Topology Control in Large-Scale Wireless Sensor
Networks: Between Information Source and Sink™

Masoumeh Haghpanahi*, Mehdi Kalantari, Mark Shayman

Department of Electrical & Computer Engineering, University of Maryland-College Park,
College Park, MD 20742, United States

Abstract

With non-uniform traffic patterns in wireless sensor networks due to the many-
to-one nature of communications, the traditional definition of connectivity in
graph theory does not seem to be sufficient to satisfy the requirements of
sensor networks. In this work, a new notion of connectivity (called path-
implementability) is defined which represents the ability of sensor nodes to relay
traffic along a given direction field (referred to as information flow vector field)
D. The magnitude of information flow is proportional to the traffic flux (per unit
length) passing through any point in the network, and its direction is toward
the flow of traffic. The flow field may be obtained from engineering knowledge
or as a solution to an optimization problem. In either case, information flow
flux lines are abstract paths that are assumed to represent desired paths for
flow of traffic. In a sensor network with a given flow field ﬁ(m, y), we show that
a density of n(z,y) = O(|D(z, y)|?) sensor nodes is not sufficient to implement
the flow field. On the other hand, by increasing the density of wireless nodes to
n(z,y) = O(|D(z, y)|?log |D(z,y)|), the flow field becomes path-implementable.
Path-implementability requires more nodes than simple connectivity. However,
it guarantees existence of enough paths connecting the information source to
the sink so that all the traffic can be transmitted to the sink. We also propose a
joint MAC and routing protocol to forward traffic along the flow field; the pro-
posed tier-based scheme can be further exploited to build lightweight protocol
stacks which meet the specific requirements of dense sensor networks.
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1. Introduction

1.1. Path-implementability: a new notion of connectivity

A Wireless Sensor Network (WSN) is composed of a large number of sensor
nodes densely deployed inside or very close to a phenomenon. The exact posi-
tion of sensors need not be predetermined, and they can be randomly deployed
in inaccessible terrains. Such networks are usually aimed at monitoring vast
regions, much larger than the transmission radius of an individual node. There-
fore, data transmission occurs in multihop communication. There has arisen a
great demand for sensor networks in many fields including military, environment
monitoring, transportation systems and agriculture.

WSN applications are classified based on their data-delivery requirements
and their traffic characteristics. According to the work [1], most of the current
WSN applications fall into one of the following broad classes of (i) monitoring
and periodic reporting, (i) event detection and reporting, (iii) sink-initiated
reporting, (iv) object detection and tracking, and (v) hybrid applications with
more than one of the above four characteristics.

Specific characteristics of WSNs distinguish these networks from ad hoc net-
works. Unlike in an ad hoc network, where any node can potentially commu-
nicate with any other node, a WSN exhibits the many-to-one communication
paradigm. Also, sensor nodes have very limited energy, processing, and stor-
age capacities. Thus, they require careful resource management. Moreover,
design requirements of a sensor network change with its application. For exam-
ple, while low latency is of utmost importance in applications such as tactical
surveillance, extending the network lifetime is more important for applications
such as periodic weather monitoring [2].

It is desirable to present a framework to study WSNs that can support more
than one application and to provide a means to calculate required density of
sensor nodes under different scenarios. To this end, authors in [3] have intro-
duced a continuous space model called information flow vector field, with two
components (magnitude and direction) at each point in the Euclidean space;
the magnitude of information flow is proportional to the traffic flux (per unit
length) passing through any point in the network, and its direction is toward
the flow of traffic. This is very similar to visualization of fluid flows or electric
fields by means of vector fields. In fluid flow visualization for example, the flow
vector field represents the fluid velocity field and flow streamlines are trajecto-
ries of massless particles that are traversed by fluid particles in the flow field as
a function of time. Similarly, information flow flux lines are a set of abstract
paths used for data transmission to the destination. Note that flow flux lines
are not constrained by the location of sensor nodes.

In a particular application, the flow field may be obtained from engineering
knowledge. Alternatively, it may be obtained as a solution to an optimization
problem. For example in [4], it is obtained as the solution to a p-norm opti-
mization problem by minimizing the p-norm of the information flow vector field
subject to the basic flow constraints, where p > 1 is a design parameter. The
p-norm problem has load balancing property; for p close to 1, the information



flow tends to pass through geometric shortest paths. By increasing the value of
p, the flow spreads in the network using resources more evenly, and it reaches
maximum load balancing when p — oc.

In this work, we study the required density of nodes to forward traffic along
information flow field. We show that following the optimal (desired) paths
for flow of traffic requires more nodes than providing network connectivity. To
perform this analysis, a new notion of connectivity called path-implementability
is defined which represents the ability of sensor nodes to forward traffic along flux
lines (also referred to as flow streamlines) of a known flow field as its magnitude
scales linearly to infinity. The final results indicate that for a given flow field
D(z,y), a density of n(z,y) = O(|D(x,y)[?) sensor nodes is not sufficient to
relay traffic along flow streamlines. This result contradicts the prior result of [5]
where authors stated otherwise. On the other hand, we show that 5(x,y) is
path-implementable with a density of n(z,y) = O(|D(z, y)|? log | D(z, y)|) sensor
nodes.

Note that previous results on throughput and connectivity in wireless net-
works were mainly derived based on symmetry and uniformity, either by assum-
ing symmetric network geometries and/or by random matching of nodes into
source-destination pairs. In most wireless sensor network applications, however,
all the traffic generated in the network must be transmitted to a single desti-
nation; this results in a non-uniform traffic pattern. Therefore, a new notion of
connectivity is required for such networks.

The notion of path-implementability not only provides a framework to study
the density of sensor nodes required to follow a set of desired paths for flow of
traffic, but also guarantees existence of enough paths connecting the informa-
tion source! to the destination so that all the traffic can be transmitted to the
destination.

We propose a joint MAC and routing protocol which requires no more than
n(z,y) = O(|D(z, y)|?log |D(z,y)|) nodes to relay traffic along flow streamlines
of D. The proposed tier-based scheme also provides a framework to reduce the
size of addressing fields (by requiring tier-level addressing instead of node-level
addressing) and apply power-saving methods by using clustering techniques, and
hence meeting the specific requirements of dense sensor networks. The details
of addressing and clustering techniques should be specified based on network
geometry and are out of the scope of this work.

The rest of this paper is organized as follows. After a review of notations
and definitions used throughout the work in Section 2, information flow vector
fields are defined in Section 3. Main results of the paper are summarized in
Section 4. Next, a formal definition of path-implementability is presented in
Section 5, and different steps involved in the implementability analysis are de-
scribed in Sections 6-8 in a constructive manner. Finally, the paper is concluded
in Section 9.

INote that the term “information source”, or as later defined “distributed source”, refers
to the region where all the traffic is generated and does not refer to a single sensor node.



1.2. Related work

Great efforts have been devoted in the literature to address different chal-
lenges such as network dynamics, energy efficiency, coverage and connectivity,
and data aggregation and compression in wireless sensor networks. Some of the
major works and results in these areas are summarized in surveys [6-9].

A vector field representation for flow of traffic in WSNs was first introduced
in [3, 10] with inspiration from electrostatics. Approaches based on electrostatics
have become popular thereafter. References [5], [11], [12], and [13] are among
the works based on this analogy.

In [3], Kalantari and Shayman performed simulations to compare routing
along information flow field with routing along geometric shortest paths to the
destination. To this end, the optimal flow vector field for a special network set
up was calculated and the paths from sensor nodes to the destination were found
by following the flow field. The simulation results showed that the number of
delivered messages to the destination increased significantly when following the
routes generated by information flow field.

Focusing on routing algorithms, authors in [11] proposed a routing protocol
by use of electrostatic potentials. The proposed solution introduces a potential
field that covers the network such that each node is associated with a given
potential value. The packets are then routed through nodes with a decreasing
potential value. Similarly, authors in [12] present a heat-inspired model for link-
diversity routing. The heat equation in steady state, similar to electrostatic
fields, follows the Laplace equation. To exploit this property for routing, the
destination in a network is modeled as a heat source. Then, the heat flow
resulting from the source at all the nodes is evaluated according to the network
connectivity. Once all the values are calculated, finding a path from the source
to the destination is a gradient search problem. This way, the path a packet
follows is analogous to the minimum-energy diffusion path of a particle in a real
temperature field.

In [13], Nguyen et al. considered establishing a reliable framework for routing
by using an analogy with electric fields. The authors proposed the use of several
electric flux lines as routes generated by placing a positive charge in the source
and a negative charge in the destination.

The spatial distribution of wireless nodes that can transport a given volume
of traffic in a sensor network was first studied in [5]. Under a general assumption
on the physical and medium access control (MAC) layers, the authors showed
that the optimal distribution of nodes induces a traffic flow identical to the
electrostatic field that would exist if the sources and sinks of traffic were substi-
tuted by an appropriate distribution of electric charge. This result was based
on the assumption that a location (z,y) with node density n(z,y) can support
an information flow with magnitude less than or equal to A\y/n(x,y) for some
constant A. Although the quadratic relation between node and traffic density
was shown to hold in a rather simplistic setting, in this work, we show that this
assumption is not realistic under more accurate communication protocols.

The authors of [5] have also stated that the results of percolation theory
inside square geometries [14] support existence of a quadratic relation between



node and traffic density. It is important to note that percolation theory does not
impose any constraints on paths traversing a square geometry and connecting
one side to the other side of the square. Hence, percolation results cannot be
applied to wireless sensor networks where traffic is relayed from the information
source (the region where all the traffic is generated) to the destination. This is
because, as shown in Fig. 1, percolating paths inside individual square elements
do not guarantee existence of connected paths from the information source to
the sink. Therefore in such networks, it is necessary to not only study the node
density that can support a given traffic density, but also to provide a means
to guarantee existence of connected paths from the information source to the
destination. In this work, we show that this occurs at the cost of increasing the
node density.

Figure 1: Percolating paths inside square elements cannot form connected paths from the
information source to the sink.

2. Notations and Definitions

2.1. Notations

Throughout this work, X = (x,y) represents the Cartesian coordinates of
a point in Euclidean plane R?. The notation ¥ = (v, vy) is used to refer to a
vector field, where v, and v, denote the field components along the x and y
axes, respectively.

In partial differential equations, the nabla operator V in two-dimensional
Cartesian coordinates is defined as a vector differential operator V = %d’w +
a%d'y, where @, and @, are the unit vectors along = and y axes, respectively.

The divergence of a vector field ¥ at a point is defined as the net outward
flux of ¥ per unit area as the area about the point tends to zero [15]. For an
area with an enclosed contour there will be an excess of outward or inward flux
through the contour only when the area contains a source or a sink, respectively.
The net outward flux per unit area is therefore a measure of the strength of the
enclosed source. Using the above definition, the divergence of a vector field ¥ in
two-dimensional Cartesian coordinates can be shown to be equal to
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We refer to fields with zero divergence as incompressible fields.

On the other hand, the curl of vector field ¢'is denoted by V x¥; its magnitude
represents the maximum net circulation of ¥ per unit area as the area tends to
zero, and its direction is perpendicular to the area [15]. In two-dimensional
Cartesian coordinates,

V=

v v
Vxd = (=243, 2
T = (et S 2)
where, @, = d X dy

We refer to fields with zero curl as irrotational fields.
The p-norm of a vector Z = (21, 22, , 2m) € R™ is defined as

m 1
2= (Do 1al)" forp =1
i=1

Similarly, the p-norm of a function f : A — R? defined over a subset A of R? is
defined as

o= ([ elraoay).

Another measure for calculating the norm of a real or complex valued function
f : & = C defined over a subset £ of R™ is called the supremum norm? or

uniform norm and is defined as

[flu =sup{[f(2)]: Z € £}

Note that the supremum norm is a special case of the p-norm where p = co. It
can also be used to define a mode of convergence; a sequence f, of functions
converges uniformly to a function f on a set £ provided that lim,, o |fr — flu =
0.

Throughout the work, when performing linear algebra operations, a vector
is treated as a column vector and B” refers to the transpose of matrix B.

In this paper we are mainly concerned with events that occur with high
probability (w.h.p); that is, with probability tending to one as the argument of
the function representing the event goes to infinity.

We use standard notational conventions for asymptotic analyses. Hence, for
two non-negative functions f(-) and g(-), f(n) = O(g(n)) w.h.p, if there exists
a positive constant k such that

lim P(f(n) < kg(n)) = 1.

n—oo

2The maximum might not exist if f is not continuous on its domain of definition, so the
supremum is used instead [16].



Using the above notation, f(n) = Q(g(n)), as n — oo, if g(n) = O(f(n)). Also,

F(n) = o(g(n)), if limy, 00 L = 0.

2.2. Definitions

Consider a general network with predefined sources and sinks, where N
nodes are distributed uniformly at random and independent from each other
throughout the network. Data is sent from node to node in a multihop fashion
from a source to an intended sink. For simplicity, we assume that time is
slotted. Due to spatial diversity, at each time instant more than one node can
transmit data to its next hop node, without facing destructive interference from
other transmissions at the same time. Two models for multihop communication
called the Protocol Model and Physical Model have been proposed and widely
used in the literature [17]. In a homogeneous scenario, where sensor nodes have
same transmission radius r; and transmission power p;, the aforementioned
communication models can be described as below. Let X; denote the location
of a node as well as the node itself. Now, a transmission from node X; to node
X is successful

1. Under the Protocol Model if:
(a)

| X — X;| <7y, (3)

where | - | represents the Euclidean distance between two points in
the Cartesian plane, and

(b) for every other node X simultaneously transmitting over the same
channel,

[ Xk = X5 = (1 + A)r (4)

A > 0 is a nonnegative parameter which models a guard zone around
the receiving node to limit interference from other nodes. It imposes
the constraint that no other neighboring nodes within the guard zone
of the receiver can simultaneously send information in the same chan-
nel.
2. Under the Physical Model if: the Signal to Interference Plus Noise Ratio
(SINR) is above a certain threshold I'; i.e.,

Pt
X — X1

SINR =
No+Xker s

> T, (5)

where {Xj,k € T} is the set of nodes simultaneously transmitting over
the same channel as X;, and Ny refers to the ambient noise power level.
This models a situation where signal power decays with distance r as T%
The loss factor a > 2 in practical situations.



While the Protocol Model describes the effects of interference based on a
pairwise relation between nodes, the Physical Model takes the aggregate inter-
ference into account. Because of this, the Physical Model is generally considered
to be more accurate than the Protocol Model. However, the simplicity of the
Protocol Model has motivated its use in design and evaluation of communication
protocols [18].

In order to reduce the complexity of studying successful transmissions under
the Physical Model, approximate versions of this model have been proposed in
the literature, especially for network simulators [19, 20]. A Bounded Physical
Interference model (BPI model) is defined in [21] which neglects the effects of
interference from nodes residing outside a region (referred to as interference
region) enclosing the receiver of a particular transmission. Interference regions
are considered to be circular regions which can be characterized by a single
parameter, referred to as the interference range. Hence, in a more general
scenario where sensor nodes have different transmission powers, a transmission
from node X; to node X is successful under the BPI model if

Pt,i
[ X=X,

SINR = >T, (6)

No + > kernir(x;) p(kpii)’}w
ki
where IR(X;) denotes the interference region of node Xj.

3. Background

In this section, we present an overview of the definition of information flow
vector field, and briefly point out the constraints it must satisfy in order to
model flow of traffic in a general network. Although the concept of information
flow can be applied to networks with multiple information sinks (destinations),
for the sake of simplicity, we consider networks with only one information sink
in this work. Generalizing information flow modeling to networks with multiple
sinks is fully described in [22].

Consider sensor networks with the application of monitoring and sending
periodic reports to the destination. The destination is assumed to have un-
limited energy, space and processing power, and is usually far away from the
region to be monitored. Network geometry A is a subspace of the Cartesian
plane including the monitoring region and destination where sensor nodes are
deployed to carry the traffic to the destination. This is shown in Fig. 2.

Let p: A — R denote the load density function which determines the total
rate of traffic generated inside any closed contour within the network geometry.
Hence, it takes positive values inside the monitoring region. In the rest of this
work, we refer to the closure of the area with positive load density function as
distributed source®. Let [ denote the boundary of this area, and S(l) be the area
surrounded by . Hence, the distributed source is represented by S(1).

3Note that we assume that every event is picked up by only one sensor inside the distributed



destination
X

Figure 2: Network geometry A including the monitoring region and the destination.

The rate of traffic generated inside a closed contour a C S(I) is denoted by
w(a) and is equal to

wa) = / ple,y)dady

The value of load density function is defined to be zero for the region between
the distributed source and the sink. Also, since all the traffic generated in the
network must to be transmitted to the sink, the value of p(z, y) at the sink can be
defined as a Dirac delta function with weight —wg, where wy = fS(l) p(x,y)dzdy.

—

The information flow field, denoted by D(z,y), is a vector field with two
components (direction Dir(x,y) and magnitude |D(x,y)|) at each point (z,y) in
the network; Dur(z,y) represents the direction of flow of traffic at point (z,y),

and |5(x,y)| represents the amount of traffic flux (per unit length) passing
through (z,y). This implies that for any closed contour ¢ C A,

fﬁ(:&y) cdn = /S( )p(af,y)dwd% (7)

where dn is an outgoing differential normal vector to the boundary of ¢, and S(c)
is the area surrounded by closed contour c¢. Equation (7) is similar to Gauss’ law
in electrostatics, and can also be expressed in the form of the following partial
differential equation:

V- D(z,y) = plz,y) (8)

It must be noted that although we have assumed that the information sink is
located at a point in the network, according to (7), non-zero dimensions must be
chosen for the destination in order to avoid the magnitude of information flow
to grow to infinity as it gets closer to the sink. Choosing non-zero dimensions

source. The challenges involved in data aggregation and correlation between messages are out
of the scope of this work.



for data sink is also in accordance with networks where multiple antennas are
located at a circle with non-zero radius around the sink.

In addition to equation (8), the information flow satisfies the Neumann
boundary condition

5n(m,y) =0, V(r,y)€dA 9)

where D,, is the normal component of D on the boundary of A, denoted by
0A. This constraint forces the information flow to stay within the network
geometry without violating the boundaries. In reality, there are no sensors
deployed outside of A; hence, no traffic passes through 9A.

The above constraints on the flow field imply that for every location (z,y)
inside A there exists a path from that point to the destination, which can be
found by integrating the flow streamline from (z,y) all the way to the sink.
Therefore, the information flow field represents a set of paths for transmitting
traffic from the distributed source to the destination, which are not constrained
by the location of sensor nodes.

Although the flow field satisfies equations (8) and (9), D(z, y) is not uniquely
specified by these constraints. In a particular application, the flow field may be
obtained from engineering knowledge. Alternatively, it may be obtained as a
solution to an optimization problem. Additional constraints have been suggested
to place on D such that the resulting vector field generates a desirable set of
paths for traffic transmission to the sink.

For example, the quadratic cost function below was suggested in [10]:

J(D) = /A B, )| 2dedy

Minimizing the above cost function subject to the constraints on D can be
summarized into the following optimization problem:

minimize / |D(x,y)|>dzdy (10)
A

subject to V- ﬁ(CE, y) = p(x,y)
ﬁn($7y) =0, (z,y) € 04,

which is a convex problem. It can be further proved that the optimal solution
of (10) must have zero curl. Now the combination of the zero-curl property,
together with the divergence property and the boundary constraint uniquely
specify the optimal flow field D.

The motivation behind using a quadratic cost function was to disperse traffic
in the network. However, it does not achieve maximum load balancing in the
network. Therefore, the following generalization of the quadratic optimization
problem was suggested in [4]:

10
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Figure 3: The load balancing property of information flow increases as p changes from 2 to
oo in the p-norm problem.

minimize / |D(x,y)|Pdady (11)
A

subject to V- 5(33, y) = p(z,y)

in which p > 1.

Increasing p causes the optimization problem to increase spatial spreading in
the network. To be more specific, when p is close to 1, most traffic tend to pass
through geometric shortest paths from the source to the sink. As a result, while
the average transport delay is less (compared to the case with higher values of
p), sensor nodes along shortest paths will get depleted very fast which reduces
the network lifetime. By increasing the value of p from 1, the optimization
increasingly spreads the traffic in the network in order to use resources more
evenly. This increases delay, however, sensor nodes are used more evenly and
there is more load balancing compared to the case where p is smaller. The case
p — 00 achieves maximum load balancing. The load balancing property of the
p-norm problem is further shown in Fig. 3 in a square with a single source at
the lower left and a single sink at the upper right side of the network.

The weighted version of the p-norm problem is also studied in [23], where it
is shown that the weight function can be chosen cleverly to determine energy-
efficient paths.

Given a time-invariant vector field 5(30, y), flow flux lines (also called stream-
lines) of D from each location (z,) in the network to the destination can be
found by solving the following ordinary differential equation:

dX(t)

O D(X(t)), (12)

11
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where t is the integration variable and is not to be confused with time. Therefore,
each streamline can be represented parametrically from the source to the des-
tination by f(t) = (x(¢),y(t); xo,yo) for to <t < ty, where zg = z(tg) and yo =
y(to) refer to the starting point of the streamline on the boundary of the dis-
tributed source and 1 = z(¢1) and y; = y(t1) refer to the corresponding landing
point on the destination.

Later in this work, we consider network scenarios where the flow field scales
linearly to infinity; i.e., we study networks with flow field D(xz,y) = 0D (z,y),¥(z,y) €
A, where Dy is a given initial field and & € R* . Note that by scaling the flow
field as such the trajectory of flow streamlines does not change; however, the
bounds of the parametrization variable ¢t changes with the scaling factor 6. This
can be mathematically represented as f%(t) = f1(0t), where f%(t) is the para-
metric representation of a flow streamline of 6D;. This is better understood by
considering velocity fields; as the scaling factor 6 increases, the trajectory of a
flow streamline remains the same, however it is traversed faster.

4. Summary of Results

First we define a new notion of connectivity called path-implementability,
which is an asymptotic approach where the load density function scales linearly
to infinity.

Path-implementability provides a means to study the density of sensor nodes
required to follow flow streamlines of a given flow field. The new notion of
connectivity uses the magnitude and direction of information flow to form an
increasing set of disjoint regions such that, as the load function scales linearly
to infinity, traffic can be relayed to the destination in a multihop fashion at
constant rate inside each region. For the flow field to be path-implementable,
density of sensor nodes must be such that w.h.p piecewise linear routes can be
formed inside each region. We show that in the limit, the set of piecewise linear
routes converges uniformly to a set of flow streamlines, which by definition are
the desired paths for flow of traffic.

To perform the implementability analysis, we first consider a simple example
of a square with uniform information flow parallel to the sides of the square and
study the required number of nodes to carry the traffic from one side to the
other side of the square along a set of evenly-spaced flow streamlines. Next,
we discuss the conditions based on which the results of the square example can
be extended to more complicated network geometries. More specifically, we
show that a general network geometry with a given flow field can be partitioned
into smaller (approximately) square grids with uniform information flow inside
each grid, if the flow field is irrotational. In other words, for irrotational flow
fields, a flow-based coordinate system exists for the region between the source
and destination and that the square network example can be interpreted as a
curvilinear element of this coordinate system.

For the square example with uniform flow field DO, we first show that
a quadratic relation between number of nodes and |ﬁ(l)| is not sufficient for

12



path-implementability of the flow field. To show this, we prove that path-
implementability requires more than simple connectivity by showing that a
disconnected network of nodes cannot provide the requirements for following
the flow streamlines; i.e., the probability that an isolated node prevents form-
ing a piecewise linear route inside its associated region is strictly positive as
|IDDO] = 0.

Next, we show that increasing the number of sensor nodes to N = O(|D® |2 log | D®)])
provides path-implementability. The sufficiency is shown by proposing a joint
MAC and routing protocol which requires the same order of nodes to forward
the traffic within each flow region using either the Protocol or Physical Model.

The main idea of the proposed scheduling scheme is to divide time and
frequency domains into smaller slots and sub-channels and determine the trans-
mission radius (power) of sensor nodes such that transmissions at each time
slot and frequency sub-channel abide by either of the communication models.
We tessellate the unit square to divide sensor nodes into different groups. The
tessellation technique has become a rather common method in the literature to
prove sufficiency bounds and has been previously used in prominent works such
as [14, 24, 25].

5. Path-Implementability of Information Flow Field

The goal of this section is to provide a means to study the required density
of nodes to communicate in a multihop fashion along flow streamlines.

Let C denote the transmission capacity of sensor nodes (measured in bps),
and 0 < v < 1 be a parameter determined by the MAC protocol which represents
the portion of time and/or frequency bandwidth assigned to each node for data
transmission. Hence, with wq referring to the total amount of traffic generated
at the distributed source, a total number of ns(A) = [%1 routes is required to
relay all the traffic from the source to the destination.

For a given information flow D(z, y), a set of ny(A) streamlines can be chosen
to represent desired paths for flow of traffic. The goal of path-implementability
is then to study the required density of nodes that can follow the chosen set of
flow streamlines in a multihop fashion, such that traffic can be relayed along the
resulting set of piecewise linear routes at constant rate simultaneously. In order
to avoid intersection of the piecewise linear routes formed by nodes, the area
between the distributed source and the destination must be partitioned into a
set of disjoint regions (referred to as streamline regions), using the knowledge
of flow streamlines.

The set of streamlines is chosen by placing flow seeds on the boundary of
the distributed source and using relation (12) to integrate the flow lines all
the way to the destination. Now, by bisecting the region between each pair of
streamlines, network geometry A is partitioned into ngs(A) streamline regions.
Each region is the area between a pair of bisections and includes a streamline
in its interior.

As an example, consider a rectangular area with a set of information flow
streamlines passing through and parallel to the vertical sides of the rectangle,
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similar to Fig. 4. This resembles streamlines passing through a small enough
area element inside A. Using the same method described above, the rectangular
area is partitioned into a set of streamline regions which in this case is a set of
rectangular strips as shown in the figure.

Now consider a homogeneous scenario in which sensor nodes are deployed
inside the rectangle uniformly at random. In order for sensor nodes to be able
to form piecewise linear routes inside each streamline region, the transmission
radius of nodes must be less than the width of the narrowest strip?. Otherwise,

routes might violate the margins of their corresponding streamline regions®.

irregular flow streamlines

—— — boundaries of streamline regions

Figure 4: A set of irregular flow streamlines

As transmission radius of nodes decreases, more nodes must be deployed to
form routes inside each strip. This is because density of nodes must be such
that each node can find another node within its transmission radius. Therefore,
required density of nodes is minimized if flow flux lines are evenly spaced within
the rectangle.

Following a similar argument, the set of ns(A) streamlines chosen in A must
be “locally regular” in order to minimize the required number of nodes inside
each area element. A more precise definition of local regularity is stated in the
sequel.

Implementability analysis is an asymptotic approach in which the probability
of events are calculated as the load density function scales linearly to infinity.
As it is stated in the following lemma, linear scale of p(z,y) results in linear

4In order to ensure that the traffic inside each strip stays within itself, nodes inside adjacent
strips must use different frequency sub-channels to carry traffic.

5More accurately, the transmission radius of nodes must be proportional to the width of the
narrowest strip. The frequency channel must again be divided into sub-channels to conserve
traffic within each streamline region.
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scale of the traffic density (when derived from the p-norm problem), everywhere
in the network.

Lemma 1. Let 131 (z,y) denote the optimal solution of the p-norm problem in
a region A with load density function p1(x,y). Then solving (11) for p(x,y) =
0p1(z,y) results in D(x,y) = 0D1(x,y).

PROOF. See the Appendix.

From now on, we assume D(z,y) = 0D (x,y) for a given flow field Dy and
scaling factor # € RT. With the above introduction, a formal definition of
implementability can be stated as follows.

Definition 1. Let § € RT denote a positive scaling factor of ﬁl(x, y). Also, let
n(z,y;0) denote the density of nodes within the network, where n(z,y;0) — oo
as 0 — oo, V(z,y) € A.

Information flow ﬁ(x,y) = Qﬁl(x,y) is said to be path-implementable by a
density of n(x,y;0) nodes if there exists:

(a) transmission radius function r(x,y;0) that goes to zero as § — oo, and
(b) increasing family of flow streamlines {f¢,i = 1,--- n?(A)} of D, and

’ S
increasing family of streamline regions {h¢,i = 1,--- ,n?(A)} associated
with {f},
such that w.h.p as 6 — oo

(i) (n(z,y;0),7(x,y;0)) topologically implement the flow streamlines {f?};
1.e., without considering the possible interference due to simultaneous trans-
missions of nodes, connected paths can be formed to follow the flow stream-
lines { f?} within the margins of their associated regions {h?} by clusters of
overlapping discs of radius ri(x,y;0) placed at nodes of density n(x,y;0).

(i) Multiple access schemes exist such that the topological implementation of
the flow streamlines are sufficient to carry all of the traffic of |ﬁ|

Remark 1: As mentioned earlier, if the streamline seeding process which
constructs the set of flow streamlines { ff } is such that it provides local regular-
ity, then the required density of nodes is minimized. A seeding process provides
local regularity if as # — oo, streamlines passing through any area element (with
approximately uniform |D|) eventually get evenly spaced for 6 large enough.

5.1. Regular streamline seeding process

The following seeding process can be performed in order to choose streamline
seeds along the boundary [ of the distributed source such that the corresponding
set of streamlines are locally regular as # — oo. For each value of the scaling
factor 6, the flow seeds can be chosen by starting from an arbitrary point (z1, y1)
on [ and choosing the rest of the seeds on the boundary such that the line integral
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of |5| between consecutive seeds is equal to the traffic to be relayed within each

6
Lo 1Bl =1C. 13

streamline region; i.e.”,
flow seeds

Due to smoothness of |5(x, y)l, as 6 increases, flow seeds get evenly spaced along
each small segment of [. This is because when |5| changes smoothly along the
boundary of the distributed source, it can be assumed to be approximately
constant along small segments of [, hence (using (13)) as § — oo, Al = %,
where Al is the distance between flow seeds (for each small segment) on the
boundary of the source with uniform |ﬁ| Hence, streamlines integrated from
these flow seeds will be locally regular.

Remark 2: Let {f?}, denote a set of streamlines selected using the regular
seeding process, and {h?}, be its associated set of streamline regions constructed
by bisecting the area between consecutive streamlines, as described earlier. Then
as § — oo, the width of streamline regions decreases proportional to 8! across
any cross section of the network perpendicular to the flow field.

Remark 3: Consider a set of locally regular streamlines {f?}, and its asso-
ciated set of regions {h?},., and for each i, let g/ denote the stochastic piecewise
linear route inside streamline region hf. Then as 8 — oo, the set of piecewise
linear routes {g?},. converges to the set of flow streamlines {f¢}, uniformly; i.e.,
limy_, oo max; |ff — gf|u — 0. As defined in Section 2, |ff — gf\u is the max-
imum distance (greatest possible vertical distance) between the two functions
from their initial starting points on the distributed source to the destination [16].
Using Remark 2, the width of streamline regions decreases proportional to 6!
at any cross section of the network; hence, max; \hf|u shrinks to zero with the
same proportion.

It is important to mention that although information flow is defined ev-
erywhere inside the network (including inside the distributed source), the im-
plementability analysis (in the sense defined in Definition 1) must be confined
to the region between the distributed source and destination where the flow
field has zero divergence. This is because in incompressible fields, assuming
every flow streamline is drawn continuously with no lines terminating at any
point between the source and destination, a one-to-one relationship can be es-
tablished between |D(z,y)| and the number of flow streamlines crossing unit
perpendicular line at that point [26]. This property will be found useful in the
implementability analysis.

After describing the seeding process which constructs an increasing set of
streamlines {f?},, “suitable” transmission radius function r(z,y;6) must be
determined such that the rest of the conditions in Definition 1 are satisfied.

SMore accurately, fconsecutive \5|dl < 4C, where the inequality is to take care of situations
flow seeds
0

wo 3 3 . 0 — [Wo7] — _wo
where ~& is not an integer; hence, n%(A) = ]"Y—C = 5o

value that makes the total number of streamlines be an integer value. Note that eg = o(1).

where €y > 0 is the smallest real
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In order to specify r¢(z,y;0) and determine its relation with |D(z,y)|, the
following steps are performed which will be described in detail subsequently:

- Perform a boundary-fitted flow-based gridding which results in a curvi-
linear coordinate system and divides the network region into curvilinear
grids with approximately uniform information flow inside each grid.

- Study the implementability problem inside each curvilinear grid.

- Extend the results to the network geometry.

Each of these steps will be described in detail in the subsequent sections.

6. Boundary-Fitted Flow-Based Gridding

Node density is a quantity which must be specified locally. Hence, the net-
work region must be partitioned into smaller area grids over which the magni-
tude of information flow is approximately uniform.

The gridding step must be such that the implementability analysis becomes
easier along the grid boundaries. Hence, grids should adapt to the features of
information flow, i.e., the curvature of flow streamlines. This can be viewed as a
curvilinear coordinate system for the network. Furthermore, since the informa-
tion flow vector field satisfies the Neumann boundary condition (9), flow-based
gridding of the network results in generation of boundary-fitted coordinates.

In the rest of the paper, we rely on the results from complex analysis which
prove existence of a flow-based coordinate system for ideal flow fields (fields that
are incompressible and irrotational). A summary of these results are presented
in Appendix A.

As mentioned earlier, the implementability analysis is for the region between
the source and destination where the flow field has zero divergence. Therefore, in
order to use the results from complex analysis and partition the region between
the source and destination into curvilinear elements with desired properties, the
flow field must be irrotational. Hence, we confine the implementability analysis
to flow fields which are irrotational.

Based on Theorem A.1 and Theorem A.2 in Appendix A, for an irrotational
flow field Dy, the equipotential lines {¢ = a},a € R and flow streamlines {) =
d},d € R of D, form mutually orthogonal systems of level curves. Furthermore,
the set of potential and stream functions of D; = (D1,2(z,y), D1,y(z,y)) can be
represented by the following nonlinear transformation:

g:A — (14)
(z,y) = (o(z,9),9%(z,y)),
with Jacobian matrix

Dl:r Dly )
= ’ ’ 15
j < _DLy Dl,w ( )

Dy D1y

D) | Dy | D |

| D1 ( b, D
| D1 | D]
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The Jacobian matrix J represents local linear approximation to the change of
coordinates between the two domains, and its determinant (referred to as the
Jacobian J) is an area-change factor from each element in the A-domain to the
corresponding element in ®-domain.

Using the inverse function theorem, the Jacobian matrix of the transforma-
tion from the ®-domain to A is equal to

Di.  Diy
T =By ( EANA ) 16)

| D1l D

The inverse transformation (g=!) describes how the network region A (which
is a subspace of the Cartesian plane) is partitioned into curvilinear grids corre-
sponding to equal partitioning of the ¢ and i axes in the ®-domain. Note that
the matrix in the right hand side of (16) is a rotation matrix and the transfor-
mation is conformal; i.e., the Jacobian matrix is a product of a rotation and
scaling at all points. Therefore, the grids of this curvilinear coordinate system
can be approximated by square grids at each point in the region between the
distributed source and destination.

The flow-based gridding process in shown in Fig. 5, where solid curves rep-
resent flow streamlines of a given ideal flow within a subregion of the network
and the curvilinear grid specified by dashed lines is the result of flow-based grid-
ding. As shown in the figure, curvilinear lines derived from constant 1 in the
®-domain are tangent to flow streamlines, and curvilinear lines derived from
constant ¢ are perpendicular to the direction of flow of information.

Figure 5: Flow-based gridding and curvilinear coordinates.

At the end, it is worth to mention that various numerical techniques for
structured flow-based gridding have been proposed both within Cartesian and
curvilinear grid frameworks [27-29]. These techniques are based on the use of
streamlines computed from a single-phase flow problem. Also, a Jacobian-based
elliptic grid generation technique is presented in [30]. This method, referred
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to as vector-field adaptive method or VFA, uses the idea of alignment with a
given vector field indirectly via control of the inverse Jacobian matrix of the
transformation.

7. Implementability Analysis Inside a Square Grid

In the previous section, we concluded that the network region between the
source and destination can be partitioned into smaller approximately square
grids which are tangent to the equipotential lines and flow streamlines of 51.
Note that the size of these square grids varies throughout the network propor-
tional to |Dy|~. This is because, based on (16), the Jacobian of the mapping
g1 (from the ®-domain to A) is equal to |Dy|~! at every point in the network.

In this section, we study path-implementability of the information flow inside
a square grid as the scaling factor 6 goes to infinity.

Recall that as the scaling factor 6 increases, |D| = 6|D;| scales linearly
throughout the network and more flow streamlines are required to forward the
traffic to the destination. Note that the level curves of the curvilinear coordinate
system are tangent to the equipotential lines and flow streamlines of ﬁl; hence,
flow streamlines passing through each grid are parallel to the sides of the grid.

In order to study the required number of sensor nodes inside each (approx-
imately) square grid, consider a unit square Uy with uniform information flow
DU = 5(¢, 1) and flow streamlines parallel to the sides of the square, as shown
in Fig. 6. N sensors are distributed uniformly at random throughout the square
and relay traffic to their downstream with equal transmission capacity of C bps,
over a common wireless channel; hence, the total number of streamlines required

to carry all the traffic within the square is ng(Us) = O(Lc(f)‘) = O(|DW)).

.‘,\\Z | .

Sensors

—— flow streamlines

Figure 6: Unit square with uniform information flow and parallel streamlines.

Due to local regularity of the seeding process, streamlines passing through
the unit square are evenly spaced. Hence, performing the bisection method,
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streamline regions are a set of ns(Us) strips of equal width W, as shown in
Fig. 7.

regular flow streamlines

—— — boundaries of streamline regions

Figure 7: Unit square divided into ns(Us) strips of width Wi.

In what follows, we first consider a Boolean model for communication which
does not account for interference. Using this model, we show that a quadratic
relation between magnitude of information flow and number of nodes is not suf-
ficient to follow flow streamlines inside the unit square; i.e., flow streamlines are
not topologically implementable. Hence, we conclude that a quadratic relation
cannot guarantee path-implementability of information flow under any realistic
communication model which accounts for interference from simultaneous trans-
missions” .

Next, a sufficient bound for number of nodes N is suggested and its suffi-
ciency is shown under both communication models.

7.1. Topological implementability under a quadratic relation

Consider a bidirectional Boolean model for communication where nodes are
connected to each other only if their distance is less than a specified transmis-
sion radius r¢. This link model represents wireless communication with signals
diffusing isotropically with a certain signal attenuation. Let p; = p(r = 0) de-
note the signal power at the transmitter node and p,- denote the received power
at a distance r from the transmitter. The received power falls off as p, oc r~p;
, where « is the path loss exponent. The wireless transmission radius r; can

"This is proved for the case where the set of streamlines are locally regular (evenly spaced).
However, as explained in Remark 1, the locally regular case requires minimum node density
for implementability. Thus, a quadratic relation cannot guarantee path-implementability re-
gardless of whether or not the set of streamlines are locally regular.
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then be mapped to the equivalent transmission power p; using a threshold I" for
receiver sensitivity; i.e., assuming that a node can receive properly if p, > T.
Obviously, this model does not account for the interference caused by possible
simultaneous transmissions.

Let G(N,r¢(N)) be the communication graph formed by N nodes distributed
uniformly at random in the unit square of Fig. 6, where r;(/N) denotes the
transmission radius of each node. Also, let X represent the location of nodes
inside the unit square. Using the Boolean model, nodes XZ-(Z) and X J(l) are

connected if |Xi(l) —XJ(»Z) | <ri(N). Assuming all nodes use the same transmission
radius for communication within the unit square, a well-studied problem is
identifying the minimum radius (also called critical transmission radius r.) such
that the resulting communication graph is connected.

A communication graph G is connected if and only if there exists at least
one path connecting any pair of nodes in the network, and otherwise it is dis-
connected. As shown in [31], disconnectedness manifests itself by presence
of isolated nodes. Isolated nodes cannot find any other nodes within their
transmission radius. Lemma 2 investigates the minimum value of r; such that
G(N,r¢(N)) is connected w.h.p as N — oo.

Based on Definition 1, the flow field is topologically implementable if, with-
out considering possible interference due to simultaneous transmissions of nodes,
connected paths can be formed to follow streamlines within the margins of their
associated regions. Therefore, topological implementability of flow field inside
the unit square is equivalent to existence of piecewise linear routes connecting
the top to the bottom of the square within each region.

As we prove in Lemma 3, connectivity of the communication graph G(N, r:(N))
is a necessary (yet not sufficient) condition for topological implementability of
the flow field DO,

Lemma 2. In order to ensure connectiwity of G(N,r+(N)) w.h.p, r+ must be
chosen to be equal to or greater than the critical transmission radius

_ [log N +n(N)
re=\ TN (17)

where n(N) is an arbitrary function such that n(N) — oo as N — oo.
PROOF. See [32], Corollary 4.1.2.
Substituting N by O(|D®|?) in equation (17) results in

re(ID®]) = Q(DW|14/log|[D®]). On the other hand, since implemented
paths must not intersect with each other, the transmission radius 7; cannot
be chosen to be greater than O(W,)8. Furthermore, when adding interference

8Having a non-intersecting set of implemented paths can be guaranteed by assigning differ-
ent frequency sub-channels to nodes residing in neighboring streamline regions. The required
number of frequency sub-channels grow to infinity if r; > O(Ws) which significantly reduces
the throughput.
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to the model, if the order of transmission radius 7; is greater than Wy, trans-
mission along a path will introduce interference to infinitely many other paths
as |13(l)| — oo and will significantly reduce the throughput of the network.
Therefore, 7, must be chosen to be O(W,) = O(|D®|~1). Hence, r; < r. as

|5(l)| — 00. Considering the relation between transmission power and trans-
mission radius, and using the same argument as above, transmission power of
sensor nodes must also be O(|D®|~%) to reduce the amount of interference on
simultaneous transmissions in neighboring streamline regions.

Choosing r; < r. results in a disconnected network; although we are not
concerned with having a connected network in this work, but as stated earlier,
disconnectedness manifests itself by presence of isolated nodes. The follow-
ing lemma shows how the presence of isolated nodes affects topological imple-
mentability of flow streamlines.

Lemma 3. The set of flow streamlines inside the unit square cannot be topolog-
ically implementable if the pair (N, ry) is chosen such that G(N,r¢) has isolated
nodes w.h.p.

ProOOF. Throughout this argument, we assume that N nodes are distributed
uniformly at random within the unit square. By the definition of topological
implementability, if a set of flow streamlines is not implementable with (N, 7y, ),
it cannot be implementable with any pair (N, r.,) such that r,, < ry,. Hence,
without loss of generality, we will concentrate on cases where r; > W;.
Suppose X,gl) is an isolated node in the network, and let dis denote its
distance to the closest streamline. As mentioned before, the unit square is

divided into ng(Us) strips of width Wy; therefore, 0 < djy < Vg

Since X ,g ) is an isolated node, no other nodes exist in a region of distance r;

from X ,El). This affects implementability of streamlines close to X ,il), specifically
the one within the same strip as X ,gl). For this streamline to get topologically
implemented, there must exist at least one node inside the shaded area Sy
shown in Fig. 8. Let r; = Wy, and consider the largest S; which corresponds

to dry = ”2/ Choosing a smaller d¢ can only decrease the probability of
implementability.
Salgy,—we = (£ = W2 = 0(IDD|72), and
P{the streamline not implementable} >
P{there exists no node inside Sq} = (1 — SN ?
N —-1)S
> exp(— N 15,

1-54

The last inequality is derived using the relation exp(—1%-) < 1—uz, for [z] < 1.
Substituting N by O(|DW|?), and Sy by O(|D®|~2), and taking the limit as
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lim  P{the streamline not implementable} >
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Figure 8: An isolated node with r; = Wy, preventing topological implementability of a flow
streamline.

The above inequality states that the probability that the closest streamline
to X ,il) is not topologically implementable is strictly positive. The same analysis
can be done for r, > W resulting in a positive probability of the flow streamline
not being implementable. Fig. 9 shows the scenario where S| dop=We = 0 for
Tt = %We

Note that this lemma is based on the assumption that the network has iso-
lated nodes. Therefore, the transmission radius r; cannot grow unconditionally
and that it must be less than the critical transmission radius r.(IN) for connec-
tivity.

Theorem 1. Information flow field DO inside the unit square is not path-
implementable with N = O(|DW|?) nodes distributed uniformly at random through-
out the square.
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Figure 9: The area Sd"ikf:% =0 for r¢ > %WS.

PROOF. Lemma 3, together with the fact that ry < r.(|D®|) for N = O(|D®?)
proves that a quadratic relation between the total number of nodes and the
traffic to be relayed does not guarantee existence of piecewise linear routes
inside each streamline region. Hence, DO is not path-implementable with N =
O(|D™W|2) nodes distributed uniformly at random throughout the square.

7.2. A sufficient order of nodes for path-implementability

In this part we show that by increasing the number of nodes to N =
O(|DW 2 1og | D), the flow field D® becomes path-implementable inside the
unit square. The sufficiency of this bound is shown by applying feasible schedul-
ing schemes under both the Protocol and the Physical Model. The proposed
scheme follows the lines of thought in [14] and [24], and is briefly described here.
A more detailed description of the method is presented in [33].

The main idea of the scheduling scheme is to divide nodes into different
groups using the tessellation technique, and divide time and frequency into
smaller slots such that transmissions at each time slot and frequency sub-channel
abide by either of the communication models.
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Tessellate  the unit square into smaller square cells of length s similar to
what is shown in Fig. 10. This divides the square into S% cells of equal size.
Let C, 1, denote a cell with coordinates a,b=1,-- -, % starting from the bottom
left, and let M be a fixed positive integer (to be determined later). Divide cells
into M? groups {GC;,i = 1,---,M?} such that Cyp and Cy p belong to the
same group if and only if a = @’ (mod M), and b =" (mod M). Furthermore
assume time is slotted, and each time frame has M? time slots. At each time
slot m = 1,---, M? only nodes within the mth group GC,, can communicate
with their neighboring cells.

Figure 10: Tessellation of the unit square into cells of length s.

In order to guarantee existence of piecewise linear routes, N must be chosen
such that w.h.p there exists at least one node inside each cell. Furthermore, the
transmission power and correspondingly the transmission radius of nodes must
be such that inter-cell communications are possible with finite M as 6 — .

To ensure that the implemented paths do not intersect with each other,
the length of each cell s is chosen to be O(Ws) and the frequency channel is
divided into x > 2 sub-channels of equal capacity {C; = %,i =1,---,k},
such that nodes in adjacent implementation regions use different sub-channels
to communicate.

Theorem 2. _{nformatign flow DO inside the unit square is path-implementable
with N = O(|D® > log |DW|) nodes distributed uniformly at random throughout
the square using either the Protocol or the Physical Model.

PROOF. See [33], Appendix B. The proof shows that a finite M (independent of
) can be found under either communication model, and that w.h.p there exists

9Partition of an area into small units or subareas.
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at least one node inside each cell of length s = O(W,) = O(|D®|~1) to relay
traffic to its neighboring cell within its associated time slot.

8. Extending the Results to the Network Geometry

As stated earlier, the unit square example models the flow of traffic inside
a small part of the network geometry. However, when studying the example,
we only considered the interference effects of nodes communicating inside the
square. While this is acceptable for the Protocol Model which describes the
effects of interference locally and on a pairwise relation between nodes, it may
not be acceptable for the Physical Model which takes into account the aggregate
interference from all nodes in the network communicating at the same time slot.

The following lemma states that a bounded version of the Physical Model
can be used for any arbitrary node X; within the network and that the total
interference due to simultaneous transmissions of nodes outside interference re-
gion IR(X;) = O(1) can be ignored in the implementability analysis. Hence, the
results derived from the unit square can be extended to the rest of the network.

Lemma 4. A bounded version of the Physical Model with interference region
IR = O(1) can be used in the implementability analysis when nodes are commu-
nicating based on a controlled access scheme with transmission power py(x,y) ~
|D(,y)[~*.

PRrROOF. See Appendix B.

Hence, a sufficient bound on total number of nodes required to relay the
traffic along a given irrotational flow field ﬁ(x, y) (scaling linearly to infinity)
inside any subregion A of the network geometry between the distributed source
and destination is found by calculating the following integral

/A B )| log | Dz, y)|dedy. (18)

The following example further illustrates the different steps involved in the
implementability analysis.

Example: Consider a circle centered at the origin with radius R, as shown
in Fig. 11, and assume that uniform information flow enters the circular area
toward the sink which is located at the center. In order to avoid numerical
ambiguities, information sink is assumed to be a circle with non-zero radius 4.
However, for simplicity, it is plotted as a point sink in the figure.

Assuming that the distributed source is located outside the circular area,

p(z,y) =0, rj<z®+y*> < R? (19)

and the flow field is incompressible and irrotational everywhere within the circle
except at the sink.
Let 6 denote the total amount of traffic flux entering the circle. Hence,

9(A) ~ £ streamlines are required to carry all the traffic to the sink. Following

N
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the streamline seeding process described in Section 5.1, any circle around the
sink with radius rs > r4 can be used as a seeding path. Since the traffic flux
passing through the seeding path is uniform, flow seeds are placed regularly on
the seeding path and streamlines are integrated all the way to the boundary of
the network.

Using basic properties of information flow, the flow field D can be expressed
in polar coordinates as follows:

E(T,d)):—

ar, Tq<r<R
¢ € [0,2m),
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where @, = DzT(T, ¢) is the unit vector along the r-coordinate.

It can be easily verified that the level curves of the polar coordinates (r, ¢)
are tangent to the equipotential lines and flow streamlines of Dy (r,0) = 271TT .
Hence, polar coordinates is used to partition the circular area into grids of size

rdrd¢ with approximately uniform information flow inside each grid.

Figure 11: Streamline seeds are regularly placed on the circle with radius rs from the sink.

Using the results of Section 7.2, the required density of nodes to follow flow
streamlines inside each grid is O(|D(r, ¢)|2log |D(r, $)|). Therefore, as 6 — oo,
the total number of nodes sufficient to carry all the traffic to the destination is
proportional to

27 rR 2
0 9 R, 0
/ / g 1"2 rdrdqﬁ = — log( ) -0 log(m).

9. Conclusions

In a network geometry with a given information flow vector field D, the
flow streamlines represent desired paths for flow of traffic. For such networks,
we defined a new notion of connectivity (called path-implementability) which
concerns the ability of sensor nodes to relay traffic along flow streamlines of D.
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We discussed that the notion of path-implementability not only provides a
framework to study the density of sensor nodes required to follow a set of desired
paths, but also guarantees existence of enough paths connecting the source to
the destination so that all the traffic can be transmitted to the destination.
Path-implementability requires more nodes than simple connectivity.

In a network with a given information flow D, we showed that a density of
n(x,y) ~ |D(x,y)|? sensor nodes is not sufficient to implement the flow field,
and that if the density increases to n(z,y) ~ |D(z,y)[*log|D(z,y)|, the flow
field becomes path-implementable. The sufficiency of the latter is shown by
proposing a controlled access scheduling scheme.

The excess amount of nodes required for path-implementability can be ex-
ploited in cross-layer design and integration of protocol layers to make lightweight
protocol stacks in order to meet specific requirements of dense sensor networks.
This will be studied more in detail in our future work.

Appendix A. Existence of a Flow-Based Coordinate System

The following discussion, taken from [34], shows the existence of a flow-based
coordinate system for ideal flow fields which, by definition, have zero divergence
and zero curl. The following theorems (stated without proof from [34]) are used
to introduce a curvilinear coordinate system using complex analytic functions,
and are reported here for the sake of completeness.

Consider steady state flow field ¥(z,y) = (u(z,y),w(z,y)) at the point
(z,y) € Q. Here Q C R? is the domain in which the flow field is defined.

Theorem A.1. The flow vector field U = (u(z,y), w(z,y)) induces an ideal
flow if and only if f(z) = w(z,y) — iw(z,y) is a complex analytic function of
z=x+1y.

Hence, the components u(z,y) and —w(zx,y) of an ideal flow field are har-
monic conjugates. The corresponding complex function f(z) is known as the
complex velocity of the flow field.

Now, suppose that f(z) admits a complex anti-derivative, i.e., a complex
analytic function x(z) = ¢(x,y) + i(z,y) that satisfies % = f(2). Then,

dy 0¢ 09 .

L= =i =u— Al

dz Oz Z@y v (A1)
Therefore, V¢ = ¢. For this reason, the anti-derivative x(z) is known as the
complex potential function for the given flow field. Furthermore, ¢(z,y) and
¥(x,y) are referred to as the potential function and the stream function of the
flow field, respectively. Following the Cauchy-Riemann equations:

9 _ 9y _

= = A2
Or Ay b (A-2)
0 _ ov_,
dy or
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The level curves of the potential function, {¢(z,y) = a}, a € R, are known
as equipotential lines. The flow vector ¥ points in the normal direction to
the equipotential lines. On the other hand, ¥ is tangent to the level curves
{¢Y(z,y) = d}, d € R. But ¢ is the flow field, and so tangent to the streamlines
followed by the flow. Thus, these two systems of curves must coincide, and the
level curves of the stream function are the streamlines of the flow.

Summarizing, for an ideal flow field, the equipotential lines {¢ = a} and
streamlines {1 = d} form mutually orthogonal systems of level curves. The flow
field ¥ = V¢ is tangent to the streamlines and normal to the equipotential lines,
whereas the gradient of the stream function, V), is tangent to the equipotential
lines and normal to the streamlines.

The following theorem states the condition under which a unique anti-
derivative function exists.

Theorem A.2. Let f(z) = dﬁ(j), where x(z) is a single-valued complex
function for z € Q. If c C ) is any closed curve, then fc f(z)dz = 0. Conversely,
if this condition holds for all closed curves ¢ C Q contained in the domain of
definition of f(z), then f admits a single-valued complex anti-derivative x(z)

with d’é—(z) = f(2).

z

Appendix B. Proofs

PROOF OF LEMMA 1. Since the p-norm problem (11) is a convex optimization
problem with differentiable objective and constraint functions, the KKT!° con-
ditions are necessary and sufficient for the optimal solution to be met. let
L(D’7 vy) denote the Lagrangian function of the p-norm problem with load den-
sity function 0p;(x,y), and vy denote the dual variable associated with the
problem. Now, if (517uf) be the optimal primal and dual solutions of the
problem with § = 1, then based on the KKT conditions,

V5L(Dy,v7) = Vf)[/A D1 (2, y)|Pdzdy —

/Al/f(%y) (V . 51(x,y) - pl(amy))dmdy} =0,

and

—

V- Di(z,y) — p1(z,y) =0

10 K arush- Kuhn- Tucker conditions.
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Note that V5 is the gradient operator with partial derivatives with respect to
D, and D,. Now, substituting p; by 6p; and 51 by 951,

VD“L(Hﬁl,V;) vy=0-Dyr = GPVD“L(EMVT)
and
V- (0Dy(2,y)) — 0p1(z,y) = 0(V-Di(z,y) — pi(x,y))

This can be easily_'veriﬁed using the Lagrangian equation and the fact that,
for scalar 0, V - (QD(x, y)) =0V - D(z,y). Therefore, §D;(z,y) is the optimal
solution for the p-norm problem (11) with load density function 6p;(z,y).

PrOOF OF LEMMA 4. Note that the flow-based gridding of the network region
A is performed using the initial flow field ﬁl(x, y) and independent of the scal-
ing factor . Hence, as 6 grows, the size of square grids remains unchanged.
However, transmission power of nodes p(z,y) ~ |D(x,y)|~®. Also, the width
of streamline regions shrinks proportional to |Z_j|*1 at any cross section of the
network. Consider interference region of nodes to be circular regions with ra-
dius of O(1) around each node. Let d(z,y) denote the density of active cells
at each time slot. With the proposed TDMA scheme, d(z,y) = ﬁ, where
s(x,y) = O(|D(z,y)| 1) refers to the length of the tessellating cells inside each
square grid, and M refers to the parameter of the controlled access scheme. Now,
the total amount of interference at an arbitrary node X, due to simultaneous
transmission of nodes outside ITR(X,,) can be upper bounded as follows:

1
I < —1}- -0(1
avir(x,) S max{oom) (Ly)erg\afR(Xu){pt} (1)
51’1’1 X 2
= |47"‘| -0(1)
|Dmin|a
Diax]\2 1
- (|ﬂ a') . ~-0(1) (B.1)
|Dmin| |Dmin|a7
Note that as § — oo, Dmaxl remains constant due to linear scaling of | D,

” | Dmin
and bounded due to non—zlero Aimensions of the information sink. Also, based
on Lemma 1, as § — oo, |5| — 00 everywhere in the network with non-zero
information flow. Hence, the second term in (B.1) goes to 0 as 6§ — oo.
With a diminishing interference effect at an arbitrary node X,, due to trans-
missions outside IR(X,,), a bounded version of the Physical Model (as stated
in (6)) can be used for the implementability analysis.
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