Searching strategies for target discovery in wireless
networks

Zhao Cheng, Wendi B. Heinzelman
Department of Electrical and Computer Engineering
University of Rochester
Rochester, NY 14627
(585) 275-{8078, 4053}

{zhcheng, wheinzel} @ece.rochester.edu

Abstract—1In this paper, we address a fundamental problem
concerning the optimal searching strategy in terms of searching
cost for the target discovery problem in wireless networks. In
order to find the nearest k targets from a total of m members using
the minimum cost, should we search the network only once, or
should we apply a so-called “expansion ring scheme?”” Specifically,
how many searching attempts should we use, and how large should
each searching area be? To answer these questions, we provide
a generic model and formulate the expected cost as a function
of the parameters of the number of searching attempts n and
the searching area for each attempt, A;. Using this model, we
propose several algorithms to determine the optimal parameters,
either pre-calculated or performed online. We experiment with
these algorithms on general wireless network scenarios and show
that our algorithms perform consistently close to optimal and
better than other heuristic schemes. The desired performance is
achieved by adapting the searching radius to estimates of network
parameters such as the total number of nodes and the total
number of targets.

I. INTRODUCTION

Information dissemination and information retrieval are the
ultimate goals of wireless networks. Before information prop-
agates within the network, the target peers, from which infor-
mation is retrieved or to which information is disseminated,
first need to be discovered. This target discovery problem has
extensive applications in wireless ad hoc networks and sensor
networks, such as route discovery in several routing proto-
cols [1], [2], sensor discovery in wireless sensor networks [3],
and service discovery in wireless ad hoc networks [4]. Usually,
query packets are propagated inside the network to search for
the targets. The target nodes will respond upon receiving the
query packets. Unlike most unicast traffic, the query process
usually involves a costly flooding process. Therefore, choosing
a proper searching strategy is crucial in reducing the searching
overhead.

The simplest searching strategy is to search the entire inter-
ested area only once. Some other more complex solutions are
proposed and implemented as well. In DSR [1], the one-hop
neighbors are first queried and the entire area is searched if
the target is not among the one-hop neighbors. In AODV [2],
an exponential expansion ring scheme is applied, which is to
start searching from one hop and increase the searching radius
exponentially upon each failure. However, a comprehensive

study on these searching strategies is lacking. Specifically,
under what network conditions is one scheme preferred over
the other schemes? Is there any other scheme that outperforms
the one-hop and exponential expansion ring schemes?

The answers to these questions vary for different searching
requirements. When there is only one available target, the prob-
lem becomes a single target problem. When there are multiple
available targets, the problem becomes either a one-out-of-
multi target problem or a multi-out-of-multi target problem,
depending on the required number of targets.

All these types of target discovery exist pervasively in ad
hoc networks. The single-target discovery process is oriented
for unique information such as the node ID in routing protocols
[1], [2] or a unique service provided by a specific service
provider [3], [4]. The single-target discovery problem can
easily turn into a one-out-of-multi target discovery problem,
e.g., when intermediate nodes have route caches for the required
node ID, or when there are several service providers offering
the same services. Multi-out-of-multi target discovery is also
necessary for many applications to function. For example, in
NTP (Network Time Protocol) [5], the three closest servers
are needed to synchronize a node’s clock. In sensor networks,
a node may need to find out the hop-distance to the nearest
k anchors in order to perform location estimation [6]. Also
in sensor networks, a mobile host may need to collect, say
20, temperature samples from the nearby sensors to have an
accurate overview of the local temperature situation. There may
be some other applications that perform multi-target discovery
in order to distribute the load evenly through the network.
For example, in a peer-to-peer file sharing network [7], a peer
may locate a number of nearby peers and distribute the load
among them. Another example is to discover an ensemble of
special nodes nearby to distribute the computation among them.
Distributing data to multiple sinks is another example for sensor
networks. Also, multi-target discovery may be intentionally
performed for robustness. A simple example is to locate more
service providers than necessary. When the primary service
provider cannot function well, there will be some backup to
take the place to avoid interruption without initializing another
search. For security sensitive applications such as NTP [5]
and NIS (Network Information System) [8], multiple-target

discovery is almost a necessity, both for security and robustness
concerns.

Despite the extensive existence and importance of the target
discovery problem in wireless networks, the study of this field is
almost non-existent. The schemes being used are merely from
intuition without analytical support. This paper fills this gap
by generalizing the problem and solving it both analytically
and experimentally. Practical conclusions and suggestions on
searching strategies are revealed at the end of the paper.

The rest of this paper is organized as follows. Section II
provides an overview on the previous efforts in reducing query
overhead for information dissemination and retrieval and some
other related work. Section III models the target discovery
problem and proposes several algorithms to determine the
optimal number of searching attempts and the searching area
of each attempt. In Section IV, we turn to realistic networks
and illustrate how to employ our algorithms to these scenarios.
Extensive simulations are performed to compare our algorithms
with existing heuristic schemes. Section V concludes the paper
with practical searching strategies.

II. RELATED WORK

The target discovery problem can be divided into two
branches. The first branch is to find at least one target from a
total of m targets. The most common use of the this one-out-of-
multi discovery is in routing protocol implementations. Typical
examples are DSR [1] and AODV [2]. Although the target is a
specific node ID, there may be caches among the other nodes
and the searching becomes a multi-target problem. However,
notice that caches are likely to provide false information
when they are stale, and thus treating this problem as a gen-
eral general one-out-of-multi discovery problem ignores many
implementation details. For a more comprehensive searching
strategy concerning the possibility of invalid route caches, the
reader is referred to [9].

The other branch is a more general case, which is to find
multiple targets from m members. Examples that require a
mandatory multi-target discovery are NTP [5], ITTC (Intrusion
Tolerance via Threshold Cryptography) [10], sensor localiza-
tion [6], and sensor information collecting [11]. Examples that
require a multi-target discovery for robustness are NIS, NTP
and any application requiring auxiliary backups. Examples that
require a multi-target discovery for load distribution are peer-
to-peer systems [7] and distributed computing systems [12].
Depending on various application requirements, different por-
tions out of the total targets are to be found. For NTP,
only three servers are required. For temperature monitoring
sensor networks, quite a few sensors are required. For peer-
to-peer systems or distributed computation systems, as many
as possible peers are usually preferred.

In order to reduce the query overhead from flooding, the
performance of two alternative query propagation techniques,
gossiping and random walk, are examined and compared to that
of traditional broadcasting. In gossiping [13], a node forwards
a query with certain probability rather than automatically
forwarding every new query it receives. Gossiping is able to

achieve nearly full coverage with much less overhead compared
to broadcasting. To query all the nodes, only a portion of nodes
need to forward the query instead of having all the nodes repeat
the query as in flooding. Our model can be directly applied to
both the gossiping and flooding schemes since in both schemes,
the cost to query all the nodes is proportional to the total
number of nodes. In random walk, a node only forwards the
query to one of its neighbors instead of broadcasting to all
its neighbors. It has been shown that random walk does not
reduce the searching cost for a moderate coverage ratio [14].
Therefore, random walk can only be used in some particular
applications rather than general searching scenarios, and we do
not consider random walk in our model.

In this paper, we model the target discovery problem to reveal
the general trend and applicable strategies for most searching
scenarios. Due to the limitation of our model, some particular
searching scenarios are not covered. First, our model deals
with either proactive data dissemination schemes from data
sources such as SPIN [15] or reactive data query schemes
such as general ad hoc routing protocols. It does not cover
certain hybrid data query schemes that combine both proactive
and reactive components, such as SHARP [16], SPAN [17],
ZRP [18], TTDD [19] and rumor routing [20]. These solutions
usually require extra hardware such as GPS for topology setup.
Also, these schemes have to find the balance point between
the proactive and reactive components. This process either
requires certain global knowledge about the data/query ratio,
or it requires some complex adaptation schemes. Second, our
model only deals with one-shot queries. Although complex
queries can be divided to multiple one-shot queries and solved
individually using our model, it is more efficient to handle them
together within one query process. For a complete overview of
data querying and the solution for complex queries, the reader
is referred to [21].

IITI. MULTI-TARGET DISCOVERY IN INFINITE NETWORKS:
MODELING AND ALGORITHMS

A. Problem modeling, assumptions and terminology

We assume a large number of nodes are placed randomly and
independently in a two-dimensional space R2. A source node
wants to find at least one target within a unit area of interest.
Suppose that m targets are distributed uniformly within this
unit area. Our question is: what is the optimal scheme to search
this unit area with minimum cost? In other words, how many
searching attempts n should be performed and what should be
the searching area set A" = {41, As,--- A, } for these n
searching attempts?

Using this model, the searching strategies mentioned earlier
can be exclusively expressed by A . For example, the sim-
plest searching strategy, which is to search the entire interested
area only once, can be expressed as A(Y) = {1}. The DSR
searching strategy, which is to query the one-hop neighbors
first and then search the entire area, can be expressed as
A® = {5 1} if we denote M as the maximum hop
limit allowed. For the exponential expansion ring scheme

applied in AODV, the ?arameter set becomes A([log2(M)+1) —
a2 e el 1} if we assume that the
M2z MZrMZ0 T M?]

searching area is on the order of the searching hop squared.

Here, we define the cost as the total area that has been
searched. This general assumption does not contradict the
traditional cost definition as the number of transmissions. In
ad hoc wireless networks, a node needs to forward packets for
other nodes, and in order to search a certain area, the nodes
within this area have to forward the queries. Thus, the number
of query transmissions to search an area of A is proportional
to A by a constant coefficient determined by the forwarding
mechanism such as flooding and gossiping. Also, by defining
the cost directly as the searching area, we minimize the number
of variables and simplify our analysis without loss of generality.
The conclusions drawn from this definition can be specified for
different applications simply by mapping the area to realistic
application parameters.

Also, we ignore the potential increase of the packet length
and the cost it brings during packet propagation. For simplic-
ity, we also ignore potential packet collisions, which can be
effectively decreased by inserting a random delay time before
forwarding. We also ignore packet loss from unreliable wireless
links since a node fails to receive a packet only when all its
neighbors’ query forwarding fails. This is a very low probability
event in well-connected networks. For example, with a packet
loss probability of 30%, if three neighbors forward the same
query, the probability for a node to fail to receive it is only
(0.3)% = 0.027.

During our analysis, we assume we are studying a snapshot
of the network and nodes are static during the analysis. How-
ever, even if nodes are mobile, there are several reasons that
our analysis is still valid. First, the flooding search time is short
and nodes will not move too far away. Second, since nodes are
moving randomly and independently, the number of nodes in
a certain region is stable and will not have adverse effects on
our analysis.

The model we are going to use in this section is based on the
assumption that the source node is at the center of the searching
area and the searching areas are concentric circles within the
unit area as shown in Fig. 1. This simplified model expedites
our current analysis and is easy to extend for realistic small-
scale networks, as we will illustrate in Section IV. Another
assumption, that targets are uniformly distributed within the
area, may be invalid for certain scenarios as well. We will
discuss other possible target distributions in Section V.

For quick reference, we use the term n-ring as a strategy that
nodes attempt at most n times to discover the targets. Other
notations are listed in table I.

B. Finding 1 out of m targets

Let us first look at the simplest case of multi-target
discovery, finding only one target out of a total of m targets.
The single-target problem can be seen as m = 1, and we will
discuss it as a special case of the l-out-of-m problem. Let
us restate this 1-out-of-m problem briefly. Now, there are m

Fig. 1. The simplified model of target discovery. The searching areas are
concentric circles. Both the target nodes (black dots) and non-target nodes (not
shown) are uniformly distributed in the searching area.

TABLE I
NOTATIONS USED THROUGHOUT THIS PAPER.

m the total number of targets

k the number of targets to be found

n the number of attempts performed

cm cost of an m-ring scheme

D cost difference between two schemes
A; searching area of the ith attempt
AM) optimal searching set for n-ring search

targets distributed randomly and uniformly in the unit area.
The source node located at the center wants to find at least
one target from these m targets with the least cost by using
the optimal n searching attempts.

1) A two-ring approach: Suppose a two-ring approach is
applied, and for the first searching attempt, the searching area
is A;. For the second searching attempt, the searching area A,
is, of course, the entire area and hence equals 1. As long as not
all the m targets are located outside the A; area, the target will
be found within the first attempt. Therefore, the probability P;
to discover at least one target in the first attempt and the cost
for the first searching attempt are

Pr=1-(1-4)", Cr=4 (1)
However, if the first attempt fails, another search has to be
performed, and the total searching cost for these two searches
C2 is
Co=A1+A:=4,+1 2)

Note that if a second search needs to be performed, the total
cost is not only just the second searching area, but includes the
cost from the previous failed searching attempt.

If a second search is required, it means that all the m targets
are located in the second ring outside the A; area, and the
probability P, for this case to happen is

Py =(1-A)™ 3)

Thus, the expected cost C? for a two-ring scheme to com-

first searching area A1 and expected cost of the optimal 2-ring scheme

Fig. 2. 1-out-of-m, the optimal two-ring scheme. The optimal first searching
area Ay (top graph) and the corresponding cost C' (bottom graph). The values
vary according to the number m of existing targets. The more targets available,
the smaller the first searching area and the less expected cost are.

plete the 1-out-of-m target discovery is

C? = PiCy + PyCo = (1 —
:A1+(1*A1)m

(1—A1)™A1+(1—A1)™ (A1 +1)

(€]
It is easy to determine the minimum C? for A; € [0,1] by
2
solving g—il = 0, which results in
A =1—m wT)

In Fig. 2, we show the optimal A; calculated from equation 5
for different selections of m. Also, the minimum cost calculated
from equation 4 for the corresponding m and A; is shown in
the bottom figure.

From this figure, we can see that when the number of existing
targets m increases, the first searching area should decrease and
the expected cost decreases as well. This is obvious since when
more targets are available, it is more likely to find a target by
searching a smaller area, resulting in a smaller cost.

2) An n-ring approach: To aid the expression, let us define
a virtual Oth attempt search for the area of Ag = 0. If the ith
search attempt succeeds, the total cost C; is simply the cost
summation of the first ¢ attempts

Ci=> A (6)
j=1

Similarly, in order to perform an ith search attempt and
complete the task, there must be no targets in the area A; ;
and there must be at least one target in the area A;. Thus, the
probability P; for the task to be completed in the ¢th attempt
is

P=(1-A;_1)"—(1-4)" @)

Therefore, the expected cost C™ for a general n-ring search-

ing approach is

=Y PCi=) (1-Ai1)"—
i=1 i=1
n—1

=) Ai(1-A4A
i=0

The final equality above can be easily proven through
mathematical induction. Due to space constraints, we skip the
intermediate steps.

3) Single-target discovery: The single-target discovery, as
a specific case with m = 1, is briefly discussed here. When
m = 1, Equation 4 becomes

CP=A+(1-A)' =1)

The optimal cost equals 1 no matter the choice of Aj.
For a general n-ring approach, it is easy to prove through
mathematical induction that Eq. 8 is larger than 1 when n > 2.
This means that if there is only one target, the cost of any two
searching scheme is exactly the same as the cost of searching
the entire area only once, and all the other searching schemes
can only perform worse. Although specific ad hoc network
cases may bring some cost saving as pointed out in [22], the
cost saving is so negligible that the above conclusion drawn
from the model still holds true.

C. Finding k out of m targets

Now, we can extend the study to a general case of finding
at least k targets out of a total of m targets. Again, let us start
from a two-ring approach.

1) A two-ring approach: Given the first searching area A,
the probability p; for exactly ¢ nodes to be located within the
A; area is a binomial distribution

pi=C A1 — A)™? (10)

In order to find at least k£ nodes within the first attempt, there
must be greater than or equal to k£ nodes within the first area
Aj. The probability P; for this case to happen is the summation
of the probabilities p; for ¢ > k.

m
P = Zpi
i—k

The probability P, for the first attempt to fail is when there
are less than k nodes within Aj;.

= CLA (L A"

i=k

(1)

Zcz Ai(1— Ap)mt (12)
To simplify the expression, we define
I(pym, k) = Z p)" (13)

For a given (m,k) pair, we further simplify I(p;m,k) as
I(p). The appendix shows some properties of the function
I(p;m, k).

Eventually, we can write the cost for a two-ring searching
scheme in a simpler form

C? = PiCy 4 P20y = I(A1) Ay + (1 — I(A1)) (A1 + 1)

=1+ A - I(A) (14)

2) An n-ring approach: In order to find k targets in the ith
searching attempt, there must be more than k targets within
the area A;. Also, there must be fewer than k targets within
the area A;_;, or else the search would end in the (i — 1)th
attempt. The probability P; for the ith search to complete the

searching task is
P, =1(4;)—1(A;—1) (15)

The cost of the 7th search, similar to the 1-out-of-m case, is

oy
j=1

Thus, we have the expected cost for a general n-ring search

(16)

C" =3 PC =3 ((I(A) ~ I(Am)(3 4))

n—1

=3 A (1= 1(4))

a7

Now, we have the searching cost in equations 8 and 17. In the
next section, we will determine how to determine the optimal
searching area set .A(™ to minimize the cost.

D. Algorithms

We will examine two types of algorithms to minimize the
cost depending on when the parameters are determined: pre-
planned algorithms and online algorithms. For pre-planned
algorithms, the entire searching set A("™) is calculated before
the first searching attempt. The source node will refer to
these precalculated values during the searching process. For
online algorithms, the source node only calculates the next
searching area right before the search. Online algorithms need
less computation than pre-planned algorithms since they only
calculate when necessary. However, they may perform less than
optimal due to the lack of global knowledge.

1) Brute force (BF): Given n, there are n — 1 searching
area variables from A; to A,,_1 (A, is set to one). BF tries
every possible combination of A; € [0,1] and calculates the
cost based on equation 8 or 17. It picks the smallest cost as
the optimal cost and the corresponding area set as the optimal
solution. During implementation, the interval of [0,1] for each
A; is discretized. With a granularity of § for each dimension
A;, the computational complexity is on the order of (§)"~! for
an n-ring scheme.

This scheme, although simple to implement, requires
excessive computation time and becomes infeasible when n
increases. Also, due to discreization, the results will only

be quasi-optimal. We perform BF offline just to provide a
benchmark on achievable minimal cost for the other algorithms.

2) Ring-splitting (RS): Since BF cannot find the optimal
solution within tolerable time, especially when n increases
and the granuality ¢ reduces, we attempt to find an alternative
“good” algorithm with fewer computations. One solution is to
insert a new searching ring between existing searching rings
to reduce the cost as much as possible until there is no more
cost reduction by inserting new rings. We implement this idea
in the Ring-splitting scheme described as follows.

1) Start with the ring [0, 1].

2) For the nth calculation, the area set of {[0,a1], [a1, as],
-+, |an—1,1]} already exists. Check all these n rings and
find out the ring candidates that can be split to further
reduce the cost. (We will describe how to find out the
candidates right after the procedure description.)

3) Terminate if there are no more candidates. Else, go to
Step 4.

4) Pick the candidate that will reduce cost the most and split
it. Go back to Step 2.

Now, we discuss how we determine a ring candidate. Sup-
pose we already have an n-ring scheme. An (n + 1)-ring
scheme can be derived from this n-ring scheme by inserting
another searching attempt with searching area A; between the
ith attempt and the (¢ 4+ 1)th attempt. From equation 17, the
cost difference D between the old n-ring scheme and the new
(n 4+ 1)-ring scheme is

D=cC"-c"t
= A (1= I(A:)) = A;(1 = I(Ai)) — Aipa (1 — I(Aj)218)
Whether the ring between [A;, A;+1] should be split and
become a candidate is a maximization problem of D and is
determined as follows.
1) By solving 57{37 = 0, we achieve the possible splitting
point A;. Numerical methods are required to find A;.

2) In order to reduce cost by inserting A;, the splitting
point has to be within the ring and the cost difference
should be larger than 0. Therefore, check if A; is within
[Ak, Agyq] first. Then, check if D(A;) > 0. Only when
both requirements are satisfied, should A; be a ring
splitting candidate for [Ag, Agi1]-

Since each splitting only adds two rings for calculations in
the next step, the total computation will be 2ny — 3 if the
algorithm stops at the ng ring. The number of comparisons is
1—1 for the ¢-ring scheme, and the total number of comparisons
is S0 (i — 1) = "0=1 “which is much fewer than that of
the BF scheme (5)"0 .

Although RS does not guarantee the solution to be optimal,
it reduces the computation time dramatically compared with
the BF scheme. Also, while BF has to calculate for each
n-ring solution separately, RS is scalable to n by providing
the solution for all n-rings within one sequence of calculation.
The only question remaining about RS is how its performance
is compared to that of BF. We will come to this issue right

after we introduce the ORS algorithm in the next section.

3) Online ring-splitting (ORS): Both BF and RS are pre-
planned algorithms. The optimal number of searching attempts
and the entire searching area set are determined before the
first search begins. ORS, instead, calculates the searching area
only for the next search right before the search starts. In this
algorithm, the source node always plans to finish the search
within two attempts by splitting the remaining area. Upon
its failure, ORS performs another splitting on the remaining
unsearched area to find how far the next search should reach.
This process continues until either the target is found, or there
will be no more cost saving in splitting the remaining area.

ORS is very similar to RS. The only difference is that ORS
can only split the remaining unsearched area, while RS can split
any of the existing rings. This is because ORS is performed
online, while RS is performed before the search starts and thus
is able to do the global splitting.

Here is how ORS splits the remaining searching area. Sup-
pose the source node has already searched the area of Sy and
ko targets have been found. The new goal is to find k£ — kg
targets from the remaining m — k¢ targets in the remaining
1 — Sy area. If the source node plans to finish the searching
within two attempts by using A as the first searching area, the
new cost would be

A—-S
C. = (175§;m ko, k — ko)) A

A— S
+ (1= I(5 So;m—kO,k—ko))(A+1) (19)

— 20

A-S
:1+A—I(1_Soo;m—k0,lc—ko)

Again, some numerical methods are required to solve %aﬁ =

0. Also, the root A has to pass the following two checks to
provide the maximum cost saving: A € [Sp,1] and C, < 1.
If the check fails, just use A = 1 to finish the last searching
attempt. Otherwise, use Ato perform the next search.

As can be expected, ORS performs even less than optimal
compared to RS since it can only split the remaining ring.
However, it requires even less computation. There is only one
computation for each additional searching attempt, and the
computation stops as long as the searching goal is met.

E. Numerical results

1) Algorithm evaluation: This section evaluates the perfor-
mance of algorithms BF, RS and ORS. We will reveal how
many searching attempts are generally enough and how these
algorithms perform compared to each other.

In Fig. 3, the expected costs for the solution of the 1-out-
of-m problem calculated by each algorithm are shown. The
X-axis indicates the total number of available targets. Let us
first examine the the performance of the algorithms. BF and
RS have such close performance that their curves overlap with
each other. ORS performs at most 5% worse than the other
two algorithms. As mentioned earlier, this is because ORS
is an online algorithm and lacks global knowledge. However,

the overall minimum cost

09 -8 ORS

the optimal 2 ring cost

sl the optimal 3 ring cost

o7 |
06

05

cost

04

03

02

01

0 5 10 15 20 25 30 35 40 45 50
total number of targets

Fig. 3. The optimal expected cost of finding one target for each algorithm
and the optimal 2-ring and 3-ring cost for each algorithm. The x-axis indicates
the targets available in the searching area. The y-axis indicates the expected
cost. Although the number of rings n to achieve the overall optimal cost is
usually larger than 3, the optimal 3-ring scheme already performs very close
to the real optimal.

its performance is still very close to that of the pre-planned
schemes. For the pre-planned schemes, although a different
number of rings and different area parameters may be required
to achieve their own optimal point (see column 3 in Table II),
these algorithms perform nearly identically in terms of cost (see
column 2 in Table II). The BF performance shown in Fig. 3 is
on a limited brute force search on up to 4-ring schemes with a
granularity of 0.001. It uses over 165 million computations to
achieve the cost of 0.560852, while RS achieves a very close
cost 0.567105 using only 9 computations. From this view, RS
is much more practical for realistic implementations.

Fig. 3 also reveals how many searching attempts are enough
to achieve near-optimal performance. For 2-ring schemes, all
the algorithms perform almost the same. For 3-ring schemes,
ORS performs a little worse than the pre-planned algorithms,
but it is still close. Although the real optimal solution may occur
at a larger value of n, the two-ring schemes have a major impact
on the cost reduction compared with the 1-ring scheme whose
cost is 1, and the three-ring schemes only further reduce the
cost by around a trivial 2-5%. This informs us that it is very
important to find a good searching area at the first attempt, and
more than 3 attempts are unnecessary.

We also show the results for the k-out-of-m problem using
(m,k) pairs of (6,2), (6,3), (6,4), (20,2), (20,10), (20, 18), (60,2),
(60,30), (60,58). By investigating the results of these discovery
requests, we can have an idea of the trend of the searching cost
and the searching radius for different total numbers of targets
and for cases of searching few/half/most out of these targets.

Only the results from BF and RS are shown. For ORS, after
finding k(targets, the goal of the next search is changed to
finding k — ko out of m — kg. Therefore, the expected cost of
ORS is dependent on each searching result; hence it is hard to
determine analytically. The performance of ORS will be shown
later through simulations.

TABLE I
A COMPARISON OF DIFFERENT ALGORITHMS FOR FINDING K=1 OUT OF m = 3 TARGETS.

Scheme Cost [n [A [Computations
BF 0.560852 4 {0.251000,0.594000,0.851000,1.0} 165,667,502
RS 0.567105 6 {0.111926,0.422650,0.746721,0.926407,0.988474,1.0} 9
ORS 0.581804 5 {0.422650,0.746721,0.926407,0.988474,1.0} 4

cost: find k out of m

|

1r
0.97/

0.8

=
Tin

23®
i3

bt
233393
TTr
33N

LS

0.5F

cost

0.4

03

0.2

0.1

0 L L L L L L L L ,
5 10 15 20 25 30 35 40 45 50

number of targets m

Fig. 4. The optimal expected cost for k-out-of-m discovery by different
algorithms. The x-axis indicates the targets available in the searching area.
The y-axis indicates the expected cost. 2, %,m — 2 targets are to be searched
for each algorithm.

As we can see from Fig. 4, the performance of these
algorithms is still very close to each other and the curves
overlap with each other. The larger the number of targets that
need to be found, the less the cost can be reduced. Although
the details are not shown here, the 2-ring and 3-ring schemes
are still dominant in the cost reduction and more than 3-ring is
unnecessary, which is the same conclusion as in the 1-out-of-m
case.

In summary, the two-ring RS scheme can provide close
to optimal cost performance, and the three-ring RS scheme
can further reduce the cost by at most 5%. More searching
attempts can only reduce the cost by a negligible amount
of less than 1% and are unnecessary. When only a few
number of targets are to be found, or when k¥ << m, the
cost saving is significant. When most of the targets are to be
found, the cost is close to the simple flooding searching scheme.

2) Model validation: Since our model is stochastically
based, we experiment with our algorithms in a large-scale
network to verify that their cost performance matches the
analytical expected cost. Also, we would like to examine how
these algorithms affect the discovery latencies compared to
the one-ring searching scheme, which is not included in our
analysis. Hence, we place a large number of nodes, N7, in
a disk area randomly and independently. Each node has the
same transmission range of R; and the density is large enough
to form a well-connected network. The source node is located
at the center of the unit area. The targets are chosen randomly

cost: 1 out of m latency: 1 out of m

— analysis 3-fing RS
o~ simu 3-ring BF 3
06 — simu 3-ring RS 1.5 8

-5 simu 3-ring ORS

~&~ simu 3-ring BF
— simu 3-ring RS
-5 simu 3-ring ORS

latency

0 10 20 30 40 50 0 10 20 30 40 50

cost: m/2 out of m latency: m/2 out of m

~&~ simu 3-ring BF
— simu 3-ring RS
-5 simu 3-ring ORS

— analysis 3-ring RS
o~ simu 3-ring BF

— simu 3-ring RS 155
-5~ simu 3-ring ORS

\¥

cost
o
g
latency
&

Fig. 5. The average cost and latency performance for each algorithm
for geographical scenarios. The x-axis indicates the targets available in the

searching area. The top row shows the results of 1-out-of-m discovery, and the

bottom row shows the results of %—out—of—m discovery.

from these N7 nodes, and the number of targets m << Nr.
The source node controls its searching area by appending a
searching radius limit on the query packet, and only nodes
inside the distance limit will forward the query packet. Latency
is defined as the round trip distance from the source node to the
target. For example, for the source node to hear the response
from the border, the latency is 2 x 1 = 2.

We experiment on 3-ring BF, 3-ring RS and 3-ring ORS
using the area set obtained from analysis and record their cost
and latency. The cost is compared to the expected cost of the
3-ring RS scheme from analysis. In the top row of Fig. 5, we
show the results of the 1-out-of-m discovery, and on the bottom
row, we show the results of the %-out-of-m discovery. In both
cases, the cost of these algorithms is very close to the expected
cost of 3-ring RS. This verifies our model and analysis. For
latency, ORS performs a little better than the other algorithms.
This is because it is more aggressive in searching a larger area
and tends to take fewer attempts to complete the task. Thus,
the corresponding latency is smaller.

IV. PRACTICAL TARGET DISCOVERY IN AD HOC NETWORKS

In the previous section, we studied the target discovery prob-
lem based on a simplified model. When applying the proposed
algorithms to realistic ad hoc networks, we need to resolve
several other issues. First, since hop limit is generally used
to restrict query flooding, we need to map the searching area
set A™ to hop values. Second, nodes are located at different
positions in the network instead of the center as assumed in our

model. We want to discover how this location variation affects
our model and the corresponding area-to-hop mapping. Third,
since it is more likely that nodes do not know their locations,
what should be the global searching hop values to save the
searching cost from the network perspective? Finally, we want
to determine the robustness of our algorithms under erroneously
estimated network parameters.

A. Area-to-hop mapping

A more detailed area-to-hop mapping method can be found
in [22]. To avoid repetition, we will just briefly discuss it in this
paper. Note that the area A in our model indicates the portion of
the total number of nodes that should be queried. The problem
of mapping the area to a hop value is actually to find the hop
value that can be used to cover that portion of nodes. Statistics
on the number of nodes at different hop distances are required
to help the mapping procedure.

In [22], an empirical estimation method is proposed to
determine the number of nodes at each hop distance for
connected networks. Given the total number of nodes N and
the transmission range R, the number of nodes Nl-,zo at ¢
hops away from a source node can be estimated. Since nodes
at different locations have different views at the network, zg,
which indicates the distance between the node and the border,
incorporates this difference.

We show an area-to-hop mapping example for a node located
at the border of the network with xp = 0 in Fig. 6. The network
contains 1000 nodes and the transmission radius is R; = 0.1.
The number of nodes at each hop distance Ni,o is shown in
the uppermost plot, and the total number of nodes T} o within
hop distance ¢ is shown in the middle plot. After we divide
T; 0 by the total number of nodes in the network, 1000 in this
case, T; ¢ indicates how much portion of nodes are within hop
1 of this specific node. For example, about 50% of nodes are
within its first 15 hops and around 75% of nodes are within its
20 hops, as shown by the dot lines in the middle plot.

Now we can consult 7; for the area-to-hop mapping.
Suppose the source node needs to find 3 out of 20 targets.
Using the two-ring RS scheme, we find the area set to be
A®) = {0.489045,1.0}. For the first searching area 0.489045,
we check T at each hop value ¢ and find that 175 ,, = 0.48923
at hop 15 is the closest to the area value 0.489045. Thus, we
choose 15 as our first search hop distance. The second hop
can be chosen as any integer large enough to search the entire
network. By combining the node estimation method Ni,wo
from [22] and the target discovery algorithm in this paper, we
can find the optimal searching hop values for each individual
source node.

B. Global searching parameters

Note that given a specific target searching requirement, the
area set calculated using our algorithm is always the same.
The variation of node location x only varies the hop choices

during area-to-hop mapping by using different N; ., values.

An example on how to find the matching hop limit
step1: estimate Ni.X 50000 00004
[} o
40 60 o

step2: transformed to LI'IX
o

X=Q sl 0?©

57step3: do the mapping 0.0 |
0 © "~ A®_{0.489045,1.000000}==>({15,s}

o
o
o
0O

. . . .
0 5 10 15 20 25 30
Hop limit

Fig. 6. An example on how to transform calculated areas into hop limits.
First, N; 2, is estimated. Second, normalized T} ., is determined. Finally,
hop limits can be found by matching the areas with T} .

In other words, nodes should choose different searching hop
values based on their own locations.

However, in general, nodes do not know their locations in
the network and thus cannot perform Nmo estimation. Instead
of choosing their own searching hop values, all the nodes have
to apply the same searching values. The global values should
minimize the expected searching cost for the entire network
rather than for each individual node.

We limit our scope to the two-ring RS searching scheme
since the three-ring RS scheme does not bring significant cost
improvement. This conclusion is drawn from the model, and
we believe that it is also valid for hop-based networks. For
now, there is only one parameter we need to determine: the
first searching hop hgys.

First, we can prove that for a uniformly distributed network,
the Probability Distribution Function (pdf) of a random node
location x away from the border is

fx(x) =2(1—x)

Given a node located at x, we can reverse the earlier area-to-
hop mapping to determine the searching area value A(hgys,)
for the searching hop hgys.

0<z<1 (20)

Bays

A(hsy57x) = Thsys,r = Z Ni,x (21)
=0

Putting A(hsys, x) into equation 8 or 17, we can obtain the
searching cost C'(hsys,) for the node at 2 using the searching
hop limit h,s. Considering nodes can be at any location with
the pdf fx(z), the system-wide expected searching cost can be
expressed as

1 3
Csys(hsys) = A fX(SC)C<h5yS,ZC>d$ ~ Z fx(l(5>0(hsus,l(5)
=1

(22)
Here is how we determine the systematic searching hop
using Eq. 22. For each possible hop value of h less than the

estimated network diameter M, we sample x from [0,1] using
sampling interval § and determine the corresponding C'(h, z).
We then use equation 22 to calculate the system cost Clys(h),
and determine the optimal first searching hop h,,: where the
minimal Cj,, is obtained. This computation only needs to be
done once, and the optimal searching hop h,,; will be applied
by all the nodes in the network.

We tested the above global first searching hop procedure in a
network with 1000 nodes. We first investigate the effect of the
sampling interval § on the accuracy of the first hop limit and the
computational complexity. From table III, we find that when ¢
decreases as the sequence {0.1,0.05,0.02,0.01,0.05}, the hop
limit of the 2 out of 20 task is always 7, and the hop limit of
the 10 out of 20 task is {14,15,14,13,13}. Although a small
interval may lead to more accurate hop count calculation, the
improvement is restricted since the hop limit must be chosen
as an integer. Since computation increases linearly with %, we
believe that the interval of 0.1 is good enough for use, and we
apply 6 = 0.1 for the rest of our simulations. The oo for the
18-out-of-20 task indicates that there is no better scheme to
find 18 targets more efficiently than just searching the entire
area once by using a large enough hop limit.

TABLE III
THE IMPACT OF SAMPLING INTERVAL §.

) Computations First searching hop
of {2,10,18}-out-0£f-20
0.1 10 {7,14, o0}
0.05 20 {7,15, 00}
0.02 50 {7,14, o0}
0.005 200 {7,13, 00}

In Fig. 7, we compare the system-wide cost and latency
performance of our scheme with that of the DSR and the
EXPansion ring schemes. In RS, the first hop limit of
{7,14,00} are used for finding {2,10,18} out of 20 targets.
Again, RS performs consistently well for all the searching
tasks. When the number of targets to be found is small as
for the 2-out-of-20 task, EXP performs close to RS in terms
of cost with a much higher latency. The estimated network
diameter is 29 in the tested scenario. Therefore, using co as
the first hop means to choose any number larger than 29 and
search the entire network just once.

C. Robustness validation

Our algorithm RS outperforms DSR and EXP because it
utilizes knowledge of the network parameters N and m to
choose the optimal searching hop limits. The EXP scheme,
on the other hand, also requires this network information to
a certain degree. First, EXP needs m to determine if the
task of k-out-of-m is feasible by checking £ < m. Then,
it requires NV to estimate the network diameter M so that it
knows when it should stop the expansion search. Failure to
estimate M may lead to redundant attempts to flood the entire
network, especially when the task cannot be completed. During

cost and latency performance comparison in small scale networks

2 out of 20 10 out of 20 18 out of 20

100- EXP

10 out of 20

2 out of 20 18 out of 20

Fig. 7. Searching cost and latency comparison in small-scale networks for
self-location unaware nodes. RS performs consistently close to optimal in terms
of both cost and latency for all searching tasks.

the network design phase, the scale of the network is usually
determined and the value of N may be roughly estimated. The
information of the server numbers m can be achieved by letting
each server announce its existence through broadcasting when
a service is available. Due to the dynamic nature of ad hoc
networks, knowing the existence of a service does not mean
that nodes will know where the server is and how to reach it.

Although both RS and EXP require knowledge of N and m,
RS needs it to be more accurate. Erroneous N and m may lead
to erroneous calculation of the first hop limit and thus affect the
final searching cost. In this section, we will study the impact of
erroneous parameters and test the robustness of our algorithms.

First, for a network of N nodes, let us define the error of N
as ey = W N is the estimated total number of nodes in
the network. Similarly, we can define the error for the number
of targets m as e,, = m=m where mm is the estimated total
number of targets in the network.

Although ey and e,, are two different types of errors, when
applying RS using these erroneous values, they both end up in
an erroneous value of the first hop limit. For example, for the
2-out-of-20 task, the hop limits calculated based on erroneous
en or e,, are shown in table IV.

An example of how these erroneous first hop limits affect
the cost can be found in Fig. 8. Only when the error is very
large, e.g., as large as e,;, = 100%, does the cost increase from
the optimal 265 transmissions per search to 364 transmissions
per search. Even so, the cost saving is still substantial. For not
so large errors, the cost will be 279 or 315 transmission, which
is not so far away from the cost of the optimal 2-ring searching
scheme, 265 transmissions.

D. Choosing the right strategy

Depending on the amount of information about the network
parameters and the searching task, different searching strategies
should be chosen. When NV and m can be accurately estimated,
RS can be applied to save cost while reducing the latency
by about 50% compared to EXP. When N and m cannot

TABLE IV
THE IMPACT OF ERRONEOUS N AND m ON COST.

en -50% -40% | -30% | -20% | -10% 10% | 20% 30% | 40% 50%
1st hop 9 9 8 8 8 8 7 7 7 7

em -100% | -80% | -60% | —40% | —20% | 20% | 40% 60% 80% | 100%
1st hop 10 9 9 8 8 8 7 7 7 7

performance of different first hops in a two-ring searching
1000

900

800

700

g oo e =—50~-40%, ©
° e =—80~-60%
5001~ optimal by 8=0.05 i
e =40~100%, optimal by 8=0.1 o
m e =-30~-10%
e, =20~50% N > o
4o "N ° e =-40~20%
m o
g~
soor 5 e =-100%
[e] m
200 \ w ‘
0 5 10 15
first hop
Fig. 8. The cost for all the possible first hops using a two-ring searching

in small-scale networks. The x-axis indicates the first hop limit. Erroneous
network parameter estimations result in erroneous hop limit choice. Substantial
cost saving can still be achieved using erroneous parameters.

be accurately estimated but the number of required targets
k satisfies & << m, EXP can be performed to reduce cost
while doubling the latency. When £k is close to m or when no
information is known about the network topology, a simple
flooding searching scheme is best since its latency is the
smallest and it may perform even better than an arbitrary n-ring
scheme. The DSR scheme shows a trivial cost improvement and
a trivial latency degradation compared to the 1-ring scheme, and
hence is of little practical value.

V. CONCLUSION

In this paper, we studied the target discovery problem in
wireless networks. We model the problem and propose RS to
discover the optimal searching parameters. We illustrate how
to apply the model to realistic network scenarios. General
searching strategies are concluded after we investigated the
performance of our scheme and compared it with that of
other schemes. The amount of information about the network
parameters and the desired task determines the best searching
scheme.

REFERENCES

[1] D.B.Johnson and D.A.Maltz. Mobile Computing, Chapter Dynamic
source routing in ad hoc wireless networks, pages 153-181. Kluwer
Academic Publishers, Imielinski and Korth edition, 1996.

10

[2] C.Perkins and E.M.Royer. “Ad hoc on-demand distance vector routing”
Proceedings of IEEE WMCSA’99, pp. 90-100, Feb. 1999.

Chalermek Intanagonwiwat and Ramesh Govindan and Deborah Estrin,
“Directed diffusion: a scalable and robust communication paradigm for
sensor networks,” Mobile Computing and Networking, pp. 56-67, 2000.
E. Woodrow and W. Heinzelman, “SPIN-IT: A Data Centric Routing
Protocol for Image Retrieval in Wireless Networks,” Proc. International
Conference on Image Processing (ICIP '02), Sep 2002.

Mills, D.L., “Network Time Protocol (Version 3),” RFC (Request For
Comments) 1305, March 1992.

N. Bulusu and J. Heidemann and D. Estrin. “Adaptive beacon placement,”
In Proceedings of the 21st International Conference on Distributed
Computing Systems (ICDCS-21), pp. 489-498, Phoenix, Arizona, USA,
April 2001.

Gnutella peer-to-peer file sharing system. http://www.gnutella.com

Sun Mircorsystems. “System and Netowrk Administration,” March 1990.
Z. Cheng and W. Heinzelman, “Adaptive Local Searching and Caching
Strategies for on-demand routing protocols in ad hoc networks,” to appear
in: Mobile and Wireless Networking of International Journal of High
Performance Computing and Networking (IJHPCN).

T. Wu, M. Malkin, and D. Boneh. “Building intrusion tolerant applica-
tion.” Proc. of the 8th USENIX Security Symposium, 1999.

Tim Oates, M. V. Nagendra Prasad and Victor R. Lesser. “Coopera-
tive Information Gathering: A Distributed Problem Solving Approach”,
Computer Science Technical Report 94-66-version 2 , University of
Massachusetts, Amherst, MA.

M. Roman, C. K. Hess, R. Cerqueira, A. Ranganathan, R. H. Campell,
and K. Nahstedt. “Gaia: A middleware infrastructure to enable active
spaces,” IEEE Pervasive Computing,pp. 74-83, Oct-Dec 2002.

L, Li, J. Halpem, Z. J. Hass, “Gossip-based ad hoc routing,” IEEE
INFOCOM June, 2002.

C. Avin and G. Ercal, “Bounds on the mixing time and partial cover of
ad hoc and sensor networks,” Second European Workshop on wireless
sensor networks (EWSN), January 2005.

W. R. Heinzelman, J. Kulik, H. Balakrishnan, “Adaptive protocols for in-
formation dissemination in wireless sensor networks,” Proceedings of the
fifth annual ACM/IEEE International Conference on Mobile Computing
and Networking (Mobicom 99), Seattle, Washington, August 1999.

V. Ramasubramanian, Z. J. Haas, and E. G. Sirer, “SHARP: A hybrid
adaptive routing protocol for mobile ad hoc networks,” ACM Symposium
on Mobile Ad Hoc Networking andi Computing (MobiHOC), 2003.

B. Chen, K. Jamieson, H Balakrishnan and R. Morris, “Span: An energy-
efficient coordination algorithm for topology maintenance in ad hoc
wireless networks,” In Proc. of 7th Annual International conference on
Mobile Computing and Networking, pages 85-96. ACM, July 2001.

Z. J. Haas, M. R. Pearlman and P. Samar,“The Zone Routing Protocol
(ZRP) for Ad Hoc Networks,” IETF MANET Internet Draft, July 2002.
H. Luo, F. Ye, J. Cheng, S. Lu, and L. Zhang, “TTDD: Two-tier Data
Dissemination in Large-scale Wireless Sensor Networks,” ACM/Kluwer
Mobile Networks and Applications (MONET), Special Issue on ACM
MOBICOM, 2003.

D. Braginsky and D. Estrin, “Rumor Routing Algorithm For Sensor
Networks,”First Workshop on Sensor Networks and Applications (WSNA),
September 2002.

N. Sadagopan, B. Krishnamachari and A. Helmy, “Active Query For-
warding in Sensor Networks (ACQUIRE),” Ad Hoc Networks Journal -
Elsevier Science 1st Quarter 2004.

Z. Cheng, W. Heinzelman, Flooding strategy for target discovery in
wireless networks,” Proc. of the Sth international workshop on Modeling
analysis and simulation of wireless and mobile systems (MSWIM 2003),
Sep 2003.

[3]

[4]

(51

(6]

(71
(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

APPENDIX
A. Properties of I1(x;m, k)
I(xz;m, k) is defined as

I(x;m, k) = Z Clxt(1—ax)m" (23)
i=k

Its derivative over x is
I'(zsm, k) = m(I(z;m — 1,k —1) — I(z;m — 1,k))

mckfllxkfl(l o x)mfk (24)

And I" is
I"(z;m, k) =m(I'(x;m — 1,k —1) = I'(x;m — 1,k)) (25)

We show the I, and I, for a given pair of values of m and
k in Figs. 9 and 10.

I(x; m=4, k=1,2,3,4)

0.8

0.6

0.4

0.2

I (x; m=4, k=1,2,3,4)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 9. The I(x) function with m = 4 and k chosen from {1,2,3,4}. The
x-axis is z, and the y-axis is I(z) for the upper plot and I’(x) for the lower
plot.

1(x; m=20, k=1,4,10,16,20)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

I'(x; m=20, k=1,4,10,16,20)

Fig. 10. The I, function with m = 20 and k chosen from {1,4,10,16,20}.
The x-axis is x, and the y-axis is I, for the upper plot and I, for the lower
one.

All the expressions of I(z;m, k), I’ and I" are required for
the numerical solutions in Section IIIL.

11

