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Abstract

In mobile ad hoc networks, node mobility causes frequent link failures, thus invalidating the routes containing those
links. Once a link is detected broken, an alternate route has to be discovered, incurring extra route discovery overhead
and packet latency. The traffic is also interrupted at the transport layer, and proper traffic recovery schemes have to be
applied. To reduce the frequency of costly route re-discovery procedures and to maintain continuous traffic flow for
reliable transport layer protocols, we suggest discovering long lifetime routes (LLR). In this paper, we first propose
g-LLR, a global LLR discovery algorithm, that discovers LLRs of different route lengths for any given pair of nodes.
We then propose a distributed LLR discovery scheme (d-LLR) that discovers two of the most desirable LLRs through
one best-effort route discovery procedure. Simulations show that the lifetimes of the routes discovered by d-LLR are very
close to those discovered by g-LLR. Simulations also show that the performance of different transport layer protocols is
greatly improved by using LLRs. More importantly, traffic can remain continuous using the provided LLRs. D-LLR can
be implemented as an extension to existing ad hoc routing protocols, and it improves the performance of transport layer
protocols without modifications on them.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Long lifetime routes; Mobile and wireless ad hoc networks; Routing protocols; Cross-layer interactions; Performance analysis
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1. Introduction

In ad hoc networks, there is no pre-existing fixed
network architecture. Mobile nodes, typically with
similar transmission and computational capabilities,
cooperate by forwarding packets for nodes that are
not in each other’s direct transmission range. On-
demand routing protocols based on shortest path
algorithms, such as DSR [1], AODV [2] and TORA

* Corresponding author. Tel.: +1 585 2758078.
E-mail address: zhcheng@ece.rochester.edu (Z. Cheng).

[3], are usually applied due to their relatively lower
routing overhead compared with that of table-
driven protocols. Node mobility is the major factor
that affects the performance of these routing proto-
cols. Since a link break from node mobility invali-
dates all the routes containing this link, alternate
routes have to be discovered once the link is
detected as broken. This new discovery phase incurs
network-wide flooding of routing requests and
extended delay for packet delivery. Furthermore,
the upper transport layer may mistake this tempo-
rary route break as long term congestion and
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execute unnecessary backoffs. Since ad hoc routing
protocols usually have their own retransmission
scheme for route discovery, failure of synchroniza-
tion between the routing and transport layers often
occurs, resulting in poor overall performance.

Discovering long lifetime routes (LLRs) can
reduce the impact of node mobility and improve
the overall performance compared to using ran-
domly chosen shortest-path routes. When a route
with a longer lifetime is chosen, less frequent route
discovery, which usually involves expensive net-
work-wide flooding, is required, thus less routing
overhead is incurred. The impact of long lifetime
routes on upper layer protocols is also obvious.
First, an LLR can reduce the chance of a route
break, thus reducing the chance for abnormal
TCP transmission behaviors observed in [4]. If two
LLRs can be provided at a time, the routing proto-
col can save the longer LRR as a backup and use
the shorter LRR, which usually has a shorter route
length and is thus more energy-efficient, as the pri-
mary route for transmissions. The routing protocol
can switch to the longer LRR to maintain the flow
of traffic when the shorter LLR breaks. Meanwhile,
a new route discovery procedure can be initiated,
and when the newly discovered LLRs are returned,
the old LLRs can be replaced.

A preliminary study on the effectiveness of LLRs
has been performed in [5]. Among the many possi-
ble routes between a given pair of nodes, a route
with the longest lifetime can be found at different
route lengths. The trend shows that the lifetime of
these LLRs increases almost linearly with the route
length. Although an LLR with a long route length
reduces the frequency of route breaks, it is inher-
ently inefficient since a longer route length implies
more packet forwarding for each packet. The bene-
fit from less frequent route discovery can be easily
diminished by the increased number of hops to for-
ward data to the destination. It is suggested in [5]
that only LLRs with short route lengths are desir-
able since they can reduce route break frequency
and there is no sacrifice on packet delivery efficiency
from using more hops.

In this paper, we first present a global LLR algo-
rithm (g-LLR) that discovers the longest lifetime
route at each different route length for a given pair
of nodes. This algorithm requires global knowledge
and provides the optimal LLRs for analysis. We
then propose a distributed long lifetime route (d-
LLR) discovery approach that finds two LLRs,

termed as the primary LLR and the auxiliary
LLR, in one best-effort discovery procedure. The
primary LLR is the LLR at the shortest route
length, and the auxiliary LLR is the LLR that con-
tains one more hop than the shortest route. Simula-
tions show that these two LLRs are very similar
with the LLRs discovered using g-LLR and greatly
improve the overall routing performance. Based on
these two LLRs, we also propose a fast-switch
scheme that maintains continuous traffic flow for
upper transport layers. This is crucial for reliable
transport layer protocols and stream-based applica-
tions where the interruption of traffic may cause
abnormal behaviors and deteriorate the overall
performance.

The rest of this paper is organized as follows.
Section 2 provides an overview of previous efforts
in discovering stable routes and stresses the design
lessons learned from the previous long lifetime route
studies. Section 3 illustrates how g-LLR obtains the
LLRs at different route lengths and how d-LLR
achieves the goal of finding desirable LLRs in a dis-
tributed manner. Section 4 evaluates the perfor-
mance of LLR by comparing with DSR. Various
transport layers are tested. Section 5 concludes the

paper.

2. Overview and related work

Shortest-path routing is the most common algo-
rithm in existing ad hoc routing protocols [1,2].
However, as pointed out by De Couto et al. [6],
shortest-path routing is not good in terms of link
stability, even for static multi-hop wireless net-
works. In mobile ad hoc networks, links are even
more fragile due to node mobility. A good metric
to enable adaptive routing protocols, as suggested
by Boleng et al. [7], is link duration, or as termed
in this paper, link lifetime.

Several methods have been proposed for link
lifetime estimation in different scenarios. In cellular
systems, signal strength provides hints for node
mobility patterns and probable connection loss. If
nodes are equipped with GPS, link lifetime can be
calculated from node distance and node speed. A
theoretical link lifetime prediction method is pro-
posed in [8]. This prediction method uses the current
link age to predict the residual lifetime. The lifetime
distribution for various mobility patterns, which
can be used for link lifetime prediction, is achieved
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through experiments [9]. In our study, we do not
intend to repeat these research topics and invent
new methods for link lifetime estimation. Instead,
we will propose a route discovery method built on
existing link lifetime estimation methods to dis-
cover routes with long lifetimes in a distributed
manner.

The idea of finding a ““good route’ rather than a
random route is not new. Several routing protocols
based on link stability have been proposed, such as
ABR [10] and SSA [11]. They both determine a link
to be good if it has existed longer than a certain per-
iod. The common idea behind these approaches is to
prefer stable links or strongly connected links rather
than transient links during route setup. However,
these protocols overly stress on link qualities and
neglect the fact that a route quality is restricted by
the quality of its weakest link. Discovering routes
with good quality is more difficult than discovering
good quality links due to the difficulty in quantify-
ing route quality and the lack of global information
for discovery.

Many protocols have been proposed and studied
to improve routing performance. Some protocols
attempts to use disjointed multiple paths to improve
the overall throughput [12]. Some other protocols
attempts to reduce the overhead from route discov-
ery by optimizing and reusing the route caches within
the network [13-15]. Multiple route cache storage is
often used as well to reduce the route discovery
latency for faster route recovery. The performance
of transport layer protocols (especially TCP) with
ad hoc routing protocols has also been researched
[4,16-18]. Bad performance was observed and
cross-layer designs have been proposed to improve
the performance [17,19,20]. The basic idea is to let
TCP obtain network conditions from the routing
protocol, thus adjusting its behavior accordingly.

During our research, we learned several lessons
for the above approaches. First, route caches should
be used very cautiously. Route caches in relay nodes
may be inefficient or obsolete. Considering the large
number of relay nodes, many misleading route
replies may be returned on one route query. Route
caches located in the source node may also be mis-
leading. When one path breaks, it is likely that the
other paths also break. However, the source node
cannot recognize the obsolete caches until they have
tried them. Second, multi-path is difficult to apply
since these paths are very likely to interfere with
each other. To avoid interference by using dis-

jointed paths, routes with more hops have to be
used, which adds up to the data routing overhead.
Finally, cross-layer design, if necessary, should be
limited at the bottom layers where it is usually
implemented as hardware/firmware and full control
is easy to obtain. Cross-layer designs through many
layers bring about layered overhead, and sometimes
is unlikely to implement, especially when the upper
layer protocols have already been standardized.

Following these guidelines, we propose a routing
protocol d-LLR that only attempts to discover
LLRs with short route lengths. After one discovery
procedure, two routes will be found. The first route
is the one which, among all shortest-path routes, has
the longest lifetime. The second route is one hop
longer than the shortest path but has an even longer
route lifetime.

Our protocol is designed to focus more on the
performance of data routing. It uses the shortest
path with the longest lifetime for data routing most
of the time, thus saving energy on both hop for-
warding and route recovery. It does not use exces-
sive route caches to avoid unnecessary storage and
trial failures. It maintains two routes with increasing
route lifetimes to maintain continuous flow of traf-
fic. It uses existing link lifetime estimation schemes,
and the functionality is transparent to the upper
transport layers. By avoiding exotic route discovery,
complex route caching schemes and interactions
with transport layers, our protocol is easy to imple-
ment and provides a direct data routing perfor-
mance improvement.

3. Long lifetime route discovery: g-LLR
and d-LLR

In this section, we first present g-LLR, a global
LLR algorithm that discovers all the LLRs for a
given pair of nodes. The key idea of g-LLR is to
pick the link with the longest lifetime and add it
to the initially empty network. The algorithm notes
the changes of route length and route lifetime
between the given pair of nodes until every link
has been added to the network. The LLR at each
route length can thus be recorded. This algorithm
requires global knowledge of all the link lifetimes,
and thus it is not practical to implement directly
in routing protocols. However, the optimal LLRs
obtained from this global algorithm can be used
as a benchmark to evaluate the performance of
other distributed LLR approaches.
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We then propose d-LLR, a distributed LLR
approach, that discovers LLRs of short route lengths
in a distributed manner. D-LLR provides best-effort
discovery of a primary LLR and an auxiliary LLR in
one discovery procedure. The primary LLR is
the LLR with the shortest route length, and the
auxiliary LLR is one-hop longer than the primary
LLR. D-LLR applies the lessons from g-LLR and
only attempts to discover LLRs with short route
lengths. As mentioned earlier, only short LLRs can
provide both energy efficiency for packet delivery
and routing overhead reduction for route discovery.
Lifetime extension from using LLRs with long route
lengths cannot compensate for the adverse effects
from the excessive hops of packet forwarding. Thus,
LLRs with long route lengths are not preferred.

G-LLR is a global algorithm that picks the link
with the longest link lifetime from a global view.
D-LLR, on the contrary, is a distributed protocol
with only local information. In this protocol, each
individual node waits for a proper time before it for-
wards a route request so that each forwarded route
request contains the LLRs seen from each individ-
ual node’s point of view. In other words, when a
node rebroadcasts the LLR request packet (LLR-
REQ), the routes contained in the request packet
indicate the LLRs from the source node to itself.
In this way, when the LLR-REQ reaches the desti-
nation, the destination simply chooses the best
LLRs from all the received route requests and
returns them in one LLR-RES packet. To achieve
this, a lifetime-aware delay scheme that associates
a forwarding delay with the current primary lifetime
is implemented.

3.1. A review of link lifetime estimation

From the literature, there are two general meth-
ods to quantify the quality of a link using link life-
time. The first method expresses link lifetime in a
stochastic manner. A link break probability P(t)
indicates the probability that a link is broken at time
t. An example of P(7) in a Gauss-Markov scenario
can be found in [8]. P(¢) is a non-decreasing function
starting from 0. Obviously, as time elapses, the
probability that a link will break increases.

The second method expresses link lifetime in a
deterministic manner. Link lifetime can be estimated
through the link break probability given an estima-
tion rule, such as from now to when the link break
probability is higher than a certain threshold. The

quality of a link can be thus quantified using this esti-
mated link lifetime. Link lifetime can also be calcu-
lated using node location and movement estimated
from signal strength or GPS. For practical protocol
designs, such quantifications are necessary since it
is much easier to append a value into a route message
than to append an entire probability function.

Correspondingly, route lifetime can also be
expressed in both manners. Suppose a route is
composed of # links. Using link lifetime probability,
the route lifetime distribution P,(z) can be calculated
as

n

P.(1) =1-T](1 =Pi(0)) (1)

i=1

P(t) indicates the probability for link i to be broken
at time ¢. On the contrary, 1 — P{¢) indicates the
likelihood for link 7 to be valid at 7. The probability
for all the n links to be valid at time ¢ is
[T.,(1 = Pi(¢)), and the probability for the route
to be broken at ¢ is one minus this value. On the
other hand, using quantified link lifetime estima-
tions, the route lifetime /. is simply the minimum
lifetime of the #n links.

Z,.:mil'l{ll,lz,...,ln} (2)

D-LLR determines the route query forwarding de-
lay based on the quantification of route lifetimes.
To focus on the study of LLR, we assume that life-
time has been estimated in a quantified manner, and
it can be directly appended to routing messages as
an additional field.

3.2. G-LLR: global LLR algorithm

The global LLR algorithm discovers the LLR at
different route lengths for a given pair of nodes in a
given network. The basic idea of g-LLR is to add
the link with the longest link lifetime, then adjust
the route length between each pair of nodes. Once
the route length between two nodes changes, the
new route is the LLR at the new route length, and
the last added link lifetime is the route lifetime of
this LLR. This step continues until all the links have
been added to the network. Eventually, we have the
LLRs at all the different route lengths.

Suppose we are interested in investigating the
LLRs between the source node S and the destina-
tion node D. The arc set A is sorted in descending
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order by the lifetime c[i,;] of the link composed of
nodes i and j. We denote an edge as e or a link
between node i and j as ¢[i,j] if node i and j are con-
nected. d[i,j] is the hop distance between nodes i and
J. dyrev 18 the last route length recorded between the
pair. The g-LLR algorithm is shown in Algorithm 1
(see [5] for more details).

This algorithm is very similar to the Floyd—War-
shall algorithm for solving the all-pairs shortest
path problem [21]. The difference is in the outlet
loop, in which we choose an edge, while the
Floyd-Warshall algorithm chooses a vertex. There-
fore, our g-LLR algorithm has a complexity of
O(n*), which is more than that of the Floyd—War-
shall’'s O(n%). This is because the number of the
edges in a dense network is of O(n?). However, with
the additional complexity, we are able to obtain one
more degree of route lifetime information. That is,
we are able to obtain the maximum route lifetime
at each route length for any given pair of nodes
rather than only the shortest-path route. Besides,
the increase of complexity is limited, and the algo-
rithm is still of polynomial complexity.

Algorithm 1. G-LLR algorithm.

Data: A, initial c[i, j] for each link

Result: Record of the longest lifetime achievable for
routes with different hop distances {d[S,D],
c[S,D1}

begin

S :=0;5 1= A; dprev = 00;

for all node pairs [i, j] € N x N do

| d[i, §] := oo; pred|i, j] := 0;

end

for all nodes i € N do d[i,i] := 0;

while | S| # A do

let e[i, j] € 'S for which

c[i, j] = max{c(e),e € S};

Si=SU{[i,j1}: 5 == 5 = {[i. 4]}

dfi, 7] = dlj, ] = 1;

for each [m,n] € N x N do

if d[m,n] > d[m,1] + d[i, j] + d[j, n] then

d[m,n] := d[m,] + d[i, j] + d[j,n] and

predm,n] :=i;

end

if dm, n] > d[m, j] + d[j,] + d[i, n] then
d[m,n] := d[m, j] + d[j,i] + d[j,n] and
pred[m,n] := j;

end
end
if d[S,D] < dpye, then
| dprev = d[S,D] and record {d[S,D],c[S,D]}

end

end

end

We will only briefly discuss the proof of this algo-
rithm since the proof is essentially the same as that of
the Floyd—Warshall algorithm. First, when a new
edge is added to the network, the hop distance of
the shortest path between any pair of nodes will either
decrease or remain the same. Second, since the new
edge/link has a less weight than the previous edge/
link, it will not increase the route lifetime if the route
length remains the same; and it will be the first and
the maximum route lifetime if the route length
decreases.

Simulation results show that the lifetime of
LLRs increases linearly with the route length of
LLRs for non-stop random moving patterns [5].
A similar trend is also discovered for the com-
monly used random waypoint mobility model with
no pause time. Therefore, there is a certain tradeoff
on whether to choose an LLR with short route
lengths or to choose an LLR with long lifetime
but longer route lengths. On one hand, an LLR
with a short route length can deliver packets using
fewer hops, thus reducing the packet delivery over-
head. On the other hand, an LLR with a short
route length also has a shorter route lifetime and
breaks faster than longer LLRs, thus increasing
the routing overhead from route discovery.
Depending on traffic density and node mobility,
LLRs with different route lengths should be chosen
correspondingly. When traffic is heavy and node
mobility is low, packet delivery overhead becomes
the dominating factor and LLRs with short route
lengths should be used. When traffic is light and
node mobility is high, route discovery overhead
becomes dominant and LLRs with long lifetimes
should be chosen.

For our distributed LLR design, we only attempt
to discover LLRs with short route lengths. This is
for two reasons. First, it is difficult to obtain LLRs
with long route lengths in a distributed manner due
to lack of global knowledge. Second, LLRs with
long route lengths may outperform LLRs with short
route lengths only in network scenarios with very
light traffic and very high node mobility. Therefore,
LLRs with short route lengths are more suitable for
the majority of practical applications. Finally,
errors during link lifetime estimation will eventually
be reflected by route lifetime errors. The longer a
route is, the more likely the route lifetime is shorter
than expected. Therefore, for our distributed LLR
approach, we are only interested in LLRs with short
route lengths.
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3.3. D-LLR: distributed LLR protocol

D-LLR can be used as an extension to most ad
hoc routing protocols with minor modifications.
D-LLR achieves two LLRs in a best-effort query
procedure by observing the current LLR lifetime
and determining the request forwarding delay
accordingly. The main procedure of d-LLR is simi-
lar to a typical on-demand routing protocol such as
DSR: broadcast a route request from the source
node and unicast a route reply message back from
the destination node. The difference lies in the
implementation details such as routing packet for-
mat, routing update rules and LLR-REQ forward-
ing delay rules.

3.3.1. General procedures

In d-LLR, LLR-REQ contains a primary route
that expands while the LLR-REQ propagates
throughout the network, similar to that in DSR.
In addition, it contains an auxiliary route, which
does not have any impact on LLR-REQ forwarding
decisions. Also included in the LLR-REQ are the
primary and auxiliary route lifetimes. These route
lifetimes are calculated at each intermediate node
by choosing the minimum from the composed esti-
mated link lifetimes. Finally, an extra field that
specifies propagation duration is included in the
LLR-REQ. This propagation duration indicates
the time since the LLR-REQ packet was transmit-
ted by the source node, and it is used by intermedi-
ate nodes to calculate the local delay time for
LLR-REQ forwarding.

The procedures of d-LLR are illustrated as fol-
lows. We focus on the differences with the proce-
dures of DSR:

1. The source node broadcasts an LLR-REQ
packet, which contains two routes: the primary
LLR and the auxiliary LLR, with their respective
lifetimes. The primary LLR is the LLR with the
shortest route length, while the auxiliary LLR is
the LLR that is one hop longer than the primary
LLR. Initially, these routes only contain the
source node and their lifetimes are set as 0.

2. When an intermediate node receives an LLR-
REQ for the first time, it appends itself into the
prim/aux routes in the packet and records the
request locally. Then it adjusts the lifetimes by
choosing the minimum of the previous route life-
time and its link lifetime with the previous node.
Next, it schedules a local delay time for forward-

ing this modified LLR-REQ based on certain
delay rules (see below). When the delay time is
up, it forwards this LLR-REQ packet.

If the intermediate node receives a duplicate
LLR-REQ, it will update the prim/aux routes in
its recorded LLR-REQ based on the LLR update
rule (see below). Meanwhile, it reschedules the
delay time if a better route is found and a shorter
delay should be applied. The update rule and
the delay rule will be explained in detail later. In
brief, the delay rule requires routes with longer
primary lifetime to have shorter delay, and the
LLR update rule requires that the auxiliary route
is longer than the primary route in both route
length and route lifetime, and that the route
length should be one-hop longer than the primary
LLR.

3. The destination uses the same LLR update rules
when receiving LLR-REQs from different paths.
However, it simply waits enough time and then
it will unicast an LLR-REP to the source node
using the primary route with the auxiliary route
attached, just as in the normal DSR route
response procedure.

3.3.2. LLR update rules

A node compares the routes in its current record
with those in the newly arrived LLR-REQ packets.
There are four routes involved in making the deci-
sion: the primary and auxiliary LLR in the local
node’s record and those in the newly arrived LLR-
REQ. In brief, the node picks the one with the lon-
gest lifetime from the shortest routes as the primary
route, and it picks the one with the longest lifetime
from the second shortest routes as the auxiliary
route.

In more detail, there are several cases. If an LLR-
REQ arrives with a shorter primary route than the
recorded primary route, the new primary route will
be recorded as the primary route. The auxiliary route
will be chosen from the recorded primary route and
the newly arrived auxiliary route. If an LLR-REQ
arrives with a primary route of the same route length
as the recorded primary route, the primary route will
be chosen from these two routes, and the auxiliary
route will be chosen between the recorded and newly
arrived auxiliary routes. If an LLR-REQ arrives
with a longer primary route, only the auxiliary route
will be chosen between the recorded auxiliary route
and the newly arrived primary route. More details
can be found in Algorithm 2.



Z. Cheng, W.B. Heinzelman | Ad Hoc Networks 6 (2008) 661-674 667

Algorithm 2. LLR update rules at intermediate
nodes.

Data: pT,, recorded primary lifetime;
aT,, recorded auxiliary lifetime;
pT,,, newly arrived primary lifetime;
aT,,, newly arrived auxiliary lifetime;
pL,, recorded primary route length;
aL,, recorded auxiliary route length;
pLy, newly arrived primary route length;
aL,, newly arrived auxiliary route length;

begin

if pL, < pL, then

aL, = min{pL,,aL,} and adjust a7}

accordingly;

pLy, = pL,, and pT, = pT,;

else if pL,, = pL, then

aL, = min{aL,,aL,} and adjust a7,
accordingly;

T = max{mepT,n};

else
aL, = min{aL,,pL,} and adjust a7,
accordingly;

end

end

3.3.3. Delay setup rules

To find both the primary and auxiliary routes in
one discovery procedure, two key rules have to be
observed when setting up the LLR-REQ forwarding
delay. First, intermediate nodes with a longer pri-
mary route lifetime should forward earlier so that
neighboring nodes will have a better chance of
incorporating this route in their auxiliary route
before they do their forwarding. Second, nodes at
the same hop distance to the source node should
forward at the same pace to reduce the chance of
missing a primary LLR by forwarding the LLR-
REQ too early. We illustrate how both rules help
set up the primary and the auxiliary routes using
Fig. 1 as an example.

In Fig. 1, the number on each link indicates the
link lifetime. After node a sends out the LLR-
REQ, the ideal scenario is that when node ¢ for-

L L
a 3 b 3 c f
Fig. 1. An example showing how the delay rules can help set up

both the primary and the auxiliary routes.

wards the LLR-REQ, the LLR-REQ packet should
contain the quadplex

(prim route, prim lifetime, aux route, aux life-
time) as ([a,b,c], 3, [a,d,e,c], 4). If the first rule is
violated by forwarding earlier for shorter lifetime
routes, then node ¢ will broadcast the LLR-REQ
with [a,b,c] before receiving the LLR-REQ from
node e, thus missing the auxiliary route. If the sec-
ond rule is violated by forwarding longer lifetime
routes too fast, then node ¢ may forward [a,d,e,c]
before receiving the LLR-REQ from node b, thus
missing the primary route.

The delay function also needs to avoid potential
packet collisions from the MAC layer. Neighboring
nodes are likely to determine their rebroadcast time
based on the same primary lifetime value, especially
when the primary route lifetime is determined by the
earlier shortest link lifetime. In Fig. 2, nodes b and ¢
receive the same primary route lifetime 3 from node
a simultaneously. To avoid node b and ¢ choosing
the same delay time and colliding in their transmis-
sions to node d, jittering should be introduced in the
delay function.

In our design, a node chooses its overall delay ¢,
based on the following function:

ty = f(l;Dy) + Dy x (h — 1) + Uniform(D5) (3)

The first item follows the first delay rule, where / is
the primary route lifetime and D; is the delay
parameter for rule 1. Function f is a monotonic
non-increasing function of link lifetime that deter-
mines the delay from 0 to D; based on the primary
route lifetime. The second item indicates that nodes
at the same hop distance 4 to the source node
should broadcast approximately at the same time.
D, is the second delay parameter, and it should be
larger than D; so that nodes will not forward out
of pace by the delay from D;. The last item is the jit-
tering to avoid collisions. Dz is the third delay
parameter, and it should be much smaller than D,
so that it is unlikely to alter the rule that longer life-
time routes lead to shorter delay.

Notice that instead of local delay, 7, in Eq. (3) is
the overall delay from when the source node starts

Fig. 2. An example showing a potential collision using the same
primary lifetime. Nodes b and ¢ may collide when using primary
lifetime 3 to calculate their forwarding delay.
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the LLR-REQ to when the current node forwards the
packet. Therefore, when each node forwards the
packet, it should attach the current propagation
duration in the LLR-REQ packet. With this informa-
tion, the next node is able to calculate the local delay
time by subtracting the propagation duration from
the overall delay ;. We do not include the initial
LLR-REQ time in the LLR-REQ because this would
require global clock synchronization among all the
nodes in the network, which is difficult to implement.

3.4. Other design considerations

There are some design specific issues remaining
to be discussed. First, what should be the values
for the delay parameters Dy, D, and D3, and what
should be the delay function f? By choosing a larger
value of D;, we are able to better differentiate routes
with different lifetimes. However, since D, has to be
larger than D, the overall delay for the route dis-
covery will increase correspondingly. Although
choosing a smaller D; may lead to smaller discovery
delay, an even smaller D; has to be chosen, which
may increase the chance of collisions and missing
some important routes. Thus, proper parameters
have to be chosen.

For the delay function f, a simple choice is to
associate the delay linearly decreasing with the link
lifetime. However, since we are able to determine
the route lifetime distribution through either statis-
tical results or analytical results [5], we could make
f biased on the most possible occurring lifetime
spans instead of spreading evenly.

We tested different sets of parameters by ranging
D; from 0.01 to 0.1s, D, from 0.1 to 1s, and
D3 =0.01D,. We also tested two delay functions: a
simple linear function as shown in the left plot of
Fig. 3, and a biased two-piece linear function as

Linear delay function

shown in the right plot of Fig. 3. We noticed that life-
time performance is not much affected by various
parameter choices. The lifetime difference is within
2 s. Considering the fact that link lifetime estimation
is erroneous in nature, this minor lifetime perfor-
mance difference can be easily dominated by the
error. Therefore, by default, we use D; =0.05s,
D, =0.1s, D3 =0.0005s, and a linear function with
a cutoff time L, at 1000 s throughout the entire paper.

A priority queue, similar to the one used in DSR,
is utilized in our design. The priority queue is a
necessity for LLR, especially when there is data traf-
fic. Without the priority queue, delay from the data
in the queue will add up to the local delay of the
LLR-REQ, which invalidates the delay rule that a
longer lifetime route leads to shorter delay.

4. Performance evaluation

In this section, we evaluate the performance of
LLR through several groups of experiments. The
first group of experiments focuses on evaluating
the route lifetimes discovered using d-LLR with
those discovered using g-LLR and those discovered
using DSR. This informs us how close to optimal
our distributed LLR scheme performs compared to
a global algorithm, and how much lifetime improve-
ment we can obtain. The second group of experi-
ments compares the general routing performance
of d-LLR with that of DSR using UDP as the trans-
port layer protocol. Since UDP is a semi-transparent
transport protocol, we are able to demonstrate the
direct advantage of LLR over random routes. The
third group of experiments uses a more widely used
transport layer protocol, TCP, and reinvestigates the
performance of LLR. The last group of experiments
tests the robustness and effectiveness of d-LLR by
introducing errors to link lifetime estimations.

1 Biased delay function
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4.1. Lifetime performance

First, we compare the route lifetimes found using
g-LLR, d-LLR and DSR. Our simulations are done
using NS-2 [22]. We look at a fully connected
network by placing 100 nodes uniformly inside a
network with a radius of 500 m. The transmission
range of each node is 250 m. Nodes move with a
speed uniformly distributed from [0, 10 m/s],
according to the random waypoint model with no
pause time. 802.11b is used as the MAC layer proto-
col and the wireless channel bandwidth is 2Mbps.
We group the 100 nodes into 50 pairs and observe
their initial route lifetime at time 0. We experiment
using 10 different scenarios and average the results.
Link lifetimes are calculated offline and input into
each node based on node mobility pattern before
the simulation.

We measure the route discovery success ratio and
route lifetime for g-LLR, d-LLR and DSR. Route
discovery success ratio (RDSR) indicates the likeli-
hood that a route can be discovered when there
exists one. Both d-LLR and DSR may fail to dis-
cover a route even if there exist routes between the
observed pair of nodes. This is due to the potential
collisions among flooded route request messages.
Route lifetime is another metric we observe. For
DSR, we examine the route lifetime of the returned
random route. For LLR, the lifetimes to be exam-
ined are the primary lifetime (PL) and the auxiliary
lifetime (AL).

The results are shown in Table 1. We found that
for a total of 500 cases tested, DSR can successfully
discover an initial route in one discovery attempt for
only about 67% of the time. On the other hand,
d-LLR discovers a route in one discovery attempt
for 498 out of 500 cases, leading to a discovery ratio
close to 100%. The offline lifetime results obtained
using g-LLR show that routes exist between the
observed pairs for all these cases. When we look
into the two cases where d-LLR fails to find a route,
however, we notice that in one case, the LLR ends
at 0.44 s, and in the other case, the LLR ends at
0.3s. When the LLR route is being returned by

Table 1
Lifetime performance of DSR, g-LLR and d-LLR

RDSR (%) PL(s) AL(s)
DSR 67 28.3 None
d-LLR 100 40.26 55.4
g-LLR 100 40.24 60.9

the destination, this route is already broken. That
is why d-LLR fails to discover them in these two
cases.

Collisions contribute to the high failure rate of
the RDSR in DSR. As queries propagates in a
random way, they not only collide with those from
neighboring nodes, they also interfere with those
from farther nodes. Sometimes, route queries do
not reach the destination, while sometimes route
replies are interfered in their way back and do not
reach the source node. D-LLR is more capable of
discovering routes than DSR in several ways. First,
by using a relatively longer delay time and a jittering
scheme, d-LLR is able to reduce collisions in the
first place. Second, d-LLR ensures that nodes at
the same hop distance rebroadcast at the same
phase, thus propagating the query message in a
more organized ring-out pattern. This further
reduces the collisions, especially when the query
has been broadcasted a few hops away from the cen-
ter. Finally, destination nodes wait long enough and
avoid potential collisions of route reply with the still
on-going route query propagations.

Although the initial route discovery delay may
become longer, fewer collisions are incurred, and
thus this one-time route set-up delay is still within
the scale of a second. Once a good route is discov-
ered, this delay will be effectively compensated by
the extended traffic flow using the route.

As for the auxiliary LLR, d-LLR can find a route
for 351 out of 500 cases, resulting in a discovery
ratio of about 75%. Meanwhile, g-LLR shows that
for 437 out of 500 cases, there exists an auxiliary
LLR that is one hop longer than the primary
LLR, and for 33 cases, g-LLR discovers LLRs that
are more than one hop longer than the primary
LLR. For the remaining 30 cases, only the primary
LLR exits.

The average route lifetime discovered by DSR is
about 28.3s. The average lifetime of the primary
LLR discovered by d-LLR is 40.26 s, while the aver-
age lifetime from g-LLR is 40.24 s. The primary life-
time of d-LLR is slightly larger than that of g-LLR
simply because d-LLR fails to discover the two
LLRs with very small lifetime of 0.44 and 0.3s.
These two small lifetimes are not included in calcu-
lating the average lifetime, thus resulting in seem-
ingly abnormal lifetimes for d-LLR. Therefore,
d-LLR performs almost the same as g-LLR in terms
of primary route lifetime. As for the auxiliary route,
the average lifetime from g-LLR is 60.9 s, while the
average auxiliary lifetime from d-LLR is 55.4 s, only
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5 s less than that of g-LLR. Compared to DSR, d-
LLR is able to discover a primary route that lasts
40% longer, and an auxiliary route that lasts 100%
longer. Despite that the average route lifetime is dif-
ferent for different testing scenarios. Our protocol
can discover the best shortest route available, thus
reduce the impact from the variance of the route
lifetime. The lifetime performance improvement,
which occurs without sacrificing route length,
directly leads to the routing performance improve-
ment to be shown in the next section.

4.2. LLR routing performance with UDP

In this section, we use UDP as the transport layer
protocol and investigate the routing performance of
d-LLR and DSR. UDP is a semi-transparent
best-effort transport protocol, and it feeds packets
to the underlying routing protocol with little modi-
fication. A study using UDP provides direct insight
into the advantage of LLR over DSR in terms of
packet delivery ratio, packet delay and energy
consumption.

We will experiment using d-LLR and DSR with
various options to test the effect of each option.
For d-LLR, we will investigate d-LLR with only
the primary route used, denoted as LLR. We will
also investigate a fast-switch LLR scheme with the
auxiliary route reserved as a backup route. In this
scheme, when the primary route is detected as bro-
ken, the auxiliary route will be used and a new route
discovery procedure will be initiated. This auxiliary
route continues to be used until a new route
response is received. A new round starts where the
new primary route will be applied, and the new aux-
iliary route will serve as the new backup route. We
term this fast-switch scheme LLR-FS.

LLR attempts to discover the best route towards
the destination. Therefore, intermediate nodes do
not return route caches upon receiving a route
request. This is because with high node mobility,
route caches are likely to be stale and invalid. If a
stale route cache is returned, a longer route disco-
very delay may occur. Similarly, only one route
response needs to be returned by the destination
node. This route response already contains the
best-effort primary route and auxiliary route from
the destination’s point of view. As for DSR, we also
remove the options of caching and multiple route
replies. The removal of these options is in favor of
DSR because these options incur long route discov-
ery delay and make the connection between the

source and destination unstable. We denote this
DSR with no caching as DSR-NC.

Using the same scenarios as in the previous sec-
tion, we feed the 50 pairs of nodes with traffic at a
rate of one packet per second, and run each simula-
tion for 300 s. The average performance of packet
delivery ratio (PDR), packet delivery delay (PDD),
and energy consumption per packet (ECPP) are
shown in Table 2.

LLR achieves a packet delivery ratio of about
98%, while DSR-NC achieves about 95%. DSR-
NC drops more packets due to more frequent and
longer route recovery. LLR-FS has a packet deliv-
ery ratio of 98%, which is slightly lower than that
of LLR. This is because LLR-FS may attempt to
deliver a packet using an invalid auxiliary route
due to erroneous link lifetime estimation. In the ran-
dom waypoint model, a node may change its direc-
tion and thus either extend or decrease its link
lifetime with its neighbors. However, earlier link
lifetime estimation cannot predict this and have to
estimate link lifetime based on the previous linear
mobility pattern. Thus, both the primary and auxil-
iary route lifetime estimates may be erroneous. For
LLR, when a primary route breaks, only one UDP
packet is lost. Upon the next UDP packet, new
routes will be discovered and the packet will be
delivered successfully. For LLR-FS, however, the
first lost packet only invalidates the primary route,
while the auxiliary route still exists. The second
packet will be lost if the auxiliary route is also inva-
lid. Since a new route discovery is initiated simulta-
neously with the attempt of delivering the second
packet, the third packet will definitely be delivered
using new routes. Therefore, the packet delivery
ratio of LLR-FS is slightly lower than LLR, at most
one packet per route break.

However, if the auxiliary route of LLR-FS is
valid, there will be no packet delivery delay from
route discovery for the second packet and the rest
of the buffered packets. From Table 2, the average
packet delay is about 0.027 s for LLR, and it is an
even lower 0.015 s for LLR-FS. With the fast-switch
scheme, the delay is greatly reduced since there is

Table 2
UDP performance using DSR and LLR

PDR (%) PDD (s) ECPP (J)
UDP + DSR-NC 95.3 1.226 0.15
UDP + LLR 98.3 0.027 0.10
UDP + LLR-FS 98.0 0.015 0.10
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almost no delay from route discovery, and the only
delay is from packet forwarding. LLR-FS sacrifices
very little packet delivery ratio for a significant
delay improvement and thus achieves potential fast
recovery for upper transport layer protocols.

DSR, on the other hand, has an average delay as
large as 1.23 s. This long delay is mostly due to the
delay from route discovery. When a RREQ message
arrives at the destination, it is very likely that the
local area has high contention from flooded RREQ
messages. An ARP process may also be required if a
node does not recognize its neighbors. Therefore,
the RREP message may not be returned to the
source node in a timely manner, and the source
node will back off its next route discovery attempt.
Packets during the backoff will be buffered at the
source node, and the delay for these packets eventu-
ally adds up if several route discovery attempts fail.
For a similar reason, the energy consumption of
DSR is about 50% more than that of LLR due to
more frequent route breaks and more route discov-
ery attempts.

The performance comparison of the route dis-
covery cost can be easily deduced. Take Table 1 as
an example, the lifetime of LLR is about 1.4 times
of that of DSR. The route break frequency is inver-
sely related with the lifetime, thus LLR breaks 0.7
times as often as DSR. Considering that DSR finds
a route only 67% of the time, the searching cost of
LLR is thus 0.7 x0.67 =45% that of DSR. For
the gross cost of routing overhead including both
route searching and data forwarding, data traffic
rate needs to be considered. The readers are referred
to [5] for more details.

4.3. LLR routing performance with TCP

The advantages of LLR can be further revealed
when LLR is functioning with a more widely used
transport layer protocol, TCP. Previous studies
have shown that it is difficult to cooperate TCP with
DSR without modifications to these protocols [4].
Packet flow may completely stop and become very
hard to recover once a route breaks. The reason lies
in both ends of TCP and DSR. For TCP, route
breaks may be mistaken for network congestion,
and thus TCP may perform an unnecessary slow
start once it does not receive a TCP acknowledge-
ment. For DSR, the excessive usage of cache may
bring about very long route discovery delays. The
combination of both drawbacks causes the TCP

performance to be unacceptable for highly mobile
scenarios.

Most solutions attempt to solve this problem by
allowing TCP to communicate more with the
routing protocol and explicitly differentiate network
congestion from link failure [4,20,23]. However, the
problem can only be partially solved. If a TCP
acknowledgement is lost en-route, the source node
cannot learn of the link failure, and thus still has
to initiate a slow start. Considering the fact that
TCP/IP has existed for decades and is a solid and
mature protocol, we believe that a more practical
approach should start from the routing protocols
themselves.

We do not intend to test all combinations of TCP
and DSR approaches in this section. Instead, we test
two fundamental options. The first option is the
same no caching option as in the previous section,
which is to completely remove caches from DSR
to ensure instant route discovery. The second option
is to forbid TCP to backoff when an acknowledge-
ment is not received due to temporary route break,
termed as TCP-NB (No Backoff). This is essentially
the same idea as explicitly differentiating link breaks
with network congestion. For d-LLR, we test the
same basic LLR scheme and the advanced LLR
scheme with fast-switch LLR-FS.

The performance of these schemes at a packet
rate of one packet per second is shown in Table 3.
As we mentioned earlier, if the default TCP and
DSR is used, TCP barely recovers from the unsyn-
chronized backoff schemes with DSR. The perfor-
mance under these circumstances is very poor as
shown in the first row. The packet delivery ratio is
only around 56%. Many packets are still buffered,
waiting for a route to be discovered when the simu-
lation ends.

In DSR-NC, we remove the caching technique
and allow source nodes to discover a route that is
guaranteed to be valid. With caching removed,
TCP is better able to deliver packets, providing a

Table 3
TCP performance using DSR and LLR with a traffic rate of one
packet per second

PDR (%) PDD (s) ECPP (J)
TCP + DSR 56.7 0.035 0.307
TCP + DSR-NC 91.7 0.118 0.467
TCP-NB + DSR-NC 99.4 0.130 0.554
TCP + LIR 99.9 0.031 0.413
TCP + LLR-FS 99.9 0.020 0.426
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92% packet delivery ratio. If we further remove the
slow start scheme from TCP, the packet delivery
ratio is further improved to 99% in the scheme
TCP-NB + DSR-NC. TCP probes periodically
when a route breaks, and once a route is discovered,
TCP can start its transmission with minimal waiting
time. Therefore, almost every packet can be deliv-
ered at the end of the simulation. This better packet
delivery performance results in a higher energy con-
sumption since more efforts are made to discover
routes and push the traffic flow forward.

On the other hand, d-LLR achieves high packet
delivery ratio without any need to modify TCP.
Since new good routes can be discovered immedi-
ately and routes do not break very often, TCP
barely needs to back off. As a result, the packet
delay is as low as 0.031 s, mostly just from packet
forwarding. If we apply the fast-switch technique
to LLR, the traffic becomes more continuous, and
the packet delivery ratio becomes even higher.
Packet delivery delay is further reduced since TCP
no longer needs to wait for a route to be discovered.
LLR-FS switches to an auxiliary LLR when the pri-
mary LLR breaks, and when new packets arrive
from TCP, new routes have already been discovered
and the new primary LLR will be used for the rest
of the transmissions until it breaks again. Similarly,
energy consumption is less than DSR due to fewer
route discovery attempts.

We also tested a higher packet rate of 10 pack-
ets per second. The results are shown in Table 4.
When a larger packet rate is applied, the advantage
of LLR becomes less obvious since more packets
can be delivered once a route is discovered. These
packets will smooth out and reduce the effect of
high delay and energy consumption from route dis-
covery. Nevertheless, we can still obtain better
packet delivery, lower delay and better energy con-
sumption using LLR. The advantage of continuous
packet flows from LLR-FS over the basic LLR
becomes more obvious since more packets have

Table 4
TCP performance using DSR and LLR with a traffic rate of 10
packets per second

PDR (%) PDD (s) ECPP (J)
TCP + DSR 58.8 0.023 0.275
TCP + DSR-NC 88.7 0.070 0.375
TCP-NB + DSR-NC 98.8 0.065 0.414
TCP + LLR 97.5 0.019 0.382
TCP + LLR-FS 99.7 0.017 0.388

to be buffered in LLR when no fast switching is
available.

Although we may alter the node mobility patterns
and the traffic rates and redo the test, they may not
provide more information. The relative performance
of LLR compared to DSR is actually determined by
only one factor: the traffic load during one estab-
lished route. Consider two scenarios, one is a sce-
nario with a traffic load of an average of 1 packet
per second and a node speed of 1 m/s; the other is
with a traffic load of average 10 packets per second
and a node speed of 10 m/s. The second scenario
breaks 10 times more often than the first scenario.
However, the same amount of traffic is sent during
one route establishment. Thus, the second scenario
is in fact an up-scale of the first scenario. Therefore,
despite that there are so many mobility scenarios
with different data traffic modes, they only differ in
the average route lifetime and the data load within
an established route time. Our simulations with a
traffic rate of 1 packet per second and a traffic rate
of 10 packets per second are thus sufficient to show
the trend without loss of generalities.

4.4. LLR performance with inaccurate link lifetime
estimation

In the previous studies, even though a link life-
time can be altered by nodes changing directions,
we assume that link lifetime is accurately estimated
if there are no such unpredictable changes. How-
ever, link lifetime estimation based on signal
strength inevitably introduces errors from wireless
channels, even if nodes do not change their direc-
tions. In order to discover how LLR is affected by
these errors, we introduce link lifetime errors into
our link lifetime estimates and reinvestigate the
performance of LLR.

We assume that the path loss of the signal
strength follows the shadowing model from [24].

PL(d) [dB] = Py(dy) + 10nlog <di> + X, (4)
0
In this equation, the path loss PL is related to three
components. The first component, Py, is the re-
ceived power at a reference distance dy. The second
component is related to the distance d between the
transceivers and the path-loss exponent . This com-
ponent indicates the general trend of attenuation
with distance. Typically, n is assumed to be 2 for
the free space model and 4 for the two-ray ground
model. The last component, X,, is a zero-mean
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Gaussian distributed random variable (in dB) with
standard deviation o. X, describes the randomness
from shadowing.

Fig. 4 shows an example of link lifetime estima-
tion distribution using 7 signal samples. We choose
n=27 and ¢ =11.8 from [25]. The X-axis is the
estimated link lifetime referring to the normalized
link lifetime. The Y-axis is the probability distribu-
tion of the estimated link lifetime. This figure can
be explained as the link lifetime estimation error
pattern, and it can be used to calculated the esti-
mated link lifetime. For example, when the real link
lifetime is 3, the link lifetime input to LLR could be
0.9 times the actual link lifetime, resulting in an esti-
mated link lifetime of 0.9 x 30 = 2.7 s. Or, it could
be 1.4 times the actual link lifetime, resulting in an
estimated link lifetime of 4.2 s. However, according
to the estimation distribution pattern, the likelihood
of estimating the lifetime as 2.7 s should be about 7
times that of estimating the link lifetime as 4.2 s.

The performance of LLR with TCP using errone-
ous link lifetime estimation is shown in Table 5. As
expected, the performance of LLR is degraded by
the erroneous link lifetime estimation. The packet
delivery ratio drops even lower than the DSR-NR
scheme. The LLR-FS, however, is much more
robust in maintaining a good performance. Despite
the fact that the real lifetime of the primary LLR is
likely to be lower than expected, the auxiliary route
lifetime is still very likely to be larger than the pri-
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Fig. 4. Link lifetime estimation error pattern. The X-axis
indicates the normalized link lifetime estimation. The Y-axis
indicates the probability distribution of lifetime estimation. For
example, when the real lifetime is 3, the likelihood of estimation
as 2.7 is 7 times that of estimation as 4.2.

Table 5
TCP performance using LLR with inaccurate link lifetime
estimation for different traffic rates

PDR (%) PDD (s) ECPP (J)
TCP + LLR-1 98.7 0.043 0.431
TCP + LLR-FS-1 99.0 0.028 0.445
TCP + LLR-10 87.0 0.022 0.374
TCP + LLR-FS-10 99.2 0.021 0.388

mary route lifetime. Therefore, when a route breaks,
the traffic flow still can be continuous.

LLR-FS actually provides an automatic tradeoff
method between energy and link lifetime estimation
accuracy. When lifetime estimation is accurate,
LLR-FS is both energy-efficient and ensures contin-
uous traffic flows. When lifetime estimation becomes
inaccurate, LLR-FS still ensures continuous traffic
flow, but it requires more frequent route searches.
In other words, LLR-FS is self-adaptive to the accu-
racy of the current link lifetime estimation method.
Therefore, it can cooperate with current lifetime
estimation schemes to improve the overall ad hoc
networking performance without sacrificing the
integrity of the existing TCP protocols and network-
ing stacks.

5. Conclusions

In this paper, we propose LLR, a long lifetime
route discovery approach to improve the perfor-
mance of ad hoc networks without modifying exist-
ing network stacks and protocols. A global LLR
algorithm is proposed to study the statistical behav-
ior of long lifetime routes, and a distributed LLR
approach is proposed to implement LLR for practi-
cal design. Simulation results show that LLR is able
to improve the performance of ad hoc networks
with high mobility. LLR can take advantage of
existing link lifetime estimation technologies. It
automatically adapts to different estimation schemes
by trading off energy consumption with link lifetime
estimation accuracy. D-LLR can be applied to most
ad hoc routing protocols as an extension, and it
does not require any modification on TCP and exist-
ing network architecture.
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