
Cooperative image analysis in visual sensor networks
1. Introduction

⇑ Corresponding author. Tel.: +39 02 2399 9614; fax: +39 02 2399 3413.
E-mail address: redondi@elet.polimi.it (A. Redondi).
Alessandro Redondi a,⇑, Matteo Cesana a, Marco Tagliasacchi a, Ilario Filippini a, György Dán b,
Viktoria Fodor b
a Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza Leonardo da Vinci, 32, Milano, Italy
b Lab for Communication Networks, School of Electrical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden

Received 16 July 2014

Received in revised form 28 October 2014
Accepted 19 January 2015
Available online 30 January 2015
Visual sensor networks (VSNs) extend the application smart parking metering, environmental monitoring, haz-

fields of traditional wireless sensor networks by adding
the capability to acquire and process multimedia signals
such as still images and video. VSNs can have a significant
impact in scenarios in which visual analysis is currently
infeasible, due to the mismatch between the transmission
and computational resources and the complexity of the
analysis tasks. As an example, in the context of smart cities,
the availability of inexpensive visual nodes can enable a
much more complete coverage of the urban landscape,
reaching a wider area and limiting the costs of the required
infrastructure to support applications for traffic monitoring,
ardous situations monitoring, etc. [1,2].
Classical networked systems for visual analysis follow

the compress-then-analyze paradigm, where image/video
analysis is performed last and is decoupled from the acqui-
sition, compression and transmission phases. In the case of
VSNs, powerful smart cameras are substituted by vision-
enabled, battery-operated sensing nodes with low-power
microprocessors and radio chips. The traditional com-
press-send-then-analyze paradigm may not fit well the
computation and communication-related constraints
imposed by these VSNs, as it requires large communication
resources. For this reason, an alternative paradigm, named
analyze-then-compress has been recently proposed
leveraging the idea that most visual analysis tasks can be
carried out based only on a succinct representation of the
image [3]; that is, image features can be collected by
sensing nodes, processed, and then delivered to the final

http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2015.01.008&domain=pdf
mailto:redondi@elet.polimi.it

destination(s), thus avoiding the need for encoding and
transmitting redundant pixel-level representations.

Extracting features from visual data is however a com-
putationally intensive task. For the case of local features,
the process entails detecting image keypoints and comput-
ing the corresponding descriptors, a process whose compu-
tational complexity grows linearly with the image size and
with the number of scales, that is, the downsampled ver-
sions of the image that are used in the feature extraction
process. As an example, even when using feature extrac-
tion algorithms tailored to low-power architectures (e.g.
BRISK [4]), the processing time for detecting keypoints
and generating the corresponding descriptors can be as
high as 5s on an Intel Imote2 sensor platform [5], and in
the order of 0.5–1 s when using a BeagleBone [6] based
sensor node, as illustrated in Fig. 2.

Such processing time may not be low enough when the
outcome of the visual processing task is used to trigger
control actions or to carry out analysis tasks such as event
detection and object tracking [7,8]. This observation calls
for alternative computing strategies, that are able to
reduce the processing time of a single frame in the VSN.

Different from classical networks of smart cameras
where the camera itself is a stand-alone entity which does
all the required processing, in the VSN scenario the camera
node is most likely to be close to other wireless nodes,
equipped with cameras or other kind of sensors. Such nodes
may be responsible for the acquisition and process-ing of
both visual and non-visual data (e.g., temperature, pressure,
infrared radiation, etc.), and are characterized by specific
processing and transmission capabilities. In such a scenario,
proximity can potentially allow a camera node to leverage
the resources of the neighboring sensor nodes to reduce the
overall processing time of the visual processing task,
following a distributed computing approach [1]. The main
rationale is to let the camera node ‘‘borrow’’ processing
power from the neighboring nodes to process part of the
initial load (image), further exploiting the parallelization of
the visual processing task. Ideally, parallelizing a processing
task always leads to a lower pro-cessing time. However, in
VSNs parallelization requires additional communication
overhead, and therefore its optimization is not
straightforward.

In this work, we target the minimization of the process-
ing time, taking into account the limitations of the compu-
tational and communication capabilities of the sensors
nodes and the specific requirements of the visual feature
extraction. To optimize the distributed processing, we need
to answer the following questions: (i) what commu-
nication paradigm, unicast or broadcast, is best suited for
distributing the loads among the cooperators in VSNs, (ii)
how many cooperators should be utilized and what is the
load share each cooperator should get, (iii) what is the
trade-off between processing time and energy consump-
tion involved in the offloading process, and finally, and (iv)
what is the impact of different visual contents on the overall
processing time.

We formulate the problem of minimizing the process-
ing time in the framework of Divisible Load Theory (DLT),
which has been widely used to study how processing load
can be optimally divided within processor grids [9]. We
derive closed form expressions for the optimal task pro-
cessing time and for the corresponding load assignment to
the cooperating sensor nodes under different network-ing
scenarios and communication paradigms, taking into
consideration the specific properties of feature extraction
algorithms. The performance of the proposed load distribu-
tion schemes are evaluated both through simulation and
through the development of a real-life Visual Sensor Net-
work composed of one camera node and several
cooperators.

The rest of the paper is organized as follows. Section 2
discusses the related work further providing background
on the divisible load theory. In Section 3 the main ideas and
algorithms behind visual feature extraction are described;
Section 4 defines the reference scenario and the problem
statement. In Section 5 the DLT-based offload-ing
framework for visual sensor networks is presented, and
Section 6 reports the performance evaluation study of the
proposed framework in realistic visual sensor networks.
Section 7 concludes the paper.
2. Related work

The challenge of networked visual analysis under the
compress-then-analyze paradigm is to minimize the
amount of pixel data to be transmitted. As lossy coding
in the pixel domain affects the visual analysis at the central
node, recent works propose image coding schemes that are
optimized for feature extraction [10,11].

If the analyze-then-compress approach is followed, the
main challenge is to minimize the computational load at
the camera node, and therefore many of the emerging fea-
ture extraction schemes aim at decreasing the computa-
tional complexity [12,4]. If the transmission bandwidth of
the VSN is very limited, the objective can even be to limit
the amount of data to be transmitted by compressing the
descriptors or by limiting their number. Descriptor com-
pression techniques are suggested and evaluated in
[13,14]. In [15] a progressive transmission scheme is
pro-posed, which terminates the transmission of new
descrip-tors as soon as the image is retrieved. In [16] the
number of considered interest points and the quantization
level of the descriptors are jointly optimized to maximize
the accuracy of the recognition, subject to energy
and bandwidth constraints.

The present work is motivated by recent results on the
expected transmission and processing load of visual analy-
sis in sensor networks [5], demonstrating that processing
at the camera or at the sink node of the VSN leads to signif-
icant delays, and thus distributed processing is necessary
for real-time applications. To analyze the performance of
distributed processing we leverage tools from the divisible
load theory (DLT), which addresses the problem of load
distribution in a grid of processors. DLT has been applied
for different distributed systems [9], and recently also to
wireless sensor networks [17,18], for processing large data
whose computation may be split among different entities
(i.e., in case the load is divisible).

Distributed processing in networks typically considers a
central processor, which is the source of the processing

load, and a number of cooperating processors. The optimal
load allocation, which minimizes the overall computa-
tional time, depends on the network architecture, that is,
how many processors are available and how they are con-
nected to the central processor, on the communication and
computational capabilities of the processors, and on the
relationship between the amount of allocated data to be
processed and the processing time. Given this information,
the optimal allocation can be computed through closed-
form recursive equations, which characterize the offload-
ing order and the load share to be assigned to each node.
Several works derived such equations for different system
scenarios: in [19] the load allocation is solved for bus-like
networks, in [20] the solution is given for single-level tree
(star) networks and in [21] the asymptotic performance
analysis of linear and tree networks is presented. In this
work we consider VSNs arranged in a star topology.

In [20], the three main properties of the optimal
allocation are derived for the scenario when the central
processor is not equipped with a front-end, that is, it can-
not compute and communicate at the same time, and the
processing time is linear in the amount of allocated data.
First, under optimal load distribution all the processors
stop computing at the same time. Second, the load distri-
bution from the central processor is performed in decreas-
ing order of link transmission capacities, independently
from the processing speeds of the nodes. Third, a processor
can be used only if the time needed to communicate a
given load to the cooperating processor is lower than the
time needed to process the same load the central proces-
sor. As we show, these general findings of DLT need to be
adapted and extended to the specific network scenario and
application requirements to be applicable to VSNs.
1 In general, a patch of pixels is required also for the detection process. As
an example, most of the recent corner detectors are based on FAST, which
identifies a pixel p as a keypoint if n contiguous pixels in the Bresenham
circle of radius 3 around p are brighter or darker than p.
3. Background on feature extraction

Visual features provide a concise, yet efficient, repre-
sentation of the underlying pixel domain content of an
image, and are robust to many global and local transforma-
tions. Hence, they are employed for various visual analysis
tasks, including image/video retrieval, object recognition,
structure from motion, etc.

Extracting visual features from an image is
accomplished with the aid of two components: the
detector, which iden-tifies salient keypoints in the image;
and the descriptor, which provides a succinct
representation of the image patch around each keypoint.
Many algorithms have been recently proposed for these
two components: detectors can identify blob-like [22,23] or
corner-like [12,24] structures in the image and may or may
not be scale/viewpoint/illumination invariant. In particular,
using scale-invariant detectors, key-points are detected at
different scales, each scale being a resized and smoothed
version of the original image. Simi-larly, several descriptor
algorithms are available, ranging from local-gradient
approaches [22,23], to faster methods based on pixel
intensity comparisons [25,4].

The process of visual feature detection and description
is the same regardless of the particular detector/descriptor
algorithm used, and is shown in Fig. 1. It is important to

note that to compute a visual feature at a certain location,
a patch of pixels surrounding the location is required.1

Moreover, the size of such a patch of pixels is not fixed, but
depends on the particular scale at which the keypoint is
found. In general, the higher the scale, the bigger the size of
the patch needed to compute the descriptor. We will explain
later why this aspect is critical in the design of the load
distribution scheme.

In this work, we focus on the recently proposed BRISK
[4] feature extraction algorithm. In BRISK, a fast multi-scale
corner detector identifies salient keypoints in an image,
which are then described efficiently starting simply from
intensity comparisons between pixels of the patch to be
described. As shown in several works [26,27], BRISK
constitutes a good alternative to state-of-the-art methods
such as SIFT [22] and SURF [23], providing similar perfor-
mance at relatively lower computational times. BRISK is
thus a good candidate for use in resource constrained
architectures such as VSNs. Despite its relatively low com-
putational complexity, running BRISK on commercially
available visual sensor nodes can still result in excessive
processing times. As an example, Fig. 2 shows the execu-
tion time of both the keypoint detection and the feature
description of BRISK, when executed on a BeagleBone-
based visual sensor node and using a VGA (640x480) image
as input. As one can see, the time taken for detecting and
extracting features has a minimum value of 300 ms and
grows linearly with the number of keypoints detected in
the input image. Typically, for visual analysis tasks such as
object recognition or tracking, hundreds or even thou-
sands of keypoints are required. Thus the time to extract
the features may easily approach values in the order of one
second. The delay values can even be higher under
increased image resolution or when the sensors need to
apply some energy saving policy, such as dynamic fre-
quency scaling (DFS). Such latencies may critically impair
the correct operation of the VSN, especially when it is
required to react to detected events by means of control
actions (e.g., tracking the recognized object, increasing the
frame rate, zooming on a particular area). Minimizing the
processing time for analyzing a frame is thus of crucial
importance in VSNs.

4. System model and problem statement

We consider a VSN consisting of one camera node (the
central processor) and a set N of cooperating nodes, as
shown in Fig. 3. Without loss of generality, we assume that
the nodes are indexed from 0 (the camera node) to
N ¼ jN j. The camera node acquires an image of size L bits,
and has to perform visual analysis by detecting and
extracting visual features from it. The camera node can
perform the processing itself, but it can also distribute
parts of the processing to a subset N u #N of the cooperat-
ing nodes. We denote the number of cooperating nodes
that are actually used by n ¼ jN uj, and without loss of
generality we assume that whenever n < N, the used

Fig. 1. Visual features extraction: several keypoints (red circles) are detected on the input image. The patch around each keypoint is then encoded in a
numerical vector by the descriptor algorithm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

0 100 200 300 400 500 600 700 800 900
0

100

200

300

400

500

600

700

T
im

e
[m

s]

Detection time
Description time
Total Execution time

c1

c2

c3

c4

c5

v5

v4

v3

v2

v1

v0

Fig. 3. A visual sensor network composed of one camera and 5 cooper-
ating nodes. Each node is characterized by its processing speed v i and its
effective transmission rare ci . After extraction, visual features are
transmitted to a central controller (sink node) through links with equal
capacity (represented with the dashed lines).Number of detected keypoints

Fig. 2. BRISK execution time on a BeagleBone Linux computer and a VGA
image.
cooperating nodes are assigned indexes 1 to n. n ¼ 0 corre-
sponds to not using any cooperating node.

For distributing the load, the pixel-level representa-
tion of the image is split into n vertical slices.2 All slices
have the same height but can have different widths. We
denote the width of slice i by ai, where 0 6 ai 6 1 is nor-

malized with respect to the image’s width and
P

i
N
¼0ai ¼ 1.

By definition ai ¼ 0 for n < i 6 N. The size of slice i in bits
is aiL, and we refer to a ¼ ða0; . . . ; aNÞ as the load assign-
ment schedule. Each slice is then assigned and transmitted
for processing (keypoint detection and descriptor extrac-
tion) to a cooperating node. We consider two scenarios
for slice transmission to the cooperators: (i) slices are
transmitted in raw pixel format or (ii) slices are com-
pressed with a visual features preserving JPEG algorithm
before transmission [11,28,29]. When transmitting in raw
pixel format, there is a direct correspondence between
the number of pixels in a slice and the size of the slice
in bits. For the case of JPEG compression, we denote by
c the JPEG compression ratio, and thus the number of bits
2 Note that the modeling framework holds if the split is performed in

horizontal slices.
for slice i becomes aiL=c. Experimental results in [28]
show that by using c ¼ 4 all features are preserved.
4.1. Node processing and communications capabilities

Each node is characterized by its communication and
computational capabilities. Node i is characterized by its
speed of processing one information bit, v i (in bit/s) (for
0 6 i 6 N). We consider that the computational time spent
by the i-th processor to detect keypoints and to extract fea-
tures from the assigned image slice depends only on the
size of the image slice itself, i.e., TCPU;i / ai. In general,
the time needed for extracting features depends both on
the image size and on the visual image content through
the number of features that need to be extracted [27]. Nev-
ertheless, the assumption of proportionality holds if the
keypoints in the input image are uniformly distributed,
which was found to hold on average both horizontally
and vertically in recent work [30]. We will evaluate the
effect of non-uniformly distributed keypoints on the over-
all performance via experiments.

The sensor nodes use a wireless link layer technology
capable of unicast and brodcast transmission, such as IEEE
802.15.4 or 802.11. In case of unicast offloading, the
camera node sends the load share to each processing node

α0 α1 α2

α0 + o

α1 + o

α2

Fig. 4. Image splitting with vertical cuts and overlap.
i via unicast transmissions. We assume that frames lost
due to the impairments of the wireless channel are
retransmitted in the link layer. Therefore, we characterize
the transmission link by si, the average time needed to
transmit successfully one bit, and parameterise it with
the effective link transmission rate ci (in bit/s), such that
si ¼ 1

ci
. In case of broadcast offloading the camera node uses

broadcast transmission to transmit the part of the image
that will be processed by the cooperating nodes. As link
layer acknowledgements and retransmissions are not pos-
sible in typical technologies such as IEEE 802.15.4 and
802.11, we characterize the broadcast link with the raw
transmission rate cbc. The broadcast transmission rate is
limited by the modulation and coding scheme that ensures
correct decoding of the frames at the processing node with
the weakest link, that is, cbc 6 minici. We denote by pi the
frame loss rate experienced by node i when using broad-
cast transmission. After the broadcast transmission, each
processing node informs the camera node of the lost pack-
ets it needs to be retransmitted. The camera node then
uses unicast transmission to retransmit the lost packets.

For link layer technologies with small frame sizes, such
as IEEE 802.15.4, the transmission overhead may be signif-
icant. To capture this overhead, we denote by F the frame
size in bits and by H the size in bits of the frame header
(so that the effective payload is F � H bits), and we com-
pute the overhead as h ¼ F

F�H.
The extracted features are finally sent to a central con-

troller (sink node) for further processing (e.g., object recog-
nition/tracking). We do not model the time needed for
transmitting the extracted features to the central control-
ler, as this delay appears in the visual system regardless
of whether the processing is centralized at the camera or
distributed among the sensor nodes.

To model the energy consumption of the sensor nodes,
we denote by Pcpu the processing power of the sensor
nodes, and we denote by Ptx and Prx the transmit and the
receive power of the sensor nodes, respectively. The energy
use is proportional to the time spent processing, transmit-
ting and receiving.
4.2. Overlap between slices

Offloading must not negatively affect the accuracy of
visual analysis, that is, the overall set of keypoints
extracted by the camera and by the cooperating nodes
must be the same as the set of keypoints that would be
extracted by the camera node alone. Recall that each fea-
ture descriptor is computed based on a patch of pixels
around the corresponding keypoint. The size of the patch
depends on the scale at which the keypoint is detected,
small patches are needed at lower scales and larger ones
at higher scales. Thus, in order to avoid that keypoints on
the boundary between two adjacent slices get lost, as
shown in Fig. 4, the input image has to be split in overlap-
ping slices. More in details, the overlap is required to avoid
errors in the computation of the features detected close to
the border of each slice. The amount of the overlap is pro-
portional to the maximum size of the patch required by the
particular descriptor algorithm. We denote by o (in per-
centage with respect to the total image size L) the overlap
between two adjacent slices. Fig. 4 illustrates the overlap
between slices. For convenience we will consider that the
overlap between two slices is attached to the slice with
lower index. Note that this implies that the last slice of
the image does not need any overlap. An equivalent nota-
tion would be to attach a smaller (o=2) overlap on both
sides of each slice. To capture the overlap associated to
each slice, we define bi ¼ ai þ o for i < n; bn ¼ an and
bi ¼ 0 for n < i 6 N. Thus, the amount of data correspond-
ing to the i-th slice including the overlap is biL. Observe
that if o > 0 and n > 0 then

PN
i¼0bi > 1.

The overlap has to be chosen such that features at the
highest scale (those requiring the largest patch of pixels)
are correctly computed. Formally, if we denote by P the
set of keypoints detected in the whole input image, and
by Pi the sets of keypoints detected in the i-th slice of
the same image for an overlap o, then we would like
P �

S
iPi.

We performed experiments to assess the amount of
overlap needed for correct descriptor extraction under slic-
ing. To quantify the similarity between two sets of key-
points we used the repeatability measure. Repeatability is
a widely used measure to evaluate detectors, and was orig-
inally defined in [31] as the ratio between the number of
point-to-point correspondences and the minimum number
of keypoints detected in a given pair of images. In our case,
we define the repeatability measure as follows

Repeatability ¼ jP \
S

iPij
jPj ð1Þ

Hence, the repeatability is 100% if and only if P �
S

iPi.
Fig. 5 shows the repeatability measure for different val-

ues of the overlap, when using the BRISK detector with
standard parameters (4 octaves and a detection threshold

0 5 10 15 20
60

65

70

75

80

85

90

95

100

Overlap [%]

R
ep

ea
ta

bi
lit

y
[%

]

Fig. 5. Impact of the splitting overlap on the repeatability of keypoints.
of 60) and averaged over 50 different input VGA images
(640 � 480). The results show that an overlap of about
15% of the total image size gives a repeatability score
above 99%, and confirm that slicing with an appropriate
overlap ensures correct keypoint detection and feature
extraction. Experiments with different detector parame-
ters led to similar results, and are omitted here for brevity.

4.3. Problem statement

The problem we address is the design of the optimal off-
loading scheme that minimizes the completion time for
the task of visual feature extraction. We define the total
completion time as T ¼max06i6nTi, where Ti is the time
instant when node i completes its assigned task.3 To find
the minimum completion time T we need to determine (i)
the best offloading mode (unicast or broadcast), (ii) the
number n of cooperating nodes to be used, (iii) the load
share ai assigned to the cooperating nodes and (iv) the order
in which the loads should be assigned to the n cooperating
nodes. The solution that minimizes the total completion
time T depends on the network configuration, that is, on
the processing and transmission capabilities v i; ci; cbc;pi

(with 0 6 i 6 N) and on the required overlap o.
Besides the completion time, we are also interested in

the impact of offloading on the VSN lifetime T VSN. We
define the VSN lifetime T VSN as the total number of images
that can be analyzed by the network before the energy of
the camera or one of the processing nodes is depleted.
Without loss of generality, we assume that every sensor
node has the same energy budget E so that the lifetime
of the VSN can be expressed as

T VSN ¼
E

maxiEi
; ð2Þ

where Ei is the energy consumption of node i. Given the
load assignment schedule a, and the energy consumption
parameters Pcpu; Ptx and Prx, we can express Ei, the energy
consumption of node i for unicast offloading as
3 The starting point t ¼ 0 is set to the time when the camera node has
finished acquiring the image and the processing task can then start.
Ei ¼
L Pcpu

b0
v0
þ Ptxh

PN
i¼1

bi
cci

� �h i
i ¼ 0

L Pcpu
bi
v i
þ Prxh bi

cci

h i
1 6 i 6 N

8><
>: ð3Þ

The energy consumed by the camera node (i ¼ 0) is the
sum of the required energy for processing its own slice of
the original image (first term) and of the required energy
to transmit via unicast the remaining part of the original
image to the cooperating nodes (second term). Each coop-
erating node (1 6 i 6 N), similarly, consumes energy for
receiving and processing the assigned slice.

In the case of broadcast offloading the energy consump-
tion Ei is given by

Ei ¼
L Pcpu

b0
v0
þ Ptxh ð1�a0Þ

ccbc
þ
PN

i¼1
pibi
cci

� �h i
i ¼ 0

L Pcpu
bi
v i
þ Prxh 1�a0

ccbc
þ pibi

cci

� �h i
1 6 i 6 N:

8><
>:

ð4Þ

That is, the energy consumed by the camera node (i ¼ 0) is
the sum of the required energy for processing its own slice
of the image (first term) and of the required energy for
transmitting the remaining slices to the cooperating nodes
(second term). The energy required for transmission con-
sists of the energy required for transmitting in broadcast
the remaining part of the image (Ptxh ð1�a0Þ

ccbc
) and of the

energy required for re-transmitting in unicast the slices
of the image to specific cooperators in case the broadcast
transmission fails (Ptxh

PN
i¼1

pibi
cci

). Similarly, the energy con-

sumed by the cooperating nodes is the sum of the energy
required for processing the assigned image slice (first
term) and the energy for receiving the broadcast transmis-
sion and any unicast retransmissions, in case the broadcast
transmission fails.
5. Optimal offloading for visual sensor networks

In the following we derive closed-form expressions for
the optimal load assignment a� in the considered VSN for
the case of unicast and for the case of broadcast wireless
transmission. First we consider that the set N u of used
cooperating nodes and the scheduling order are given.
Since for N u ¼ ; the optimal offloading schedule is trivial,
we consider that N u – ;. Then we discuss how to apply the
properties of optimal allocation [20], discussed in Section 2,
for our specific scenario.

5.1. Unicast offloading

In the case of unicast offloading the camera node trans-
mits slices of the image to the set of used cooperating
nodes via individual unicast transmissions. Fig. 6 shows the
timing diagram for unicast offloading including the
transmission time and the processing time at the cooperat-
ing nodes. Since the load is not perfectly divisible, each slice
to be offloaded contains also the overlap (for all but the last
cooperating node).

We first recall a basic result from divisible load theory
[9].

Fig. 6. Unicast splitting and offloading.
Lemma 1. The optimal load assignment schedule a� is such
that the used cooperators and the camera finish the compu-
tation at the same time instant, that is, Ti ¼ T;0 6 i 6 n.

We can use the above insight to characterize the opti-
mal load assignment schedule for a given set N u of used
cooperators.

Proposition 1. The optimal load assignment schedule for
unicast offloading using nodes in N u – ; is the solution to the
following linear system
b0

v0
¼ bn

vn
ð5Þ

bi

v i
¼ biþ1

v iþ1
þ h

biþ1

cciþ1
; 1 6 i 6 n� 1 ð6Þ

bi ¼ ai þ o; 0 6 i 6 n� 1 ð7Þ
bn ¼ an ð8Þ
XN

i¼0

ai ¼ 1: ð9Þ

Proof. Let us consider Fig. 6. Observe that the camera and
node n spend the same amount of time processing, hence
(5). Next, the processing time of node n� 1 equals the time
to transmit data to node n and the processing time of node
n, hence (6) for i ¼ n� 1. The other the equalities follow
similarly. h

The solution to the above set of equations is the optimal
load assignment schedule for a particular permutation of
the nodes in N u, and is given in the following.

Corollary 1. The optimal load assignment schedule under
unicast offloading for a permutation of the set N u of used
nodes is given by

a�n ¼ b�n ¼
1þ on

1þ v0
vn
þ
Pn�1

i¼1

Qn�1
j¼i v jð 1

v jþ1
þ h

ccjþ1
Þ
; ð10Þ

and (5)–(8). The completion time corresponding to the
opti-mal load assignment schedule a� is

Tuc ¼ L
b�1
cc1

hþ b�1
v1

� �
¼ L

b�n
vnð 1

v1
þ h

cc1
Þ

h
cc1
þ 1

v1

� �
: ð11Þ
Proof. Observe that (9) is equivalent to
Pn

i¼0bi ¼ 1þ on.
The expression for b�n can then be obtained by recursively
expressing bi as a function of biþ1. h
5.2. Broadcast offloading

In the case of broadcast offloading the camera node first
broadcasts the part of the image that will be processed by
the cooperating nodes, with rate cbc. Due to the broadcast
transmission, the overlaps do not need to be transmitted
twice. After the broadcast transmission, missing frames
from slices and overlaps are retransmitted via a sequence
of unicast transmissions to each node i, now with link layer
retransmissions, with effective rate ci.

Fig. 7 shows the time diagram for broadcast offloading
including the transmission times and the processing times
of the cooperating nodes.

Again, the optimal load assignment schedule can be
found by imposing that all used cooperating nodes com-
plete computation at the same time.

Proposition 2. The optimal load assignment schedule for
broadcast offloading for a permutation of the set N u of used
nodes is the solution to the following linear system
b0

v0
¼ an

vn
ð12Þ

bi

v i
¼ biþ1

v iþ1
þ piþ1

hbiþ1

cciþ1
; 1 6 i 6 n� 1 ð13Þ

bi ¼ ai þ o; 0 6 i 6 n� 1 ð14Þ
bn ¼ an ð15Þ
Xn

ai ¼ 1: ð16Þ
i¼0
cci

Proof. Let us consider Fig. 7. Recall that pi is the probabil-
ity that the i-th cooperator loses a packet during broadcast
transmission, and thus the amount of data to be transmit-
ted in unicast to node i is piðLbiÞ. Unicast transmission to
node i thus takes pi ðhLbi Þ time. Node i can start processing

its load once it receives the frames lost during broadcast.
The equations are then obtained using a similar reasoning
as in the proof of Proposition 1.
Fig. 7. Broadcast offloading.

The solution to the above set of equations, the optimal
load assignment schedule under broadcast offloading, is
given in the following.

Corollary 2. The optimal load assignment schedule under
broadcast offloading for a permutation of the set N u of used
nodes is given by

a�n ¼ b�n ¼
1þ on

1þ v0
vn
þ
Pn�1

i¼1

Qn�1
j¼i v jð 1

v jþ1
þ pjþ1h

ccjþ1
Þ
; ð17Þ

and (12)–(15). The completion time corresponding to the
optimal load assignment schedule a� is

Tbc ¼ L
hð1� a0Þ

ccbc
þ p1ðhb1Þ

cc1
þ b1

v1

� �

¼ L
hð1þ oÞ

ccbc
� hv0b

�
n

vnccbc
þ b�n

vn
1
v1
þ h

cc1

� � p1h
cc1
þ 1

v1

� �2
4

3
5:
ð18Þ
5.3. Scheduling order and the optimal set of cooperating nodes

While the optimal scheduling order is in the decreasing
order of link transmission rates in many basic scenarios, as
derived in [20], in the presence of transmission overlap the
optimal order depends also on the processing rates of the
nodes [32], and no general results can be derived for net-
works with heterogeneous transmission and processing
rates. Therefore, in the numerical evaluation we consider
homogeneous processing rates, where the basic result on
the optimal scheduling order holds.

We select the set of cooperating nodes as proposed in
[20], comparing the time needed for processing informa-
tion at the camera to that for transmitting it and process-
ing it at a network node. Based on this principle we can
formulate sufficient conditions for a potential cooperating
node not to belong to the set of actual cooperating nodes.

Proposition 3. Under unicast transmission, if cooperating
nodes are added in decreasing order of effective transmission
rate, an additional node i should not be added to the set N u of
used cooperating nodes if

ai

v0
<

ai

cci
þ o

cci
: ð19Þ
Table 1
Parameters used for the analysis.

Name Symbol Value

L 2:46� 106 bits
c 4
v 1:48 Mbps
Pcpu 2:1 W
Ptx 1:5 W
Prx 1:2 W
E 32:4� 103 J
F 1512 Bytes
H 66 Bytes

Image load
JPEG compression ratio [11]
CPU speed
CPU power
RADIO TX power
RADIO RX power
Energy budget

Packet size
Header size
Image overlap o 15%
Proof. According to [20], a processing node should be
added only if processing the same load at the camera takes
more time than the transmission time it introduces in the
network. In the case of overlaps, adding one additional
node also introduces transmission of one more overlap to
the previous node, which gives the result in (19).

Under broadcast transmission due to adding one more
cooperating node the broadcast transmission rate cbc may
need to be decreased, with a consequence of changing
(most probably decreasing) the loss probability pi at all
the cooperating nodes. In this case the effect of the addi-
tion of one more processing node needs to be evaluated
numerically. For the specific case when cbc does not need
to be changed, the following holds.

Proposition 4. Under broadcast transmission, if cooperating
nodes are added in decreasing order of effective transmission
rate, and the transmission rate cbc does not need to be
changed, an additional node i should not be added to the set
N u of used cooperating nodes if
1
v0

<
pi

cci
: ð20Þ
Proof. In this case the processing of slice ai at the camera
node needs to be compared to the transmission time of the
frames lost from the slice under the broadcast transmis-
sion which gives (20).
6. Performance evaluation

In this section we evaluate the benefit of unicast and
broadcast offloading in speeding up the processing of
stand-alone images. For the numerical results we consider
a VSN consisting of BeagleBone Linux computers [6], inte-
grated with a 802.11 g compliant dongle to form a visual
sensor node. The camera node is equipped with a low cost
USB camera with a resolution of 640 � 480 pixels, 8 bits per
pixel. We consider two scenarios for the link transmis-sion
rates. In the homogeneous scenario all links have the same
effective transmission rate ci ¼ 24 Mbps. In the heter-
ogeneous scenario the effective transmission rates are cho-
sen uniform at random from the set of available data rates
in 802.11 g (i.e., 6, 9, 12, 18, 24, 36, 48, 54 Mbps). For sim-
plicity, for the broadcast offloading we set cbc to the mini-
mum effective transmission rate of the participating nodes.
The results presented for this scenario are the averages of
100 simulations. We consider that the probability of losing
a packet is equal on all links (i.e., pi ¼ p) and use values of
0, 5% and 20%, corresponding to an ideal, average and bad
case, respectively. For simplicity, all nodes have the same
processor speed (i.e., vi ¼ v). The BRISK algorithm is
parametrized so that 500 keypoints are detected and the
required overlap is 15% of the image size. The complete
set of parameters used in our analysis is reported in
Table 1.

1 2 3 4 5 6 7 8 9 10
1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

S
pe

ed
up

Broadcast p = 0
Broadcast p = 0.05
Broadcast p = 0.2
Unicast

n

Fig. 9. Speedup vs. number of used cooperating nodes n when the
number cooperating nodes is N ¼ 10.
6.1. Simulation results

We first focus on the impact of the number of process-
ing nodes on the completion time. We report the comple-
tion times normalized by the completion time in case the
processing is entirely carried out by the camera node,
referred to as a speedup ratio. For each figure we show two
families of curves, depending on which assumption is made
for the transmission of image slices to cooperators. We add
the label ‘‘JPEG’’ to those curves which have been obtained
by assuming that slices are compressed with a feature
preserving JPEG encoding algorithm (with c ¼ 4) before
transmission.

Fig. 8(a) and (b) show the speedup obtained by the two
offloading schemes for the homogeneous and the hetero-
geneous scenarios, respectively with an increasing number
of available nodes N. The results were obtained as follows.
For a given value of N, the potential cooperators were first
sorted in decreasing order of transmission capacity. Then,
the list of potential cooperators was pruned using Proposi-
tions 3 or 4. Finally, the total completion time was calcu-
lated as a function of the number of used cooperators n. The
optimal n is the one that maximizes the processing speed
up. It is interesting to observe that broadcast off-loading
always outperforms unicast offloading in the homogeneous
scenario, while the opposite holds for the heterogeneous
case. Clearly, in the homogeneous scenario broadcasting
eliminates the transmission redundancy introduced by the
overlap at no loss of transmission rate, but in the
heterogeneous scenario the relatively low cbc increases the
time to transmit the whole image compared to unicast.
Compressing slices before transmission clearly allows to
obtain higher speedups.

For the considered input parameters all the available
nodes could be used in the homogeneous scenario, while
in the heterogeneous case the ones with low transmission
rate were not used.

Fig. 9 shows the speed-up vs. the number n of used
cooperating nodes for N ¼ 10, heterogeneous transmission
capacities and uncompressed slices. Observe that the opti-
mal number of used cooperating nodes is lower under
broadcast (6 nodes) than under unicast (8 nodes). This is
(a) Homogeneous scenario.

Fig. 8. Speedup vs. number of ava
due to that the broadcast offloading scheme is more
restrictive, as nodes with weak links limit cbc.

Fig. 10 shows the speedup for N ¼ 5 cooperating nodes
for the heterogeneous scenario as a function of the overlap
o. The broadcast strategy suffers less from the increase of
the overlap. Again, in absolute terms, the unicast strategy
achieves the best performance.

Fig. 11(a) and (b) show the VSN lifetime obtained by the
two offloading schemes for homogeneous and heteroge-
neous link transmission rates respectively. The energy
budget of the nodes, E is given in Table 1. We observe the
same trend as observed for the speed-ups; broadcast
offloading is the best choice for homogeneous case, while
unicast offloading is better for the heterogeneous one.

Finally, Fig. 12 shows the trade-off between energy con-
sumption and speedup. We quantify the energy consump-
tion by normalizing the total energy consumption with
that of a non-cooperative VSN that consist of the camera
node only (N ¼ 0). Since the processing energy is the same
for the non-cooperative and for the cooperative case (the
entire image needs to be processed), the total energy
(b) Heterogeneous scenario.

ilable cooperating nodes N.

0 10 20 30 40 50
1

1.5

2

2.5

3

3.5

4

4.5

Overlap [%]

Sp
ee

du
p

Broadcast p = 0
Broadcast p = 0.05
Broadcast p = 0.2
Unicast

Fig. 10. Speedup vs. overlap for the heterogeneous scenario, N ¼ 5. Fig. 12. Tradeoff between total energy consumption and speedup in case
the number of available cooperating nodes ranges from 0 to N ¼ 10.
consumption of the cooperative scheme is higher, as it
includes transmission and reception costs. Therefore, we
refer to the normalized energy consumption as energy loss.
The results show that the speedup exceeds the energy loss
over the considered range. As an example, the total energy
required to achieve a speedup of 3 with the unicast strat-
egy requires 2 times the energy needed by the camera
alone in the non-cooperative case if slices are non com-
pressed, whereas the energy loss is limited to 1.6 times
in the case of compressed slices. However, the speed up
has an upper limit, and close to this limit the marginal
energy loss is very high. Consequently, an energy-opti-
mized cooperative system should only aim for a speed-
up required by the visual application.

For the considered scenario we have seen that the
broadcast offloading scheme performs poorly under heter-
ogeneous link transmission rates. As the broadcast trans-
mission rate is determined by the weakest link, we
expect that the performance of the broadcast offloading
scheme depends on the difference between the link
qualities of the cooperating nodes, and reaches and then
(a) Homoegenous scenario.

Fig. 11. VSN Lifetime vs. n
outperforms the unicast offloading scheme as this differ-
ence decreases.

6.2. Experimental validation

To validate the proposed model, we implemented a
visual sensor network composed of one camera node and
up to 4 cooperator nodes based on the BeagleBone
platform, located in an indoor environment. All nodes
run Linux Ubuntu operating system and are equipped with
Edimax EW-7811Un WiFi dongles. The camera is a Logi-
tech C170 USB camera. The nodes form a 802.11 Ad Hoc
network organized in a star topology, similar to the one
in Fig. 3.

6.2.1. Unicast offloading
For unicast offloading the nodes used TCP at the trans-

port layer to ensure reliable transmission. Once the con-
nection is established, the cooperating processing node
reports its processing speed vi and the camera node probes
the speed of the link to node i to estimate ci using the iperf
(b) Heterogeneous scenario.

umber of nodes N.

6.2.2. Broadcast offloading

(a) Test image with uniform
distribution of key points.

(b) Test image with non-
uniform distribution of key-
points.

(c) Test image from a real sce-
nario.

Fig. 13. Test images.

0 1 2 3 4
1

1.5

2

2.5

3

Number of cooperators [N]

Sp
ee

du
p

Simulation
Testbed

(a) Test on the class of images
in Figure 13(a).

0 1 2 3 4
1

1.5

2

2.5

3

Number of cooperators [N]

Sp
ee

du
p

Simulation
Testbed

(b) Test on the class of images
in Figure 13(b).

0 1 2 3 4
1

1.5

2

2.5

3

Number of cooperators [N]

Sp
ee

du
p

Simulation
Testbed

(c) Test on the class of images
in Figure 13(c).

Fig. 14. Speedups obtained with the simulation and the testbed for the unicast case.
tool over a window of 10 s. After obtaining the pairs hci; vii
for the processing nodes, the camera node (i) sorts the pro-
cessing nodes in descending order of ci, (ii) computes the
optimal slice sizes ai as described in (5) and (iii) transmits
the pixel data to the processing nodes. Upon receiving the
data, the processing nodes run the BRISK algorithm on the
received image slice and transmit a timestamp corre-
sponding to the completion time back to the camera node.
The camera node collects the timestamps from all the
nodes and marks the largest one as the completion time.
Network Time Protocol (NTP) is used to synchronize the
clocks. For each experiment the ci; vi values are recorded,
so that the experimental results can be compared with
the ones predicted by the analytic framework.

To evaluate the effect of the distribution of the key-
points, we tested our system on three different classes of
input images, each class consisting of 10 images. The first
class contains images characterized by a uniform distribu-
tion of keypoints, as illustrated in Fig. 13(a). The second
class is composed of 10 images from the ZuBuD4 dataset,
which contains images of buildings of the city of Zurich (Fig.
13(b)). In this case, the particular visual symmetry of
buildings allow to obtain an almost uniform distribution of
keypoints, although less balanced. The third class of images,
illustrated in Fig. 13(c), is composed of a set of video frames
from the PETS 20075 surveillance dataset, all characterized
4 http://www.vision.ee.ethz.ch/showroom/zubud/index.en.html.
5 http://www.cvg.reading.ac.uk/PETS2007/data.html.
by a non-uniform spatial distribution of the keypoints. For
each tested image, we repeated the experiment ten times,
averaging the results.

Fig. 14 shows the speedup obtained in the testbed as a
function of the number of processing nodes. As one can see
in Fig. 14(a), in case of a test image characterized with a
uniform spatial distribution of keypoints, the speedup
obtained with the testbed matches the one predicted by the
analytical framework, confirming the validity of the model.
Under non-uniform keypoint distribution (Fig. 14(b) and
(c)), the model overestimates the speedup achievable with
the testbed, due to the relation between the assigned load
and the computational time, which in these cases is not
linear anymore. As expected, the gap increases with the
number of processing nodes. Nonethe-less, even for these
images, offloading allows to obtain a speedup of 2 when
using 4 cooperators, thus decreasing the completion time
by 50%. If there is correlation between the keypoint
distribution in subsequently processed images, a
histogram-based predictive approach can be used to
minimize the completion times with good accuracy [33].
To compute the optimal load distribution under broad-
cast offloading, the camera node needs to estimate (i) the
broadcast capacity cbc, (ii) the broadcast error probability pi

and (iii) the pairs hci; vii for each node. For what regards cbc,
we have observed that the Edimax EW-7811Un WiFi

http://www.vision.ee.ethz.ch/showroom/zubud/index.en.html
http://www.cvg.reading.ac.uk/PETS2007/data.html

0 1 2 3 4
1

1.5

2

2.5

Number of cooperators [N]

Sp
ee

du
p

Simulation
Testbed

(a) Test on the class of images
in Figure 13(a).

0 1 2 3 4
1

1.5

2

2.5

Number of cooperators [N]

Sp
ee

du
p

Simulation
Testbed

(b) Test on the class of images
in Figure 13(b).

0 1 2 3 4
1

1.5

2

2.5

Number of cooperators [N]

Sp
ee

du
p

Simulation
Testbed

(c) Test on the class of images
in Figure 13(c).

Fig. 15. Speedups obtained with the simulation and the testbed for the broadcast case.
dongle used in the testbed works at a fixed and unchange-
able broadcast rate of 11 Mb/s, thus cbc has been set to such
value. The following process has been used to estimate pi:
first the camera node sends a stream of 1000 packets of
fixed size using UDP broadcast communication. Each of the
cooperating nodes then reports the number of lost packets,
so that pi can be empirically measured. Finally, the pairs hci;
vii are obtained as in the unicast case, i.e., using iperf in TCP
mode over a window of 10 s.

Fig. 15 shows the speedup achieved in the testbed for
broadcast offloading. Again, for an image containing uni-
formly distributed keypoints, the experimental results
match the analytical results, while under non-uniform
keypoint distribution the gap is similar to the one in the
unicast case.
7. Conclusions and future work

We have shown how cooperation among sensor nodes
can be leveraged to minimize the completion time of
state-of-the-art algorithms for extracting local features
from images, which form the basis for enabling visual
analysis tasks in sight-enabled wireless sensor networks.
We modeled a scenario in which the camera sensor node
offloads part of the visual processing task to a subset of
neighboring sensor nodes. We provided closed-form
expressions for the optimal offloading solution (ordered
sequence of cooperating nodes, load size to be assigned
to each cooperation node) and for the overall task process-
ing time by extending results of divisible load theory. We
used the performance evaluation framework to evaluate
the energy/speedup trade-off involved in the offloading
process under different communication strategies (uni-
cast/broadcast). The proposed offloading solutions have
been implemented on a real visual sensor network testbed,
and were used to validate the performance model and to
confirm that considerable speedups may be achievable.
Future research avenues may include (i) the extension of
DLT theory to cover the transmission of the computed fea-
tures to the controller and to consider image content
dependent processing speed; (ii) the extension to the case
where the image slices to be distributed are compressed
before transmission; (iii) the joint optimization of the pro-
cessing time and the energy consumption of the offloading
process, also aiming at balancing the energy consumption
at the processing nodes; and (iv) the extension to the case
where multiple camera nodes need to offload computation
to a (partially) common set of cooperating nodes.

Acknowledgments

The project GreenEyes acknowledges the financial
support of the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme
for Research of the European Commission, under FET-Open
Grant No.: 296676.

References

[1] I.F. Akyildiz, T. Melodia, K.R. Chowdhury, A survey on wireless
multimedia sensor networks, Comput. Netw. 51 (4) (2007) 921–960.

[2] S. Soro, W.R. Heinzelman, A Survey of Visual Sensor Networks, Adv.
in MM 2009.

[3] A. Redondi, L. Baroffio, M. Cesana, M. Tagliasacchi, Compress-then-
analyze vs. analyze-then-compress: two paradigms for image
analysis in visual sensor networks, in: 2013 IEEE 15th International
Workshop on Multimedia Signal Processing (MMSP), 2013, pp. 278–
282. http://dx.doi.org/10.1109/MMSP.2013.6659301.

[4] S. Leutenegger, M. Chli, R. Siegwart, Brisk: binary robust invariant
scalable keypoints, in: ICCV, 2011, pp. 2548–2555.

[5] A. Redondi, L. Baroffio, A. Canclini, C.M., T.M., A visual sensor network
for object recognition: testbed realization, in: IEEE/EURASIP Digital
Signal Processing Conference. http://dx.doi.org/10.1002/dac.
2378, <http://dx.doi.org/10.1002/dac.2378>.

[6] G. Coley, Beaglebone Rev a6 System Reference Manual, 2012.
[7] P. Korshunov, W.T. Ooi, Reducing frame rate for object tracking, in: S.

Boll, Q. Tian, L.Z. 0001, Z. Zhang, Y.-P.P. Chen (Eds.), MMM, Lect.
Notes Comput. Sci., vol. 5916, Springer, 2010, pp. 454–464.

[8] P. Korshunov, W.T. Ooi, Critical video quality for distributed
automated video surveillance, in: H. Zhang, T.-S. Chua, R.
Steinmetz, M.S. Kankanhalli, L. Wilcox (Eds.), ACM Multimedia,
ACM, 2005, pp. 151–160.

[9] V. Bharadwaj, T.G. Robertazzi, D. Ghose, Scheduling Divisible Loads
in Parallel and Distributed Systems, IEEE Computer Society Press, Los
Alamitos, CA, USA, 1996.

[10] L.-Y. Duan, X. Liu, J. Chen, T. Huang, W. Gao, Optimizing jpeg
quantization table for low bit rate mobile visual search, in: IEEE
Visual Communications and Image Processing (VCIP), 2012.

[11] J. Chao, C. Hu, E. Steinbach, On the design of a novel jpeg
quantization table for improved feature detection performance, in:
2011 18th IEEE International Conference on Image Processing (ICIP),
2013.

[12] E. Rosten, R. Porter, T. Drummond, Faster and better: a machine
learning approach to corner detection, IEEE Trans. Pattern Anal.
Mach. Intell. 32 (1) (2010) 105–119.

[13] H. Jegou, M. Douze, C. Schmid, Product quantization for nearest
neighbor search, IEEE Trans. Pattern Anal. Mach. Intell. 33 (1) (2011)
117–128.

http://refhub.elsevier.com/S1570-8705(15)00016-5/h0005
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0005
http://dx.doi.org/10.1109/MMSP.2013.6659301
http://dx.doi.org/10.1002/dac.2378
http://dx.doi.org/10.1002/dac.2378
http://dx.doi.org/10.1002/dac.2378
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0035
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0035
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0035
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0035
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0035
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0035
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0035
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0035
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0035
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0040
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0040
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0040
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0040
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0040
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0040
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0040
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0040
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0040
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0040
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0045
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0045
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0045
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0045
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0060
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0060
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0060
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0065
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0065
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0065

[14] A. Redondi, L. Baroffio, J. Ascenso, M. Cesana, M. Tagliasacchi, Rate-
accuracy optimization of binary descriptors, in: IEEE International
Conference on Image Processing, 2013.

[15] V.R. Chandrasekhar, S.S. Tsai, G. Takacs, D.M. Chen, N.-M. Cheung, Y.
Reznik, R. Vedantham, R. Grzeszczuk, B. Girod, Low latency image
retrieval with progressive transmission of chog descriptors, in:
Proceedings of the 2010 ACM Multimedia Workshop on Mobile
Cloud Media Computing, MCMC ’10, ACM, New York, NY, USA, 2010,
pp. 41–46. http://dx.doi.org/10.1145/1877953.1877966, <http://doi.
acm.org/10.1145/1877953.1877966>.

[16] A. Redondi, M. Cesana, M. Tagliasacchi, Rate-accuracy optimization
in visual wireless sensor networks, in: 2012 19th IEEE International
Conference on Image Processing (ICIP), 2012, pp. 1105–1108. http://
dx.doi.org/10.1109/ICIP.2012.6467057.

[17]

[18]

M. Moges, T. Robertazzi, Wireless sensor networks: scheduling for
measurement and data reporting, IEEE Trans. Aerosp. Electron. Syst.
42 (1) (2006) 327–340, http://dx.doi.org/10.1109/
TAES.2006.1603426.
X. Li, X. Liu, H. Kang, Sensing workload scheduling in sensor
networks using divisible load theory, in: Global
Telecommunications Conference, 2007, GLOBECOM ’07, IEEE, 2007,
pp. 785–789. http://dx.doi.org/10.1109/GLOCOM.2007.152.

[19] S. Bataineh, T. Hsiung, T.G. Robertazzi, Closed form solutions for bus
and tree networks of processors load sharing a divisible job, in:
International Conference on Parallel Processing, 1993, ICPP 1993,
vol. 1, 1993, pp. 290–293. http://dx.doi.org/10.1109/ICPP.1993.54.

[20] V. Bharadwaj, D. Ghose, V. Mani, Optimal sequencing and
arrangement in distributed single-level tree networks with
communication delays, IEEE Trans. Parallel Distrib. Syst. 5 (9)
(1994) 968–976, http://dx.doi.org/10.1109/71.308534.

[21] L. Anand, D. Ghose, V. Mani, Analysis of the drop-out rule in
probabilistic load sharing in distributed computing systems, Int. J.
Syst. Sci. 28 (5) (1997) 457–465.

[22] D.G. Lowe, Distinctive image features from scale-invariant
keypoints, Int. J. Comput. Vision 60 (2) (2004) 91–110, http://
dx.doi.org/10.1023/B:VISI.0000029664.99615.94. <http://dx.doi.org/
10.1023/B:VISI.0000029664.99615.94>.

[23]

[24]

H. Bay, A. Ess, T. Tuytelaars, L.J.V. Gool, Speeded-up robust features
(surf), Comput. Vis. Image Underst. 110 (3) (2008) 346–359.
E. Mair, G.D. Hager, D. Burschka, M. Suppa, G. Hirzinger, Adaptive
and generic corner detection based on the accelerated segment test,
in: ECCV (2), 2010, pp. 183–196.

[25] M. Calonder, V. Lepetit, M. Özuysal, T. Trzcinski, C. Strecha, P. Fua,
Brief: Computing a local binary descriptor very fast, IEEE Trans.
Pattern Anal. Mach. Intell. 34 (7) (2012) 1281–1298.

[26] J. Heinly, E. Dunn, J.-M. Frahm, Comparative evaluation of binary
features, in: Computer Vision–ECCV 2012, Springer, 2012, pp. 759–
773.

[27] A. Canclini, M. Cesana, A. Redondi, M. Tagliasacchi, J. Ascenso, R.
Cilla, Evaluation of low-complexity visual feature detectors and
descriptors, in: IEEE/EURASIP Digital Signal Processing Conference.

[28] J. Chao, E. Steinbach, Preserving sift features in jpeg-encoded images,
in: 2011 18th IEEE International Conference on Image Processing
(ICIP), 2011, pp. 301–304. http://dx.doi.org/10.1109/ICIP.2011.
6116299.

[29] J. Chao, A. Al-Nuaimi, G. Schroth, E. Steinbach, Performance
comparison of various feature detector-descriptor combinations
for content-based image retrieval with JPEG-encoded query images,
in: IEEE International Workshop on Multimedia Signal Processing
(MMSP), Pula, Sardinia, Italy, 2013.

[30] M. Khan, G. Dan, V. Fodor, Characterization of surf interest point
distribution for visual processing in sensor networks, in: 2013 18th
International Conference on Digital Signal Processing (DSP), 2013,
pp. 1–7. http://dx.doi.org/10.1109/ICDSP.2013.6622701.

[31] K. Mikolajczyk, C. Schmid, Scale & affine invariant interest point
detectors, Int. J. Comput. Vision 60 (1) (2004) 63–86, http://
dx.doi.org/10.1023/B:VISI.0000027790.02288.f2.

[32] B. Veeravalli, X. Li, C.-C. Ko, On the influence of start-up costs in
scheduling divisible loads on bus networks, IEEE Trans. Parallel
Distrib. Syst. 11 (12) (2000) 1288–1305, http://dx.doi.org/10.1109/
71.895794.

[33] E. Eriksson, G. Dán, V. Fodor, Real-time distributed visual feature
extraction from video in sensor networks, in: Proc. of IEEE

International Conference on Distributed Computing in Senso
Systems (DCOSS), 2014.
r

http://dx.doi.org/10.1145/1877953.1877966
http://doi.acm.org/10.1145/1877953.1877966
http://doi.acm.org/10.1145/1877953.1877966
http://dx.doi.org/10.1109/ICIP.2012.6467057
http://dx.doi.org/10.1109/ICIP.2012.6467057
http://dx.doi.org/10.1109/TAES.2006.1603426
http://dx.doi.org/10.1109/TAES.2006.1603426
http://dx.doi.org/10.1109/GLOCOM.2007.152
http://dx.doi.org/10.1109/ICPP.1993.54
http://dx.doi.org/10.1109/71.308534
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0105
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0105
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0105
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0115
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0115
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0125
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0125
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0125
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0130
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0130
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0130
http://refhub.elsevier.com/S1570-8705(15)00016-5/h0130
http://dx.doi.org/10.1109/ICIP.2011.6116299
http://dx.doi.org/10.1109/ICIP.2011.6116299
http://dx.doi.org/10.1109/ICDSP.2013.6622701
http://dx.doi.org/10.1023/B:VISI.0000027790.02288.f2
http://dx.doi.org/10.1023/B:VISI.0000027790.02288.f2
http://dx.doi.org/10.1109/71.895794
http://dx.doi.org/10.1109/71.895794

	Cooperative image analysis in visual sensor networks
	1 Introduction
	2 Related work
	3 Background on feature extraction
	4 System model and problem statement
	4.1 Node processing and communications capabilities
	4.2 Overlap between slices
	4.3 Problem statement

	5 Optimal offloading for visual sensor networks
	5.1 Unicast offloading
	5.2 Broadcast offloading
	5.3 Scheduling order and the optimal set of cooperating nodes

	6 Performance evaluation
	6.1 Simulation results
	6.2 Experimental validation
	6.2.1 Unicast offloading
	6.2.2 Broadcast offloading

	7 Conclusions and future work
	Acknowledgments
	References

