Design and Evaluation of Network Reconfiguration
Protocols for Mostly-Off Sensor Networks

Yuan Li, Wei Ye, John Heidemann, and Rohit Kulkafni

Information Sciences Institute
University of Southern California

Abstract

A new class of sensor network applicationsrisstly off Exemplified by Intel's FabApp,
in these applications the network alternates between being off for houkgeks, then
activating to collect data for a few minutes. While configuration of traditioealssrnet
applications is occasional and so need not be optimized, these applicatiospemayhalf
their active time in reconfiguration every time when they wake up. Therefae ap-
proaches are required to efficiently “resume” a sensor network tisabéen “suspended”
for long time. This paper focuses on the key question of when the netveorkletermine
that all nodes are awake and ready to communicate. Existing approasieseaworst-case
clock drift, and so must conservatively wait for minutes before startingpotication. We
propose two reconfiguration protocols to largely reduce the energyodsg the process.
The first approach ilw-power listening with floodingvhere the network restarts quickly
by flooding a control message as soon as the first node determines tvailleenetwork is
up. The second protocol uskexal update with suppressipwhere nodes only notify their
one-hop neighbors, avoiding the cost of flooding. Both protocolsudisedistributed algo-
rithms. Through analysis, simulation and testbed experiments, we show thairbtocols
are more energy efficient than current approaches. Flooding vbedtsnsparsenetworks
with 6 neighbors or less, while local update with suppression works bestrigsenetworks
(more than 6 neighbors).

Key words: Wireless sensor networks, mostly-off network, network reconfigunatio
energy efficiency

* Cooresponding author: Wei Ye, USC Information Sciences Instituteg 46¥miralty
Way, Suite 1001, Marina del Rey, CA 90292, USA. Tel: 310-448-9Fax: 310-823-6714
Email: weiye@isi.edu.

Preprint submitted to Elsevier 26 September 2007

1 Introduction

Sensor networks use small sensor nodes such as Berkeley [Mo2¢ to sample
the physical environment, process and transfer data toteensers. These sensors
are usually battery operated, so an important researcteciga is efficient man-
agement of energy usage to maximize network lifetime.

Sensor network applications vary from micro-habitat mamitg [3,4], structural
monitoring [5] to surveillance for intrusion detection. Btoof these applications
today assume asways-ometwork. For example, in surveillance applications, the
network need to stay active all the time in order to detectergnt in real time.
To reduce energy consumption when there is no traffic to skt protocols
for sensornets (such as S-MAC [6] and B-MAC [7]) put the raidicleep, even
though they preserve the abstraction of an always-on n&twiar maintain this
abstraction, their sleep periods are rather short, ranfyorg tens of milliseconds
to a small number of seconds (the default sleep period in BENBALOOmS, and in
S-MAC at 10% duty cycle, 1 second).

Topology control is a second approach to conserving enargyis specific talense

sensornets [8,9]. With topology control, some nodes shwindior extended peri-
ods of time, but the network colludes to ensure that enouglesioemain active
to guarantee coverage and full connectivity. Thus, whitvidual nodes may not
be available, the overall abstraction of a connected ndtwvgomaintained. Topol-
ogy control can be even more efficient than MAC approachesstrplaces nodes
asleep for extended periods, avoiding even minimal MAC+layachronization or
polling costs.

Recently a third category of applications has emerged,dhatostly-offapplica-
tions. In these applications, nodes are only active forf lpégiods to collect data.
For the rest of the time, they are not required for any sentsisks, and to conserve
energy theall should turn off. Equipment monitoring for extended periogs the
first example application in this category, where nodes olgd to check equip-
ment status once a day or a week [10]. A second example isisaisomitoring of
underwater oil fields [11], where we expect the applicatmgénerate and collect
data for dozens of minutes, but perhaps only every 30 daysear less frequently.
For these applications, network lifetime is maximized i thetwork as a whole
shuts down completely between active periods, in effeens$sr network suspend
and resume”. While between sensing, all components on a medshat off except
a real-time clock that is able to wake up the node at the nén¢chded task time.
We therefore consider thessostly-off networks

The goal of this paper is to develop new protocols for efficiegtwork reconfigu-
ration after a long sleep. The main challenges are thingstienge over time. The
most significant of these is clock drift—the fact that typickocks will drift from

true time and each other. As a result, not only must tighthycsyonized operations
(such as scheduled MAC protocols) recover after sleep,lHminhetwork must be
careful even to ensure all nodes are active. The exact setretes that need to
be reconfigured after sleep vary depending on the applicaiia protocols in use,
ranging from determining that all nodes are up, setting a Ms&Bedule, finding
MAC-level neighbors, reestablishing forwarding pathsettsg time synchroniza-
tion. This paper focuses on the first of these: the need fanales to determine
when the entire network is up, since it is common to all neksdrefore traffic can
be sent.

Current CTOS crystal oscillators have a drift rate of 30-5Qgper million (ppm).
When clock drift rate is 50ppm, then clock drift after 30 daysild be as long
as 130 seconds. In the above application of seismic mongaf underwater olil
fields, nodes agree on the same moment to wake up before theystgep for 30
days, and they set up timers to awake themselves later. Butodelock drift, it is
simply not feasible for them to reboot at the exact same momhering the next
active period. Nodes can wake up any time during the driftgoeof 260 seconds
(on either two directions for possible clock drift).

The central problem here is that nodes must coordinate aidding up. First,
senders waking up earlier must wait and delay data trangmissitil the whole
networkresumesand all other nodes are active and able to receive packeis. Th
delay, drift delay, is necessary to guarantee network connectivity beforedaty
transmission. Our goal is to minimize the energy spent duitins time. Again, for
this application, nodes may only sense and exchange dadaifrminutes. In this
case, energy spent in drift delay can be as much as half thlesioérgy consumed
during the networks entire active life.

Second, nodes mukhowthat all the network is up. Once a node is up, it must wait
a further time to insure that all other nodes are up (and fbezeable to forward
the data) before it sends a message. We define this timiatasnessage delagnd

it effectively doubles the delay after wakeup before nodesassert all nodes are
up (and therefore reconfiguration is done).

The challenge in mostly-off networks is therefore to miramihe energy wasted
during drift delay and data message delay. As far as we knouewtly there are
no network re-configuration protocols specifically desmjteereduce this cost. The
problem was identified in Intel’s FabApp [10], but there nedanply perform wait,
low-power listening (LPL) [12,7] until all nodes rejoin tmetwork. We will show
new approaches can consume 50% less energy than averageRtasnergy, and
66% less than worst case LPL.

We propose two new protocols to efficiently manage energgeiskuring the re-
configuration period. Our protocols are designed for higielyource-constrained
sensor nodes, such as 8-bit motes, and to support small yolargge networks

first node up last node (sender) up and wait sending

|

To —-Ta To To+Td To+2Ty To+3Td

Fig. 1. Worst case By transmission delay in FabApp

(from tens to hundreds or thousands of nodes). They therefmphasize simplic-
ity and fully distributed operation. Our first protocol iew-power listening with
flooding where the network restarts quickly by flooding a control sagg as soon
as one node can determine the network is up. The second ptateeslocal up-
date with suppressignvhere nodes only notify their one-hop neighbors about the
network state, avoiding the cost of flooding. Both proto@dsomplish the goal of
letting all nodes know that the network is up. In additiorg flooding approach
can also propagate schedule information used by a scheMiA€dprotocol (such
as S-MAC [6], T-MAC [13], or SCP-MAC [14]). We evaluate our mdiguration
protocols through analysis, simulation and testbed erpents. The results show
that both protocols are more energy efficient than currepr@ches. Flooding
works best insparsenetworks with 6 neighbors or less, while local update with
suppression works best densenetworks (more than 6 neighbors).

As a final contribution, this paper adds testbed experimengsovide real-world
analysis of these algorithms. We previously described lgardahms and their anal-
ysis and simulation [15]. Here we show (in Section 6) thastheesults hold in
testbed experiments, although channel noise seems to andllafsxed overhead.

The key contribution of this paper is the design of the two peatocols and their
evaluation and comparison to prior work through analysisusation and real-
world experiments. Important findings are that relativeipge protocols can im-
prove efficiency and overall energy cost, and an understgrafihow performance
changes as a function of network density in both ideal anlisteaenvironments.

2 Related Work

2.1 Reconfiguration in FabApp

In mostly-off networks, when nodes come back from sleephatekpected wake
up time, they wake up asynchronously due to clock drift. 4 @ssume the wakeup
time with an ideal clock i3y and the maximum clock drift during long sleep period
is Tq. Since a clock can drift either faster or slower than thelideeck, the earliest
time that a node wakes up Tg — Ty, and the latest time i$g + Ty, as shown in
Figure 1. Therefore, the maximum drift delay i§

FabApp tolerates clock drift by requiring that all nodeswfar the maximum drift
time before beginning communication [10]. After a node walp, it waits for Iy
to make sure that all other nodes are up. To minimize energguwaption during
this waiting period, FabApp uses B-MAC, an energy-consenMAC protocol
that samples the channel activity periodically rather tbantinuously listening.

We define the data message delay as the time from when theoldstwakes up

until the first data message can be sent. In FabApp, the defagndls on when the
first data sender wakes up. As an example, Figure 1 shows trst vase, where
the sender wakes up &+ Ty. Since it delays its transmission fof g nodes who

wake up aflg — Ty have to keep waiting for a duration oT4.

2.2 MAC Protocols

Recent contention-based sensor network MAC protocols taglepp/wakeup cy-
cles to allow nodes operate at low duty cycle modes to saveggn@&wo pri-
mary technigques have been considered in MAC layer desighdAS, T-MAC
and TRAMA [16] are based dirstening scheduledNodes wake up for a brief con-
tention period to coordinate and send data at their neighlsocheduled wakeup
time. S-MAC and T-MAC also attempt to synchronize on saméesyto maximize
energy savings. The other techniqudas-power listeningadopted by B-MAC
and WiseMAC [12,17]. In this approach, receivers perioliljcsample channel ac-
tivity by taking one or a few signal strength samples. To waxeeceivers, sending
nodes include relatively long preambles before each pa8@&®P-MAC [14] com-
bines the concepts tdw-power listeningandsynchronized schedulesreduce the
cost of long preambles.

Li et al. show that multiple schedules are common in realldvoetworks with
scheduledVAC protocols [18]. This work also shows how to migrate alhedules
in a network to a single common schedule, reducing the casiutiple schedules.
Schedule-baseMAC protocols can potentially leverage thaw-power listening
with flooding protocol proposed in this paper for exchanging schedulehayn
nization information during flooding. There is still a chartbat multiple schedules
will happen after flooding. These different schedules cafutiber converged with
theglobal schedule algorithrfiL8] after reconfiguration.

3 Design of Algorithms

We propose several efficient network reconfiguration atgors. This section de-
scribes the details of their design. The central idea behlhdf our approaches
is to determine when all of the nodes in the network know fotaie that other

Reconfiguration service

Determine when the entire network is up
Set up MAC schedules
Discover neighbors

Set up data forwarding paths

a A W N PP

Re-establish time synchronization

Table 1
Typical reconfiguration services after a long duration of sleep.

nodes are up, so that they can begin general communicatiomal@orithms aim

to minimize the energy consumption during the reconfigorafihase and quickly
bring up the network. We will evaluate the energy perforngaateach protocol in
next section.

Table 1 lists typical reconfiguration services after a longation of sleep. The

major focus of our algorithms is to quickly finish service & tbat general commu-
nication can start. However we also evaluate each algoyiimd discuss whether
it can be leveraged for services 2 and 3. We do not consideicesr4 and 5 in this

paper.

3.1 Simple Low-Power Listening

The simplest way to ensure that all nodes in the network ateefqgre communica-
tion is to wait longer than the possible clock drift time. 38 the protocol used in
the FabApp (2.1). Our first protocol is a very simple optintiaa on that protocol:
we short-circuit this waiting when the sender wakes up. Réleat without any
coordination, each individual node must wait fai o ensure all other nodes are

up.

We define thesimple low-power listeninSLPL) protocol as each node waiting and
listening for ZIy; when any node overhears a data transmission, it stopswyaitid
immediately considers that the network is up. This optirtiarais possible because
the 4Ty delay occurs due to the worst-case wait time for the wholevokd, but 2T

is actually sufficient for worst case wait time for any singtee.

In SLPL, without hearing any messages from other nodes, tbiesnder has to
wait for 2Ty before transmission to ensure that all nodes are activel Skd?ks

best when the first sender becomes active at the earlies{TyeforeTy), because
other nodes can stop waiting right after they receive thé diata message. But if
the first active node does not send any message after it veaifs §, other nodes
have to wait until their own timers fire. This explains why 3L Bpends longer
time on reconfiguration than necessary. The worst case of $&duires up to 44

waiting time.

Although SLPL can ensure that the network is up (Servicel lewe Table 1), it has
two limitations. First, it does not provide enough informoatto set up MAC sched-
ules if using a scheduled MAC (reaching service level 2)utning a scheduled
MAC protocol, the network will require additional schediméormation to config-
ure. We will show later that our low-power listening (LPL) tiflooding proto-
col can be leveraged to provide schedule information. Sedtwe channel polling
period during reconfiguration must be the same as that in alodata communi-
cation, so that nodes can receive possible data messageg deconfiguration.
A potential opportunity to save additional energy would beun with a different
(less frequent) polling interval during reconfiguratiamen switch to more frequent
polling for regular operation. LPL with flooding exploitsishopportunity as well.

3.2 Low-Power Listening with Flooding

As illustrated above, it is possible to further reduce themoek reconfiguration
time and achieve better energy conservation. What we prapdedet the earliest
active node send out an explicit control message, infornoithg@r nodes that the
network is up and reconfiguration can be terminated immeljiathis approach
can save more energy compared to SLPL, because it can sagifichorten the
reconfiguration time.

In LPL with floodingeach node sets up a timer to wait fofRafter it reboots.
Nodes still run low-power listening while waiting. When thestinode’s timer fires,
all nodes should have become active, becaligg2the maximum clock drift pe-
riod. However, at this moment, no one knows the fact excepfitht active node.
The first active node therefore sends outtedwork upmessage immediately when
its timer fires. The network up message is further floodedughout the whole
network. Nodes can safely stop their timers immediatelgrattceiving a network
up message. Compared to SLPL, LPL with flooding can signifigaetiuce the
reconfiguration time. It takes at most2plus the message flooding delay.

There are several advantages to explicitly exchange domessages during re-
configuration. First, the reconfiguration phase and the datamunication phase
are separated. After reconfiguration, the application daose to run any types
of MAC protocols, including those that do not use LPL. Secohthe application
chooses a MAC based on LPL, the channel polling interval amb&ependently
optimized for both the reconfiguration phase and the datanmamication phase.
Section 4.3 describes how optimal parameters can be sglectainimize the en-
ergy consumption during reconfiguration. In contrast, irP&Lnodes must oper-
ate on the same polling interval during these two phasesusecnodes expect to
receive data messages during the reconfiguration. Fidallgraging the control

message exchange, LPL with flooding can accomplish morenfigtwation ser-
vices as listed in Table 1. If the application runscheduledVIAC protocol, such
as S-MAC, T-MAC or SCP-MAC, nodes can exchange schedule infaomavith
flooding of network up messages. This single flooding proeffestively finishes
the reconfiguration service 2. Moreover, during the floogingcess, nodes are ac-
tually able to discover all their neighbors, so the recomfigjon service 3 can be
accomplished as well.

The major downside of this algorithm is the cost of floodingpeTcost increases
as the node density increases, since there will be more eagrty of the redun-
dant network up messages. To reduce overhearing, We fyntbpose an optimiza-
tion during the flooding. When the first node sends out its ndkwp message, it
puts its channel polling time in the packet. When its neighbeceive the mes-
sage, they will follow the same polling time described in thessage. Essentially
all nodes who have received a network up message will syncedheir polling
times. When they re-broadcast the network up message, ttestionally start the
transmission when these synchronized nodes have justdohigblling. Since all
network up messages uses long preambles, these nodesaidllaxerhearing the
long preambles. Theynchronized LPIscheme can significantly reduce the over-
hearing cost during flooding.

In summary, LPL with flooding can quickly complete reconfiglion after 24
since the first node reboots. It significantly reduces tha dedssage delay, since no
matter when the first sender wakes up, it can start data tiaegms immediately
after the flooding. Compared to SLPL, it can significantly reglanergy cost at low
to moderate neighborhood sizes.

3.3 Local Update with Suppression

As stated in the previous section, LPL with flooding can digantly reduce net-
work reconfiguration time. However such benefit comes at st of overhearing
redundant network up messages during the flooding procégscdst will become
significant when the network density is high. In such netwpik is expensive
to explicitly synchronize the network up time in the wholewerk. To address
this problem, we propose thecal update with suppressigrrotocol, which avoids
global synchronization by limiting the coordination to pne-hop neighbors.

Similar to LPL with flooding in this new protocol, each node sets up a network
resume timer of Zy and runs LPL after it becomes active. When its timer fires,
a node broadcasts the network up message once to its imeedigghbors. As
described above, after a node waits fog2it knows for sure that the entire network
is up. When the one-hop neighbors receive the network up mestwey learn that
the network is up, and thus cancel their own timers. Thislsingtwork up message

effectively suppresseasll other nodes in the one-hop neighborhood from sending
their own network up messages later. As these nodes havedthigconfiguration,
they are ready to start data transmissions if they have atay dndes who hear

a data message also immediately learn that the network isdipesiminate their
reconfiguration process.

In a single-hop network, where all nodes can directly heahedher, local update
with suppression has about the same performance d®e#tease in SLPL. In both
protocols, only the first node waits forTg, and then sends a message to finish
the reconfiguration. The only difference is that here we usexlicit network up
message instead of a data message. In a multi-hop netwerle, Will be a node
in each neighborhood whose timer fires before other nodesh 8ades will send
network up messages in their own neighborhood and supplitegber nodes. The
protocol performance depends on the neighborhood sizeeriergl, the benefit of
suppression increases as the neighborhood size increasesifodes). This result
is in contrast with the flooding protocol, where its performa decreases as the
neighborhood size increases.

Similar to SLPL, in local update with suppression, nodetetisor possible data
transmissions during reconfiguration. The protocol hashtwose the same polling
period as the one used in the regular data communicatiorhemce we cannot fur-
ther optimize the parameter for reconfiguration. If the aggtlon chooses a sched-
uled MAC for data communication, this protocol is able taagsishlocal common
schedules, which is part of the reconfiguration service Astel in Table 1. Since
nodes do not coordinate globally, more work is needed toodiescneighbors on
different schedules and switch them to a single global sdledd8].

The main advantage of local update with suppression istkagnificantly reduces
the number of control messages, and therefore avoids exeessst on overhear-
ing. Meanwhile since nodes coordinate within one hop, a ribdewakes up late
can potentially start sending data as early as any of itshapeneighbors. Thus
its overall performance improves in dense networks, whegdlboding cost could
become prohibitive.

4 Energy Analysis

In this section we develop analytic models for all the proteadescribed above.
These models help us quickly evaluate and compare perfaenacross a wide
range of parameters and to examine best-, worst-, and aasease performance.
In Section 5 we compare our analysis to detailed simulatsalts, validating our
analysis where possible, and extending our results to ¢aaeare intractable ana-
lytically.

Symbol Meaning Typical Value

Ps Power consumption in sending 60mw
P Power consumption in receiving 45mW
A Power consumption in listening 45mwW
Psip Power consumption in sleeping AW
Ppoll Average power consumption in polling channel 5.75mwW
tp Time needed to poll channel once 3ms
tcs Average carrier sense time for one packet 8ms
tup Time to transmit up packet 5ms
T|p| Default channel sampling period in TinyOS 100ms
Tp Channel sampling period Varying
Tq Clock drift after long sleep Varying
To Wake up time by ideal clock Varying
Table 2

constants used in energy evaluation

4.1 Basic Model

Table 2 shows our radio energy model, derived from the CC10@d us Mica2
motes [19]. Energy consumption depends on how long the niags # different
states. Nodes can be in sending, receiving, listeningpsiger channel sampling
state at any time. The energy in each state includes the ablstgh the radio and
the CPU.

When nodes are sampling the channel, the power consumptidiffasent than
listening. The duration of channel sampling is very shamj anost of the time is
waiting for the radio’s crystal oscillator to stabilize @Wwireceiver otherwise turned
off). After stabilization, the radio enters receive modeyeriefly to take one or a
few samples of signal strength. Therefore, the average poaresumption during
channel sampling is much less than that of fully listening &gsume the average
power consumption during channel sampling is 5.75mW.

Analysis of multi-hop networks quickly becomes intracealiVe therefore explore
multi-hop networks in simulation (Section 5). Here we cdesia one-hop network

with n+ 1 nodes, who can directly hear each other. The mean energpresch
node during reconfiguration can be computed as

E=F +Es+Er+ EpO" + Eslp

10

= Rtcs+ Psts+ Frtr + Ppo”tp + PSlptS|p Q)

whereEy, Es, Er, Epoll and Eslp are the energy consumed in listening, sending,
receiving, channel polling (sampling), and sleeping statespectively. The energy
in each state is simply the power consumption of a state ptieiti by the time
spent in that state. Typical values of these parameterseéouind in Table 2.

The goal of our protocols is to minimize this energy consuarptFor simplicity,
we assume that the activation moments for thesel nodes are uniformly dis-
tributed within [Ty — Ty, Tg + Tg]. Thus the first node wakes up gj before T,
and the last node wakes uply after Ty. The average wake-up time of all nodes is
at the ideal clock timd,.

4.2 Energy Analysis on Idle Listening

First we consider the simplest possible protocol where aaii@ply do full-time
listening during network reconfiguration. Since we assuaes reboot uniformly
within [Tg — Ty, Tg + Ty the drift delay is 4. This is the duration absolutely
needed for networks to become stable.

In the worst case, the node that turns on at last has data tb Serce there are
no other nodes sending before that, after waking upgat Ty, the sender still
needs to wait for the extraTg to guarantee that all other nodes become active.
Data transmission can only happenigt+ 3Ty. Thus, in this worst case, the data
message delay isTg and the whole configuration duration i§ Since we assume
that the average wake-up time Tg, the mean duration that each node uses on
reconfiguration is 4. And the mean energy cost is

Eidle_worst= 33 Tq (2)

In the best case, when the first active node has data to seragh gitart data trans-
mission atTg + Ty. Since the data message delay is measured from the moment
when the last node is upe., Tg+ Ty, the delay becomes zero in this case, and the
network is configured at the same time when the first data rgedsasent. Nodes
spendTy on reconfiguration and consume energy

Eidle_best=RTqg 3)

Besides the best and worst case, on average, the sender wakésimeTy and
delay data transmission unfif) + 2Ty. In this case, nodes consume energy

11

Eidle_ave=2RTqg (4)

In all cases, idle listening consumes significant amounnefgy due to the fact it
needs to keep all nodes idling listening during the whol®mnéiguration process.
In addition to considerable energy consumption, the rarigmssible energy cost
varies significantly.

4.3 Energy Analysis on Simple Low-Power Listening

When nodes perform low-power listening during reconfigamatithe analysis is
similar to the idle-listening cases described above, hewdwe cost of listening
is greatly reduced because nodes poll the network for &¢tiather than blindly
listening. As explained in Section 3.2, reconfigurationhw®LPL requires same
polling periods as data transmission. Since data ratesarnth different applica-
tions, we use the TinyOS defaU]b| of 100ms here.

This analysis corresponds to the FabApp approach [10],twéfaddition of our op-
timization to short-circuit configuration on transmissioithe first message (Sec-
tion 3.1).

In the best case when the sender wakes uﬁddbeforeTO, all nodes consume
energy

Esipl_best= Fpolitp Td/ Tipl
+Ps1p(Tipl —tp) Ta/Tipl (5)

The first part of the equation corresponds to the energy ecopsan during peri-
odic channel polling, and the second part is the sleep cost.

In the worst case when the sender wakes qu'daafter Top, each node consumes
energy

Esipl.worst= 3PpoliteTd/Tipl
+3Psip(Tipl —to) Td/Tipl (6)

In the average case when the sender wakes Ui, atodes consume energy

Esipl.ave=2PpolitpTd/Tipl
+2P5)p(Tipl —tp) Tg/Tipl (7)

12

In all casesSLPLrequires much less energy than idle listening becauseldcep
idle listening with much less expensive polling. Howevke tange of possible en-
ergy usage for LPL-based reconfiguration is quite broadt{b&se to worst-case).
The goal of our new protocols is to improve both average cadensrst case per-
formance.

4.4 Energy Analysis of LPL with Flooding

In this approach, the first active node sends out a controsagesat the end of its
reconfiguration and other nodes flood exactly once to coatdiwith their neigh-

bors. Each node spends energy on sending one network upgeesseeiving mul-

tiple messages from other nodes, polling the channel aeg@isig for the remaining
time.

We assume polling interval for LPL during reconfiguratiorilis Remember that
Tp can be different thaﬂ]p|. In order to wake up neighbors, nodes need to flood
network up messages with pream#ijg

During flooding, every node needs to forward network up mgsssactly once.
Let's assume the average carrier sense timigsjsand the transmission time for the
network up message igp. The energy a node spends on transmission is

Rtcs+ Ps(Tp+tup) (8)

A node receives exactly packets from thein neighbors. And on average it over-
hearsTp/2 preamble for each packet. Therefore, the energy it spendsceiving
IS

nH(Tp/2+tup) (9)

Since nodes reboot in an uniform distribution, the averagéimg period before
flooding for each node i%y. Thus low-power listening cost on each node is

PoolitpTa/Tp (10)
The last part of energy is sleep cost:
Psip(Tp —tp)Tg/Tp (11)

13

Substituting Equations (8)—(11) into (1) we obtain the meaergy cost during
reconfiguration as

Eflood= Rtcs+ Ps(Tp +tup)
+nR (Tp/2—|—tup)
+PoolitpTd/Tp
+Psip(Tp—tp)Tg/Tp (12)

Equation (12) shows a tradeoff willp. Increasindrp reduces the channel sampling
frequency, and saves nodes from spending energy on poBungt also increases
the preamble length, therefore increasing transmissiahcauerhearing cost. To
minimize Egooq, We need to obtain the optim@h from the following equation

dEfiood

T 0 (13)

B-MAC suggests similar approach to optimize polling perimsed on data rate.
But the analysis is based on periodic data traffic and it do¢provide a closed
form formula. Instead during LPL with flooding network doex generate periodic
data and the only traffic is the flooding of network up messages

Substituting Equation (12) into (13), the optinT@l for reconfiguration is

. (Pooll — Psip)tp Ty
Tp= \/ : Ps+ nap}z (14)

Figure 2 and Figure 3 show hoW changes with average neighborhood siznd
Ty respectively. We notice that the optimBj decreases in networks with higher
density in order to offset the energy overhead incurred lgdileg. Figure 3 shows
that when mostly-off networks are suspended for a longeogeaf time, the opti-
mal Tp increases as well. This is due to the longer drift periodsesogkperience
after reboot.

Replacinng* in Equation 8, Figure 4 and Figure 5 show that LPL with flooding
works very well when network density is low. Even reconfigima cost increases
with the increase of density, it still saves more energy tBaRL worst case in
high density with 12 neighbors. Later on in Section 5 we usaifation results to
validate these analysis.

14

200 T T T T T T T
150 E

100 M\\V;\uwurwmm |

Optimal Tp(ms)

50 -

0 1 1 1 1 1 1 1
2 4 6 8 10 12 14

Average Neighborhood Size n

Fig. 2.T) varies with n in LPL with flooding, (Td = 130sec)

T T T
140 F
120 | — 4
_—
//
100 - -
- e
z)
=% B _ |
g 80 >
T -
£ e
= L / -
& 60 ;
a0 - /]
2t/ .
0 | 1 1 1
0 50 100 150 200

Clock Drift Period Td in Seconds

Fig. 3.Tp* varies withTy in LPL with flooding, (n = 6)

4.5 Energy Analysis of Local Update with Suppression

In a single-hop network, the performance of local updaté sitppression is similar

to thebestcase of the simple low-power listening, as they all finislordiguration
after the first active node waits fofd and sends out a message. The only difference
is that an explicit control message is used here, so there &lditional cost on
transmitting the message from the first node and receivibyg &ll other nodes.

In multi-hop networks, the performance of local update witppression can largely

vary than the single-hop result. It is intractable to analttze algorithm in multi-
hop networks, because local coordination and suppress®clasely related to

15

Fig.

Fig. 5. OptimalEg o for different Ty in LPL with flooding, (n = 6)

Energy Needed for Reconfiguration (millijoules)

4,

Energy Needed for Reconfiguration (millijoules)

140

120

100

[e]
o

(%]
o

N
o

N
o
T

OptimalEf|o g for different n in LPL with flooding, (Td = 130sec)

100

T T T T T T T
SLPL(worst case)
SLPL(average case) ///////:
" LPL with flooding
—
o]
SLPL(best case) 1
| | | | | | |
0 2 4 6 8 10 12 14

Average neighborhood size n

80

60

40

20

0 50 100 150 200 250 300

clock drift Td in seconds

network topologies and the sequence that nodes turn on. Wowe expect the
performance of local update with suppression improves wi¢hincreased neigh-
borhood size due to local updates (quick notice) and supiare$decreased num-
ber of control messages). Thus, instead of giving detaifeadyais of the energy
consumption, we use random topologies to simulate the lgotwBbrmance of the
protocol in Section 5.

16

5 Simulation Results

To evaluate our protocols in more realistic, multi-hop su@rs, we next test our
algorithms through simulation. Our results confirm our gged, and show that both
our new algorithms can save significant amount of energyndugconfiguration. In
addition, we demonstrate thbBPL with floodingis good in low density networks,
while with the network density increases, the performancécal update with

suppressiorexcels.

5.1 Protocol Implementation and Simulation Setup

We implement both protocols in TinyOS [20] and use Avrora as simulation
platform [21,22]. Avrora is an instruction-level simulator the Atmel embedded
processor developed at UCLA. As an instruction-level sinaujave are able to test
real protocols suitable for deployment, running the sameattzode we would run
on Mica2 motes. However, the simulator gives us the freedorepeatedly test a
large number of topologies.

The simulator uses a simple free-space model of radio padjmay It supports both

packet collisions and fading transmission channels. Tdrestission range of each
node is set as 31m in all simulations. We use the radio eneagiehdemonstrated

in Section 4 to measure the energy cost during simulatiosm&asure the time
spent on each radio state to compute the energy indirectly.

We modify the topology generattopo.gerf23] to generate random network topolo-
gies. (Originally developed for [24], we extended it to sapgpMica2 topologies.)
The generator places twenty-four nodes randomly in squeitbsedge sizes rang-
ing from 60—-200m. It discards scenarios that are partitiof@ssuming any nodes
within 31m are connected). Changing area effectively chanligedensityof the
topologies. We vary network density from 2 through 12 nemsblooking at even
values. We collect ten different network topologies forragge neighborhood size
around 4 through 12. We consider only two cases for neigtduatisize of 2 due to
the difficulty in generating connected networks at such lensities.

The purpose of the simulation is to measure the mean energguogption during
reconfiguration after a long sleep. We simulate our undesmsgismic monitoring
application where nodes sleep for 30 days and then awakemBxénum clock
drift after a month-long sleep %y of 130s in one direction. Therefore we turn
nodes on with a random, uniform distribution in the first 260¢he simulation.

17

Anallysis for L&’L with floéding 1
140 Simulation for LPL with flooding . N

120 | B
SLPL (worst case)
D00 [E

80 - . B
SLPL (average case) % P % -

60 | J%/’/'/&/ i

"7 LPL with flooding
40 F - i

Energy Needed for Reconfiguration (millijoules)

20 —

0 Il Il Il Il Il Il Il

Neighborhood Size n

Fig. 6. Mean energy consumption for LPL with flooding in Avrora, (2&@anultihop
network,Tp=128ms)

5.2 LPL with Flooding

In this section we evaluate the performance of bBL with floodingalgorithm.

As shown in Equations (14), optimdp varies based on network drift period and
average number of neighbors. When network drift period issl2@cording to
Figure 2, the optimalp we can choose for LPL with flooding ranges from 150ms
to 80ms with 2 to 12 neighbors. In this simulation, we cho@geas 128ms for
simplicity. Nodes start consuming energy when they wake tup @ndom time.
They stop the measurement as soon as they receive the lagtrketp message
from their neighbors.

Figure 6 shows how the mean energy consumption on each nade wath differ-
ent neighborhood size fdpl with flooding It compares the analysis (the diagonal
line) with simulation (dots show each simulation run, wtelgor bars show the
mean, max and min). For context, the three horizontal lifesvsbest, average,
and worst case analytical values for SLPL.

The simulations verify our analysis shown Figure 4, matghaimost perfectly. It
also confirms our expectation, that flooding works well whetwork densities
are low because the cost of overhearing is little, but the ©ess as networks get
denser. In all cases, the reconfiguration cost is very piailie.

It is also helpful to compare flooding to SLPL. For sparse eks, flooding con-
sumes less energy than average-case LP, because it alwstthork to reconfig-
ure much more rapidly. On the other hand, above densitie 0SILPL is better
on the average, since the cost of overhearing overwhelmsbehefits of earlier
reconfiguration. Although even there, the flooding is savesrgy compared to

18

T T T T T T T
140 L Median and quartiles for local update with suppression ——— |

120 | B
SLPL (worst case)
100 =~~~ -

80 |- - . . -

,,,

Energy Needed for Reconfiguration (millijoules)

60 s . 3 : T
s 3 v @ o
.f.\ 3 “ i . Local Update
HERS " - with

40 ; ﬂ """" g— -------- [T . $1Suppression’]|

SLPL (best case)
20 —
0 Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14

Neighborhood Size n

Fig. 7. Mean energy consumption for local update with suppression iordvf24-node
multihop network)

worst-case SLPL.

We next turn to local update with suppression in search debgerformance at
higher densities.

5.3 Local Update with Suppression

We next evaluate hovocal update with suppressigrerforms under different net-
work densities. In this algorithm, senders can start datastnission as soon as they
realize the network is stable. They either discover thishairtown or on receipt of
data or network up messages from other nodes. Therefor&édéosame topology,
the duration of reconfiguration varies depending on wherfiteesender becomes
active. Thus in each test case, we simulate all twenty-fassipble situations in
which each node will be the first sender respectively andecoknergy cost for
each case. Nodes update their energy usage until that spgeifder in the test
finishes reconfiguration and is able to start data transomissi

In Figure 7, dots show each simulation rurlacal update with suppressipwhile
error bars show quartiles and medians are connected witkBlzeddine. The large
variance in energy cost for different runs of simulationésause it closely depends
on when the first data sender turns on. Local update workenaddy well (better
than average LPL behavior) at low densities. It convergetherminimum LPL
cost at higher densities by exploiting local informatiofisimprovement is due
to the increased probability for the first sender to overteeaetwork up message
from larger neighborhood size. Moreover, the number of tmatrol packets drops
as well with the increase of neighborhood size due to supmesWe therefore

19

suggest that local update with suppression is the besteliaigeconfiguration in
networks with moderate to high density.

6 Testbed Evaluation

The above simulation results verified the effectivenessuoftgorithms and quan-
tified their performance in relatively large, multi-hop tipgies. However, these
simulations use a somewhat idealized communications mddetelax this as-
sumption, we further evaluate our algorithms with testbgueeiments carried out
over Mica-2 motes and real radio communication.

We have looked at the performance of LPL with flooding throaglalysis (Sec-
tion 4.4) and simulation (Section 5.2). Our analytic restdcus only on single-hop
topologies, and the simulations validate this analysis exténd it to multi-hop
networks. We next examine testbed results to explore hovalacaemmunication
channel affects the algorithm performance.

For these experiments we use a single-hop network topolagsimulation, it is
easy to generate multi-hop topologies and to control ang tvee density of node
deployment. However, this task is very difficult in real-Wbexperiments, primar-
ily due to the irregular transmission ranges and the largay'grea” with unreliable
transmissions [25,26]. Therefore, in evaluating the atbor of LPL with flooding,
we adopt a single-hop topology, where all nodes can dirdwthyr each other. To
change the node density, we use different numbers of nodibe inetwork. Sim-
ilar to the simulation in Section 5.2, we evaluate neighborhsize from 2 to 12
nodes. A single-hop topology allows us to compare our expanmis to the analysis
in Section 4.

Except the topology, other parameters have the same vaduiestihe simulation.
For each neighborhood size, we run 6 independent tests Wfighesht random boot
orders of the nodes. We then calculate the mean and staneiatidn of energy
consumption of each nodes in all the tests.

Figure 8 shows the experimental results of LPL with floodipe dashed lines
in the figure show the upper- and lower-bounds and expectegtvdrom anal-

ysis of basic LPL, and the solid line without error bars shaxpected energy
consumption from analysis of LPL with flooding. The first ohsion is that the
experimental results closely track the trend of the ana)yshich verifies the effec-
tiveness of the algorithm in the real world. Compared to tinepge LPL (SLPL),

our flooding algorithm consumes less energy when networlsitiers low (less

than 6 neighbors), and consistently consumes less eneagytiie worst case of
basic LPL.

20

140

120 b

SLPL (worst case)
10 e 3

Experiment for
LPL with flooding

[0e)
(=)
T

[e2]
(=)
T

///————'—""""""/A/ﬁ;lIysis for
LPL with flooding

N
o
T
\
\
I

N
(=]
T
I

Energy Needed for Reconfiguration (millijoules)

(=]

0 2 4 6 8 10 12 14
Neighborhood Size n

Fig. 8. Mean energy consumption of each node using LPL with flooding ibedsxperi-
ments (bars show standard deviations).

We do observe that the experimental results seem to use g Breal increment of
energy larger than analysis. To investigate reason, welbaked at the breakdown
of the radio time that each node stays in different statesndtiee that some nodes
have spent more radio time in the idle state than the idealdeguires during their
waiting period after they boot. We have not yet determinedekact cause of this
discrepancy, but a plausible explanation is that the reahohl is not as clean as
the ideal model used in analysis and simulation. The ratikigh (and varying)
noise level sometimes can wake up a node in the LPL mode, akd it listen
for potential packets. Such false wake-ups will increase pent in listening to an
idle channel, thereby increasing energy consumption. @uré work is to confirm
this result with more detailed experiments.

In addition, the experimental results show larger variaaideigher node densities.
This is primarily due to the increased collisions in the flmggphase at higher den-
sities. This observation is similar to our prior observaian simulation (Figure 6).

7 Conclusion

In this paper, we present two new algorithms to reduce theggremst during peri-
odic network reconfiguration for mostly-off applicatiomsw-power listening with
flooding can quickly finish network reconfiguration by floogia control message
as soon as one node discovers that the network has compieselgned. While
in local update with suppression, nodes only notify theneci one-hop neigh-
bors about this information to save overhearing overheagl h&le implemented

21

both protocols in TinyOS and tested their performance inofar Through anal-
ysis, simulation and testbed experiments, we show that paitocols are more
energy efficient than existing approaches. Flooding wodst lmsparsenetworks

with 6 neighbors or less, while local update with supprassworks best irdense

networks (more than 6 neighbors).

In future work, we plan to investigate the robustness of dgorthms to gain
experience with different types of node failures. We alssmpb evaluate the per-
formance of our algorithms with larger numbers of nodes @ testbeds.

Acknowledgments

This research is partially supported by the National Se@dhaundation (NSF) un-
der the grant NeTS-NOSS-0435517 as the SNUSE project, bydavaee donation
from Intel Co., and by Chevron Co. through the USC Center for &uitre Smart
QOilfield Technologies (CiSoft).

We would like to thank Ben L. Titzer at UCLA for his helps on pidwg sup-
port for Avrora. We also thank Mark Yarvis at Intel Co. for hiscussions that
motivated this research topic.

References

[1] J. Hill, D. Culler, Mica: a wireless platform for deeply embedded nekspiEEE
Micro 22 (6) (2002) 12—-24.

[2] Crossbow Technology Incht t p: / / www. xbow. com’ , Mica2 Data Sheet.

[3] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, J. Zhao, Habitatnitoring:
Application driver for wireless communications technology, in: Proceedinfgthe
ACM SIGCOMM Workshop on Data Communications in Latin America and the
Caribbean, ACM, San Jose, Costa Rica, 2001.

[4] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, Wireless esemetworks for
habitat monitoring, in: Proceedings of the ACM Workshop on Sensor N&svand
Applications, ACM, Atlanta, Georgia, USA, 2002, pp. 88-97.

[5] D. Whang, N. Xu, S. Rangwala, K. Chintalapudi, R. Govindan, J. Walla
Development of an embedded sensing system for structural health mogjtorin
in: Proceedings of the International Workshop on Smart Materials andt8tes
Technology, 2004.

[6] W. Ye, J. Heidemann, D. Estrin, An energy-efficient mac protooolireless sensor
networks, in: Proceedings of the IEEE INFOCOM, IEEE, New York,, 2802, pp.
1567-1576.

22

[7] J. Polastre, J. Hill, D. Culler, Versatile low power media access forlasgesensor
networks, in: Proceedings of the 2nd ACM Conference on Embedddédaxied
Sensor Systems SenSys, ACM, Baltimore, MD, USA, 2004, pp. 95-107.

[8] Y. Xu, J. Heidemann, D. Estrin, Geography-informed energy eoraion for ad hoc
routing, in: Proceedings of the ACM International Conference on Mdbdenputing
and Networking, ACM, Rome, Italy, 2001, pp. 70-84.

[9] B. Chen, K. Jamieson, H. Balakrishnan, R. Morris, Span:. an ggwrefficient

coordination algorithm for topology maintenance in ad hoc wireless networks

in: Proceedings of the ACM International Conference on Mobile Compuding
Networking, ACM, Rome, Italy, 2001, pp. 85-96.

[10] N. Ramanathan, M. Yarvis, J. Chhabra, N. Kushalnagar, L hdasurthy, D. Estrin,
A stream-oriented power management protocol for low duty cycle seretaronk
applications, in: Proceedings of the IEEE Workshop on Embedded Neadaior
Sensors, IEEE, Sydney, Australia, 2005, pp. 53-62.

[11] J. Heidemann, W. Ye, J. Wills, A. Syed, Y. Li, Research challeagesapplications for
underwater sensor networking, in: Proceedings of the IEEE Wirelessr@inications
and Networking Conference, IEEE, Las Vegas, Nevada, USA, 2006228-235.

[12] A. El-Hoiydi, J.-D. Decotignie, C. Enz, E. L. Roux, Poster abgtréidiseMAC, an
ultra low power MAC protocol for the wisenet wireless sensor netwopkssier
abstract), in: Proceedings of the First ACM Conference on Embeddsadddked
Sensor Systems SenSys, Nov., Los Angeles, CA, 2003, pp. 302-303.

[13] T. van Dam, K. Langendoen, An adaptive energy-efficient nratopol for wireless
sensor networks, in: Proceedings of the First ACM Conference on eddsd
Networked Sensor Systems SenSys, ACM, Los Angeles, California, 38@3, pp.
171-180.

[14] W. Ye, F. Silva, J. Heidemann, Ultra-low duty cycle mac with scheduleahoel
polling, in: Proceedings of the Fourth ACM Conference on Embedded dikéd
Sensor Systems SenSys, ACM, Boulder, Colorado, USA, 2006, fip-332.

[15] Y. Li, W. Ye, J. Heidemann, Energy efficient network reconfagion for mostly-
off sensor networks, in: Proceedings of the the Third IEEE Communicatatiety
Conference on Sensor, Mesh and Ad Hoc Communications and Netv®EEEGN),
Reston, VA, USA, 2006, pp. 527-535.

[16] V. Rajendran, K. Obraczka, J. Garcia-Luna-Aceves, Breficient, collision-free
medium access control for wireless sensor networks, in: Proceedfitigs First ACM
Conference on Embedded Networked Sensor Systems SenSys, AGMyrigeles,
California, USA, 2003, pp. 181-193.

[17] A. El-Hoiydi, J.-D. Decotignie, J. Hernandez, Low power MAC fowols for
infrastructure wireless sensor networks, in: Proceedings of the Fifttogean
Wireless Conference, Feb., Barcelona, Spain, 2004, pp. 563-569.

[18] Y. Li, W. Ye, J. Heidemann, Energy and latency control in low dutgleyMAC
protocols, in: Proceedings of the IEEE Wireless Communications and Netwgor
Conference, New Orleans, LA, USA, 2005.

23

[19] Chipcon Inc.htt p: / / ww. chi pcon. com , Chipcon CC1000 Data Sheet.

[20] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, Systernhitecture
directions for networked sensors, in: Proceedings of the Ninth Inferra
Conference on Architectural Support for Programming Languagels @Gperating
Systems (ASPLOS-1X), ACM., Cambridge, MA, USA, 2000, pp. 93-104.

[21] B. L. Titzer, J. Palsberg, Nonintrusive precision instrumentatiomafrocontroller
software, in: Proceedings of the LCTES, Conference on Langu&ymapilers and
Tools for Embedded Systems, Chicago, lllinois, 2005.

[22] B. L. Titzer, D. K. Lee, J. Palsberg, Avrora: Scalable sensetwork simulation
with precise timing, in: Proceedings of the Fourth IEEE International Wargson
Information Processing in Sensor Networks, IEEE, Los Angeles, Caidp USA,
2005, pp. 477-482.

[23] I-LENSE, Topology generatohtt p://wwv. i si.edu/il ense/ software/
t opo_gen/topo_gen. htm .

[24] J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. EsBinGanesan,
Building efficient wireless sensor networks with low-level naming, in: Beatings of
the Symposium on Operating Systems Principles, Lake Louise, Banff, @apad1,
pp. 146-159.

[25] J. Zhao, R. Govindan, Understanding packet delivery peréorce in dense wireless
sensor networks, in: Proceedings of the ACM Conference on Embdeddivorked
Sensor Systems SenSys, ACM, Los Angeles, CA, USA, 2003, pp. 1-13

[26] A. Woo, T. Tong, D. Culler, Taming the underlying challenges of td&éamulthop
routing in sensor networks, in: Proceedings of the the First ACM Cenfag on
Embedded Networked Sensor Systems SenSys, ACM, Los Angeles, £4,2003,
pp. 14-27.

24

