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Low quality sensor data limits WSN capabilities for providing reliable real-time situation-
awareness. Outlier detection is a solution to ensure the quality of sensor data. An effective
and efficient outlier detection technique for WSNs not only identifies outliers in a distrib-
uted and online manner with high detection accuracy and low false alarm, but also satisfies
WSN constraints in terms of communication, computational and memory complexity. In
this paper, we take into account the correlation between sensor data attributes and pro-
pose two distributed and online outlier detection techniques based on a hyperellipsoidal
one-class support vector machine (SVM). We also take advantage of the theory of spatio-
temporal correlation to identify outliers and update the ellipsoidal SVM-based model rep-
resenting the changed normal behavior of sensor data for further outlier identification.
Simulation results show that our adaptive ellipsoidal SVM-based outlier detection tech-
nique achieves better detection accuracy and lower false alarm as compared to existing
SVM-based techniques designed for WSNs.
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1. Introduction

With the increasing advances of digital electronics and
wireless communications, in the past decade a new breed
of tiny embedded systems known as wireless sensor nodes
has emerged. These wireless sensor nodes are equipped
with sensing, processing, wireless communication, and
more recently actuation capability. They usually are den-
sely deployed in a wide geographical area and continu-
ously measure various parameters (e.g. ambient
temperature, relative humidity, soil moisture, wind speed)
of the physical world. A large collection of these sensor
nodes forms a wireless sensor network (WSN) [1].

Event-driven WSN applications [2,3] require timely
data analysis and assessment in order to facilitate (near)
real-time, efficient, and accurate critical decision making
and situation awareness. Accurate sensor data analysis
and decision making process rely heavily on the quality
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of sensor data as well as additional information and con-
text. However, raw sensor observations collected from sen-
sor nodes often have low data quality and reliability due to
the limited capability of sensor nodes in terms of energy,
memory, computational power, bandwidth, dynamic nat-
ure of network, and harshness of the deployment environ-
ment. Use of low quality sensor data in any data analysis
and decision making process limits the possibilities for
reliable real-time situation-awareness.

A solution to ensure the quality of sensor data is detec-
tion of outliers. In the context of WSNs, outliers are defined
as those sensor observations that do not conform to the defined
(expected) normal behavior of sensor data [4]. This definition
indicates that a straightforward way for outlier detection in
WSNs is to define a normal behavior of sensor data and
consider those sensor observations that deviate from the
defined normal behavior of sensor data as outliers. An
effective and efficient outlier detection technique for WSNs
should be able to identify outliers in a distributed and
online manner with high detection accuracy and low false
alarm, while satisfying WSN constraints in terms of com-
munication, computational and memory complexity [5].
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A commonly used method to model the normal behav-
ior of given data vectors in data mining and machine learn-
ing fields is similarity measure [18]. The majority of data
vectors with high similarity represents the normal behav-
ior of the given data vectors. Use of such similarity mea-
sure avoids making any assumption on statistical
distribution of data as well as saves on expensive compu-
tational and memory complexity of data distribution esti-
mation. For multivariate sensor data, modeling the
normal behavior of data precisely needs taking sensor data
correlations into account [26]. In reality sensor data attri-
butes are often correlated, e.g., ambient temperature has
certain correlation with relative humidity. Observations
indicate that when the air is warmer it can hold more
humidity [4]. In this way, the correlated sensor data vec-
tors are not distributed around the center of mass in a
spherical manner, instead their distribution has an ellipsoi-
dal shape [6]. The direction of the formed ellipsoid reveals
the multivariate nature of data distribution trend as well as
the strength of the correlation between data attributes.

In this paper, we simplify an ellipsoidal one-class SVM
[7] to model the normal behavior of sensor data attributes
in resource-constrained WSNs and propose two ellipsoidal
one-class SVM-based outlier detection techniques to iden-
tify outliers in a distributed and online manner. In the pro-
cess of detecting outliers, these two techniques also take
advantage of the theory of spatio-temporal correlation to
precisely detect outliers and changes of the normal behav-
ior of sensor data. Furthermore, the proposed adaptive
technique enables to update the ellipsoidal SVM-based
model to represent changes of the normal behavior of sen-
sor data for further outlier identification. Simulations with
two synthetic datasets and one real environmental dataset
from the Grand St. Bernard [8] show that our adaptive out-
lier detection technique achieves better detection accuracy
and lower false alarm as compared to existing SVM-based
outlier detection techniques [9,10,23,22] designed for
WSNSs.

The remainder of this paper is organized as follows. Re-
lated work on developing one-class SVM-based outlier
detection in WSNs as well as in data mining and machine
learning fields is described in Section 2. Principles of mod-
eling the ellipsoidal one-class SVM classifier are addressed
in Section 3. How to lower down the complexity of tradi-
tional hyperellipsoidal one-class SVM classifier to fit
requirements of WSNs is addressed in Section 4. Our pro-
posed two ellipsoidal SVM-based outlier detection tech-
niques are presented in Section 5. Simulation results and
performance evaluation of our techniques with other exist-
ing SVM-based outlier detection techniques are reported in
Sections 6 and 7. Finally this paper is concluded in Section 8
with plans for future research.

2. Related work

SVM-based techniques are original from the family of
classification-based techniques in data mining and ma-
chine learning fields. The main idea of classification-based
techniques is to learn a classifier using data vectors in the
training phase and classify an unseen instance into one of

the learned classes in the testing phase. SVM-based tech-
niques specifically separate the data vectors belonging to
different classes by fitting a hyperplane, which produces
a maximal margin in a high-dimensional data space.
SVM-based techniques are commonly used for the purpose
of outlier detection due to the fact that they have three
main attracting advantages, i.e., (i) do not require an expli-
cit statistical model and complex parameter estimation, (ii)
use an optimum solution to produce a more reliable nor-
mal boundary to precisely distinguish between normal
data and outliers, and (iii) avoid the curse of data dimen-
sionality problem for computing the similarity measure
among data vectors.

However, traditional SVM-based outlier detection tech-
niques suffer from two disadvantages: (i) they require er-
ror-free or labeled data for training, and (ii) they require
a computationally expensive quadratic optimization.
One-class (unsupervised) SVM-based techniques can solve
the first disadvantage as they can model the normal behav-
ior of the unlabeled data while ignoring the anomalies
existing in the training set. Their main idea is to use a
non-linear function to map the data vectors collected from
the original input space to a higher dimensional space
called feature space. Then a decision boundary of normal
data is found, which encompasses the majority of data vec-
tors in the feature space. Those data vectors falling outside
the normal boundary are classified as outliers. To this end,
Scholkopf et al. [11] have proposed a hyperplane-based
one-class SVM, which identifies outliers by fitting a hyper-
plane from the origin. Those data vectors near the origin
are declared as outliers. Tax and Duin [12] have proposed
a hypersphere-based one-class SVM, which identifies out-
liers by fitting a hypersphere with a minimum radius.
Those data vectors falling outside the hypersphere are de-
clared as outliers. Wang et al. [7] have proposed a hyperel-
lipsoid-based one-class SVM, which identifies outliers by
fitting multiple hyperellipsoids with minimum effective
radii. Those data vectors falling outside the hyperellipsoids
are declared as outliers. However, these one-class SVM-
based techniques still require a computationally expensive
quadratic optimization.

In order to reduce high computational cost of the qua-
dratic optimization, Campbell and Bennett [13] have for-
mulated a linear programming approach for the
hyperplane-based SVM proposed in [11], which is based
on attracting the hyperplane towards the average of the
distribution of mapped data vectors. Laskov et al. [14] have
extended work in Tax and Duin [12] by proposing a quar-
ter-sphere one-class SVM, which converts the quadratic
optimization problem to a linear optimization problem
by fitting a hypersphere centered at the origin, and conse-
quently reduces computational complexity of learning the
normal boundary of data vectors.

Rajasegarar et al. [9] use the quarter-sphere one-class
SVM proposed in [14] to present a distributed outlier
detection technique for WSNs. In their technique, each
node analyzes sensor data in an offline manner only after
all observations are collected within a day, which obvi-
ously causes a considerable outlier detection delay. This
is not suitable for detecting outliers in critical real-time
applications of WSNs. Rajasegarar et al. [10] have further
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extended work in [7,14] by proposing a hyperellipsoidal
one-class SVM using a linear optimization. However, this
technique is neither distributed nor online. It only operates
in a single location in an offline manner.

In this paper, we propose two distributed and online
outlier detection techniques based on a simplified hyperel-
lipsoidal one-class SVM using a linear optimization. Our
techniques enable to identify outliers online and adapt to
changes of the normal behavior of sensor data in real-time.

3. Principles of modeling hyper-ellipsoid one-class SVM

In this section, we describe the principles of modeling
the hyperellipsoidal one-class SVM proposed in [7] for
multivariate data vectors and further compare the differ-
ences between hyper-ellipsoid SVM and hyper-sphere
SVM.

3.1. Modeling hyper-ellipsoid one-class SVM

The quadric optimization problem of modeling the
hyperellipsoidal SVM classifier has been converted to the
linear optimization problem in [10] by fixing the center
of mapped data vectors in the feature space at the origin.
The geometry of hyperellipsoidal one-class SVM-based ap-
proach is shown in Fig. 1. The general process of modeling
the hyperellipsoidal SVM classifier for multivariate data
vectors is addressed below.

Assume that m data vectors {x;eR%,i=1,...,m} of d
variables in the input space are mapped into the feature
space using some non-linear mapping function ¢. The
hyperellipsoidal SVM aims at enclosing the majority of
mapped data vectors ¢(x;) in the feature space by fitting
a hyperellipsoid centered at the origin with a minimum
effective radius R. Thus, the optimization problem in this
hyperellipsoidal SVM classifier is represented as:

. 1
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where ve(0,1) is a parameter that controls the fraction of
mapped data vectors that can be outliers. The slack vari-
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Fig. 1. Geometry of the hyper-ellipsoidal formulation of one-class SVM
[10].

to lay outside the hyperellipsoid. X~! is the inverse of the
covariance matrix X~ of mapped data vectors, which is com-
puted as follows:

1& T 1&
Z=300) - @) - H=Y b))

i=1 i=1

Using Mercer Kernels [15], the inner products of mapped
data vectors in the feature space can be computed in the
input data space without needing any knowledge about
the non-linear function ¢. Let KeR™™ be the kernel matrix
of the original data vectors. Mapped data vectors can be
centered in the feature space by subtracting the mean.
Then the centered kernel matrix K. can be obtained in
terms of the kernel matrix K using K. =K — 1,,K — K1, + 1-
mK1,, where 1,, is the m x m matrix with all its values
equal to L.

The eigen structures of K. is denoted by K.=AQAT,
where Q is a diagonal matrix with positive eigenvalues
as the diagonal elements. A is the eigenvector matrix corre-
sponding to the positive eigenvalues [16]. Hence the

covariance matrix X can be denoted as X = (Q’%Aqs(x)T) X

&) (Q’%Aq&(x)T))T, where X is the data vectors in feature
space. By calculating the pseudo inverse X, we can approx-
imate X' as X' = 3* = mX"TAQ2A’X [7]. Consequently, Eq.
(1) will become:

m

. 2 1
min R +U?n2<, 3)

ReR, eR™ 3
.12
subject to : H\/fn'Q’]ATK’CH <SR4&.6>0i=1,2,...m

where K is the ith column of the kernel matrix K. Using
similar Lagrange function and deviations, finally the dual
formulation of hyper-ellipsoidal SVM will become a linear
optimization problem represented as:

m
in — lvVmQ T ATK |2 4
min ;%le/ﬁ cll (4)
, m 1.
subject to : Zoc,—:],Ogoc,-gﬁ, i=1,2,...m

i=1
Those data vectors with ; = 0 falling inside the hyperellip-
soid will be considered as normal. Those data vectors with
0 < a; < ;L will reside on the surface of the hyperellipsoid.
Their distances to the hyperellipsoidal center indicate the
minimum effective radius R, which can be obtained by
calculating R* = H\/ﬁQ’lATKi
vectors. Those data vectors with o =-L whose distances

vm

to the origin are larger than R of the hyperellipsoid are
considered as outliers.

2
for any margin support

3.2. Hyper-ellipsoid SVM vs. hyper-sphere SVM

Both hyper-ellipsoid SVM and hyper-sphere SVM are
used to model the normal behavior of given data vectors.
A significant difference between these two SVMs is that
they use different distance measures to determine the sim-
ilarity of data vectors before modeling the normal behavior
of the data vectors. More specifically, hyper-sphere SVM
uses Euclidean distance (ED) while hyper-ellipsoid SVM
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uses Mahalanobis distance (MD). These two distance mea-
sures are both commonly used to measure the similarity
between any two data vectors [17]. Euclidean distance
does not consider the correlation between attributes but
calculates the distance in terms of individual attribute.
On the contrary, Mahalanobis distance considers the corre-
lation between attributes and calculates the distance by
combining all attributes together. Consequently, the corre-
lation between attributes learned by Mahalanobis distance
can be represented by covariance matrix, where variance
of a variable itself and covariance between any two vari-
ables are included. Formally, Mahalanobis distance of gi-
ven multivariate data vectors x=(xq, X, X3, ...,Xy) With
mean u=(py, Uz, U3, - .., tn) and covariance matrix X is
defined as:

MD(x) = \/(x = )" (x — )’ 5)

If the covariance matrix X is the identity matrix I, where
all diagonal elements are set to 1, Mahalanobis distance re-
duces to the Euclidean distance for two data vectors x and
y and is represented as:

Compared to Euclidean distance, Mahalanobis distance,
which takes into account both distances from the center of
mass and the direction, has a better understanding of mul-
tivariate data structure. This is due to the fact that Euclid-
ean distance is blind to attribute correlation and assumes
all data vectors have equal distance from the center of
mass. Moreover, Mahalanobis distance is scale-invariant
meaning that it is insensitive to the scale of data attributes,
while Euclidean distance is extremely sensitive to the scale
of data attributes. However, the computational and mem-
ory complexity of Mahalanobis distance is much higher
than Euclidean distance due to computation of covariance
matrix. Table 1 presents the major differences between
these two distance measures.

Using Euclidean distance as similarity measure would
generate a sphere at 2-D data space, where data vectors
are equally distributed around the center of mass. Using
Mahalanobis distance as similarity measure, however,
would generate an ellipse at the 2-D data space, where
data vectors are distributed in directional linear trend
[18] indicating the correlation between variables. These
two different shapes actually define the normal behavior
of data vectors. We here introduce an example to represent
the results of outliers using these two shapes. Fig. 2 illus-
trates the normal behavior of data vectors modeled by

hyper-ellipsoid SVM and hyper-sphere SVM using corre-
sponding distance measures. It can be clearly seen that
those outliers detected by the sphere may not be consid-
ered as outliers by the ellipse (e.g., point B); whereas, those
data vectors that are not declared as outliers may be
considered as outliers by the ellipse (e.g., point A). There-
fore, using an appropriate shape and its corresponding dis-
tance measure to model the normal behavior of data
vectors is significantly important for accurate outlier
detection. The choice of using Euclidean distance or Maha-
lanobis distance depends on data characteristics and appli-
cation requirements.

4. Fitting hyper-ellipsoid one-class SVM modeling to
resource-constraint WSNs

In the previous section, we compared hyper-ellipsoid
SVM and hyper-sphere SVM regarding modeling the nor-
mal behavior of data vectors and identifying outliers. We
are aware that modeling hyper-ellipsoid SVM has high
computational and memory complexity due to the fact that
it considers attribute correlation, generates kernel matrix,
and requires the transformation of central kernel matrix.
To reduce the cost of modeling hyper-ellipsoid SVM in
the feature space, we instead model hyper-ellipsoid SVM
in the input space and fix the center of hyperellipsoid at
the origin. For doing so, raw sensor data has to be first
transformed to a better symmetric data distribution using
Box-Cox method [19]. Then due to the fact that Mahalan-
obis distance is scale-invariant, the data vectors can be
centered at the origin just by subtracting the mean. For a
transformed data vector x/, its mean-centered value is for-
mulated as x/ = (x; — u). Considering that mean-centered
values may be sensitive to outliers, we replace the arith-
metic mean by the median.

After the above data preprocessing, the data vectors are
centered at the origin in the input space, which lowers
down the computational and memory complexity of mod-
eling hyper-ellipsoid SVM in the feature space. Conse-
quently, the dual formulation of Eq. (4) in the input
space will be simplified to:

m
min — Y & (x;’Z”x;’T) (7)
aeR™ n
i=1
, m 1.
subject to : Zoti =1,0< o <o = 1,2,...m

i=1

where x/X7'x/" represents the Mahalanobis distances of
mean-centered data vectors in the input space from the
origin. We further present a basic decision function to

Table 1

Comparison between hyper-ellipsoid SVM and hyper-sphere SVM.
Classifiers Distance measure Characteristics Shape
Hyper-ellipsoid Mahalanobis distance Considers attribute correlation Ellipse

SVM

Hyper-sphere Euclidean distance

SVM

Scale-insensitive
High complexity

Ignores attribute correlation Sphere
Scale-sensitive
Low complexity
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Feature 2
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Origin Feature1l

Fig. 2. Use of Mahalanobis distance and Euclidean distance as similarity
measure. Mahalanobis distance generates an ellipse while Euclidean
distance generates a sphere at 2-D space.

determine whether a new arriving sensor observation x is
an outlier using the modeled hyper-ellipsoid SVM in the
input space. According to Eq. (7), the decision function
can be formulated as:

Fx) = sgn(R* - d(x")?) = sgn(R* - x"X'x"") (8)
(e )

where R? is the square of the effective radius of the hyper-
ellipsoid and can be computed by the inner product of any
margin support vectors in the input space. Those observa-
tions with a negative value are classified as outliers since
their square distances from the origin depending on the
direction in the input space are larger than R2. It can be
obviously seen from Eq. (4) and (7) that the computation
of the decision function in the input space is cheaper than
in the feature space. Also, modeling hyper-ellipsoid SVM in
the input space solves the problem of impossible calcula-
tion of inverse matrix of ~ when X' is singular [19].

5. Proposed ellipsoidal SVM-based outlier detection
techniques

In this section, we propose our distributed and online
outlier detection techniques using the addressed simplified
hyper-ellipsoid SVM model to identify outliers online and
detect changes of the normal behavior of sensor data in
real-time.

Let us first consider a small sensor sub-network, which
can be easily extend to a cluster-based or a hierarchal net-
work topology. This sub-network consists of densely de-
ployed n sensor nodes {sq, ..., S,}, in which observations
are made at (nearly) equal time intervals and all nodes di-
rectly communicate with each other. Moreover, spatial and
temporal correlations are assumed to exist in sensor obser-
vations collected in this sub-network. Fig. 3 illustrates an
example of such a sub-network.

At a time instant t, x(sq,t),...,X(s,t) denote data
vectors measured at nodes sy, ..., S, respectively. Each
data vector at the corresponding node is composed of mul-
tiple attributes x/(s;t), where x!(s;t)={x{(s,t);:i=1...,n,
I=1,...,,d}and x(s;, t)eR‘.

Fig. 3. Example of a sensor sub-network.

According to the requirements of applications, outliers
can be identified as local outliers or global outliers. Local
outliers represent those outliers that are detected at indi-
vidual sensor node only using its local data. Global outliers
represent those outliers that are detected in a more global
perspective [24] by considering a cluster of sensor nodes.
Specifically, global outliers can be identified at a parent
node, cluster-head node, or even a central station, by col-
lecting many data from its assigned sensor nodes. Alterna-
tively, global outliers can be identified at individual sensor
node using a well-defined normal behavior of sensor data,
which is modeled in a global view. In this paper, we use
this strategy in our outlier detection techniques to identify
global outliers at individual sensor node. One should note
that a local outlier may not be identified as a global outlier
and vice versa [5]. For instance, a local outlier is an obser-
vation collected by a sensor node that is significantly dif-
ferent with respect to other observations of this sensor
node, but may not be a global outlier in a global view of
a cluster of neighboring nodes.

5.1. Ellipsoidal SVM-based online outlier detection technique
(EOOD)

Our ellipsoidal SVM-based online outlier detection
technique (EOOD) enables each node to determine its
every new observation as normal or outlier in real-time.
Specifically, each node models its own hyper-ellipsoid
SVM after collecting sensor data during a time interval.
As a result, each node obtains the effective radius of the
modeled hyperellipsoid together with the median and
the covariance matrix of centered data. Based on temporal
correlation of sensor data, each node uses the modeled hy-
per-ellipsoid SVM to determine whether its new arrived
observations are normal or outliers in the time domain.
Moreover, each node communicates the effective radius
of the modeled hyperellipsoid, the median and the covari-
ance matrix parameters with its neighboring nodes to
cooperatively identify outliers based on spatial correlation
of sensor data. The main steps of EOOD are:

e Step 1. Each node s; models its own hyper-ellipsoid SVM
for m sequential observations and then calculates the
effective radius R; as well as the corresponding parame-
ters of the median and the covariance matrix of cen-
tered data. Then the local outliers at each sensor node
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s; can be determined in real-time by comparing the dis-
tances between new arrived observations and the origin
with R; using Eq. (8).

Step 2. Each node s; communicates its parameters, i.e., R;
as well as the median and the covariance matrix to its
neighbors. R; and the median are transmitted by 1 ele-
ment, respectively. For the covariance matrix, each
node s; only needs to transmit d(d + 1)/2 elements due
to the fact that the covariance matrix is symmetric,
where d is the dimension of a sensor observation.

Step 3. Each node s; collects these R;, median and covari-
ance matrix parameters from its neighbors and com-
bines these parameters together with its own R,
median and covariance matrix. Specifically, these effec-
tive radii and medians are merged by arithmetic aver-
age and these covariance matrixes need to be merged
by the formula used in [6]. These merged parameters
are denoted as the global effective radius R, the global
median, and the global covariance matrix X.

Step 4. Each node s; uses these global parameters to
determine the global outlierness of its new arrived
observations in real-time. For a new observation x, the
decision function indicating whether it is a global out-
lier in the input space can be defined as:

) )

f(x) =sgn (Rﬁ - HZg’%x”T

EOOD scales well with the increased number of nodes
due to its distributed processing nature. It enables to up-
date the global parameters by communicating among
neighboring nodes at the end of each time interval. It low-
ers down communication overhead and computational
complexity, especially no need to transmit any actual
observations between sensor nodes except the required
parameters, i.e., R;, median and covariance matrix.

EOOD can detect the change of the normal behavior be-
tween two consecutive time windows when most of obser-
vations measured in the second time window are detected
as outliers. However, EOOD cannot detect changes of the
normal behavior of data within one time window or adapt
to a new normal behavior of sensor data due to the fact
that it does not update the existing SVM model until the
end of the entire time window. In this way, EOOD may suf-
fer from a possibly high rate of false alarm when new
observations arrived in the same time window represent-
ing a new normal behavior of sensor data are detected as
outliers. In order to alleviate this problem, our adaptive
outlier detection technique incorporates new arrived
observations and updates the modeled hyper-ellipsoid
SVM for more reliable outlier detection.

5.2. Ellipsoidal SVM-based adaptive outlier detection
technique (EAOD)

Our ellipsoidal SVM-based adaptive outlier detection
technique (EAOD) enables each node to detect changes of
the normal behavior of sensor data within a time window
based on decision results achieved in a sliding window and
then update the ellipsoidal SVM-based model to represent
the changed normal behavior of sensor data for further

outlier detection. The use of the sliding window in EAOD
is to incorporate new arrived observations and meanwhile
remove the oldest observations. Consequently, the hyper-
ellipsoid SVM can be updated using the observations rep-
resenting a change of the normal behavior in the sliding
window. Initially the sliding window includes all m
sequential observations for modeling a hyper-ellipsoid
SVM.

Before describing when and how to detect a new nor-
mal behavior using the sliding window, we recall the
parameter v, which is very important to model a hyper-
ellipsoid SVM in Eq. (1). It controls the fraction of data vec-
tors that can be outliers and it significantly impacts the
performance of one-class SVM-based outlier detection
techniques. The v actually denotes the upper bound on
the fraction of detected outliers in a dataset [11], which
indicates the maximum number of outliers allowed by a
SVM model. In this ways, if the fraction of outliers detected
by the hyper-ellipsoid SVM model exceeds the given upper
bound within a time period, it indicates that a new normal
behavior is emerged and the previously modeled SVM is
not suitable to represent the current normal behavior of
sensor data any more so as to be updated. On the other
hand, we consider reducing the computational and com-
munication cost of updating the SVM model and being able
to compare the performance of our outlier detection tech-
niques with the existing techniques described in [9,10,23].
Thus our proposed EAOD decides to update the modeled
hyper-ellipsoid SVM when the same amount of m new
sequential observations inserted in the sliding window is
instantly detected as normal or outlier and also the frac-
tion of detected outliers in this sliding window exceeds
the given upper bound (v).

After detecting a new arriving observation as normal or
outlier, each node does not immediately update the effec-
tive radius (R) of the model but instead only updates the
median and covariance matrix [21] of the changed sliding
window, in which the oldest observation is removed and
replaced by the new observation, for further outlier detec-
tion. There is no need for communication among nodes un-
til the effective radius (R) of the model changes. One
should note that all new arrived observations, regardless
of being detected as normal or outlier, can be incorporated
into the sliding window due to the fact that the parameter
v of the one-class SVM model allows anomalous observa-
tions in the training set. Moreover, removing anomalous
observations from the set would bias the normal boundary
of the one-class SVM model [20]. When all new observa-
tions are instantly detected as normal or outlier and in-
serted in the entire sliding window, each node checks if
the fraction of detected outliers exceeds the given upper
bounder (v). If so, a new normal behavior is detected in this
sliding window and the SVM model needs to be updated,
i.e,, the effective radius R. After the hyper-ellipsoid SVM
is updated, each observation in the sliding window can
be labeled as normal or outlier using the updated SVM
model and Eq. (9).

EAOD enables robust detection of outliers using
sequential observations and also detects changes of the
normal behavior of sensor data for reliable outlier detec-
tion. It recognizes the previously detected outliers as the
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indication of a new normal behavior and reduces the false
alarm rate in EOOD. Moreover, EAOD is generated effi-
ciently in terms of communication while requires less
computational time. Fig. 4 illustrates the update policy of
EAOD. The corresponding pseudocode for EAOD is shown
in Table 2.

6. Simulation results

This section describes simulation results of our EOOD
and EAOD, compared to the spherical SVM-based adaptive
outlier detection technique (SAOD) we proposed in [22],
and the ellipsoidal SVM-based batch outlier detection
technique (EBOD) and the spherical SVM-based batch out-
lier detection technique (SBOD) presented in Rajasegarar
et al. [9,10,23]. Our proposed SAOD in [22] uses the quar-
ter-sphere one-class SVM to model the normal behavior
of sensor data. It takes the similar strategy as EAOD to de-
tect changes of the normal behavior of sensor data and up-
date the modeling quarter-sphere SVM for reliable outlier
detection.

For EBOD and SBOD proposed in [9,10,23], as we de-
scribed before, they cause a considerable outlier detection
delay, in which each node analyzes sensor data in an off-
line manner only after all observations are collected within
a day. They also do not provide online outlier detection for
new arriving observations. More specifically, EBOD is nei-
ther online nor distributed. It only identifies outliers in a
single node without any parameter or raw data exchange
so that the achieved outlier detection results are not suffi-
ciently reliable in case of node failure. SBOD uses the quar-
ter-sphere one-class SVM for distributed outlier detection
but exchanges just only radius information among neigh-
boring nodes for outlier detection while ignoring the other
important modeling parameters, i.e., the mean and the
standard deviation. These modeling parameters of the
quartersphere SVM contribute to provide more reliable
outlier detection results. Furthermore, EBOD and SBOD
that model the SVM in the feature space need the genera-
tion of kernel matrix and the transformation of centered
kernel matrix so that they bring very high computational
and memory complexity for WSNs.

The goals of our simulation in this section are threefold,
i.e., (i) to test the accuracy of our distributed and online
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Fig. 4. The update policy of EAOD. The circles represent sensor observa-
tions. The sliding window is composed of the last m observations. The
black dot represents the observation identified at current time t.

outlier detection techniques compared to the existing
SVM-based outlier detection techniques and their robust-
ness in terms of parameter selection, (ii) to compare the
accuracy between ellipsoidal and spherical SVM-based
outlier detection techniques, and (iii) to investigate impact
of three commonly used labeling techniques, i.e., Mahalan-
obis distance, density and running average, on perfor-
mance of outlier detection techniques.

6.1. Simulation datasets

In our simulation, we use two c datasets as well as a real
dataset gathered at the Grand St. Bernard [8]. The synthetic
datasets we used are similar to the one used in [24]. We
consider a sensor sub-network consisting of seven sensor
nodes, as illustrated in Fig. 3, which can be within radio
transmission range of each other or communicated with
a cluster-head in this sub-network.

The first 2-D synthetic dataset is composed of 200 data
vectors for each node having a mixture of three Gaussian
distributions with uniform distribution of outliers. The
mean value of this dataset is randomly selected from
(0.32, 0.35, 0.38) while the standard deviation is set to be
0.03. Subsequently, 10 uniform outliers (i.e., 5% of the nor-
mal data) are introduced and uniformly distributed in the
[0.5,1] interval. The total number of the data vectors in this
dataset is 2940 including the 5% outliers. Fig. 5 illustrates
the data distribution of dataset of a single node.

The second 2-D synthetic dataset changes the mean of a
mixture of three Gaussian distributions into (0.25,0.35,
0.45). The standard deviation is still 0.03 and 5% (of the
normal data) anomalous data is introduced and uniformly
distributed in the [0.5,1] interval. Fig. 5 illustrates the data
distribution of dataset of a single node. These two syn-
thetic datasets aim to evaluate the accuracy of ellipsoidal
and spherical SVM-based outlier detection techniques for
different data distributions.

The real dataset is collected from the small cluster of
neighboring sensor nodes, i.e., nodes 25, 28, 29, 31, 32 at
the Grand St. Bernard, as illustrated in Fig. 6. In our simu-
lations, we test the real data collected during the period of
6am-14am on 1st October 2007 with two attributes:
ambient temperature and relative humidity for each sen-
sor observation. We label this dataset using three different
labeling techniques, i.e., Mahalanobis distance, density and
running average. Labeling results of applying these label-
ing techniques are illustrated in Fig. 7. More details about
labeling techniques for sensor data are referred to [25].

6.2. Simulation results

We evaluate two important accuracy metrics, (i) the
detection rate (DR), which represents the percentage of
outliers that are correctly detected, and (ii) the false alarm
rate, also known as false positive rate (FPR), which repre-
sents the percentage of normal data that are incorrectly
considered as outliers. DR represents the ratio between
the number of correctly detected outliers and the total
number of outliers, while FPR represents the ratio between
the number of normal data detected as outliers and the to-
tal number of normal data.
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Table 2
Pseudocode of EAOD.

1 procedure ModellingSVMProcess()

2 each node models the hyper-ellipsoid SVM;

3 each node locally broadcasts the modeled hyper-ellipsoid R; as well as the median and the covariance matrix to its spatially neighboring nodes;
4 each node then computes the global R, as well as the global median and covariance matrix;
5 initiate OutlierDetectionProcess(Rg, the global median and covariance matrix);

6 return;

7 procedure OutlierDetectionProcess(R,, the global median and covariance matrix)
8 when x(t) arrives

9 compute d(x);

10 if (d(x) > Rg)

11 x(t) indicates an outlier;

12 else

13 x(t) indicates a normal observation;

14 endif;

15 initiate UpdatingSVMProcess(x(t));

16 set t—t+1;

17 if (m data observations are collected)

18 if (the fraction of detected outliers > the given upper bound (v))

19 update the SVM model for outlier detection of (x(t —m+1)... x(t));

20 endif;

21 endif;

22 return;

23 procedure UpdatingSVMProcess(x(t))
24 update the sliding window: the oldest observations x(t — m

) is removed and replaced by x(t);
25 update the median and the covariance matrix of the sliding window;

26 return;
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Fig. 5. (left) Data plot for a single node with spherical data distribution and (right) data plot for a single node with ellipsoidal data distribution.

We also examine the effect of the regularization param-
eter v for EBOD, SBOD, EOOD, EAOD and SAOD in the input
space. As representing the fraction of data vectors that can
be outliers, the parameter v with the larger value results in
better detection rate, however, it can lead to higher false
alarm rate. The value of v is usually chosen based on a pri-
ori knowledge of the data characteristics and its normal
behavior [20]. In the case of having no a priori knowledge
about the outliers ratio, the parameter v can be used to
evaluate the robustness of the techniques. It indicates that
a robust technique can achieve high accuracy rate while
keeping a false alarm rate low regardless of the increase
or decrease of the parameter v. In the simulation, we have
varied v between 0.02 and 0.08 in intervals of 0.01. A recei-
ver operating characteristics (ROC) curve is usually used to
represent the trade-off between the detection rate and the
false alarm rate. The larger the area under the ROC curve,

the better the accuracy of the technique. Furthermore,
after finding a robust outlier detection techniques, a rela-
tively reliable v can be determined when the outlier detec-
tion technique archives the best trade-off between the
detection rate and the false alarm rate, which can be illus-
trated in the area under the ROC.

Fig. 8 shows the detection rate and the false alarm rate
obtained by our online techniques EOOD, EAOD, SAOD as
well as EBOD and SBOD offline techniques in the input
space for the first synthetic data with ellipsoidal data dis-
tribution. We can see when data vectors have ellipsoidal
data distribution, our ellipsoidal SVM-based techniques
EOOD and EAOD achieve better detection accuracy and
lower false alarm compared with spherical SVM-based
SBOD and SAOD in presence of different v parameters.
Furthermore, our EOOD and EAOD perform better than
EBOD.
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Fig. 9 shows the detection rate and the false alarm rate
obtained by our online techniques EOOD, EAOD, SAOD as
well as EBOD and SBOD offline techniques in the input
space for the second synthetic data with spherical data dis-
tribution. We can clearly see when data vectors have
spherical data distribution, our spherical SVM-based tech-
nique SAOD achieves better detection accuracy and lower
false alarm compared with ellipsoidal SVM-based EOOD,
EAOD and EBOD. Moreover, our SAOD performs better than
SBOD. Furthermore, our EOOD and EAOD have better
detection accuracy than EBOD.

Fig. 10 shows ROC curve and the detection rate obtained
by our online techniques EOOD, EAOD, SAOD as well as
EBOD and SBOD offline technique in the input space for
the real dataset labeled by Mahalanobis distance. It can
be seen that EOOD generates the highest detection rate
and highest false alarm due to the fact that it does not up-
date the normal profile, while the data distribution has
changed. EAOD achieves the best accuracy with the highest
detection accuracy and the lowest false alarm.

Fig. 11 shows ROC curve obtained by our online tech-
niques EOOD, EAOD, SAOD as well as EBOD and SBOD off-
line techniques in the input space for the real dataset
labeled by running average and density labeling tech-
niques. The results show that accuracy of our EAOD is bet-
ter than other techniques using both labeling techniques
although it has not achieved good detection accuracy.
EOOD still has the highest false alarm rate while generat-
ing high detection rate.

7. Performance evaluation

This section further analyzes accuracy results achieved
in our simulation. The complexity of those techniques is
also compared in terms of communication overhead, com-
putation and memory complexity.

7.1. Accuracy analysis

For the data vectors which have ellipsoidal data distri-
bution, EOOD and EAOD perform better than spherical
SVM-based SBOD and SAOD. The good results of EOOD

and EAOD stem from taking into account the correlation
of data attributes and having better understanding of mul-
tivariate nature of data distribution. On the contrary,
spherical SVM-based techniques ignore the correlation be-
tween data attributes and use a spherical boundary to fit
the data. This results in low detection rate and high false
alarm rate in case of non-spherical data distribution. More-
over, among ellipsoidal SVM-based techniques, our EOOD
and EAOD perform better than EBOD due to the fact that
they exchange essential ellipsoidal information, e.g., med-
ian and covariance matrix, with neighboring nodes for reli-
able outlier detection.

For the data vectors which have spherical data distribu-
tion, SAOD achieves better detection accuracy and lower
false alarm compared with ellipsoidal SVM-based EOOD,
EAOD and EBOD. This is because spherical SVM-based
techniques assume that data vectors are distributed
around the center of mass in an ideal spherical shape.
Although ellipsoidal SVM-based techniques take into ac-
count correlation of data attribute, they do not perform
as good as spherical SVM-based techniques for spherical
data distribution. Moreover, among spherical SVM-based
techniques, our SAOD performs better than SBOD since
SAOD alleviates the influence of outliers by using median
and median absolute deviation (MAD) and also exchanges
these spherical information with neighboring nodes for
reliable outlier detection.

For the real data, EAOD achieves the best accuracy with
the highest detection accuracy and the lowest false alarm
since it considers the correlation of data attributes as well
as use of ellipsoidal information (median, covariance ma-
trix) from neighboring nodes. On the contrary, EOOD gen-
erates the highest false alarm due to the fact that it does
not update the normal profile, while the data distribution
has changed. Therefore, EAOD performs best compared to
other SVM-based techniques.

Furthermore, one should note that hyperellipsodial
SVMs used in this paper generally suit to the multivariate
data vectors with the correlated data attributes. The direc-
tion of the formed ellipsoid reveals the multivariate nature
of data distribution trend as well as the strength of the cor-
relation between data attributes. For the data vectors with
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Table 3
Complexity analysis of five outlier detection techniques for each sensor
node.

Techniques Communication Computational Memory
complexity complexity complexity
EBOD - 0(kmd?) o(md + m?)
SBOD o(d) O(kmp) Oo(md + m?)
EOOD o(d?) 0(md?) o(md)
EAOD o(d® 0o(md?) O(md)
SAOD o(d) O(mp) O(md)

no strong data attribute correlation or with a data distribu-
tion of a skewed shape, a spherical SVM or a hyperplane-
based SVM could be used to characterize the kind of data
sets. Therefore, a good understand of data distribution
and correlation among data attributes is essential to model
the normal behavior of data vectors and design a suitable
outlier detection technique.

7.2. Complexity analysis

The communication complexity of our distributed tech-
niques depends on the transmission of local hyper-ellip-
soid radius information as well as the median and
covariance matrix parameters. The communication over-
head in EOOD for each node is O(d?), where d is the dimen-
sion of observations. Each node only transmits its local
hyper-ellipsoid radius information as well as the median
and covariance matrix once at the initial training phase.
EAOD requires no update of radius information during on-
line outlier detection and only possibly communicates the
updated median, covariance matrix and radius information
with nodes at the end of a sliding time window. The max-
imum communication overhead of EAOD for each node is
approximately equal to O(d?).

The computational complexity in EOOD is related to
computation of the median, the covariance matrix, the lin-
ear optimization function and the distance between every
new observation and the origin. The computational com-
plexity of our techniques mainly depends on solving a lin-
ear optimization problem, which is represented as O(p), as
well as computing covariance matrix, which is represented
as O(md?). Hence, the maximum computational complex-
ity of each node in EOOD and EAOD is O(md?), where m
is the number of new observations to be classified. EBOD
still needs to compute kernel matrix and the transforma-
tion of centered kernel function (especially for RBF kernel
function), whose complexity is represented by O(k). Thus
the maximum computational complexity of EBOD for each
node is O(kmd?).

The memory complexity of our techniques is mainly re-
lated to keeping observations of the size of sliding window
in memory and is represented as O(md), where d is the
dimension of observations and m is the number of new
observations to be classified. Overhead of storing other
parameters such as covariance matrix with a complexity
of 0(d?) is negligible since m>d. Hence the maximum
memory complexity of each node for our techniques is
0O(md). Due to the fact that EBOD needs to keep m x m ker-
nel function, its memory complexity of each node is
O(md + m?). Table 3 summarizes these complexities.

8. Conclusion

In this paper we propose two distribute and online out-
lier detection techniques based on hyper-ellipsoid one-class
SVM. We take into account data attribution correlation to
precisely detect outliers. To cope with the problem of gener-
ating high false alarm rate, we also propose an updating
strategy to incorporate new arrived observations and update
the modeled hyper-ellipsoid SVM for more reliable outlier
detection and detect changes of the normal behavior of sen-
sor data. We compare performance of these two hyper-ellip-
soid SVM-based techniques with our previously proposed
quarter-sphere SVM-based technique as well as two existing
batch SVM-based techniques using both synthetic and real
datasets as well as different labeling techniques. Simulation
results show that our EAOD achieves better detection accu-
racy and lower false alarm. It implies that understanding
data distribution and correlation among data attributes is
essential to design a suitable outlier detection technique.
Our future research includes testing our EAOD using real
datasets with variant data distributions and implementing
EAOD on wireless sensor nodes in real-life.
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