ‘c’,  i.e.:  
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It is possible to show that inequality (7) is satisfied for k>N/2 5. 
Assumption (1) and (2) imply that the condition  0)( >kδ  is necessary (but not sufficient) to state that, 

for any given vector of types, if a node plays ‘c’ at the equilibrium, then at least half of the nodes 
cooperate.  
 
Proposition 1. For any given payoff structure of the PD game with ERC preferences, there is always an 
equilibrium in which all nodes defect.  

Proposition 2. Given Assumption 1 and Assumption 2, there is a Nash equilibrium where at least N/2 
nodes cooperate. 

Based on proposition 2, if there is a coalition of cooperating nodes then it is rather large.  

3.3. The prisoner’s dilemma with a continuous strategy space 
In section 3.2.1, we assumed that nodes only have a discrete option as to whether to cooperate or not. 

Now, we turn to a prisoner’s dilemma game where nodes can continuously choose their cooperation levels. 
As we will see, ERC alone cannot improve upon the non-cooperative Nash-equilibrium with standard 
preferences whereby only the absolute payoff matters. However, introducing more structure to the game, 
i.e. if nodes play a coalition game (section 3.4), ERC may yield a rather large coalition size or even support 
the grand coalition. 

Let the number of nodes again be denoted by N. We define the cooperation level qi ( [ ]1,0∈ ) as the 
fraction of packets (both data and routing packets) that node i forwards to its neighboring nodes or to the 
destination node. Each node must choose its cooperation level qi (i = 1,…, N). Cooperation induces some 
costs C(qi) that are assumed to be increasing and convex in the cooperation level ( ( ) ( ) 0,0 >′′>′ CC  ). 
Cooperation also yields some benefit B(Q) in terms of network connectivity and aggregate cooperation 
effort made available by cooperating nodes, where ∑=

i
iqQ denotes the aggregate cooperation level. 

Benefits from cooperation are increasing and concave, ( ) ( ) 0,0 <′′≥′ BB . The payoff to a node is therefore 
determined by: )()( iqCQB − . 

3.3.1. The Nash equilibrium 
In order to find the Nash equilibrium point(s) of the game (if one exists) it is necessary to identify the 

strategy qi that corresponds to the singularity point(s) of the global ERC utility function, i.e. finding the 
roots of the first order derivative of the utility function and make sure that those points are maximum of the 
utility function. It should be noted that the assumptions made on the convexity of the utility function (see 
section 3.1) alleviate the problem of studying the border conditions in the function domain. In the rest of 
the paper we refer to the first order condition when describing the process of finding the Nash equilibrium. 
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We analyze the Nash equilibrium when nodes act simultaneously. Node i chooses qi to maximize its 
utility function )()( iiii ryu σβα + , where: 
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Note that the definition used to express the absolute payoff to node i emphasizes the strategy space for 
node i (qi) as compared to the strategy space available to the other nodes of the network. 

By choosing qi, each node determines its own cooperation costs and the benefits from cooperation. The 
choice of qi also impacts the payoff of the remaining nodes that in turn is fed back to the node’s own utility 
through the relative payoff.  

The first order condition is therefore given by: 
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The first order condition can rewritten as: 
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The strategy (qi) of node i to a given cooperation policy for the rest of the network can be calculated 
from this first order condition.  

 
Proposition 3. (Continuous game) In the continuous PD-game based on ERC preferences, the Nash 
equilibrium is given by solving the following expression: ( ) ( ) 0** =′−′ qCNqB . It is symmetrical as long as at 
least one node draws utility from its absolute payoff (αi>0).6 

 
Introducing ERC preferences, therefore, does not increase the cooperation effort chosen by the nodes 

when playing the PD-game with a continuous action set. It does not even change the equilibrium 
cooperation levels. In contrast to the (discrete) prisoner’s dilemma, ERC does not add any equilibrium in 
which there is more cooperation effort. The existence of equilibrium in the PD game that mimics 
cooperative behavior, therefore, only arises in the presence of discrete action sets. Having a continuous 
decision variable, ERC does not change the set of equilibrium. The reason is that ERC does not establish a 
preference for being cooperative, but for being similar to other nodes with respect to the payoff.  

In this section, however, we used the ERC theory in a classical non-cooperative setting: let us see how 
the strategy selection of a selfish node change when introducing more structure to the game, i.e. when 
considering a cooperative-game setting. 
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3.4. Coalition formation: the cooperative-game approach 
As a further refinement, we now propose a cooperative-games approach consisting in a combination of 

the ERC preference structure and the two-stage coalition formation method as introduced in [13]. 
Let us assume that all nodes are identical with respect to their payoff function (i.e. they use the same 

definition of utility function). In a first stage, nodes decide whether or not to join the coalition. By the 
principle of “rationality”, each node is assumed to know the decisions of the other nodes. The cooperation 
levels (i.e. the strategy) that will be chosen in the second stage depend on whether the nodes take part in the 
coalition or not. The coalition thereby maximizes its collective benefits and plays against the nodes that 
don’t take part in the coalition, which simultaneously maximize their individual utility. 

We first study the case of nodes that have identical ERC-types. We demonstrate that within the 
coalition formation game, ERC-preferences can enforce cooperation and even result in the grand coalition. 
We then look at the case of heterogeneous ERC-types. By studying the extreme scenario of nodes that are 
solely interested either in their absolute payoff or in equity, we will explore the effects of the existence of 
some equity-oriented nodes in the network. 

3.4.1. Coalition of identical ERC-types 
We will now solve the coalition formation game backwards, that is, for any coalition size k, we first 

study the first order conditions for the choice of the cooperation level inside and outside the coalition. 
Then, in the second step, the equilibrium coalition size is determined by a stability condition. This means 
that in the equilibrium, k must satisfy the condition that there is no incentive to leave the coalition7. 

For standard preferences (using ERC-preferences this results in the special case β=0), the game theory 
literature shows that the coalition size is rather small. Using ERC preferences, however, the number of 
nodes within a coalition can be much higher in equilibrium.  

Instead of solving the game in general, we will show that if nodes only value the relative payoff high 
enough, i.e. α/β is below a certain bound then even the grand coalition can be stable. 

The first order condition for nodes outside the coalition (S) is given by (10), whereas the cooperation 
strategy of nodes that take part in the coalition is chosen by maximizing the utility function of a 
representative member: indeed all nodes within the coalition S select the same strategy qs since they are 
assumed to be of the same type. This implies that all members of the coalition have identical absolute 
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• For nodes that do not belong to the coalition S we know from section 3.4 that if Nj 1)(><σ for 

Sj ∉  then ( )jqCQB ′<>′ )()( .  
• For the coalition, we obtain from (10) and (11) that if NS 1)(><σ  then ( )SqCQBk ′<>′ )()( 8. 

Since ( )QBkQB ′>′ )( 9, the first order conditions imply that for nodes within the coalition 

                                                 
7 The original work introduced in [23] states that the stability condition is such that there is an incentive to neither leave nor join the 
coalition. 
8 Assuming that NS 1>σ then ( ) 0<′r and (11) implies ( )SqCQBk ′<′ )( . 
9 For k≥2. 



NS 1≤σ and thus: ( ) ( )SqCQBk ′≥′ . To prove that inside the coalition NS 1≤σ , assume to the 
contrary that NS 1>σ and that Nj 1<σ for some nodes j outside the coalition. Inequalities (10) 
and (11) imply that ( ) ( ) ( ) ( )Sj qCQBkQBqC ′<′<′<′ which contradicts the assumption of increasing 
and convex cooperation costs. 

 
Inequalities (10) and (11) can be used to show the following proposition: 
 

Proposition 4. (Coalition game) In the symmetric coalition game for identical ERC preferences (type α/β), 
the grand coalition is stable if α/β is sufficiently small, i.e. nodes are interested enough in being close to the 
equal share. 

Note first, that within the grand coalition, the cooperation level satisfies the condition ( ) ( )** qCNqBN ′=′ , 
independently of the ERC-types and nodes that receive the equal share.  

If node i leaves the coalition (k = N −1), then from the first order conditions we obtain: 
 
( ) ( )[ ] ( ) ( ) ( )[ ]iSiSiS qqNBqCqCqqNBN +−′>′≥′≥+−′− 111       (12) 
 
Let us now look at the cooperation levels that would result if the ERC-type α/β goes to zero. In this 

case, nodes get more and more interested in getting their equal share, and their cooperation levels will 
converge: in the limit iS qqq ==~ . However, in the limit, inequality (12) still must hold, i.e. 
( ) ( ) )(1 qCNqBN ′≥′− .  

In the limit the absolute payoff of a node leaving the coalition is smaller than within the grand coalition, 
whereas the relative payoff is the same, i.e. ( ) ( )qCQBN ~~ ′>′ .  

Therefore, as long as α/β is small enough, the absolute payoff remains lower and the utility derived 
from the relative payoff is also smaller than in the grand coalition. Thus, no node has an incentive to leave 
the grand coalition if α/β is small enough. 

3.4.2. Coalition of heterogeneous ERC-types 
When nodes with heterogeneous ERC-types are allowed to take part in the coalition (S), those nodes 

that have the largest αi/βi will have the greatest interest to leave the coalition in order to obtain a larger 
absolute payoff.  

We will now concentrate on the extreme case in which nodes are either interested in their absolute 
payoff (βi = 0) or in equity (αi = 0). The former are referred to as A-nodes, the latter as B-nodes. In total, 
there are Na A-nodes and Nb B-nodes; ka of these A-nodes and kb B-nodes form the coalition. The 
cooperation levels are denoted by qas, qbs for nodes inside S, qan and qbn for nodes outside the coalition. 

 
Let us first look at the behavior of B-nodes.  
Outside the coalition, any B-nodes can arrive at the equal share by choosing the average cooperation 

cost level. Thus, 
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A B-node inside the coalition has no incentive to leave if it also receives the equal share: 
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In equilibrium, all B-nodes choose the same cooperation level, bsbnb qqq ==̂  and receive the equal share: 
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A-nodes outside the coalition maximize their absolute payoff, )()( anqCQB − . The first order condition is 

given by: )()( anqCQB ′=′ .         (16) 
Within the coalition, the utility of a representative A-type-member is maximized by guaranteeing that 

the B-members get the equal share, i.e. C(qbs). The first order condition for choosing qas is given by: 
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By construction, for any given ka and kb, every B-node is indifferent to being either inside or outside the 

coalition. For a coalition to be stable, an A-node must not have an incentive to leave the coalition. In 
general, for any kb there will be a certain number of A-nodes, ka, that will join the coalition. We have 
multiple equilibria. 

Inequalities (13) - (17) can be used to infer the following results: 
 

Result 5. The larger the total number of equity-oriented nodes (Nb), the higher the incentives for A-nodes 
to join the coalition. Hence, for a given kb, the number of cooperating A-nodes ka increases in Nb. 

Result 6. The more B-nodes join the coalition, the smaller the incentive for A-nodes to do so. In 
equilibrium, kb and ka are negatively correlated. 

Result 7. The total cooperation level increases with the number of B-types outside the coalition. A joining 
B-node improves the payoffs only if it does not drive out an A-node. 

 
The rationale of results 5 and 6 is the following: if an A-node enters the coalition and the coalition 

increases its cooperation efforts, B-nodes outside the coalition increase their cooperation activities as well 
and thereby additionally reward the entering node.  

If the number of such equity-oriented B-nodes outside the coalition gets larger, this external reward for 
joining a coalition increases and, therefore, the equilibrium coalition size increases. Analogously, if B-
nodes join the coalition, fewer nodes outside the coalition reward the entering A-node by an increase of 
their cooperation activities. Hence, the incentives for A-nodes to enter the coalition decrease and the 
number of A-nodes that are inside the coalition in equilibrium gets smaller.  

Result 7 reflects the fact that the more nodes cooperate, the higher the efficiency gains are and the 
closer the aggregate cooperation level is to the efficient one. The impact of A- and B-nodes on the decision 
of the coalition, however, differs in the following way: a joining A-node is interested in the absolute payoff 
and, consequently, the re-optimizing coalition increases its cooperation effort because the positive effect on 
one more node is now taken into account. A joining B-node, however, is not primarily interested in the 
absolute payoff, but in the equal share. Therefore, the coalition will not increase the total cooperation level 
that much because the B-node refrains from deviating from the cooperation level of non-cooperating nodes. 
Consequently, the efficiency gains are larger if an A-node enters the coalition than if a B-node joins. 
Therefore, B-nodes are welcome inside a coalition only if their entering does not drive out an A-node. 

3.5. Discussion: coalition formation process and the cooperation enforcement 
mechanism CORE 

Self-interested, autonomous mobile nodes of an ad hoc network may interact “rationally” to gain and 
share benefits in stable (temporary) coalitions: this is to save costs by coordinating activities with other 
nodes of the network. For this purpose, each node determines the utility of its actions in a given 
environment by an individual utility function. In section 3.1 we introduced a more sophisticated model in 
which not only self-centered preferences are taken into account to derive the individual payoff of an action 
but also relative information is used in order to find an extended set of possible equilibrium points. 

Results obtained with the proposed model are promising: in a dynamic network formed by nodes that 
follow the definition of utility given by the ERC theory, depending on the node types, it is possible to 
obtain stable coalitions of a relatively large size and under certain circumstances, even the grand coalition 
becomes feasible. Node types are determined by the two parameters α and β which represent the key factor 
of the coalition formation process. 

We believe that the reputation technique implemented in CORE can be used as an effective mechanism 
to impose a specific identical ERC type for every node participating in a cooperative setting as an ad hoc 
network. Indeed, the reputation measure introduced in [5] is compliant with the incentive structure given by 
(1) and (2). Cooperation is made attractive from an individual point of view because the cost of 
participating to the network operation is compensated with a higher reputation value, which is the pre-
requisite for a node to establish a communication with other nodes in the network. On the other hand, when 



the number of cooperating nodes increases, the cost for participation is compensated by a more connected 
network that in turn increases the benefit of cooperation. Now, if the two parameters α and β are 
represented as functions of the reputation rni as defined in [5], then it is possible to enforce a particular 
value to the α/β ratio. Specifically it is possible to dynamically adjust the α/β ratio in order to be compatible 
with proposition 4. Thus, even the grand coalition is stable and every node of the network cooperates 
bearing the same costs and getting equal benefits by choosing a fair operating point in which no one 
deviates from the average cooperation level chosen by the coalition.  

The relation between α, β and rni is indirectly proportional: the lower the reputation value (meaning that 
the past strategy selected by the node has been to reduce the cooperation level) the higher will be factor β 
and the lower will be factor α thus reducing the α/β ratio, and vice-versa. 

The relation between the reputation value and the ERC type of a node becomes more complicated if we 
allow the presence of nodes with different ERC types: modeling a network that allows different ERC types 
is interesting when considering mobile nodes with different capabilities such as different battery power and 
different computational power. 

However, in order to provide a formal assessment of the efficiency of the reputation mechanism 
proposed in CORE it is necessary to evaluate the node model presented in the previous sections in a 
dynamic setting: the reputation value is computed based on the past strategies selected by the nodes of the 
network and have an influence on those nodes’ future actions. Furthermore any variation on the strategy 
selection phase of a node has an impact on the strategies selected by neighboring nodes: solutions to the 
dynamic coalition formation process still have to be examined. 

We believe that the research we have conducted so far has given some interesting results and proposes a 
useful basis to study the coalition formation process of autonomous self-interested mobile nodes by means 
of reputation mechanisms which is, to the best of our knowledge, a rather unexplored domain. However, 
we think that it is possible to express the dynamic coalition formation process using a more elegant and 
simple methodology, which is a key requirement for studying dynamic games. The relatively recent 
literature on the subject states that the models of coalition formation may be classified into two main 
categories: utility-based models, as it is largely favored by game theory, and complementary-based models. 
Up to now, most classic methods and protocols for the formation of stable coalitions among rational agents 
follow the utility-based approach and cover two main activities which may be interleaved: the generation of 
coalition structures, that is partitioning or covering the set of agents into coalitions, and the distribution of 
gained benefit among the participants to each of the coalitions. The future research direction we will take is 
to prove that reputation mechanisms in general are compliant to the so called Coalition Formation 
Algorithm. Coalition formation algorithms are those mechanisms that provide a feasible solution to a 
cooperative game in coalitional structure: there are several solution concepts and we will focus on the so 
called Kernel-oriented solutions [14], [15]. Kernel-oriented coalitions are the most suitable for our purpose 
because the related literature gives precise conditions for a coalition formation algorithm to be kernel-stable 
with a polynomial complexity, as opposed to other solution/algorithms that are only of theoretical relevance 
since they have exponential complexity. 

4. Non-cooperative games approach 
In an alternative approach, we investigated on the characteristics of CORE by modeling the interactions 

between the nodes of a MANET as a non-cooperative game. In the following sections, we will introduce a 
specific and well-known game (the prisoner’s dilemma, PD) and explain how and why this model is 
suitable to describe the decision making process that a mobile node would undertake when participating to 
the ad hoc network operation. Subsequent to the definition of the model that describes the interaction 
between decision-makers (nodes) involved in the game play, we will extend our analysis to a particular 
instance of games that goes under the name of repeated games. Repeated (or iterated) games have been 
exhaustively treated in the game theoretic literature [8], [9], [10], [22], [23], [24], [25] and interesting 
results concerning the establishment of a cooperative behavior will be presented. In particular, we will 
focus on the strategy that a player10 adopts to determine whether to cooperate or not at each of the moves in 
the iterated game and describe an important strategy known as tit-for-tat (TFT) which has been considered 
by a lot of game-theorist to be one of the best strategies not only to promote cooperation but also for the 
evolution of cooperation (a definition of “evolution of cooperation” will be given in the following 

                                                 
10 In this paper we will adopt the word player and node as synonyms. 



sections). We will then describe how the CORE cooperation enforcement mechanism can be translated into 
a strategy for a player and compare it to the TFT strategy to numerically prove the equivalence between 
CORE and TFT. By further extending the game theoretic concept applied to the classical iterated PD game 
we will show how the performances of TFT and its derivates (i.e. generous-TFT, GTFT) degrade as noise 
is introduced in the model. In the following sections we will describe how the introduction of a noise factor 
allows grasping the undesirable effects of using the promiscuous mode operation of a wireless card as a 
basis for the monitoring mechanism (the watchdog mechanism) and prove that the CORE strategy 
outperforms all other known strategies both for promoting cooperation and for the evolution of cooperation. 
The numerical results obtained through a simulation software designed by [23] are stimulating the more 
difficult task of providing a formal analysis of the CORE strategy, which is part of our future work.  

4.1. System model 
In order to describe the interaction between nodes of a MANET and the decision making process that 

results in a cooperative or selfish behavior of the nodes we will use a classical game introduced by A. 
Tucker [24, pages 117-118]. In the classical PD game, two players are both faced with a decision to either 
cooperate (C) or defect (D). The decision is made simultaneously by the two players with no knowledge of 
the other player’s choice until the choice is made. If both cooperate, they receive some benefit (R). If both 
defect they receive a specific punishment (P). However, if one defects, and one cooperates, the defecting 
strategy receives no punishment (T) and the cooperator a punishment (S). The game is often expressed in 
the canonical form in terms of pay-offs: 

 
 

 Player j 
 Cooperate Defect 

Cooperate (R,R) (S,T) 
 

Player i 
Defect (T,S) (P,P)  

 
 Player j 

 Cooperate Defect 
Cooperate (3,3) (-2,4) 

 
Player i 

Defect (4,-2) (0,0)  
Table 2. Prisoner’s Dilemma payoff matrix: (a) general, (b) example. 

 
The PD game is a much studied problem due to its far-reaching applicability in many domains. In game 

theory, the prisoner’s dilemma can be viewed as a two-players, non-zero-sum, non-cooperative and 
simultaneous move game. In order to have a dilemma the following expressions must hold: 
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In our model, a MANET formed by N nodes is considered as an N-player playground in which 

randomly, any two nodes can meet. We suppose that every node of the network has some data traffic to be 
sent through some source route that is the result of the execution of some routing protocol (as an example 
the DSR protocol). We also suppose that when any two nodes meet, at some time period t, they both need 
to send some data packets through each other, i.e. using each other as a relay node. Before the actual 
process of sending a packet, the two nodes have to take the decision whether to cooperate or defect. By 
cooperating a node will forward one (or more) data packet for the requesting node, whereas by defecting a 
node will not relay data packets on behalf of the requesting node. Instead of including an accurate 
description of energetic costs, topology information, possible interference and path information we will 
base our model on some basic economic modeling. As an illustrative and intuitive example, let us consider 
two players (nodes) with some letters (data messages) to send. For each letter leaving a player, a stamp 
(energy cost for sending one data packet) has to be used. When a letter is forwarded towards its destination 
the player benefit is (arbitrarily) fixed to 5: of course, the benefit for a successful communication should be 
higher than the (energetic) cost for sending the letter. So, for example, if two players meet and both have a 
letter to send, if the decision of a player is to cooperate, she will have to spend two stamps (one for her 
letter, and one for her opponent’s letter) and eventually receive a benefit of 5 if her opponent cooperated, 
leading to a payoff equals to 3 in case the opponent decided to cooperate and to a payoff equals to -2 in 



case the opponent decided to defect. This situation can be translated in a payoff matrix which matches the 
one illustrated in Table 2 of the classical PD game. 

Of course, it is arguable that such a simple model can represent a real MANET, but we believe that the 
limitations imposed by our model are greatly compensated by the consolidated theoretical results available 
in the literature for the prisoner’s dilemma. Furthermore, we plan to extend the model in order to cope with 
a T-player simultaneous move game where NT < thus taking into account the cooperative strategy of 
nodes that are part of an entire path from a data source to her selected destination. 

However, the key of the model presented in this paper and any further extensions is the “willingness to 
communicate” assumption: during every play of the game (both in the basic PD and in the iterated PD, as 
we will see in the next section) both players engaged in the decision making process (cooperate or not) are 
supposed to have some data packets to be sent through the opponent player. As we will see later this 
assumption is necessary in order to implement a punishment mechanism for a non-cooperating node. 

4.2. The iterated Prisoner’s dilemma 
The iterated version of the PD game, and in general repeated games have been extensively studied in 

the literature and the interested reader could refer to [10] in order to find a basic yet complete introduction 
to the theory of games, equilibrium concepts and iterated games11. In this paper we will not focus on the 
basic results from game theory applied to the PD (e.g. Nash equilibrium of the one shot PD game) but we 
will introduce some concepts that will be used in the rest of the paper. 

One surprising feature of many one-shot games (i.e. games that are played only once) including the PD 
game, is that the Nash equilibrium is non-cooperative: each player would prefer to fink (defect) rather than 
to cooperate. However, in a more realistic scenario (e.g. a MANET) a particular one shot game can be 
played more than once; in fact, a realistic game could even be a correlated series of one shot games. In such 
iterated games an action chosen by a player early on can affect what other players choose to do later on: 
repeated games can incorporate a phenomena which we believe are important but not captured when 
restricting our attention to static, one shot games. In particular, we can strive to explain how cooperative 
behavior can be established as a result of rational behavior. In this section we’ll discuss repeated games 
which are “infinitely repeated”. This need not mean that the game never ends, however. We will see that 
this framework can be appropriate for modeling situations in which the game eventually ends (with 
probability one) but the players are uncertain about exactly when the last period is (and they always believe 
there’s some chance the game will continue to the next period). 

In the following subsections we’ll introduce in a more formal way some basic concepts related to 
repeated games and infinitely repeated games. We will then show the definition of a strategy for a player 
and explain how to verify if a (simple) strategy is an equilibrium for a game. A reader who is familiar with 
game theory is invited to skip the following two sections (4.2.1 and 4.2.2). 

4.2.1. Repeated games theory 
Consider a game G (which we’ll call the stage game or the constituent game). Let the player set be 

I={1,…,n}. In our present repeated-game context it will be clarifying to refer to a player’s stage game 
choices as actions rather than strategies. (We’ll reserve “strategy” for choices in the repeated game). So 
each player has a pure-action space Ai. The space of action profiles is iIi AXA ∈= . Each player has a von 
Neumann-Morgenstern utility function defined over the outcomes of G, ℜ→Agi : , that in the particular 
case of the two players PD game takes the form of a payoff matrix as in Table 2. 

Let G be played several times (perhaps an infinite number of times) and award each player a payoff 
which is the (discounted) sum of the payoffs she got in each period from playing G. Then this sequence of 
stage games is itself a game: a repeated game. 

Two statements are implicit when we say that in each period we’re playing the same stage game: a) for 
each player the set of actions available to her in any period in the game G is the same regardless of which 
period it is and regardless of what actions have taken place in the past and b) the payoffs to the players 
from the stage game in any period depend only on the action profile for G which was played in that period, 
and this stage-game payoff to a player for a given action profile for G is independent of which period it is 

                                                 
11 In this section we often refer to or use text and examples available on the Jim Ratliff notes. Text and examples will not be quoted 
just for clarity of presentation. 



played. Statements a) and b) are saying that the environment for our repeated game is stationary (or, 
alternatively, independent of time and history). This does not mean the actions themselves must be chosen 
independently of time or history. 

We’ll limit our attention here to cases in which the stage game is a one-shot, simultaneous-move game. 
Then we interpret a) and b) above as saying that the payoff matrix is the same in every period. We make 
the typical “observable action” or “standard private monitoring” assumption that the play which occurred 
in each repetition of the stage game is revealed to all the players before the next repetition. Therefore even 
if the stage game is one of imperfect information (as it is in simultaneous-move games)—so that during the 
stage game one of the players doesn’t know what the others are doing/have done that period—each player 
does learn what the others did before another round is played. This allows subsequent choices to be 
conditioned on the past actions of other players. We’ll see later in the paper that if we make the assumption 
of “imperfect private monitoring” results can be significantly different. 

Before we can talk about equilibrium strategies in repeated games, we need to get precise about what a 
strategy in a repeated game is. We’ll find it useful when studying repeated games to consider the semi-
extensive form. This is a representation in which we accept the normal-form description of the stage game 
but still want to retain the temporal structure of the repeated game. 

Let the first period be labeled t=0. The last period, if one exists, is period T, so we have a total of T+1 
periods in our game. We allow the case where ∞=T , i.e. we can have an infinitely repeated game. 

We’ll refer to the action of the stage game G which player i executes in period t as t
ia . The action 

profile played in period t is just the n-tuple of individuals’ stage-game actions: 
 

( )t
n

tt aaa ,...,1=          (19) 
 
We want to be able to condition the players’ stage-game action choices in later periods upon actions 

taken earlier by other players. To do this we need the concept of a history: a description of all the actions 
taken up through the previous period. We define the history at time t to be: 

 
( )110 ,...,, −= tt aaah          (20) 

 
In other words, the history at time t specifies which stage-game action profile (i.e., combination of 

individual stage-game actions) was played in each previous period. Note that the specification of ht includes 
within it a specification of all previous histories h0, h1, …, ht-1. For example, the history ht is just the 
concatenation of ht-1 with the action profile at-1; i.e. ht = (ht-1;at-1). The history of the entire game is 
hT+1=(a0,a1,…, aT). Note also that the set of all possible histories ht at time t is just: 
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the t-fold Cartesian product of the space of stage-game action profiles A. 
To condition our strategies on past events, then, is to make them functions of history. So we write 

player i’s period-t stage-game strategy as the function t
is , where )( tt

i
t
i hsa = is the stage-game action she 

would play in period t if the previous play had followed the history ht. A player’s stage-game action in any 
period and after any history must be drawn from her action space for that period, but because the game is 
stationary her stage-game action space Ai does not change with time. The period-t stage game strategy 
profile st is: 

 
( )t

n
tt sss ,...,1=          (22) 

 
So far we have been referring to stage-game strategies for a particular period. Now we can write, using 

these stage-game entities as building blocks, a specification for a player’s strategy for the repeated game. 
We write player i’s strategy for the repeated game as: 

 



( )T
iiii ssss ,...,, 10=          (23) 

 
i.e. a (T+1)-tuple of history-contingent player-i stage-game strategies. Each t

is takes a history tt Ah ∈ as 
its argument. The space Si of player-i repeated-game strategies is the set of all such (T+1)-tuples of player-i 
stage game strategies i

tt
i AAs →: . 

We can write a strategy profile s for the whole repeated game in two ways. We can write it as the n-
tuple profile of players’ repeated-game strategies: 

 
( )nsss ,...,1=           (24) 

 
as defined in (23). Alternatively, we can write the repeated-game strategy profile s as: 
 

( )Tssss ,...,, 10=          (25) 
 
i.e., as a collection of stage-game strategy profiles, one for each period, as defined in (22). 
 
Let’s see how this repeated game is played out once every player has specified her repeated-game 

strategy si. It is more convenient at this point to view this repeated-game strategy profile as expressed in 
(25), i.e. as a sequence of T+1 history-dependent stage-game strategy profiles. When the game starts, there 
is no past play, so the history h0 is degenerate: every player executes her 00

ii sa = stage-game strategy from 

(23). This zero-th period play generates the history h1=(a0), where ( )00
1

0 ,..., naaa = . This history is then 
revealed (or monitored by the players themselves) to the players so that they can condition their period-1 
play upon the period-0 play. Each player then chooses her t=1 stage-game strategy )( 11 hsi . Consequently, 

in the t=1 stage game the strategy profile ( ))(),...,()( 1111
1

111 hshshsa n== is played. In order to form the 
updated history this stage-game strategy profile is then concatenated onto the previous history: h2=(a0,a1). 
This new history is revealed to all the players and they each then choose their period-2 stage-game strategy 

( )22 hsi , and so on. We say that 1+Th is the path generated by the repeated-game strategy profile s. 
 
Let us now consider the payoff function of the repeated game. We can think of the players as receiving 

their stage-game payoffs period-by-period. Their repeated game payoffs will be an additively separable 
function of these stage-game payoffs. Right away we see a potential problem: if the game is played an 
infinite number of times, there is an infinite number of periods and, hence, of stage-game payoffs to be 
added up. In order that the players’ repeated-game payoffs be well defined we must ensure that this infinite 
sum does not blow up to infinity. We ensure the finiteness of the repeated-game payoffs by introducing 
discounting of future payoffs relative to earlier payoffs. Such discounting can be an expression of time 
preference and/or uncertainty about the length of the game. We introduce the average discounted payoff as 
a convenience which normalizes the repeated-game payoffs to be “on the same scale” as the stage game 
payoffs.  

Infinite repetition can be the key for obtaining behavior in the stage games which could not be 
equilibrium behavior if the game were played once or a known finite number of times. For example, 
defection in every period by both players is the unique equilibrium in any finite repetition of the PD12. 
When repeated an infinite number of times, however, cooperation in every period is an equilibrium if the 
players are “sufficiently patient”. 

When studying infinitely repeated games we are concerned about a player who receives a payoff in each 
of infinitely many periods. In order to represent her preferences over various infinite payoff streams we 
want to meaningfully summarize the desirability of such a sequence of payoffs by a single number. A 
common assumption is that the player wants to maximize a weighted sum of her per-period payoffs, where 
she weights later periods less than earlier periods. For simplicity this assumption often takes the particular 
form that the sequence of weights forms a geometric progression: for some fixed ( )1,0∈δ , each weighting 

                                                 
12 See theorem 4 in “Repeated Games” handouts by J. Ratliff [10]. 



factor is δ times the previous weight. δ is called her discount factor. If in each period t player i receives the 
payoff t

iu , we could summarize the desirability of the payoff stream ,..., 10
ii uu by the number: 

 

∑
∞

=0t

t
i

tuδ           (26) 

 
Such an intertemporal preference structure has the desirable property that the infinite sum of the 

weighted payoffs will be finite (since the stage-game payoffs are bounded). A player would be indifferent 
between a payoff of xt at time t and a payoff of τ+tx  receivedτ periods later if: 

 
ττδ += tt xx           (27) 

 
A useful formula for computing the finite and infinite discounted sums we will use later in this section 

is: 
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which, in particular, is valid for ∞=2T . 
If we adopted the summation (26) as our players’ repeated-game utility function, and if a player 

received the same stage-game payoff vi in every period, her discounted repeated-game payoff, using (29), 
would be )1/( δ−iv . It is however more convenient to transform the repeated-game payoffs to be “on the 
same scale” as the stage-game payoffs, by multiplying the discounted payoff sum from (26) by )1( δ− . So 

we define the average discounted value of the payoff stream ,..., 10
ii uu  by: 
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It is often convenient to compute the average discounted value of an infinite payoff stream in terms of a 

leading finite sum and the sum of a trailing infinite substream. For example, say that the payoffs t
iv a player 

receives are some constant payoff iv′  for the first t periods, i.e. 0,1,2,…,t-1, and thereafter she receives a 
different constant payoff iv ′′  in each period t,t+1,t+2,…. The average discounted value of this payoff stream 
is: 
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It is possible to see that the average discounted value of this stream of bivalued stage-game payoffs is a 
convex combination of the two stage-game payoffs. We can iterate this procedure in order to evaluate the 
average discounted value of more complicated payoff streams. Another useful example is when a player 
receives iv′ for the first t periods, then receives iv ′′ only in period t and receive iv ′′′ every period thereafter. The 
average discounted value of the stream beginning in period t (discounted to period t) is: ii vv ′′′+′′− δδ )1( . 
Substituting this for iv ′′  in (31), we find that the average discounted value of this three-valued payoff 
stream is: 
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We have now defined all the formalism needed to examine the equilibrium of a (infinitely) repeated PD 
game and to verify if a predefined strategy constitutes an equilibrium. The various definitions of 
equilibrium and the related theorems can be found in [10]. 

4.2.2. Cooperation in the Repeated Prisoner’s dilemma 
In the one-shot PD, the players cannot avoid choosing their dominant strategy Defect (see Table 2).  In 

order to make the following analysis simpler, consider the following payoff matrix: 
 

 Player j 
 Cooperate Defect 

Cooperate (1,1) (-1,2) 
 

Player i 
Defect (2,-1) (0,0)  

Table 3. Modified PD payoff matrix. 

 
It is easy to verify that conditions (18) hold. 
Even when this game is finitely repeated, because the stage game has a unique Nash equilibrium, the 

unique subgame-perfect equilibrium has both players defecting in every period. However, when the players 
are sufficiently patient it is possible to sustain cooperation (i.e. keeping “Cooperate”) in every period as a 
subgame-perfect equilibrium of the infinitely repeated game. First we will see that such cooperation is a 
Nash equilibrium of the repeated game. We will then show that this cooperation is a subgame-perfect 
equilibrium. 

When an infinitely repeated game is played, each player i has a repeated-game strategy is , which is a 

sequence of history-dependent stage-game strategies t
is ; i.e. ( ),..., 10

iii sss = , where each i
tt

i AAs →: . The 
n-tuple of individual repeated-game strategies is the repeated-game strategy profile ( )nssss ,...,, 21= . 

 
As a fundamental example, let us consider a particular strategy that a player could follow and which is 

sufficient to sustain cooperation. This strategy is also known as the spiteful strategy. 
 

Spiteful 
• Cooperate in the first period.  
• In later periods, cooperate if both players have always cooperated.  
• However, if either player has ever defected, defect for the remainder of the game.  

 
More precisely and formally, it is possible to write player i’s repeated-game strategy ( ),..., 10

iii sss = as 
the sequence of history-dependent stage-game strategies such that in period t and after history ht, 
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First, we will show that for sufficiently “patient players” the strategy profile ( )21,sss = is a Nash 
equilibrium of the repeated game. Then we will show that for the same required level of patience these 
strategies are also a subgame-perfect equilibrium. 

Now, if both players conform to the alleged equilibrium prescription, they both play “cooperate” at t=0. 
Therefore at t=1, the history is h1=(C,C); so they both play “cooperate” again. Therefore at t=2, the history 
is h2=((C,C),(C,C)), so they both play “cooperate” again. And so on…. The path of s is the infinite 
sequence of cooperative action profiles ((C,C),(C,C),…). The repeated-game payoff to each player 
corresponding to this path is trivial to calculate: they each receive a payoff of 1 in each period, therefore the 
average discounted value of each player’s payoff stream is 1. 

Can player i gain from deviating from the repeated-game strategy is given that player j is faithfully 
following js ? Let t be the period in which player i first deviates. She receives a payoff of 1 in the first t 
periods 0,1,…,t-1. In period t, she plays “defect” while her conforming opponent played “cooperate”, 



yielding player i a payoff of 2 in that period. This defection by player i now triggers an open-loop “defect”-
always response from player j. Player i’s best response to this open-loop strategy is to “defect” in every 
period herself. Thus she receives zero in every period t+1, t+2,…. To calculate the average discounted 
value of this payoff stream to player i we can refer to (32), and substitute iv′ =1, iv ′′ =2, and iv ′′′ =0. This 
yields player i’s repeated-game payoff when she defects in period t in the most advantageous way to be 

( )121 −− δδ t . This is weakly less than the equilibrium payoff of 1, for any choice of defection period t, as 

long as
2
1≥δ . Thus we have defined what we meant by “sufficiently patient:” cooperation in this PD game 

is a Nash equilibrium of the repeated game as long as
2
1≥δ . 

To verify that s  is a subgame-perfect equilibrium of the repeated prisoners’ dilemma it is necessary to 
check that this strategy profile’s restriction to each subgame is a Nash equilibrium of that subgame. 
Consider a subgame, beginning in period τ  with some history τh . What is the restriction of is  to this 
subgame? Denoting the restriction by iŝ we have: 
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We can partition the subgames of this game, each identified by a beginning period τ  and a history τh , 
into two classes: A) those in which both players chose “cooperate” in all previous periods, i.e. 

( )( )ττ CCh ,= , and B) those in which a defection by either player has previously occurred. For those 

subgames in class A), the sequence of restrictions )ˆ(ˆ tt
i hs from (34) reduces to the sequence of original 

stage-game strategies ( )tt
i hs from (33), i.e. for all τ and ( )( )ττ CCh ,=  we have: 
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Because s is a Nash equilibrium strategy profile of the repeated game, for each subgame τh in class A), 

the restriction ŝ is a Nash equilibrium strategy profile of the subgame when 
2
1≥δ . 

For any subgame τh in class B), ( )( )ττ CCh ,≠ . Therefore the restriction iŝ of is specifies Dst
i =ˆ for all 

{ },...1,0∈t . In other words, in any subgame reached by some player having “defected” in the past, each 
player chooses the open-loop strategy “defect always.” Therefore the repeated-game strategy profile 
ŝ played in such a subgame is an open-loop sequence of stage-game Nash equilibria. From Theorem 1 of 
[10] we know that this is a Nash equilibrium of the repeated game and hence of this subgame. We have 
shown that for every subgame the restriction of s to that subgame is a Nash equilibrium of that subgame 

for
2
1≥δ . Therefore s is a subgame-perfect equilibrium of the infinitely repeated PD when

2
1≥δ . 

4.3. Complex strategies in the Iterated Prisoner’s Dilemma 
In subsection 4.2.2, we detailed the analysis of a particular strategy called spiteful that was shown 

to be an equilibrium strategy (both a Nash equilibrium for the whole repeated game and a subgame perfect 
equilibrium) for the prisoner’s dilemma. Axelrod and Hamilton [19], [20], [21] used a computer 
tournament to numerically detect strategies that would favor cooperation among players engaged in the 
iterated PD. In a first round, 14 more or less sophisticated strategies and one totally random strategy 
competed against each other for the highest average scores in an iterated PD of 200 moves. Unexpectedly, a 
very simple strategy did outstandingly well:  

 



TIT-FOR-TAT 
Cooperate on the first period and then copy your opponent’s last move for all subsequent periods 
 
This strategy was called Tit-for-tat (TFT) and became the founder of an ever growing amount of 

successful strategies. 
To study the behavior of strategies from a numerical point of view, two kinds of computation can be 

done.  
• The first one is a simple round robin tournament, in which each strategy meets all other 

strategies. Its final score is then the sum (not the discounted sum) of all scores done in each 
confrontation. At the end, the strategy’s strength measurement is given by its range in the 
tournament.  

• The second type of numerical analysis is a simulated ecological evolution, in which at the 
beginning there is a fixed population including the same quantity of each strategy. A round 
robin tournament is made and then the population of bad strategies is decreased whereas good 
strategies obtain new elements. The simulation is repeated until the population has been 
stabilized, i.e. the population does not change anymore. 
A good strategy is then a strategy which stays alive in the population for the longest possible 
time, and in the biggest possible proportion. This kind of evaluation quotes the robustness of 
strategies. 

Before the introduction of CORE as a strategy for the iterated PD, it is important to detail the 
computation method for ecological evolution, for example involving three strategies. Suppose that, 
initially, the population is composed of three strategies A, B, C. At generation n each strategy is represented 
by a certain number of players: )(AWn using A, )(BWn using B and )(CWn using C. 

The payoff matrix of two-by-two meeting between A, B and C is computed and is thus known (see 
Table 2). ( )BAV is the score of A when it meets B, etc… 

Let us suppose that the total size of the population is fixed and constant. Let is note it Π : 
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The computation of the score (distributed points) of a player using a fixed strategy at generation n is 

then: 
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Note that because of the subtractions the computation of g cannot be simplified. The total points 

distributed to all involved strategies are: 
)()()()()()()( CgCWBgBWAgAWnt nnnnnn ++=      (38) 

 
The size of each sub-population at generation n+1 is finally: 
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All division being rounded to the nearest lower integer. 
 



Classical results on the iterated PD, which have been emphasized by Axelrod in [38] show that to bee 
good a strategy has to: 

• Not be the first to defect 
• Be reactive 
• Forgive 
• Be simple 

 
The TFT strategy which satisfies all those criteria, has, since Axelrod’s book, been considered to be one 

of the best strategies not only for cooperation but also for evolution of cooperation. 

4.4. CORE as a complex strategy for the Iterated Prisoner’s Dilemma 
It is now important to define the scope of our analysis. After a brief introduction on the theory behind 

the study of the iterated PD game, we are focusing on the numerical analysis (through a simulation 
software [34]) of the features presented by some specific strategies that the players of the iterated PD 
should follow in order to promote cooperation. Furthermore, we want to compare some of the strategies 
available in the game theoretic literature and known to be the “best” strategies both from a cooperation 
point of view and from an evolutionary point of view with the strategy derived from the CORE cooperation 
enforcement mechanism. We suggest the reader to refer to [6] in order to grasp the details and the 
functioning of CORE. 

Our claim is that the CORE strategy can be considered equivalent to the TFT strategy under certain 
circumstances (namely when the reputation buffer is of size 1). Furthermore, we will show through the 
evolutionary simulation outlined in section 4.3, that the CORE strategy outperforms over all the other 
analyzed strategies when the assumption of “perfect private monitoring” is replaced by the “imperfect 
private monitoring” assumption. 

The CORE strategy13 can be defined as follow: 
 

CORE 
• Cooperate on the first move. 
• In each period, observe the past B opponent’s moves and build a vector ),...,,...,( 1 Bk bbbb =  

where each element equals +1 for a cooperation and -1 for a defection. 

• Evaluate reputation as ∑=
k

kb
B

reputation 1 . 

• If 0≥reputation Cooperate else Defect 
 
 
We want to show now that the TFT strategy represents a particular case of the CORE strategy. Indeed, 

if we set B=1 it means that only one observation over the opponent’s past moves is taken into account to 
build the reputation information. This implies that if the opponent cooperated in the last move her 
reputation will be positive and the player will chose too cooperate. Vice versa, if the last opponent’s move 
was a defection, the reputation would be negative and the response of the player would be to defect. This is 
exactly what the TFT strategy implies: cooperate on the first move and do what the opponent did in the 
previous move. 

In this paper an analytical result stating that the CORE strategy is an equilibrium strategy will not be 
presented as the work in this direction is in progress: however we believe that the analysis will be 
facilitated thanks to the equivalence of the TFT and the CORE strategy. 

In the following subsections we present some results obtained through evolutionary simulations using 
the iterated PD software available in [34]. The CORE strategy has been coded and added up to the list of 
available strategies in the software.  

                                                 
13 The reader should be informed that in this paper we consider a limited version of the CORE mechanism in which reputation is 
evaluated through a simple average over the past observations made through the watchdog mechanism. A more faithful definition of 
the CORE strategy is reserved for our future work. 



4.4.1. Simulations with the “perfect private monitoring” assumption 
We present here the results the evolutionary simulation involving three strategies when the standard 

perfect monitoring assumption is made. As described in section 4.3, suppose that, initially, the population is 
composed of five strategies tit-for-tat, spiteful, CORE, all-C (cooperate always) and all-D 
(defect always). Initially, each strategy is represented by a certain number of players: 100 players using 
each of the mentioned strategies. As it is possible to see in Figure 1, after 5 generations the all-D strategy 
disappears: the three14 winning strategies are equivalent for promoting cooperation and, more important, for 
the evolution of cooperation. This implies that the winning strategies obtained the same payoff in a two-by-
two round robin tournament and can be considered equivalent from an evolutionary point of view. 

 
 

 
Figure 1. Evolutionary simulation of complex strategies for the Iterated PD with perfect monitoring. 

4.4.2. Simulations with the “imperfect private monitoring” assumption 
The majority of work in the iterated prisoner’s dilemma has focused on games in a noise-free 

environment, i.e. there is no danger of a signal being misinterpreted by the opponent or the message being 
damaged in transit. This assumption of a noise-free environment is not necessarily valid if one is trying to 
model real-world scenarios. As a specific example, when considering interactions between two nodes in a 
MANET where the behavior of a node follows the game theoretical model imposed by the prisoner’s 
dilemma, it would be interesting to consider errors due to the watchdog mechanism. The interested reader 
should refer to [1] in order to understand intrinsic problems of the watchdog mechanism and the 
promiscuous mode operation of wireless cards. Specifically, the watchdog mechanism can be thought of as 
the private monitoring assumption in a two-players iterated prisoner dilemma: it is thanks to the watchdog 
mechanism (private monitoring) that a node (player) can infer in any period the behavior (opponent’s past 
moves) of her neighbor and decide which actions needs to be taken (strategy). 

There are different means that can be chosen to introduce noise to the simulation: 
 

                                                 
14 Note that we are not considering the all-C as a winning strategy because of its history independent nature. 
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• mis-implementation (when the player makes a mistake implementing its choice) 
• mis-perception (when one player misperceives the other player’s signal or choice) 

 
In this paper we will concentrate on mis-perception noise as we believe it significantly linked to the 

problems introduced by the watchdog mechanism. 
Kahn and Murnighan [25] find that in experiments dealing with prisoner’s dilemma in noisy 

environments, cooperation is more likely when players are sure of each other’s payoffs. Miller’s 
experiments in genetic algorithms applied to the prisoner’s dilemma results in the conclusion that 
cooperation is at its greatest when there is no noise in the system and that this cooperation decreases as the 
noise increases [26]. Some ideas to promote cooperation in noisy environments have been posited by 
Axelrod; these include genetic kinship, clustering of like strategies, recognition, maintaining closeness 
when recognition capabilities are limited or absent (e.g limpets in nature), increasing the chance of future 
interactions (certain social organizations, hierarchies in companies etc.), changing the pay-offs, creating  
social norms where one learns cooperation. Hoffman [27] reports that results are sensitive to the extent to 
which players make mistakes either in the execution of their own strategy (mis-implementation noise) or in 
the perception of opponent choices (mis-perception noise). 

 In particular, cooperation is vulnerable to noise as it is supported by conditional strategies. For 
example, in a game between two TFTs, a single error would trigger a series of alternating defection. A 
number of authors confirm the negative effect of noise of TFT and find that more forgiveness promotes 
cooperation in noisy environments [28], [29]. 

As described in subsection 4.4.1, we executed an evolutionary simulation involving 5 strategies when 
misperception noise was taken into account: we decided to set the noise to the value of 10% and we took 
the average population size over 5 simulation runs. 100 players for each of the following strategies 
competed in a round-robin tournament as described in section 4.3: tit-for-tat, spiteful, CORE, 
gradual and soft-majo15. As it is possible to observe in Figure 2, the CORE strategy outperforms and 
results to be the most evolutionary stable and robust strategy among all the population (we believe though 
that exceptions especially constructed in which performances of CORE are not so outstanding are possible 
but are seldom and not easy to obtain). 

The reason why CORE performs better than the other strategies when the imperfect monitoring 
assumption is made can be explained as follows: by adopting the CORE strategy, a node base her decision 
of whether to cooperate or not using a certain amount of observations made on the opponents past moves as 
defined by the B parameter. Thus, the reputation measure evaluated by the node takes into account more 
than one observation and is less sensible to any mis-perception noise. Furthermore, in its advanced version 
(which has not been implemented in the simulations, though), the CORE strategy also weights the past B 
observations giving more relevance to past observations than recent ones. It is intuitive to realize that a 
transient misbehavior is filtered out by the reputation mechanism that makes CORE more flexible and 
“forgiving” in presence of temporary misbehavior or a momentary high percentage of noise. A specific 
example of such a situation can be found when thinking of a communication between nodes of a MANET 
in presence of obstacles or high interference. 

In Figure 3, two populations of 100 members adopt respectively the CORE and the TFT strategy. The 
noise value has been set to 20% and 10 rounds of simulations have been executed in order to take average 
values of the evolution of population sizes. It is possible to observe that both strategies are evolutionary 
stable, in the long run; however, CORE is the winning strategy as the population size of players adopting it 
increases at each new generation, as defined in section 4.3. Furthermore, Figure 3 shows that the reputation 
buffer size (B) and both the stability condition and population size are directly related. As B increases, 
stability is reached at a lower generation number (i.e. earlier) and the population size of players adopting 
the CORE strategy grows faster. We believe however that these interesting results have to be evaluated in 
an analytical way: the fine-tuning of CORE parameters (such as B and the frequency at which observations 
are made) would require a laborious empirical study if carried out only by means of evolutionary 
simulations. We plan to analyze the CORE strategy in our future work taking as a starting point the analysis 
of the SPITEFUL strategy presented in section 4.2.2. 

                                                 
15 The gradual and soft-majo strategies are described in [23]. 



 
Figure 2. Evolutionary simulation of complex strategies for the Iterated PD with noise. 
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Figure 3. Evolutionary simulation: CORE vs. TFT with different Buffer sizes (B). 
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5. Conclusions 
In this paper we presented two different approaches based on game theory to assess the features of the 

CORE cooperation enforcement mechanism. Although the two methods described in this paper focus on 
CORE as a specific mechanism, some conclusions can be drawn from this analysis towards the design of 
cooperation enforcement mechanisms in general. 

With the “cooperative approach” we introduced the concept of coalition of cooperating nodes as a 
subset of the nodes forming the network that exhibit a cooperative behavior. We then demonstrated that 
when cooperation is enforced through a mechanism like CORE the guaranteed size of a coalition of 
cooperating nodes is at least half of the size of the network. Furthermore, we were able to infer the 
necessary conditions for a node to join the coalition of cooperating nodes, as a function of the ERC-types. 
The main limitation of this approach derives from an intuitive representation of the CORE mechanism in 
the GT model. However, we believe that the “cooperative games” method is especially suitable to study the 
dynamics of coalition formation among a large number of nodes thus we plan to further investigate on a 
faithful representation of the CORE mechanism in this model. 

On the other hand, the results provided by the “non-cooperative” approach better characterize CORE 
with respect to other mechanisms in a realistic setting. We were able to demonstrate the equivalence 
between the “TFT” strategy and CORE: precisely TFT can be thought of as a special case of the CORE 
strategy. Moreover, in order to represent a more realistic scenario for the execution of a (infinitely) 
repeated game we introduced a noise factor, which affects the players (nodes) perception of the opponents 
past moves. The “imperfect private monitoring” assumption allowed to model in a realistic way the 
watchdog mechanism used by CORE (and by most of the available cooperation enforcement mechanisms) 
as it is known to be particularly unreliable. We showed through evolutionary simulations that the CORE 
strategy outperforms all other studied strategies in a noisy environment for its stability and robustness. As a 
future research, we plan to extend the system model in order to take into account multiple players involved 
in the same decision making process in order to overcome the limitations due to a pair-wise interaction. 
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Appendix 1. Proof of proposition 2. 
 
We have to show that 0)( >kδ for k>N/2.  
Remember that in (4) the denominator of )(kδ  is positive due to assumption 1. That is, 0)( >kδ if the 

numerator of (4) is positive. Remember also that we assumed ⎥
⎦

⎤
⎢
⎣
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N

r 1,0),1()1( .  

The numerator in (4) is positive if r(cooperate) > r(defect). This is the case when equation (7) is 
satisfied. 

 
Let’s proceed by showing that 0)( <kδ for for k<N/2-1. 
It is possible to rewrite equation (7) as follows: 
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Equation (17) can also be rewritten as: 
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Now, from the monotonicity and concavity of B() it follows that 
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Furthermore, the total cost of cooperation increases kC(k) in k. Therefore: 
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Since it has also been assumed that payoffs are non negative, )()( kCkB ≥ . Thus: 
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We therefore obtain: 
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The numerator equals: NkNNkNk +−−−+− )3()23(2 23 which can be shown to be negative for 

1
2

1 −<≤ Nk , as long as N>8. 

Hence for N>8 we have that the general conditions for a Nash equilibrium of the ERC-PD game 
0)1*( >−kδ  are satisfied for k>N/2. 

 
NOTE: the condition N>8 can be removed if we assume that the total cost of cooperation increases 

more than the total benefits gained by defecting, i.e. : 
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Appendix 2. Proof of proposition 3. 
 

We have to show that in the cooperation game for ERC preferences, the Nash equilibrium is given by 
solving the expression ( ) ( ) 0** =′−′ qCNqB .  We then show that the Nash equilibrium point is symmetrical as 
long as at least one node draws utility from its absolute payoff (αi>0). 

 
Let us first study the two extreme cases, αi=0 and βi=0, respectively. 
 

• For βi=0, i.e. a player interested only in her absolute payoff, the first order condition (8 or 9) 
reduces to: ( ) ( ) 0=′−′ iqCQB . 

 
• For αi=0, the node is solely interested in getting the equal payoff share. Thus, it would choose 

qi to satisfy: ( )∑=
j

ji qCqNC )( . Furthermore, when αi=0, condition (8) also reduces 

to ( ) ( ) 0=′−′ iqCQB . 
Indeed, βi and ( )r′ are positive by definition and the second summand reduces to 

( ) ( ) 022 =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′−′

−

∑

∑

∑

∑
≠

i

j
j

ji
j

j
j

j
ij

qC
y

y

QB
y

yy

which can be simplified as: 

 
 
 ( ) ( ) 0=′−′ iqCQB  

 
For αi, βi≠0 the chosen cooperation level is between the levels for those extreme cases: the first order 

condition must be satisfied for all nodes simultaneously. Since ( ) 0=′ ir σ when
Ni
1=σ by assumption, it 

follows that there is a symmetric equilibrium where all nodes choose the same cooperation level, i.e. σi 
= 1/N for all types αi/βi, for i = 1, . . .,N.  
 
The resulting cooperation level q∗ is given by solving the condition: ( ) ( ) 0** =′−′ qCNqB . 
 
Let us prove by contradiction (reductio ad absurdum) that there is an asymmetric equilibrium, i.e. some 
nodes receive less, and others more than the equal share.  
In this case, on the one hand, σi < 1/N implies that ( ) 0>′ ir σ , so from equation (8), we obtain: 
 

( ) ( ) 0>′−′ iqCQB          (8a) 
 
On the other hand, for σi > 1/N we have ( ) 0<′ ir σ , and therefore equation (9) implies: 
 

( ) ( ) 0<′−′ iqCQB           (9a)  
 
Inequalities (8a) and (9a) imply that a node which gets more than the equal share has larger marginal 
cooperation costs ( ( )iqC ′  ) than nodes that receive less, which contradicts the assumed payoff 
distribution.  
 
Hence, only symmetric equilibrium exists. If αi>0 for at least one node, we get ( ) ( ) 0=′−′ qCNqB from 
equation (8).  
 


