
1

Bypass Routing: An On-Demand Local Recovery
Protocol for Ad Hoc Networks

Cigdem Sengul
University of Illinois Urbana-Champaign

e-mail: sengul@uiuc.edu

Robin Kravets
University of Illinois Urbana-Champaign

e-mail: rhk@cs.uiuc.edu

Abstract— On-demand routing protocols for ad hoc net-
works reduce the cost of routing in high mobility environ-
ments. However, route discovery in on-demand routing is
typically performed via network-wide flooding, which con-
sumes a substantial amount of bandwidth. In this paper, we
present bypass routing, a local recovery protocol that aims
to reduce the frequency of route request floods triggered by
broken routes. Specifically, when a broken link is detected,
a node patches the affected route using local information,
which is acquired on-demand, and thereby bypasses the
broken link. We implemented SLR (Source Routing with
Local Recovery) as a prototype of our approach. Simula-
tion studies show that SLR achieves efficient and effective
local recovery while maintaining acceptable overhead.

Index Terms—Ad hoc networks, routing, local recovery.

I. INTRODUCTION

An ad hoc network is formed by a group of wireless de-
vices without depending on any infrastructure. Each node
communicates directly with its neighbors and functions as
a router that forwards packets for nodes that are not within
transmission range of the sender. Maintaining communi-
cation in ad hoc networks requires effective routing mech-
anisms in the presence of dynamic topology, which may
cause route failures and require discovery of new routes.
Therefore, the challenge to routing in dynamic ad hoc net-
works stems from the need to maintain routes while min-
imizing overhead from such maintenance.

Routing protocols for ad hoc networks can be cate-
gorized as proactive or reactive (on-demand) based on
when routes are discovered. Proactive protocols [1] main-
tain up-to-date routing information regardless of the pres-
ence of traffic, and so consume valuable resources such
as bandwidth and power even if the network is idle. On-
demand routing protocols have been shown to reduce rout-
ing overhead in high mobility environments by only main-
taining actively used routes [2], [3]. Although on-demand
routing protocols only initiate route discovery when a
route is needed, such discovery is typically performed via
network-wide flooding. Since flooding consumes a sub-

stantial amount of bandwidth, it is essential to reduce the
frequency of route discoveries, and so network flooding.

To overcome performance problems from frequent
route discovery attempts, hybrid protocols incorporate
both reactive and proactive protocol characteristics [4].
Although hybrid protocols do not waste resources by
flooding the network for each route request, it is difficult
to balance the cost of exchanging routing information pe-
riodically (i.e., proactivity) and network-wide flooding for
route discovery (i.e., reactivity) [5]. Other protocols re-
duce the frequency of flooding by allowing a relay node
to initiate a limited route discovery in the event of a route
failure [6], [7] or employ local error recovery mecha-
nisms [8], [9]. However, protocols using either limited
broadcast or local error recovery have focused on reducing
packet drops and not on utilizing the bandwidth efficiently
during route recovery. Multipath routing protocols cache
multiple routes to a destination in a single route discov-
ery [10], [11], [12]. However, in the presence of mobil-
ity, multipath protocols incur additional packet drops and
delay due to their dependency on potentially stale routes
from caches. Based on these observations, our goal is to
design an efficient on-demand local recovery protocol that
reduces route request floods due to route failures without
incurring any overhead from proactive exchanges.

The contribution of our research is bypass routing,
which effectively localizes reaction to route failures using
on-demand local recovery and a novel cache invalidation
mechanism. Essentially, bypass recovery uses link-state
information to find a patch between one of the neighbors
and a node along the route to the destination, bypassing
the link that caused the broken route. Different than other
route repair techniques [8], our approach acquires link-
state information of the neighborhood of a broken link on-
demand. Therefore, bypass recovery ties local recovery
to up-to-date information about a node’s neighborhood,
and hence increases the chance of recovering a broken
route compared to using potentially stale routes (or link
state information) from caches. The key benefit of by-
pass recovery comes from this localization of route re-

2

covery to the one hop neighborhood of the broken link,
which reduces the impact of route recovery on the rest of
the network. Additionally, the on-demand nature of by-
pass recovery ensures no extra overhead is incurred dur-
ing normal operation of the network. Finally, an improved
route invalidation mechanism that closely ties route valid-
ity to up-to-date neighbor information is integrated into
route caching, enabling the early identification of broken
routes. Through the localization of recovery and the im-
proved caching, bypass routing is an effective and efficient
approach to recovery from route failures. Results of ex-
tensive simulations based on our prototype SLR (Source
Routing with Local Recovery) show that SLR enables fast
recovery of broken routes, increasing the packet delivery
ratio while maintaining acceptable overhead.

The rest of the paper is organized as follows. In Sec-
tion II, we give a brief overview of proactive and reac-
tive protocols and discuss existing approaches for local
recovery in ad hoc networks. In Section III, we present
bypass routing and describe our prototype SLR in Sec-
tion IV. We demonstrate the effectiveness of bypass re-
covery in the context of SLR via simulation in Section
V and further compare the results from the evaluation
of SLR to the published results of AODV-BR (Ad Hoc
On-Demand Distance Vector - Backup Routing) [13] and
NSR (Neighborhood-aware Source Routing) [8] in Sec-
tion VI. Section VII concludes with future work.

II. LOCAL RECOVERY IN AD HOC NETWORKS

Routing protocols for ad hoc networks can be catego-
rized into three classes: Proactive, Reactive and Hybrid.
In general, protocols differ based on how they handle
Route Discovery and Route Maintenance. Route discov-
ery sets up initial routes or searches for new routes when
the old ones break. Route maintenance manages accurate
information about existing routes and also supports error
recovery when a broken route is detected.

In proactive protocols, routing information is ex-
changed among neighbors periodically or each time a
change occurs in network topology (i.e., route discov-
ery and route maintenance are continuously performed).
While protocols in this category have the advantage that
routes are immediately available when requested, they in-
cur high control overhead. Although hybrid protocols aim
to reduce the control overhead by balancing proactivity
and reactivity, all current hybrid protocols rely on proac-
tively acquiring at least one-hop neighborhood informa-
tion for all nodes. In comparison, on-demand routing pro-
tocols reduce routing overhead by tying route discovery
to network communication [2], [3]. On-demand proto-
cols initiate a route discovery only when a new route is

needed for initial route set-up or due to a broken route.
Such route discovery is achieved by flooding the network,
which causes high routing overhead and interference with
ongoing traffic. If a broken route can be repaired, route
discovery from the source, which causes the network-
wide flood, is no longer necessary. However, it is impor-
tant to ensure that any route recovery technique costs less
in terms of control overhead and delay than a new route
set-up via flooding.

Several protocols implement solutions to the flooding
problem in on-demand routing by providing more efficient
route recovery mechanisms. These protocols can be cate-
gorized into three main classes:

� Limited broadcast: Route discovery is initiated by
relay nodes. The broadcast range is limited and does
not flood the whole network [6], [7], [14].

� Multipath routing: Multiple routes are discovered
and cached in a single route discovery [11], [10],
[12], [13].

� Local error recovery: Route errors are handled at a
relay node instead of relying on end-to-end error re-
covery at the sender [9], [8].

The rest of the section discusses route recovery proto-
cols in these three classes in more detail.

A. Limited Broadcast Approaches

AODV [6] and ABR [7] provide route recovery by al-
lowing relay nodes to initiate a search to replace a failed
route. In AODV, if a node is no further than maximum re-
pair hops away from the destination, it attempts to repair
the route by broadcasting a route request with a limited
time-to-live. ABR (Associativity-Based Routing) uses
a similar technique but repairs broken routes with new
routes that tend to be more long-lived by basing route de-
cisions on a measure of next hop mobility. However, both
methods are too bandwidth consuming, since even with a
limited scope, flooding can deliver the request messages
to a large number of nodes, leading to high routing over-
head. Additionally, routes are repaired based on route
replies from caches, and therefore recovery may not be
successful if the caches contain stale routes. Other mech-
anisms that try to localize flooding to a limited region
of the network either require location information (e.g.,
GPS) [14] or use a heuristic-based approach that requires
fine tuning of parameters based on current network char-
acteristics to determine the query region [15].

B. Multipath Routing Approaches

Multipath routing [10], [11], [12] discovers and caches
multiple routes with a single route discovery. When a bro-
ken route is detected, it is expected that other routes are

3

available from the cache and a new route discovery due
to a broken route is only needed when all cached routes
to a destination break. Although multipath routing re-
duces the number of route discovery attempts, it may not
be effective in the presence of mobility, incurring addi-
tional packet drops and delay. For instance, if a signifi-
cant amount of time has passed between route discovery
and route recovery, it is likely that the cached routes are
invalid due to topology changes. Without any mechanism
to keep the caches up-to-date, a route discovery attempt
may be inevitable.

C. Local Error Recovery Mechanisms

Local error recovery provides more robust route recov-
ery during route failures in mobile environments by al-
lowing a relay node to repair a broken route. While local
recovery can extend the lifetime of a route in traditional
routing protocols, it can also extend the lifetimes of indi-
vidual routes when multiple routes are used for load bal-
ancing [16], [11], [17].

In AODV-BR [13], nodes snoop route reply messages
to create alternate next hops to a destination. When a
node detects a broken route, it broadcasts the packet to its
neighbors, which forward it to the destination (if they have
an entry in their cache). However, the alternate routes may
be stale since they are only populated during route discov-
ery. A similar approach is used in WAR (Witness-Aided
Routing) [9] that designates nodes in the neighborhood
of an ongoing communication as witness nodes, which
buffer overheard packets and deliver the packets them-
selves to the next hop if a failure occurs. This requires
witness nodes to maintain state and dedicate storage for
communication in which they are not involved. Addition-
ally, both AODV-BR and WAR may cause unnecessary
overhead by delivering the same packet to the destination
several times.

DSR [18] potentially caches multiple routes to a des-
tination and provides a route salvaging option that en-
ables relay nodes to recover from route failures locally by
searching for alternate routes in their caches. However,
nodes immediately send a route error back to the source.
Therefore, salvaging in DSR does not achieve any reduc-
tion in the frequency of route discoveries. A recently pro-
posed protocol, CHAMP (Caching and Multipath) [19],
uses a salvaging algorithm where all nodes temporarily
cache packets before forwarding. When a node receives a
route error and if the failed packet still exists in its packet
cache, the node sends the packet with an alternate route
from its route cache. Therefore, local recovery is achieved
by incurring additional storage overhead in relay nodes.

Furthermore, trying to recover from the failure at all up-
stream nodes using stale route cache information may in-
cur additional delay and packet overhead.

NSR [8] incorporates proactivity into DSR by main-
taining two-hop neighborhood state for all nodes via
HELLO, route request and reply messages and uses this
link-state information to enable relay nodes to repair bro-
ken routes. Specifically, HELLO messages contain each
node’s neighbors, which provides a way of obtaining two-
hop neighborhood state that cannot be acquired by snoop-
ing. However, HELLO messages incur additional over-
head even when the network is stable and hence, are very
expensive.

Although each of these local error recovery mecha-
nisms has limitations, we believe localization of recovery
is necessary for the scalability of ad hoc routing protocols.
Next, we present design guidelines for local recovery pro-
tocols to achieve effective local recovery.

D. Local Recovery Protocol Design Guidelines

The goal of any local recovery mechanism should be to
repair broken routes in a way that reduces control over-
head and chooses valid routes. Therefore, a routing al-
gorithm with local recovery should possess the following
characteristics to enable efficient route repair:

� Repair with cached routes when available
� Repair with local error recovery when cached routes

are not available
� Repair all active routes affected by broken links
� Utilize bandwidth efficiently
Utilization of both route caches and local error recov-

ery mechanisms is essential for providing robust recovery
in ad hoc networks. The benefit of using route caches
is two-fold. First, when a link failure occurs, an alter-
nate route may be immediately available. Second, using
route caches can provide reduction in the control overhead
that is required to repair a route. However, in high mo-
bility environments route caches may contain stale routes.
Therefore, route recovery should not entirely rely on route
caches and local error recovery mechanisms should take
over when route caches do not provide useful information.

Although the main concern of local recovery is to repair
a broken route as fast as possible, it is important to allevi-
ate the effects of a broken link on future transmissions by
repairing all routes that actively use the broken link. Fi-
nally, a local recovery mechanism should use bandwidth
efficiently by incurring minimum overhead.

To achieve efficient and effective route recovery, a local
recovery protocol should follow these guidelines. How-
ever, none of the protocols discussed in Section II-C fully
recognize these characteristics. For example, NSR, which

4

is the closest approach to our work, uses local error recov-
ery for route repairs. However, recovery is achieved at the
expense of efficient bandwidth utilization (due to HELLO
messages). To this end, we propose bypass routing, which
is a novel approach that incorporates these guidelines for
effective route recovery.

III. BYPASS ROUTING

Bypass routing performs on-demand route recovery uti-
lizing both route caches and local error recovery. Essen-
tially, to recover from a route failure, a node first salvages
a route by searching its route cache for an alternate route
to the destination (if the node caches multiple routes). If
a route exists, the node patches the broken route with the
alternate route. If the node is not able to repair the route
from its route cache, it initiates bypass recovery by query-
ing its neighbors to see if they have a link to any nodes
on the downstream route to the destination (e.g., the next
hop, or all downstream nodes in case of source routes).
As replies arrive, the node repairs the routes affected by
the link failure with the received connectivity information.
When those packets reach the destination, the new route
information is added to an enhanced route error packet
and sent back to the source to inform it about the broken
link and successful route change.

A. An Illustration of Bypass Routing

Although bypass routing is not limited to any routing
protocol, the specifics of the mechanism depend on the
characteristics of the underlying on-demand routing pro-
tocol. An illustration of bypass routing integrated into a
source routing protocol is shown in Figure 1. Initially,
the flow from Node S to Node D uses the route “S-L-M-
N-P-R-D”. When the link between Node M and Node N
breaks, Node M detects the failure and attempts to patch
the route by using an alternate route from its cache to des-
tination D. When Node M finds a route without loops,
Node M salvages the packet with the “S-L-M-T-U-V-D”
route. Figure 1 also illustrates an example of bypass re-
covery. Again, Node S initially uses the route “S-L-M-
N-P-R-D”. When the link between Node P and Node R
breaks and Node P does not have an alternate route in its
cache to the destination, Node P triggers a local query to
its neighbors. The neighbors reply if they have active links
to any of the downstream nodes on the broken route. In
Figure 1, Node X reports its connectivity with Node R
to Node P. Node P patches the route accordingly and the
packet is first forwarded to Node X and then to Node R to
reach the destination.

These examples show that local repair of broken routes
may result in an increase in route lengths. However,

Y

DM

N
L

X

P

R

T

U V

S

Connectivity Salvage path

Local recovery pathOriginal route of the packet

Fig. 1. Error recovery example

sources that are informed of repair information are not
forced to use a longer route if they know a shorter route.
Specifically, bypass recovery aims to reduce the frequency
of route discoveries, while allowing the node to use
shorter routes when possible.

B. Operation of Bypass Routing

Bypass routing uses three mechanisms that work to-
gether to allow efficient recovery from route failures. A
novel MAC cache structure is used for determining the
state of links to neighboring nodes. A Route cache caches
recently discovered routes to avoid expensive route dis-
covery. Finally, Error recovery includes route salvaging
and bypass recovery.

The remainder of this section explains the MAC cache
and error recovery mechanisms. We leave discussing
route caches to Section IV, since operation of route caches
depends on the underlying routing protocol.

1) MAC Cache: In bypass routing, MAC caches pro-
vide connectivity information. To maintain the most re-
cent neighborhood state, a node updates its MAC cache if
any communication is heard from any neighbor. On any
activity, a neighbor’s link status is set to active. Cache
invalidation is a two stage process. If a refresh interval
passes without any sign from a neighbor, the neighbor’s
link status is set to no communication. Once in the no
communication state, if there is still no sign of the neigh-
bor during the delete interval, the neighbor is deleted from
the MAC cache. The rationale behind this two-stage pro-
cess is that it provides a second chance for nodes that have
not been in active communication recently.

Bypass routing uses MAC caches to enhance route se-
lection. A node searching for a route in its route cache
checks if the next hop exists in its MAC cache. A route is
considered stale if the next hop is not in the MAC cache.
Therefore, MAC caches serve to determine the validity
of the routes in route caches. A node uses a route even

5

if the next hop is in the no communication state, thereby
utilizing its route cache even when there is little commu-
nication in the network. However, a neighbor is deleted
from the MAC cache if there is no activity from it within
a delete interval. Although this does not necessarily mean
the link is broken and may result in not using a valid route,
the route is reactivated as soon as the node hears from this
neighbor. Essentially, if the node does not have any routes
to the destination, a one-hop query is performed, which
potentially rediscovers all neighbors without flooding the
network.

MAC caches are also essential during local recovery,
where a node queries its neighbors to see if they have con-
nectivity to any of the downstream nodes on the broken
route to the destination. For local recovery, the status of
the links should be taken into account and only nodes that
have active links to any of the nodes in the query message
should reply, since query replies must carry the most re-
cent connectivity information to facilitate effective local
recovery.

While bypass routing is not limited to any specific
MAC protocol, some knowledge of the underlying MAC
protocol is useful to successfully populate the MAC
cache. For example, IEEE 802.11 [20] uses RTS
(Request-to-send) and CTS (Clear-to-send) to provide a
form of channel reservation. After the RTS/CTS ex-
change, data packet transmission is followed by an ACK.
A node listens for RTS/CTS/DATA/ACK packets and up-
dates its MAC cache accordingly. It must be noted that
this type of snooping of MAC headers does not incur any
additional listening overhead at a node, since a node must
try to receive a packet to see if there is a packet being
transmitted to it. However, IEEE 802.11 has one behavior
that requires additional state to determine the originator
of a packet. While RTS and DATA carry both sender and
receiver information, CTS and ACK only contain receiver
information. When a node overhears a CTS (ACK), the
node checks if it is the destination and if it has recently
sent the corresponding RTS (DATA). However, without
any additional mechanisms, a node that is not the sender
of the RTS (DATA) cannot determine the originator of the
CTS (ACK). Due to this problem, a node can only cache
senders but not receivers on a route. To utilize CTS and
ACK packets in bypass routing, all nodes follow the same
method as the actual senders of RTS and DATA. Basically,
a node that has overheard an RTS (DATA) records the re-
ceiver and the sender of the packet. When the node over-
hears the CTS (ACK), it checks if the recorded sender
matches the receiver of the CTS (ACK). If there is a
match, the receiver of the RTS (DATA) is a neighbor and
should be in the MAC cache. Using this method, MAC

Path traversed by data

Links learned via RTS/DATA

Links learned via CTS/ACKA B C D

E

F

G

H

Fig. 2. Link-state information learned from RTS/CTS/DATA/ACK

cache represents the current neighborhood of a node more
accurately (see Figure 2).

2) Error Recovery: In bypass routing, error recovery
proceeds in three stages : 1) salvaging using route caches,
2) bypass recovery, and 3) error reporting (see Figure 3).
In the presence of a route failure, a node initially searches
its cache for alternate routes to the destination to salvage
a packet and records this recovery attempt in a fail-record
table. If the salvaged packet arrives at its destination, the
destination sends back an enhanced route error message
to the source to indicate the salvaged route as an alternate
to the broken route. When forwarding this information,
the repairing node snoops on the packet to update the fail-
record with the repair information. If new packets that
use the broken link in their source routes arrive at the re-
pairing node, the node continues salvaging packets using
the repair information. However, if no acknowlegment
is received from the destination the node should prevent
packets from using the recently broken link and send back
error messages to source of these packets.

In bypass routing a packet is salvaged only once. This is
important to reduce the reliance on route caches for route
recovery. Failure of the salvaged route serves as a warning
for the node detecting the failure to perform bypass recov-
ery instead of salvaging. Thereby, a node performs bypass
recovery if 1) the node does not have an alternate path to
perform salvaging, or 2) the packet has already been sal-
vaged. Specifically, the node buffers the failing packet
and all packets in the interface queue that need to use the
broken link in a fail-packet buffer. The bypass recovery
attempt is recorded in the fail-record table and a list of
nodes existing on such soon-to-fail routes is broadcast to
one-hop neighbors to see if they are neighbors with any of
those nodes. Therefore, a query reply in by-pass recovery
can fix multiple active routes.

The nodes that receive the query message search their
MAC caches for a neighbor listed in the query. The node
includes all such neighbors in its reply. To avoid query
reply storms, the nodes use a random backoff algorithm
and send a query reply only if they have not overheard an
identical query reply. When the querying node receives

6

Salvage

Send,Receive, Forward

Recovery

Normal

Patch routes with Query replies

Link Break

Salvage route in use

End of query phase

No route in cache
or

Salvage route failed
Send error to source

Timeout

Error
Report

Salvage with alternate route

If no route found

Check for packets with broken link
Patch if possible, else send error to source

Bypass

Fig. 3. Protocol state diagram

a reply, it checks its fail-packet buffer to repair as many
packets with broken routes as possible with new link-state
information. For flows that have switched to a new route,
one packet is marked to warn the destination of the broken
link and the route change. The node also updates its route
cache with the new connectivity information.

If a repairing node does not receive query reply or en-
hanced route error messages before a timeout occurs, a
route error message is sent back to source. In the worst
case, when alternate routes fail, delaying a route error
message delays route recovery. However, a successful lo-
cal recovery prevents any delay from flooding initiated by
the source to find a route to the destination. Bypass rout-
ing is optimistic assuming it can repair the route, reducing
overhead on success and causing limited delay on failure.

IV. SOURCE ROUTING WITH LOCAL RECOVERY

To demonstrate the feasibility and effectiveness of by-
pass routing, we implemented Source Routing with Local
Recovery (SLR). SLR uses DSR as the underlying pro-
tocol, but implements route selection and error recovery
based on bypass routing. Bypass routing can also be in-
tegrated into other routing protocols such as AODV [6],
where the node detecting a route failure can query neigh-
bors if they have connectivity to the other end of the bro-
ken link or the destination. Our future plan is to evaluate
the effect of bypass routing on other protocols. Next, a
brief overview of relevant aspects of DSR to SLR and a
detailed discussion on route caches is presented.

A. Overview of SLR Protocol

SLR uses DSR as the underlying protocol, which is an
on-demand routing protocol that only establishes routes
to destinations for active flows. When a node wants to
find a route to a node, it broadcasts a route request. Each
node that receives a route request that it has not seen be-
fore appends its own address to the source route and re-
broadcasts the packet. When a node that knows a route to

the destination or the destination itself receives the route
request, a route reply is returned to the source.

In DSR, when a node detects a broken link to a neigh-
bor, the corresponding route entries are deleted from the
route cache and the source nodes that are actively us-
ing that link are informed of the link failure. Several
optimizations for route maintenance have been proposed
for DSR [18]. SLR utilizes optimizations such as in-
creased spreading of route errors, automatic route short-
ening, snooping and route salvaging. With increased
spreading of route errors, a source node receiving an error
packet propagates this error with the next route request. In
this way, stale information from route caches can be ex-
punged. Automatic route shortening allows a node, which
is not the intended next hop but exists later on the route
to send the shorter route as a gratuitous route reply to
the source. Nodes learn additional routes to each destina-
tion and check for route error messages by snooping. By
route salvaging, a node detecting a link failure may send
the packet by replacing the source route with an alternate
route from its cache. While DSR’s route salvaging is sim-
ilar to route salvaging in bypass routing, DSR uses this
optimization to provide the necessary time for a source to
complete a new route discovery, while reducing the num-
ber of packets dropped due to link failures. Essentially,
a node still sends an error message back to the source to
indicate the broken link. Furthermore, a node salvages a
packet by simply replacing the source route with an al-
ternate route from its cache, and thereby loses the first
(successful) part of the source route. The goal of bypass
routing is to provide the source with a stable route as well
as to inform the source of the route failure. Therefore,
in SLR, a node searches its cache for complete loop-free
routes to the destination to salvage a packet, preserving
the first part of the route (i.e., from the source to the node
detecting the route failure). Additionally, bypass recov-
ery also guarantees loop-free routes by ensuring that any
changes made to the route do not include nodes from the
traversed route.

B. Route Caches

Route caching is an important part of any on-demand
routing protocol. A cache hit with a valid route reduces
overhead by eliminating the need for a route discovery
and similarly reduces end-to-end delay since the packet
can be sent immediately without waiting to discover a
new route. On the other hand, route caching introduces
the problem of effective strategies for managing the struc-
ture and the contents of the cache since node mobility can
change network topology and possibly invalidate cached

7

routes. The use of an invalid cached route incurs addi-
tional bandwidth and delay. Therefore, careful design
choices must be made about the cache structure and cache
timeout mechanisms.

Two alternatives, path cache and link cache, have been
proposed for implementing route caches in DSR [21].
Path caches store each complete per-destination route,
while link caches create a unified graph from all links in
all routes. Although path caches are simple to implement
and easily guarantee loop-free routes, link caches provide
nodes a more detailed view of the current network topol-
ogy. However, generally, link caches require more com-
plex route search algorithms (e.g., Dijktra’s shortest path
algorithm) compared to linear search algorithms.

Link caches with an adaptive timeout mechanism (i.e.,
a link’s timeout is chosen according to its stability) have
been shown to provide the most accurate information [22],
[21]. However, the performance evaluations in [22], [21]
do not use timeout mechanisms for path caches. Moti-
vated by [23], we believe that path caches can also benefit
from using a timeout so that stale routes are not used in re-
sponse to route queries or to salvage broken routes. How-
ever, there might be cases when stale routes exist in route
caches even if a timeout mechanism is employed. Specif-
ically, there is no way to determine the freshness of routes
in DSR when nodes promiscuously listen to all packets
and cache routes [23]. Even if a route error message
erases invalid routes, an in-flight data packet that carries
the same stale route puts the route back in caches. Epoch
numbers [24] are proposed to prevent the re-learning of a
stale information. However, SLR does not employ such
a mechanism, since one of the goals of bypass routing
is to reduce the reliance on route caches. Bypass rout-
ing utilizes a local recovery strategy when caches contain
obsolete information, which enables more effective route
correction in caches as well as error recovery. For this rea-
son, the implementation of SLR uses a simple path cache
known as Path-Gen-34 [21] instead of more complex link
caches.

Path-Gen-34 is composed of a primary and a secondary
cache. Routes learned as a result of route discoveries
are inserted into the primary cache. Routes learned by
snooping are inserted into the secondary cache. The divi-
sion of the cache into primary and secondary caches pre-
vents snooped routes from competing for cache space with
routes of known value to the node. The original Path-Gen-
34 does not employ a timeout mechanism, so routes in the
caches are not guaranteed to be fresh. Bypass routing uses
MAC cache to determine the validity of routes. Basically,
a node selects a route from its route cache if and only if the
next hop exists in its MAC caches, effectively incorporat-

ing the timeliness of MAC caches into route caches. We
will investigate the effect of link caches on local recovery
in our future work.

V. PERFORMANCE EVALUATION

The effectiveness of local recovery via bypass routing
can be evaluated by its impact on the following properties:
routing overhead, number of route requests, packet deliv-
ery ratio, goodput, average hop count and average end-to-
end delay. The main goal of bypass routing is to localize
reaction to route failures and reduce the routing overhead,
which is the ratio of the bypass routing and DSR overhead
to the amount of data received at the destinations. Addi-
tionally, the number of route requests forwarded at each
hop shows how frequently route discovery is triggered and
the scale of its effect on the whole network. Communica-
tion quality in the presence of route failures is represented
in terms of packet delivery ratio and average end-to-end
delay. While packet delivery ratio quantifies the packet
loss rate and is calculated as the ratio of data packets de-
livered to destinations, average end-to-end delay is the dif-
ference between the time a packet was sent by the sender
and the time it was received at the destination, including
delays due to local recovery. To understand the effects of
both routing overhead and of route length, goodput mea-
sures the ratio of the number of data packets received to
the overhead of bypass routing, DSR and of forwarding
data along each hop. Finally, average hop count is the
average number of hops a packet travels to reach its desti-
nation.

The goal of our simulation study is to measure the suc-
cess in meeting the design goals of bypass routing. Since
SLR is a source routing protocol using bypass recovery, it
is natural to compare it to DSR to highlight the effective-
ness of bypass recovery. To see the impact of caching
on both protocols, we compare the following schemes:
DSR (cache), SLR (cache), DSR (nocache) and SLR (no-
cache). DSR (cache) and SLR (cache) fully utilize route
caches via propagation of route replies from caches and
salvaging, while these options are disabled in DSR (no-
cache) and SLR (nocache).

We implemented SLR in the ns-2 network simulator us-
ing the CMU wireless extension [25]. Our simulation re-
sults represent an average of five runs with identical traffic
models, but different randomly generated network topolo-
gies. We use the random waypoint [3] mobility model
with a speed uniformly distributed between 0-20 m/sec.
We will study the performance of SLR with different mo-
bility models as future work, since the random waypoint
model has been shown to have limitations [26]. Table I
lists the SLR parameters.

8

TABLE I
PARAMETERS USED IN SLR SIMULATION

Fail-record: Table size (number of entries) 34
Fail-record: Timeout (s) 1.0
Fail-buffer: Packet timeout (s) 0.02
MAC Cache: Refresh interval (s) 0.05
MAC Cache: Delete interval (s) 3.0

TABLE II
AVERAGE HOP COUNT WITH DIFFERENT TRAFFIC LOAD

Network SLR DSR SLR DSR
(cache) (cache) (nocache) (nocache)

1500x500 3.427 3.144 3.324 3.160
2000x1500 5.484 4.861 5.590 5.383

A. Impact of traffic load

To evaluate the impact of traffic load, simulations were
run with varying transmission rates. The network simu-
lated is a 1500m � 500m network with 60 nodes and 20
long-lived CBR connections that start randomly between
20s and 25s. Transmission rates vary between 0.2Kb/s-
2.2Kb/s. All data packets are 128 bytes. Each simulation
runs for 600s. A pause time of 60s was used to achieve
moderate mobility.

As the network load varies, SLR is successful in local-
izing route recovery overhead, while DSR imposes over-
head on the whole network due to flooding of route re-
quests (see Figure 4). Essentially, SLR (cache) incurs
3-5 times less routing overhead compared to DSR (no-
cache) and 2-4 times less routing overhead compared to
DSR (cache). With SLR (nocache), there is an increase in
routing overhead when the network traffic load is low. As
network load increases, local recovery becomes possible
with more frequently updated MAC caches and the over-
head of SLR (nocache) reduces to DSR (cache) overhead.
Additionally, while the number of route requests ranges
between 10000-20000 packets for DSR(nocache), this is
reduced to 2000-6000 in SLR (cache) (see Figure 5). As
network load increases SLR (nocache) performs compara-
ble to DSR (cache), since DSR (cache) reduces the num-
ber of route requests during route discovery by allowing
relay nodes to reply to route requests. However, DSR
(cache) has no effect on the number of route requests gen-
erated due to route recovery. In contrast, SLR (nocache)
reduces the number of route requests from recovery via
bypass routing but does not affect the number of route re-
quests generated during discovery.

In addition to reducing the overhead, SLR achieves
high packet delivery ratio compared to DSR (see Fig-
ure 6). SLR (cache) shows the best performance by in-

0

2

4

6

8

10

12

14

16

18

20

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

R
ou

tin
g

ov
er

he
ad

 (
pa

ck
et

)

Rate (Kb/s)

SLR(cache)
DSR(cache)

SLR(no-cache)
DSR(no-cache)

Fig. 4. Routing overhead vs. traffic load in terms of packets, 20 CBR
connections, 60 nodes, 1500mx500m region, speed 0-20m/s

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 0.5 1 1.5 2 2.5

R
ou

te
 R

eq
ue

st
s

Rate (Kb/s)

SLR(cache)
DSR(cache)

SLR(no-cache)
DSR(nocache)

Fig. 5. Route Requests vs. traffic load, 20 CBR connections, 60
nodes, 1500mx500m region, speed 0-20m/s

creasing the delivery ratio between 3-19%. With SLR
(nocache), the increase in delivery ratio is lower in low
traffic loads. As the network load, and so the amount
of communication, increases, the nodes provide more ro-
bust recovery with more frequently updated MAC caches.
As shown in Figure 6, the packet delivery ratio of DSR
(cache) is lower than DSR (nocache) and SLR. This in-
dicates that SLR uses route caches more effectively than
DSR by tying route validity to up-to-date neighborhood
information.

However, in terms of goodput, SLR performs compara-
ble to DSR (see Figure 7). The main reason for compa-
rable goodput is that SLR forwards more data over longer
routes (see Table II). However, although SLR uses longer
routes, it does not incur higher delays and delivers most
of the packets in less than 0.01 seconds. Essentially, SLR
reduces the delays due to route discovery while incurring
little increased delay from the optimistic route recovery
(see Figure 8).

These simulation results show that SLR performs sig-
nificantly better than DSR in terms of throughput, balanc-
ing local recovery overhead with efficient communication.
It is interesting to note that to achieve better delivery ratios
with DSR, DSR (nocache) should be used. While DSR
(cache) is successful in reducing the routing overhead, it

9

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.5 1 1.5 2 2.5

D
el

iv
er

y
R

at
io

Rate (Kb/s)

SLR(cache)
DSR(cache)

SLR(no-cache)
DSR(no-cache)

Fig. 6. Delivery Ratio vs. traffic load, 20 CBR connections, 60 nodes,
1500mx500m region, speed 0-20m/s

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0 0.5 1 1.5 2 2.5

G
oo

dp
ut

 (
pa

ck
et

)

Rate (Kb/s)

SLR(cache)
DSR(cache)

SLR(no-cache)
DSR(no-cache)

Fig. 7. Goodput vs. traffic load in terms of packets, 20 CBR connec-
tions, 60 nodes, 1500mx500m region, speed 0-20m/s

only provides modest delivery ratios. In comparison, SLR
is able to achieve both high delivery ratios and low routing
overhead without being forced to choose between caching
and no caching.

B. Impact of network size

To determine the scalability of SLR as the network di-
ameter increases, SLR was evaluated in a larger network
with 150 nodes. Nodes move in a 2000m � 1500m re-
gion. A total of 40 long-lived connections start randomly
between 20s and 25s. Traffic sources are CBR with trans-
mission rates between 0.4Kb/s-4.4Kb/s. All data packets
are 256 bytes. Each simulation runs for 900s. A pause
time of 60s is used to achieve moderate mobility.

In larger networks, DSR (cache) routing overhead in-
creases considerably due to the fact that DSR (cache) re-
lies on route caches to discover and repair routes. How-
ever, in a large network with long routes, the probability
that a route breaks increases, increasing the probability
that a cached route is stale. DSR (cache) performance de-
grades since it replies to route requests with stale data.
This is further amplified by the fact that other nodes over-
hear and cache stale routes from route replies. This kind
of behavior has also been reported in [27]. Simulation

0

10

20

30

40

50

60

70

80

90

[0, 0.01] (0.01, 0.1] (0.1, 1.0] (1.0, 10.0] (10, +inf)

F
ra

ct
io

n
of

 P
ac

ke
ts

 D
el

iv
er

ed

Delay Range

Rate: 1Kb/s

SLR(cache)
DSR(cache)

SLR(nocache)
DSR(nocache)

Fig. 8. Delay vs. traffic load, 20 CBR connections, 60 nodes,
1500mx500m region, speed 0-20m/s

results show that DSR (cache) creates 5 times more over-
head on average compared to DSR (nocache) and SLR
(see Figure 9). Essentially, more route requests are gen-
erated as routes provided by relay nodes fail. Figure 10
confirms our analysis that DSR (cache) incurs the highest
route request overhead, which is 427,000 pakets on aver-
age. This is significantly larger compared to the average
of 199,000 packets in SLR (cache).

Unfavorable effects of caching on DSR are also ob-
served in terms of delivery ratio (see Figure 11). How-
ever, in comparison to DSR (cache), the delivery ratio of
SLR (cache) remains high until the per node traffic load
increases to more than 2.0Kb/s. For higher traffic loads,
SLR (cache) delivers 2-13% percent less data compared
to DSR and SLR without caching. However, SLR (cache)
performs with 22-35% higher delivery ratio compared to
DSR (cache) at all traffic rates. Furthermore, SLR (no-
cache) provides the best delivery ratio.

SLR is able to scale to larger networks via bypass re-
covery. In particular, SLR (nocache) shows the best per-
formance by achieving high delivery ratio with the least
amount of overhead compared to DSR and SLR (cache).
Although SLR (cache) is able to reduce the unfavorable
effects of caching for low traffic loads, as the traffic load
increases, there is a degradation in delivery ratio perfor-
mance. The decrease in delivery ratio comes from ag-
gressive use of the underlying DSR caching mechanism
during route discovery.

C. Impact of Mobility

The final set of simulations evaluate the impact of mo-
bility on SLR. Simulations were run in a 1500m � 500m
network with 60 nodes and 20 CBR connections with
transmission rates of 4Kb/s. The data packet size is 256
bytes. The mobility rate is changed by setting pause times
to 0, 30, 60, 120, 300 and 600 simulation seconds.

As the mobility rate changes, SLR performs similar to
first set of experiments with different traffic loads, which

10

10

20

30

40

50

60

70

80

90

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R
ou

tin
g

ov
er

he
ad

 (
pa

ck
et

)

Rate (Kb/s)

SLR(cache)
DSR(cache)

SLR(nocache)
DSR(nocache)

Fig. 9. Routing Overhead in terms of packets vs. traffic load, 40 CBR
connections, 150 nodes, 2000mx1500m region, speed 0-20m/s

0

100000

200000

300000

400000

500000

600000

700000

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

R
ou

te
 R

eq
ue

st

Rate (Kb/s)

SLR(cache)
DSR(cache)

SLR(nocache)
DSR(nocache)

Fig. 10. Route Requests vs. traffic load, 40 CBR connections, 150
nodes, 2000mx1500m region, speed 0-20m/s

indicates that SLR is successful in localizing the reaction
to topological changes. Specifically, SLR outperforms
DSR in terms of routing overhead (see Figure 12) . While
SLR (cache) incurs half as much overhead compared to
DSR (nocache), SLR (nocache) overhead performance is
comparable to DSR (cache). This can be clearly seen in
Figure 13, where DSR (cache) and SLR (nocache) create
a similar amount of route requests. On the other hand,
the route request overhead of SLR (cache) remains flat at
3000 packets. In contrast, the number of route requests in
DSR (nocache) is significantly larger.

In the presence of mobility, the packet delivery ratio of
SLR is higher than DSR (see Figure 14). While the perfor-
mance improvement is higher under high mobility, DSR
catches up with SLR when mobility is low and the num-
ber of broken routes decreases. However, SLR’s improved
throughput is achieved with only comparable goodput due
to use of longer hop routes (see Figures 15 and 16).

The evaluation of delivery ratio, routing overhead and
hop length confirm our expectations of SLR’s perfor-
mance in the presence of mobility. Essentially, these sim-
ulation results are similar to the results presented in V-A,
showing the same performance trends.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

D
el

iv
er

y
R

at
io

Rate (Kb/s)

SLR(cache)
DSR(cache)

SLR(nocache)
DSR(nocache)

Fig. 11. Delivery Ratio vs. traffic load, 40 CBR connections, 150
nodes, 2000mx1500m region, speed 0-20m/s

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 30 60 120 300 600

R
ou

tin
g

O
ve

rh
ea

d
(P

ac
ke

t)

Pause (s)

SLR(cache)
DSR(cache)

SLR(no-cache)
DSR(no-cache)

Fig. 12. Routing overhead (packet) vs. mobility, 20 CBR connec-
tions, 60 nodes, 1500mx500m region, speed 0-20m/s

0

5000

10000

15000

20000

25000

0 30 60 120 300 600

R
ou

te
 R

eq
ue

st
s

Pause (s)

SLR(cache)
DSR(cache)

SLR(no-cache)
DSR(no-cache)

Fig. 13. Route requests vs. mobility, 20 CBR connections, 60 nodes,
1500mx500m region, speed 0-20m/s

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 30 60 120 300 600

D
el

iv
er

y
R

at
io

Pause (s)

SLR(cache)
DSR(cache)

SLR(no-cache)
DSR(no-cache)

Fig. 14. Delivery Ratio vs. mobility, 20 CBR connections, 60 nodes,
1500mx500m region, speed 0-20m/s

11

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0 30 60 120 300 600

G
oo

dp
ut

 (
P

ac
ke

t)

Pause (s)

SLR(cache)
DSR(cache)

SLR(no-cache)
DSR(no-cache)

Fig. 15. Goodput (packet) vs. mobility, 20 CBR connections, 60
nodes, 1500mx500m region, speed 0-20m/s

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

0 30 60 120 300 600

H
op

 C
ou

nt

Pause (s)

SLR(cache)
DSR(cache)

SLR(no-cache)
DSR(no-cache)

Fig. 16. Average number of hops vs. mobility, 20 CBR connections,
60 nodes, 1500mx500m region, speed 0-20m/s

VI. DISCUSSION

It was not possible to evaluate the performance of SLR
in comparison with other local recovery techniques dis-
cussed in Section II-C, since they are not publicly avail-
able. However, we discuss the performance of SLR com-
pared to AODV-BR [13] and NSR [8] based on the ob-
served behavior as published.

In AODV-BR, a node that is not on the direct path
snoops data packets to maintain alternate routes without
using additional control messages. Therefore, alternate
routes are created only when building the actual routes.
On the other hand, SLR only uses overheard packets to
determine the current neighborhood of a node, and there-
fore incurs less processing overhead. The main difference
between AODV-BR and SLR is that when a route breaks
in AODV-BR, the node detecting the failure broadcasts the
packet to its neighbors. Since any node that receives the
broadcast tries to forward it to the destination, the packet
can potentially be delivered to its destination through mul-
tiple alternate paths. AODV-BR incurs more overhead as
the number of alternate paths increases and delivers more
copies to the destination. On the other hand, SLR uses
a one hop broadcast to query its neighbors for connec-
tivity information and sends the packet through the best

alternate path. If the packet reaches its destination using
the alternate path, the destination warns the source of the
route break and informs it about the new path. This is
in contrast to AODV-BR, which still sends a route error
back to the source and leaves the responsibility of recon-
structing a new route to the source. Simulation results
show that as the load in the network increases, AODV-BR
cannot provide any improvements over AODV due to in-
creased contention and collisions [13]. In certain cases,
AODV-BR performs worse than AODV, since data pack-
ets traveling through alternate paths collide with packets
using primary paths. We have not seen such a trend in the
performance of SLR, which provides a high route deliv-
ery ratio even when the network load increases, since only
one copy of the packet is ever in-flight at a time. Essen-
tially, SLR captures the current state of the network better
through MAC caches and adapts route caches accordingly.

In NSR, a node maintains a partial topology of the
network consisting of the links to its 1-hop and 2-hop
neighbors and the links on the known paths to destina-
tions. Link-state information is maintained proactively
via periodically broadcast HELLO messages (or piggy-
backed on route requests and replies), and used to repair
routes when link failures occur. Compared to NSR, SLR
does not incur any overhead to maintain 1-hop neigh-
borhood information and depends only on overhearing
packets. To acquire 2-hop neighborhood information, a
query message is sent on-demand in the presence of a
link failure. In contrast, the overhead from HELLO mes-
sages in NSR exists even when the network is station-
ary and no routes fail. To reduce the control overhead
from HELLO messages, NSR sets the time interval be-
tween two HELLO messages to 59s [8]. Reducing this
time interval guarantees more recent information but in-
creases overhead. SLR maintains neighborhood informa-
tion passively using more fine-grained timers (e.g., 0.05s)
and therefore, bypasses broken links using more recent
connectivity information. Furthermore, NSR reports new
routes to the source only in certain cases and does not
validate the success of the alternate route. SLR reports
all successfully repaired routes. Simulation results in [8]
show that NSR achieves only comparable delivery ratio
to DSR when there is � sources and � destinations in the
network. There is a 40%-50% increase in delivery ratio
when there are � sources and 1 destination due to NSR’s
success in distributing the load better than DSR. SLR pro-
vides better delivery ratio even when the communication
patterns include � sources and � destinations. Essentially,
SLR achieves the same goals as NSR but with a novel
on-demand protocol, which provides a complete solution
with salvaging, bypass recovery and error reporting.

12

VII. CONCLUSIONS

On-demand routing protocols are attractive for ad hoc
networks. However, their effectiveness is limited by the
use of flooding to discover new routes when the current
route breaks. In this paper, we propose bypass routing,
which reduces the need to perform route discovery for
broken routes via bypass recovery and a novel cache in-
validation mechanism. Our primary concern is to provide
robustness to route failures and maintain high delivery ra-
tio and low overhead. We implemented a prototype of by-
pass routing based on source routing. Simulations show
that SLR (Source Routing with Local Recovery) achieves
significantly higher throughput while maintaining accept-
able overhead. The results verify that local recovery is the
right approach for route recovery in ad hoc networks.

Our future plan is to investigate the benefits of bypass
routing with other on-demand protocols. We also plan
to evaluate the effectiveness our approach by comparing
its performance with hybrid and local recovery protocols.
Additionally, we will look into other issues related to local
recovery such as utilizing link caches in SLR’s implemen-
tation and further evaluate our scheme with more realistic
mobility models. Our future research goal is to study by-
pass routing in power-saving ad hoc networks. We believe
the advantages gained through bypass routing due to its
localized behavior will enable better power management.

REFERENCES

[1] C. Perkins and P. Bhagvat, “Highly dynamic destination-
sequenced distance-vector routing (DSDV) for mobile comput-
ers,” in ACM SIGCOMM.

[2] E. Royer and C.-K. Toh, “A review of current routing protocols
for ad hoc mobile wireless networks,” IEEE Personal Communi-
cations, vol. 6, no. 2, pp. 46–55, Apr. 1999.

[3] J. Broch, D. Maltz, D. Johnson, Y.-C. Hu, and J. Jetcheva, “A
performance comparison of multi-hop wireless ad hoc network
routing protocols,” in 4th Annual International Conference on
Mobile Computing and Networking (MobiCom), 1998.

[4] Z. J. Haas and M. R. Pearlman, “Determining the optimal path
configuration for the zone routing protocol,” Journal of Selected
Areas in Communication, vol. 17, no. 8, pp. 1395–1414, 1999.

[5] V. Ramasubramanian, Z. J. Haas, and E. G. Sire, “SHARP: A
hybrid adaptive routing protocol for mobile ad hoc networks,” in
4th ACM International Symposium on Mobile Ad Hoc Network-
ing and Computing (MobiHoc), 2003.

[6] C. E .Perkins, E. M. Royer, and S. R. Das, “Ad hoc on-demand
distance vector (AODV) routing,” draft-ietf-manet-aodv-11.txt,
June 2002.

[7] C.-K. Toh, “Associativity-based routing for ad hoc mobile net-
works,” Wireless Personal Communications Journal, Special Is-
sue on Mobile Networking & Computing Systems, vol. 4, no. 2,
pp. 103–109, 1997.

[8] M. Spohn and J. J. Garcia-Luna-Aceves, “Neighborhood aware
source routing,” in 2nd ACM International Symposium on Mobile
Ad Hoc Networking and Computing (MobiHoc), 2001.

[9] I. D. Aron and S. K. S. Gupta, “Analytical comparison of local
and end-to-end recovery for reactive protocols for mobile ad hoc
networks,” in 3rd ACM International Workshop on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, 2000.

[10] M. K. Marina and S. R. Das, “On demand multipath distance
vector routing in ad hoc networks,” in IEEE International Con-
ference of Network Protocols (ICNP), 2001.

[11] S.-J. Lee and M. Gerla, “Split multipath routing with maximally
disjoint paths in ad hoc networks,” in IEEE International Con-
ference on Communications (ICC), 2001.

[12] J. Raju and J. J. Garcia-Luna-Aceves, “A new approach to on-
demand loop-free multipath routing,” in IEEE International
Conference on Computer Communications and Networks (IC-
CCN), 1999.

[13] S.-J. Lee and M. Gerla, “Backup routing in ad hoc networks,”
in IEEE Wireless Communications of Networking Conference
(WCNC), 2000.

[14] Y.-B. Ko and N. H. Vaidya, “Location-aided routing (LAR) in
mobile ad hoc networks,” in 4th Annual International Confer-
ence on Mobile Computing and Networking (MobiCom), 1998.

[15] R. Castaneda and S. R. Das, “Query localization techniques for
on-demand routing protocols in ad hoc networks,” in 5th Annual
International Conference on Mobile Computing and Networking
(MobiCom), 1999.

[16] A. Tsirigos and Z. J. Haas, “Multipath routing in the presence
of frequent topological changes,” IEEE Communications Maga-
zine, 2001.

[17] P. P. Pham and S. Perreau, “Performance analysis of reactive
shortest path and multi-path routing mechanism with load bal-
ance,” in IEEE INFOCOM, 2003.

[18] D. B. Johnson, D. A. Maltz, Y.-C. Hu, and J. G. Jetcheva, “The
dynamic source routing protocol for mobile ad hoc networks
(DSR),” draft-ietf-manet-dsr-07.txt, Aug. 2002.

[19] A. Valera, W. K. G. Seah, and S. V. Rao, “Cooperative caching
and shortest multipath routing in mobile ad hoc networks,” in
IEEE INFOCOM, 2003.

[20] IEEE 802 LAN/MAN Standards Committee, “Wireless LAN
medium access control (MAC) and physical layer (PHY) speci-
fications,” IEEE Standard 802.11, 1999.

[21] Y.-C. Hu and D. Johnson, “Caching strategies in on-demand
routing protocols for wireless ad hoc networks,” in 6th Annual
International Conference on Mobile Computing and Networking
(MobiCom), 2000.

[22] W. Lou and Y. Fan, “Predictive caching starategy for on-demand
routing protocols in wireless ad hoc network,” in 2nd ACM In-
ternational Symposium on Mobile Ad Hoc Networking and Com-
puting (MobiHoc), 2001.

[23] M. K. Marina and S. R. Das, “Performance of route caching
strategies in dynamic source routing,” in In Proceedings of
the 2nd Wireless Networking and Mobile Computing (WNMC),
2001.

[24] Y.-C. Hu and D. B. Johnson, “Ensuring cache freshness in on-
demand ad hoc network routing protocol,” in Principles of Mo-
bile Computing (POMC), 2002.

[25] UCB/LBNL/VNT, “Network simulator-ns2 and cmu
monarch extension,” http://www.mash.cs.berkeley.edu/ns,
http://www.monarch.cs.cmu.edu.

[26] J. Yoon, M. Liu, and B. Noble, “Random waypoint considered
harmful,” in IEEE INFOCOM, 2003.

[27] G. Holland and N. Vaidya, “Analysis of tcp performance over
mobile ad hoc networks,” in 5th Annual International Confer-
ence on Mobile Computing and Networking (MobiCom), 1999.

