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Abstract 

Of the many state-of-the-art methods for cooperative localization in wireless sensor networks (WSN), only very few 
adapt well to mobile networks. The main problems of the well-known algorithms, based on nonparametric belief 
propagation (NBP), are the high communication cost and inefficient sampling techniques. Moreover, they either do not 
use smoothing or just apply it offline. Therefore, in this article, we propose more flexible and efficient variants of NBP 
for cooperative localization in mobile networks. In particular, we provide: i) an optional 1-lag smoothing done almost 
in real-time, ii) a novel low-cost communication protocol based on package approximation and censoring, iii) higher 
robustness of the standard mixture importance sampling (MIS) technique, and iv) a higher amount of information in 
the importance densities by using the population Monte Carlo (PMC) approach, or an auxiliary variable. Through 
extensive simulations, we confirmed that all the proposed techniques outperform the standard NBP method. 

Keywords: cooperative localization, mobile networks, belief propagation, particle filter, smoothing, message 
approximation, population Monte Carlo, auxiliary particle filter, importance sampling 

1. Introduction 

Cooperative localization in mobile networks is an im­
portant problem, as the availability of location informa­
tion can enable many applications [1, 2, 3, 4], such as 
tracking vehicles on roadways without the global po­
sitioning system (GPS), firefighters in buildings under 
fire, forklifts in a warehouse, animals in woods, and 
search-and-rescue. We consider the case in which some 
small number of sensors, called anchor nodes, obtain 
their coordinates via GPS [5] (or by installing them 
at points with known coordinates), and the rest, target 
nodes, must determine their own coordinates. We as­
sume that distance measurements are available between 
appropriate pairs of sensors. They can be obtained [1,3] 
using time of arrival (TOA), time difference of arrival 
(TDOA), or received signal strength (RSS). If the refer­
ence sensors were capable of high-power transmission, 
they would be able to make measurements with all the 
anchor nodes. This represents single-hop positioning. 
However, we prefer to use energy-conserving devices 
without unnecessarily using energy for long-range com­
munication. In this case, each sensor only has available 
noisy measurements of its distance to several neighbor­
ing sensors (not necessarily anchor nodes). It is still nec­

essary that there is minimum of three (for 2D) or four 
(for 3D) anchor nodes in the network, but not neces­
sarily directly connected to all the target nodes. This 
technique, also known as multi-hop (or cooperative) po­
sitioning, is fully distributed since each target node is re­
sponsible for locating itself using only information from 
its neighborhood. In case of mobile positioning, target 
nodes are attached to the objects that should be tracked. 
Anchor nodes are usually static, but this is not necessary 
(especially, if they are equipped with GPS). 

1.1. Related work 

A number of methods for cooperative localization has 
been proposed, but most of them are adapted for the lo­
calization in static networks [6, 7, 8, 9, 10, 11, 12]. Re­
peating these static localization algorithms can provide 
location estimates in mobile networks, but this approach 
is suboptimal due to the lack of additional information 
provided by the mobility of the sensor nodes. Some 
works already take this information into account, for ex­
ample [13, 14, 15, 16, 17]. Moreover, the goal of most 
localization methods [6, 8, 11, 12, 13] is just to esti­
mate the position of all the target nodes, without associ­
ated uncertainty. Since the uncertainty of the estimate 
is crucial for most applications, a Bayesian approach 
[9,10,16] can be applied. Its goal is to estimate the pos­
terior marginal probability density function (PDF) of the 



target's position, given the priors, and measurements. 
Since this approach is generally intractable, it is neces­
sary to use some message-passing method [18] and also 
to approximate all PDFs using particle-based approxi­
mations [19, 20]. One suitable framework is nonpar-a-
metric belief propagation (NBP), which was initially 
proposed for static networks [9]. Variants of this method 
have been already used for cooperative localization in 
mobile networks [16, 17]. In [16], the authors propose 
a particle-based distributed message passing method de­
fined on a factor graph. Comparing with NBP, which is 
defined on a Markov Random Field (MRF), the main 
difference is the capability to work with higher-order 
potentials. In [17], the authors use NBP method for dis­
tributed tracking of mobile robots. For this application, 
it is also necessary to estimate the speed of the targets 
(not only the positions). It also takes advantage of the 
bidirectional nature of NBP to send the messages from 
the future to present (known as smoothing). However, 
this is only possible in the case of offline postprocess­
ing. 

1.2. Contributions 

In this paper, we extend the standard NBP method [9] 
for mobile positioning. Our main contributions are as 
follows: 

• We provide a flexible algorithm for mobile posi­
tioning, in which NBP can provide three different 
estimates (repeated, filtered, and smoothed) by run­
ning it once. In this paper, we specifically focus on 
1-lag smoothing since it can be done almost in real 
time. 

• We develop a novel low-cost communication pro­
tocol for mobile positioning based on NBP. It is 
based on i) communication of the beliefs (instead 
of the messages), ii) approximation of the beliefs, 
and iii) censoring (i.e., avoiding the transmission 
of uninformative data). It is almost as accurate as 
standard NBP (in which the particles from the mes­
sages are transmitted). 

• We improve the standard mixture importance sam­
pling (MIS) by adding uniformly distributed parti­
cles. This makes NBP robust against outliers. 

• In order to increase the amount of information in 
the importance densities, we propose two novel 
NBP variants: population Monte Carlo NBP 
(PMC-NBP), and auxiliary NBP (ANBP). Both of 
them outperform standard NBP. 

The remainder of this paper is organized as follows. 
In Section 2, we provide the overview of static position­
ing using NBP. In Section 3, we propose new framework 

for mobile positioning. Solutions for communication is­
sues are proposed in Section 4, and improved sampling 
techniques in Section 5. Finally, simulation results are 
presented in Section 6, and the paper is concluded in 
Section 7. 

2. Overview of static positioning using NBP 

2.1. Statistical model 

Let us assume that we have Ns sensors (Na anchors 
and N, targets) scattered in some region. The 2D lo­
cation of a sensor r is denoted by xr. The target node 
u obtains a noisy measurement dru of its distance from 
some neighboring node r: 

dru = \\Xr ~ Xu\\ + Vru Vru ~ pv (1) 

where, for the noise vru, we can assume that pv is Gaus­
sian (for TOA), log-Gaussian (for RSS), or any other 
empirical distribution (found using experiments in the 
deployment area). This measurement provides us with 
a likelihood function p(dru\xr, xu) between each pair of 
neighboring sensors (r, u). In addition, each sensor r 
has some prior distribution denoted pr(xr). This prior 
could be an uninformative one (i.e., a uniform distribu­
tion over the whole deployment area) for the targets, and 
the Dirac Delta function for the anchors. Then, the joint 
PDF is given by: 

p(xu...,xNt\{dru})oc Y\ p(dru\xr,xu)Y\pr(xr) (2) 
(r,u)£E r€V 

where (V,E) is an undirected graph which consists of a 
set of nodes (or vertices) V, and a set of edges E. We 
also need to define a detection area. For large-scale sen­
sor networks, it is reasonable to assume that only a sub­
set of pairwise distances will be available, primarily be­
tween sensors which are located within the some radius 
R. For simplicity, we use this model, but better approx­
imations of the probability of detection can be obtained 
using empirical data from the deployment area [9, 21]. 

Our goal is to compute the posterior marginal PDF 
p{xn\{dru\) (for each target node n) by marginalizing the 
joint posterior PDF, which is not tractable for the local­
ization problem. Therefore, we need to find these PDFs 
using some message-passing method. 

2.2. Belief propagation (BP) 

Belief propagation [18] is a way of organizing the 
"global" computation of marginal PDFs in terms of 
smaller local computations within the graph. It is one 
of the best-known message-passing methods for dis­
tributed inference in statistical physics, artificial intel­
ligence, computer vision, localization, etc. The whole 



computation takes a time proportional to the number of 
links in the graph. This is significantly less than the ex­
ponential time that would be required to compute the 
posterior marginal PDFs naively. 

In the standard BP algorithm, taking that the underly­
ing graphical model is a Markov Random Field (MRF), 
the belief (posterior marginal PDF) at a node r, Mr(xr), 
is proportional to the product of the local evidence at 
that node i//r(xr), and all the messages coming into node 
r: 

Mr(xr) oc if/r(xr) Y\ mur(xr) (3) 
usGr 

where xr is a state of node r, and Gr denotes the neigh­
bors of node r. The messages are determined by the 
message update rule: 

where if/ru(xr, xu) is the pairwise potential between the 
nodes r and u. On the right-hand side, there is a product 
over all the messages going into node u except for the 
one coming from node r. In other words, the message 
from node u to node r represents the "opinion" of node 
u about the location of node r. The messages and beliefs 
are represented in probabilistic form, but not necessarily 
normalized. 

The relationship between the graph and the joint PDF 
may be quantified in terms of potential functions if/, 
which are defined over each of the graph's cliques. A 
clique (C) is a subset of nodes such that for every two 
nodes in C, there exists a link connecting the two. So 
the joint PDF can be written as: 

p(xu ...,xNu) oc Y\ tc({Xi • i e C}) (5) 
cliques C 

For the distance-based localization, we only need po­
tential functions defined over variables associated with 
single nodes and pairs of nodes. Single-node po­
tential (prior information about the position) at each 
node r, and the pairwise potential (likelihood function: 
t(/ru(xr,xu) = p(dru\xr, xu)) between nodes r and u, are 
respectively given by: 

friXr) = Pr(xr), (6) 

fruiXr, Xu) = pv(dru - \\xr ~ Xu\\). (7) 

Using (2), we can write the joint posterior PDF, as a 
function of the potentials: 

p(Xi,...,XNt\{dru})ocY\lf/r(xr) Y\ tru{xr,Xu) (8) 
reV (r,u)£E 

Now we can marginalize this PDF using the BP algo­
rithm, and use its mean value (or mode) and variance to 
characterize the target positions. We will use a differ­
ent form of the BP algorithm, in order to adapt it to the 
iterative localization scenario, where it is more practi­
cal to compute beliefs in each iteration, and use them to 
update messages. This form can be easily found by re­
placing (3) in (4), and it is given by the following belief 
update and message update rules (at iteration /): 

M[(xr) oc ^(Xr) Y\ mUxr) (9) 
usGr 

if/uriXr, Xu) "_ " dxu (10) 
m'ruiXu) 

xu 

In the first iteration of this algorithm, it is necessary to 
initialize the message to an uninformative state, and the 
beliefs to the prior {mur = 1 and M\ = pr for all u, 
r). Then we can iterate (9) and (10) until sufficient con­
vergence. For tree-like graphs, the number of iterations 
should be at most the length of the longest path in the 
graph. In case of loopy graphs, there is no such guar­
antee, but convergence is often achieved after a similar 
number of iterations. 

2.3. Nonparametric Belief Propagation (NBP) 

The presence of nonlinear relationships and poten­
tially (highly) non-Gaussian uncertainties in sensor lo­
calization makes standard BP undesirable1. However, 
particle-based representation via nonparametric belief 
propagation (NBP) [9] enables the application of BP 
to localization in WSN. In NBP, the belief and mes­
sage update equations, (9) and (10), are performed us­
ing stochastic approximations, in two phases: i) first, 
drawing particles from the belief M'r(xr), ii) then using 
these particles to approximate each outgoing message 
m'm. The main advantage of this approach is the ability 
to provide information about location estimation uncer­
tainties (in contrast to deterministic approaches), which 
are not necessarily Gaussian. 

2.3.1. Computing NBP messages 
In the first iteration, we draw particles from the ini­

tial belief, M\ = pr. In order to decrease the number 
of particles, we draw them uniformly within a bounded 
box [15, 21]. The bounded box of node r is defined as 
the rectangular area in which the node is localized. It 
is created using 1-hop and (eventually) 2-hop distances 
from the anchor nodes. Given Np weighted particles 
{WJ

r'\ X
J/} from the belief M'r(xr) obtained at iteration /, 

Note that in some specific cases (e.g., Gaussian measurements), a 
parametric BP can be used [22]. 



we can compute weighted particles of the outgoing BP 
message m'ru. The distance measurement dru provides 
information about how far sensor u is from sensor r, but 
no information about its relative direction. To draw a 
particle of the message (x^+ ), given the particle XJ/ 
which represents the position of the sensor r, we simply 
select a direction &'1 at random uniformly in the inter­
val [0,2n). We then shift XJ/ in the direction of e'hi by 
an amount which represents the estimated distance be­
tween nodes u and r: 

x&+1 = X? + (dru + vÓ[cos(^;) sin(0*'-)] (11) 

The particles are weighted by the reminder of mes­
sage update rule (10): 

For the denominator in the previous equation (and also 
for (14)), we need to know the parametric form of the 
message. We approximate it using kernel density esti­
mate (KDE)2. The optimal value for the bandwidth h'^1 

can be obtained in a number of ways. The simplest tech­
nique is to apply the "rule of thumb" estimate [21, 23], 
but there are also more advanced methods, e.g., gener­
alized cross entropy (GCE) estimator (see [27], Alg. 1). 
In this paper, we apply the GCE approach, since it yields 
a smaller integrated squared error. 

We also need messages coming from the anchor 
nodes, which can be found using (10) and the belief of 
the anchor node x* (M'r(xr) = 6(xr - x*)): 

/ n^ í xJoc^Oí . j cJ (13) 

Note that, in contrast to [9,21], we do not transmit mes­
sages over unobserved edges (2-hop, 3-hop,...) since we 
seek a fast method for mobile networks. 

2.3.2. Computing NBP beliefs 
To estimate the belief Af¿+1(xH) using (9), we draw 

particles from the product of several KDEs of the mes­
sages. However, it is very difficult to draw particles from 
this product. Thus, we use the sum of the messages as 
a proposal distribution q'¿l{xu), and then reweight all 
particles. This procedure is well-known as MIS [23]. 

Denote the set of neighbors of u, having observed 
edges to u and not including anchors, by G°; and the 
set of all neighbors by Gu. In order to draw Np parti­
cles, we create a collection of kNp weighted particles 

approximation of the distribution p(x) : p(x) = 
Y¡j w^Kh(x - xJ) given a kernel Kh(x). The most common ker­
nel function (Kh) is the spherically symmetric Gaussian kernel: 
Kh(x) = N(x,0,hl), where h is the bandwidth which controls the 
variance [9, 26]. 

(where k > 1 is a parameter of the sampling algorithm) 
by drawing kNp/ \G°U\ particles from each message mru 

(r € G°), and assigning, to each particle XJü'+ , a weight 
equal to the ratio: 

wj,i+l = Uv€G, Ku (Xu ) ( 1 4 ) 

¿+1(4 i+1) 
where the proposal distribution qjxu) is given by: 

¿+1(xH) = XveGo<1(x„) (15) 

Some of the calculated weights are usually much 
larger then the rest, especially after several iterations. 
This means that the particle-based estimate will be dom­
inated by the influence of a few particles, and the es­
timate could be erroneous. This problem is known 
as sample depletion [19]. To avoid this problem, 
we draw Np values independently from the collection 
{WJ/+ ,XJ/+ } with the probability proportional to their 
weight, using resampling with replacement [23]. This 
means that we create Np equal-weight particles drawn 
from the product of all the incoming messages. 

A node is located when some convergence criterion 
is met. We can use Kullback-Leibler (KL) divergence 
[23], a common measure of the difference between two 
distributions. For the particle based beliefs in our algo­
rithm, the KL-divergence between beliefs in two con­
secutive iterations, is given by: 

KI*l= Y W»+1 log Wr" (16) 
Y M'U(XJ

U'+1) 

where we used the approximation Af¿+1(X¿'!+1) « W£t+1. 
The algorithm stops when KL'^1 drops (for all nodes) 
below the predefined threshold. However, given the 
structure of the graph (e.g., communication radius, and 
diameter of the deployment area), we can predefine the 
number of iterations so as to decrease the complexity of 
the algorithm. We use the latter approach in this article. 

Finally, it is important to mention that the proposed 
algorithms (BP and NBP) are not exact in networks with 
loops. The problem is double counting [18], a situation 
in which the same evidence (as part of the message) 
is passed around the network multiple times and mis­
taken for new evidence. This will cause overconfident 
beliefs of the position estimates. We already considered 
this problem and proposed a few solutions in static net­
works [21, 24, 25]. Obviously, the same approaches can 
be applied for the mobile networks. However, to make 
the algorithm as fast as NBP, we recommend uniformly-
reweighted NBP (URW-NBP) [25] as the simplest ex­
tension of NBP. In this article, we will consider net-



works with a negligible number of loops, so NBP will 
be good enough for the all analyses. 

3. Mobile positioning using NBP 

From now on, we assume that the target nodes are 
moving within the deployment area, and that the anchor 
nodes are still static. Our goal is to adapt the static NBP 
method to mobile positioning. 

3.1. Graphical model 

We start with the example of a graphical model, in 
Fig. 1, which illustrates three target nodes (m, n, and 
p) in three consecutive time frames (t - 1, t, and t + 
1). For instance, to locate node n at time t, we need 
the messages from its neighbors (m and p) as in static 
NBP, plus two additional messages from the past and 
the future. Thus, to extend static NBP, we just need to 
define the pairwise potential and the messages between 
two consecutive time frames. It is also worth noting that 
the connectivity between nodes can change over time. 

The pairwise potential between two consecutive time 
frames (for a target node n) \¡/t-\f{xnf-\, x„it) (we refer to 
it as kinematic potential) represents the correlation be­
tween positions in these time frames, which depends on 
the target dynamic. For example, if we can keep track 
of the speed v,_i at time t - 1, and have the model of the 
distribution pw of the process noise w (which represents 
the random variation of the speed due to the accelera­
tion), kinematic potential is given by: 

f t- lA^n.l- l i^i i . i ) — Pw\ \\Xn,t Xnf-\\ Ts). (17) 

where Ts represents the sampling interval. Note that it 
is usually hard to measure the process noise, so a Gaus­
sian approximation is a common choice. However, since 
we prefer to keep the non-Gaussian nature of NBP, we 
apply the model (as in [15]) which only requires the 
knowledge of the maximum speed of the target Vmax. 
This is usually easy to find for most applications (e.g., 
5 m/s for people, 1 m/s for forklifts, 30 m/s for cars, 
etc.). Given Vmax, the kinematic potential of node n can 
be written as: 

mmn\xn,t) 

mt-u(xn,t) A^ m+u(x„,,) 

mpn\xn,t) 

Figure 1: Example of a graphical model for mobile positioning, which 
illustrates three target nodes (m, n, and p) in three consecutive time 
frames (t - 1, t, and t + 1). 

3.2. BP and NBP 

Now we can extend the message passing method de­
scribed in Section 2 for mobile networks. Denote the 
belief of node n at time t, in the last iteration of static 
BP (see (9)), as Ms

nt{xn¿). To adapt the graphical model 
to mobile networks (according to Figure 1 and equation 
(9)), we can write the belief of node n in mobile net­
works as: 

MF
n
s
t(x„,) = 

mt-ij{xnj)Mlt{xnj)mt+i/xnj) = MF
t(xn¿)m,+1¿(xn¿) 

(19) 
where mt-\f(xn^ represents the filtering message (the 
message from past to present), mt+i/x„it) the smooth­
ing message (the message from future to present), and 
MFS

t (*„,,) is the belief which includes the filtering and 
smoothing messages. This belief can be available after 
N, time frames (for M-lag smoothing). We will focus on 
1-lag smoothing3 which can provide MFS

t(x„it) at time 
t + 1. By excluding mt+u(xnj) (i.e., mt+u(xnj) = 1), 
we can also define the filtered belief MF

t(x„it), which is 
available in real-time. 

Using the message update rule (10), we can define 
the filtering message (from t - 1 to t), and the smoothing 
message (from t + 1 to t). They are, respectively, given 
by: 

Wt-l,t\Xn,t-l > Xn,t) 
if \\Xn,t-l 
otherwise. 

< V -T 
-^ * max * s 

(18) 
Using this potential, we can predict the possible posi­
tions of node n at time t, given the estimate at time t - 1, 
and vice versa for smoothing. Note that, if we can mea­
sure the dynamic of the target (e.g., using an accelerom-
eter or a pedometer), we can use a more informative 
kinematic potential [28]. 

» V i 
r M^t_x{xnf-x) 

,í(xBií)
0C I A Í - I , Í C W - I , - W ) — : — ; ra-V-i 

J wV_i(xB,_i) 
(20) 

3Note that s-lag smoothing (s > 1) is less useful due to the "ac­
cumulation" of the uncertainty through a multi-hop path (even if the 
future measurements are very informative). 



mt+i/xn,t)cc if/t+i,t(xn,t+i,x„,t)—'—. rdxn,t+i 
J mt,t+l(Xn,t+l) 

-tn.í+1 

(21) 
Using (19), we can simplify previous equations: 

^1 , í(xB , í)oc/^1 , í(xB , í-1 ,xB , í)M-_1(xB , í_1yxB , í_1 

xn,t-l 

(22) 
m,+u(xnyt) oc 
/ IAÍ+I,Í(X«,Í+I,xntt)M

s
nt+l(xntt+i)mt+2,t+i(Xn,t+i)dxntt+i 

(23) 
Moreover, since we prefer to use 1-lag smoothing, we 
discard further information from the future (i.e., we set 
mt+2,t+i(xn,t+i) = 1): 

mt+u(x„¿)oc j ilrt+1j(x„j+1,x„j)M^+1(x„j+1)dx„,t+1 

-tn.J+1 

(24) 
Regarding the nonparametric approximation, we can 

reuse the weighted particles from the static scenario 
{W^'j,Xs

n'j], and use the filtering and the smoothing 
message to reweight them: 

WFJJ = mt.u(XsJ)-WsJ-mt+UXSnJ) = </-™í+i,í(<'/) 
(25) 

Messages, (22) and (24), can be computed via Monte 
Carlo integration, i.e.: 

mt-i/xn,t) oc ̂ \j/t_u(X
s
n'j_v xn,t) W ^ j (26) 

j 

mt+u(xn,t) oc ̂ i//t+u(Xs
n'J+1,xnf) Ws

n'j+1 (27) 
j 

As we can see, this method is very flexible, since 
there are three different beliefs available: Ms

nt, M
F

t, and 
MFS

t. The belief MF
t should be used in real-time ap­

plications, while the belief M™ should be used in all 
applications in which we can afford waiting one more 
sampling interval (Ts). On the other hand, the belief 
Ms

nt should not be used for tracking, but it is useful for 
testing the target dynamic4. 

4. Communication protocol 

Our second goal is to decrease the communication 
cost by: i) broadcasting the beliefs (instead of the mes­
sages), ii) approximating the beliefs without a signif-

4For example, it can be used to learn Vmax (if not known in ad­
vance). 

icant effect on the localization performance, and iii) 
avoiding the transmission of uninformative data. 

4.1. Broadcasting beliefs 

Naturally, one can assume that the messages should 
be exchanged between each pair of the neighboring 
nodes. However, this produce a huge communication 
overhead since each node would need to send one mes­
sage to each of the neighbors. The main problem of this 
approach is that it does not take advantage of the broad­
cast in WSN (i.e., the transmitted message is needed at 
just one neighbor, not all). If we recall equation (11), 
we can see that the particles from the messages are con­
structed using particles from the: i) current belief of 
the node which transmits the message (source node), 
ii) measured distance, and iii) random angle. Since 
the samples of the distance can be measured by each 
node (prior to localization) and stored into memory, they 
should not be transmitted. The samples of the angles are 
drawn from the uniform distribution (see (11)), so they 
can be computed at the destination. Thus, only parti­
cles of the beliefs, which are not available at the desti­
nation node, have to be transmitted. Finally, it is also 
necessary to compute the weights using (12), which re­
quires the outgoing message from the previous iteration. 
This problem can be solved by computing the messages 
twice: once at the source node, and once at the destina­
tion node. 

The main benefit of this approach is that each node 
has to broadcast only one package5 instead of nd pack­
ages in case of message transmission (where ra¿ is the 
node degree). This is paid by increased computational 
cost since the messages must be computed twice. How­
ever, it is already well-known [1] that the communica­
tion is much more energy-consuming than computation. 
The proposed protocol is summarized in Alg. 1. 

4.2. Package approximation 

For the described protocol, we would need to trans­
mit Np particles (i.e., Np weights, and 2NP coordinates). 
However, we can avoid this using the following approx­
imations: 

• We resample with replacement in order to avoid the 
transmission of the weights6. 

5 To avoid confusion, we use the term "packages" for the data that 
will be transmitted, in contrast to the term "messages" which refers to 
NBP messages, which are never transmitted. Although one package 
usually includes more scalar values (depending on the hardware plat­
form), in order to simplify the analysis, we assume that it includes just 
one scalar value. 

6Note that we can also avoid the transmission of the bandwidth, 
but it would only slightly decrease the communication cost. 



Algorithm 1 Communication protocol at time t (without 
approximation and censoring) 

l: for all nodes do 
2: Obtain sufficient number of distance samples 

(from each neighbor) 
3: Initialize all belief and messages 
4: for all iterations do 
5: Compute particles from outgoing messages 

and reweight them 
6: Broadcast particles of the current belief 
7: Compute particles from income messages 

and reweight them 
8: end for 
9: end for 

• We approximate the unweighted set of particles 
with a Gaussian mixture (GMM), and transmit only 
their parameters. 

• Upon receiving the GMM parameters, we re-draw 
the set of particles from this mixture. 

Since resampling is already part of the NBP algo­
rithm (Section 2.3.2), it does not affect accuracy. Re­
garding the GMM approximation, we expect that (given 
sufficient mixture components), it will not affect signif­
icantly the localization performance. Since the main 
problem of cooperative localization is the presence of 
the multi-modal beliefs (caused by non-rigid graphs 
and/or multi-modal measurement noise), we expect a 
GMM with very few components (Nm) to be the ap­
propriate choice. It is preferable to set Nm to a slightly 
larger value than the expected number of modes, and 
then remove all the components with small weights. We 
can cluster the unweighted set of particles using the 
k-means algorithm [29], or expectation-maximization 
(EM) [30]. The latter one can provide slightly better re­
sults, but with higher complexity. Thus, we recommend 
the use of k-means, especially for mobile networks. 

4.3. Package censoring 

We can additionally decrease communication using 
package censoring, i.e., by avoiding the transmission of 
packages which provide little information. To that end, 
we do the following: 

• In the first iteration, we only transmit the bounds of 
the bounded box (i.e., 4 scalar values, which define 
the rectangle). Then, the particles can be drawn at 
the destination node. 

• We do not transmit beliefs in the last iterations 
since they will never be used to update messages. 

• Packages from anchor nodes are never transmitted 
(except their coordinates, if not known in advance). 

• We do not transmit beliefs at iteration / which are 
very similar to the beliefs in iteration / - 1 . The sim­
ilarity can be measured using the KL divergence. 

We expect that these steps will, without any effect on 
the accuracy, significantly decrease the communication 
cost. Note that we can also avoid receiving packages, as 
done in [31]. This technique should be applied if receiv­
ing the data is energy-consuming, and also in the case of 
single-cast communication. 

5. Sampling techniques 

Our final goal is to improve the sampling techniques 
used in the standard NBP. We propose three techniques: 
i) mixture importance sampling with reference particles 
(MIS-RP), ii) Population Monte Carlo (PMC), and iii) 
the method based on an auxiliary variable. 

5.1. MIS with reference particles 

The MIS technique defined by (15) usually provides 
a very good set of particles, and outperforms a number 
of techniques as shown in [23, 32]. However, this might 
not be the case in the presence of the huge outliers (e.g., 
if obstacles are moving around). 

According to the results in mobile robot localization 
[33], it is always useful to add a small number of uni­
formly distributed particles. These particles are essen­
tial for re-localization in the rare event that the sensor 
loses track of its position. We call these additional par­
ticles, reference particles (RP). In our case, this will es­
pecially happen if the messages from the neighboring 
target nodes provide wrong particles, but either anchor 
nodes or the kinematic message provide good weights. 
The problem is illustrated in Figure 2. Without RP (Fig­
ure 2a), MIS provides the set of particles in which the 
best candidate is very far from the true position (e.g., 
due to the outliers). With RP (Figure 2b), additional 
particles have been added uniformly in the whole area, 
so the best candidate is closer7 to the true position. 

Therefore, the importance density (at iteration / + 1) 
can be written in the form: 

¿+1(x„) = Y,v€Go nC(Xu) + SRP • Unif{xu) (28) 

where Unif(xu) <x 1 within deployment area, 
Unif(xu) = 0 otherwise, and 6RP is the weight of the 
uniform distribution (in other words, the percentage of 

7To simplify the example, we assumed the MAP estimate, but the 
same conclusion is valid for the MMSE estimate. 



from the KDE as follows: 

(a) (b) 

Figure 2: Possible positions of target nodes in the case of (a) MIS, 
and (b) MIS with reference particles (MIS-RP). The true position of 
the target node is marked with a black circle, and the best particle 
candidates are encircled. 

Algorithm 2 Population Monte Carlo (PMC) (for node 

u) 

Choose initial importance function: ql
u{xu) 

for all iterations m = 1 : NPMC do 

Draw particles: Xjf1 ~ q%(x) (j = l...Np) 
P(XD 
q1!(xiM) 

-j,m _ WJ¡¡m 

4: Compute weights: Wif1 

5: Normalize weights: WJ
U 

6: Resample with replacement 
7: Update importance density: 

qr1(Xu) = Zj<Kh(xu-X
J
u
m) 

8: end for 

Zjwr 

x, X 
•j,m-l 

•4-[cos(eÍ) sinfój)] (29) 

where 4 ~ N(0, h) and 8Í ~ Unif[0, In). Note that we 
used simplified notation by removing the NBP iteration 
index (do not mix NBP iterations with PMC iterations). 
We refer to this version of NBP, as PMC-NBP. 

Finally, we propose an optional approximation of 
the PMC-NBP method. The main computational prob­
lem of NBP and variations is the computation of KDE, 
which requires 0{N2

p) operations. This is especially the 
problem in PMC-NBP, since it has nested iterations (i.e., 
within one NBP iteration, there are NPMC iterations). 
Therefore, instead of using full information (the prod­
uct of the messages from all the neighbors), we use only 
information from the anchors. In order to keep the NBP 
algorithm regular, we just need to keep the full informa­
tion in the first iteration of the PMC (which corresponds 
to the standard importance sampling). Since we do not 
use the information from the target nodes, this method 
represents a non-cooperative PMC. Note that this ap­
proach will not only improve the beliefs of the anchors' 
neighbors. Since NBP is still a cooperative method, in 
NBP's very next iteration, the improved estimate of the 
anchors' neighbors will be flooded further into the net­
work. 

reference particles). 6RP should be small (e.g., 10-20%) 
in order to keep the computational cost reasonable. Note 
that this importance density is legitimate since it is non­
zero at places where the distribution, that is being ap­
proximated, is non-zero. Thus, in case of regular sit­
uations (when messages provide good particles), these 
additional particles will not cause any problem (i.e., af­
ter reweighting, their weights will be close to zero). 

5.2. Population Monte Carlo (PMC) 

PMC [34, 35] is an iterative importance sampling 
technique in which the importance density changes with 
every iteration in order to produce particles that better 
represent the target distribution. The standard impor­
tance sampling technique is a special case of PMC by 
running just one iteration. The general form of PMC is 
illustrated in Alg. 2. 

In order to use PMC for cooperative localization, we 
need to choose the importance density that we want to 
improve. Thus, we can choose the density used for MIS 
(given by (15)) or MIS-RP (given by (28)) as prior. Dis­
tribution p{X¡¡m) used for reweighting in Alg. 2 is given 
by the numerator of (14). For the KDE, we again use a 
spherical Gaussian Kernel with bandwidth h. Finally, in 
each iteration of Alg. 2, we draw a new set of particles 

5.3. Auxiliary variable 

Standard importance sampling used in NBP does not 
take into account most of the available information 
in the graph. This often causes high variance of the 
weights, i.e., there will be a lot of particles in the re­
gions of low probability, and very few (or even just one) 
in the regions of high probability. One solution to this 
problem is to use the optimal importance density, which 
includes all the available information, but this is not fea­
sible in most cases [19]. A second solution is PMC from 
the previous section, which iteratively improves the im­
portance density. The auxiliary particle filtering (APF) 
[36, 37] is an alternative solution which tries to predict 
(using an auxiliary variable) which particles will be in 
regions of high probability. 

However, NBP is a generalization of particle filter­
ing for general graphs, so we need to adapt the standard 
APF method. One framework has been already pro­
posed in [38], in which the authors propose to use the 
index of the messages as an auxiliary variable in order 
to predict which message provides better information. 
This method is not very suitable (especially, for local­
ization) due to the high dimensional auxiliary variable. 
In contrast to this approach, we will choose a ID auxil­
iary variable, which will provide the largest amount of 
information. 



Recall equation (11), written in a more general form: 

4u = X? + (dru + i>)[cos(^e) s in(Ó] (30) 

in which we again removed the NBP iteration in­
dex and, in contrast to (11), we use a different index 
(/> jx, jd, je ~ l—Np) for each random variable. As we 
can see, to update the particles of the messages (x^„), 
we need to use three random variables: particles of 
the current position (XJ

r
x ~ Mr(xr)), distance samples 

(dru + vjd ~ pv), and angle samples (&» ~ Unif[0,2n)). 
The auxiliary variable could be an index of any of these 
three random variables. Obviously, the uniformly dis­
tributed Q'e includes the smallest amount of information 
(the entropy is maximal) than any other random vari­
able, so we choose je as the auxiliary variable. Then, we 
can set the other indices to the same value (jx = jd = j)-
In other words, instead of drawing samples uniformly in 
any direction (which will create a lot of particles with 
small weights), we will draw them in the most likely 
direction according to the distribution of the auxiliary 
variable. To achieve this, we first, for each index j e , find 
some likely value associated with the message, e.g., ex­
pected value: 

l& = »xr + Vdnlco&QP') sin(^)] (31) 

where we averaged the left-hand side of (30) over j . The 
computed set of mean values is further used to compute 
the first-stage (1st) weights: 

wtlst ex p(Y\MÍu) (32) 

which represent the likelihood function, given all the in­
formation (Y) that we want to include. Recall that these 
weights are for the message from node r to node u, so 
they represents some information about the position of 
node u. Thus, we can include the product of all the 
messages coming to node u, but as for PMC, we again 
restrict to information from the anchors. For this ap­
proach, it is even more critical because the number of 
messages (equal to twice the number of the edges in the 
graph) is typically significantly larger than the number 
of target nodes. Therefore, the likelihood of the infor­
mation that we want to include is given by: 

p(Y\rC) = Y\a€G P(dauK,A) oc Y\a€G fau(X*a,A) 

(33) 
where Ga is the set of all the anchor neighbors of node 
u. In the case of no anchors in the neighborhood, we 
simply do not apply this approach. First-stage weights 
provide the information on how likely is the index of the 
angle j e . Therefore, given the multinomial distribution 
defined by the first-stage weights, we can draw the set of 
Np indices ind(jg) (je = l...Np). Then, we can compute 

particles from the message: 

41, = Xle + (dru + vje)[sm(8ind<M) cos(8ind<M)] (34) 

Finally, the whole procedure is still not regular due to 
the double-counting of the information from anchors 
(which is regularly used in (14)). Thus, the regu­
lar weights, given by (12), should be divided by the 
weights of the importance density given by the first-
stage weights (32). The final weights for the particles 
from the message, also called the second-stage weights 
[36] are given by: 

Wje 1 
wJrl = — - j - — (35) 

mur(X
J/) p(Y\¿ldÜe)) 

Given these weights, we can proceed with the stan­
dard NBP. We refer to this version as the auxiliary 
NBP (ANBP). It is worth noting that the standard NBP 
is a special case of ANBP, if no additional informa­
tion (Y) has been used, i.e., when p(Y\¡Jr

e
u) <x 1, and 

p(QindUe)) = p(QJe) x Uflif [0,2n). 

6. Simulation Results 

We conducted several simulations using Matlab, in 
order to analyze the performance of the NBP method in 
mobile networks, the effect of package approximation 
and censoring, and the effect of the improved sampling 
techniques. 

6.1. Analysis of mobile positioning based on NBP 

In the first set of tests, we assume that there are 
Na = 16 anchor nodes8 and N, = 5 target nodes, de­
ployed in a 100m x 100m area. Anchor nodes are de­
ployed in a grid, or semi-random topology. The latter 
means that the area is divided into Na square-shaped 
cells, and each anchor node is deployed randomly within 
one of them9. Target nodes are moving according to the 
Gaussian-Markov mobility model [39]. This model is 
using one tuning parameter to vary the degree of ran­
domness of the movement, and can easily ensure that 
the target is always within the deployment area. For 
this test, we set: number of particles Np = 400, com­
munication radius R = 20m, and standard deviation of 
the zero-mean Gaussian noise for the measured distance 
crd = lm. Other parameters (which will be the same for 
all the simulations) are summarized in Table 1. 

In Figures 3a-3c, we show an example of estimated 
tracks for the three different NBP estimates. As we can 

In order to compare different deployment strategies in this exam­
ple, we use significantly more anchors than usual. 

9The purpose of this model is to assume that the anchors cannot be 
perfectly deployed. 
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Figure 3: Illustration of 5 tracks and their estimates found using : (a) Ms
nt, (b) M ¿ , and (c) M™. Anchors are marked with squares, true track with 

lines, and estimated track with dashed lines (starting points of the tracks are marked with circles, and destination points with 'X'). 
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Figure 4: Comparison of the RMSE in the case of: (a) grid, and (b) semi-random topology of the anchors. 

Table 1: Parameters for simulations. 

Parameter 

sampling interval (Ts) 

max. speed (Vmax) 

tracking period (TP) 

number of NBP iterations (AW) 

number of Monte Carlo runs (NMC) 

value 

Is 

5m/s 

20s 

3 

100 

see, all the estimates are similar in the case of a suffi­
cient number of neighbors, but the smoothed estimate 
provides the best result for the tracks close to the edges. 
We also compare root mean square errors (RMSE) of 
all the three methods for three different deployments 
(Figure 4). As expected, the smoothed estimate consis­
tently performs better than the filtered estimate, which 
performs better than naive repeating of the static NBP 
localization method. Note that the smoothed (1-lag) es­

timate is available 1 second after the filtered estimate, 
but this delay should not be a problem for most applica­
tions. On the other hand, we can see that the deployment 
of the anchor nodes significantly affects accuracy. Thus, 
it is advisable to use the grid deployment. However, if it 
is not possible, this problem can be solved (with an ad­
ditional cost) either by increasing the number of anchors 
or by increasing the communication radius. 

6.2. Analysis of package approximation and censoring 

In contrast to previous tests, we change the number of 
nodes (Na = 5, N, = 10), and the communication radius 
(R = 40m). The anchors are deterministically placed (4 
near the edges, and one in the center). To make the anal­
ysis more general, we add an outlier component (25% 
of the true distance) to the zero-mean Gaussian noise. 
More precisely, the noise is a two-component Gaussian 
mixture with the same weights (wd,i = w¿,i = 0.5) and 
the same standard deviations (o-d¿ = o-d 2 = lm), but 
different means (¿/¿„,i = 0, ¡j,dm,i = 0.25dru). This noise 



Table 2: Number of transmitted packages (Npac¿) for different proto­
cols and approximations. 

Package 

message 

belief (Alg. 1) 

belief (5-mix approx.) 

belief (5-mix approx. and censoring) 

N pack 

6144 

2400 

72 

45 

•X- - Gaussian noise 
Gaussian noise + outlier 

is applicable to the scenario in which there is an obsta­
cle (between two sensors) for 50% of the time. More­
over, taking into account the conclusion from the previ­
ous section, we use the smoothed estimate of the NBP. 

We start by analyzing the KL divergence (KLD) be­
tween the approximated and the particle-based belief 
w.r.t. the number of mixture components iVm. Accord­
ing to Figure 5, we can see that KLD is decreasing as we 
increase Nm, as expected. In the case of Gaussian noise, 
we just need 2 or 3 mixture components, since Gaus­
sian noise does not necessarily lead to Gaussian poste­
riors due to the nonlinearity (especially emphasized in 
non-rigid graphs). However, if we add an outlier, we 
need a few more mixture components. To see how this 
approximation affects the error, we analyze the cumu­
lative distribution function (CDF) for different approxi­
mations of the beliefs (particle-based, and beliefs repre­
sented with Nm = 1, Nm = 3, Nm = 5 mixture compo­
nents). We consider the case with an outlier since it is 
the most critical case. As we can see in Figure 6, the 5-
mixture approximation provides almost the same accu­
racy as the particle-based approximation. However, the 
number of mixture components should be a tuning pa­
rameter, which will allow the user to make the trade-off 
between accuracy and cost. Note also that the package 
censoring proposed in Section 4.3 does not affect accu­
racy at all, assuming that the KLD threshold (used for 
measuring the similarity between beliefs) is sufficiently 
small (less than 0.2, in our case). 

Finally, we analyze the communication cost per node 
within one time instant. According to Table 2, we 
can conclude that broadcasting the particles from be­
liefs decrease the cost 2.56 times (nd ~ 2.56, exclud­
ing anchors). Moreover, the GMM approximation sig­
nificantly decreases the communication cost (97%) as 
expected. Finally, package censoring also decreases the 
communication (37% in our case), especially because of 
the savings in the first and the last iteration. In the case 
of more iterations (e.g., in large-scale networks with 
small R), the benefit of the first and the last iteration 
will be less significant. However, additional savings are 
expected due to the more frequent occurrence of similar 
beliefs between two consecutive iterations. 
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Figure 5: Comparison of KLD between approximated belief and 
particle-based belief. 
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Figure 6: Cumulative distribution function (CDF) of the position error 
for different approximations. 

For the further analysis, we will assume that each be­
lief is approximated by a GMM of 5 components, since 
it practically has no effect on accuracy. 

6.3. Analysis of sampling techniques 

We start with the comparison between the MIS and 
MIS-RP techniques. We consider the same scenario as 
in Section 6.2 (with outliers). For MIS-RP, we added 
20% reference particles, which are uniformly distributed 
within the deployment area. According to Figure 7, 
NBP with the MIS-RP technique consistently outper­
forms NBP with the MIS technique. For example, 90th 
percentile of MIS-RP is about 20% more accurate than 
MIS. We also compared RMSE w.r.t. the number of par­
ticles. As we can see in Figure 8, the MIS-RP technique 
provides about 10% more accurate estimates than MIS. 
More importantly, by applying MIS-RP we can achieve 
the same error (e.g., 5m) using 15-25% fewer particles. 
This practically compensates for the previously added 



error [m] 

Figure 7: Cumulative distribution function (CDF) of the position error 
for MIS and MIS-RP (400 particles used). 

Figure 9: CDF of the position error for NBP, PMC-NBP and ANBP 
methods (400 particles used). 
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Figure 8: RMSE for MIS and MIS-RP w.r.t. number of particles. 

reference particles. It is also worth to mention that MIS-
RP performs similarly to MIS if there are no outliers. In 
any case, it is strongly recommended to use MIS-RP in 
order to increase the robustness of the NBP method. 

We now provide the comparison between the NBP, 
PMC-NBP, and ANBP methods. We again consider the 
same scenario as in the previous section, but without 
outliers. For PMC-NBP, we found that it is sufficient 
to use 5 PMC iterations. In Figure 9, we compare the 
CDF for all three techniques. As expected, PMC-NBP, 
and ANBP provide more accurate estimates. Moreover, 
both methods (PMC-NBP and ANBP) provide nearly 
the same estimates. This is expected since we used the 
same information to improve the importance density (in­
formation from the anchors). In Figure 10, we provided 
a comparison of the RMSE w.r.t. the number of par­
ticles. We can see that the benefit of PMC-NBP and 
ANBP can be about 30% if we use a small number of 
particles (< 200, in this case). Moreover, ANBP can 
outperform PMC-NBP for a small number of particles. 

NBP 
PMC-NBP 
ANBP 

100 150 200 250 300 350 400 
number of particles 

Figure 10: RMSE for NBP, PMC-NBP and ANBP methods, w.r.t. 
number of particles. 

We also note that if we need to achieve a predefined 
accuracy (e.g., 3m), we need to use significantly fewer 
particles (15-30%, in our case). That means that PMC-
NBP/ANBP are more efficient than standard NBP. 

Finally, the main question is which method should be 
applied (PMC-NBP or ANBP) since both of them pro­
vide similar performance. The communication cost of 
both PMC-NBP and ANBP is the same as the NBP cost, 
since all modifications can be done locally (see Sec­
tions 5.2 and 5.3). However, taking into account that 
ANBP tries to improve particles from the messages, and 
PMC-NBP particles from the beliefs, the latter one is 
less complex (assuming a small number of PMC itera­
tions). Therefore, PMC-NBP should be applied for low-
cost applications. Otherwise, ANBP should be used, 
since it is slightly more accurate than PMC-NBP (see 
Figure 10). 



7. Conclusions and Future Work 

As presented in this article, novel variants of NBP, 
for cooperative localization in mobile networks, outper­
form the standard NBP method in terms of accuracy and 
communication. Our main contributions are: i) optional 
1-lag smoothing done almost in real-time, ii) novel com­
munication protocol, and iii) improved sampling tech­
niques. One drawback is a higher computational cost, 
but taking into account the significantly decreased com­
munication cost, the total cost is significantly decreased. 
According to our results, PMC-NBP is the most promis­
ing solution, since it is up to 30% more accurate than 
NBP. It can be used in low-cost applications because of 
the very low communication cost. For future research, 
one can try to analyse the effect of high-frequency track­
ing (i.e., with very small Ts) when there is no time to ex­
ecute static NBP within each time instant. Moreover, it 
is also possible to combine ANBP and PMC-NBP (i.e., 
to use PMC-ANBP) and try to decrease their complex­
ity. Finally, this method can be used for some real appli­
cation, e.g., for search-and-rescue or cooperative vehicle 
tracking. 
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