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Abstract

Reliability is one of the most important requirements in Smart Grid communications. Reliable detection of an emergency event
enables timely response. Within the automated nature of Smart Grid, such detection and response are carried out by sensor and
actuator nodes. Therefore, it is important to study the capabilities of wireless sensor actor networks. In this paper, we first present
an analysis of reliability in sensor actor networks, and lay out the factors that effect reliability. We then propose a scheme, where
actor nodes cooperate to reach a global estimate under interruptions due to licensed user interference, i.e., consensus. We show
that consensus improves reliability compared to local estimation of event features. We further show that convergence rate depends
on connectivity of actors. Our analyses are generic and can be applied to inhomogeneous licensed user activity and interference
on channels. A simulation study is presented to support our analyses and demonstrate the performance of proposed scheme in
achieving consensus and mitigating disagreement among actor nodes.

Keywords: Smart Grid communications, cognitive radio sensor networks, distributed sensing, spectrum sharing.

1. Introduction

Wireless sensor networks [1] and sensor actor networks [2]
are expected to watch over expensive equipment in Smart Grid,
with sensors monitoring the environment for possible emer-
gency events and communicating with actuators to take proper
action when the event occurs. Failure in detection of an emer-
gency event may result in break down of expensive equipment,
and in some extreme cases, may even cost lives. Therefore, re-
liability is considered to be one of the most important issues in
Smart Grid communications. To avoid such losses reliable and
timely coordination of sensing results must be addressed.

One of the biggest problems in wireless communications is
spectrum scarcity [3]. The demand for wireless spectrum is
growing rapidly and new paradigms such as Internet-of-Things
and Device-to Device communications, which are expected to
have massive spectrum demand are emerging. In Smart Grid
communications, the situation is exacerbated by electromag-
netic interference of the devices and harsh environmental con-
ditions.

Cognitive radio sensor networks (CRSN) are proposed to
mitigate spectrum scarcity specifically in dense deployed sen-
sor networks and enable distributed sensing over temporally
unoccupied portions of the licensed spectrum [4]. Incorpora-
tion of cognitive radio (CR) into distributed sensing requires
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sharing of spectrum opportunities among CRSN nodes while
addressing event specific sensing requirements, while adhering
to the inherited collaborative and energy-constrained nature of
sensor networks. Furthermore, cognitive radio actor nodes can
collect observations of CRSN nodes and cooperate to reach a
global estimate, i.e., consensus [5]. Reaching consensus in a
decision, i.e., estimation, interval requires efficient and adap-
tive sharing of spectrum opportunities among cognitive radio
sensor and actor nodes, such that desired amount of samples
can be collected from sensors with minimum spectrum access
and actors can reach a consensus during an estimation interval.

Due to limited battery sizes, energy efficiency has been the
main consideration for communication algorithm design for
CRSN. Energy-efficient channel management is studied in [6].
Residual energy aware channel assignment is investigated in
[7]. Energy-efficient spectrum sensing algorithm for CRSN is
proposed in [8]. However, these works mainly lack in incor-
porating collaborative nature of sensor networks, and applica-
tion specific reliability, i.e., estimation distortion and interval,
requirements are disregarded. Solutions that take correlations
between sensor readings have been proposed to take advan-
tage of sensor collaboration [9, 10, 11] in WSN. These solu-
tions should be modified to address opportunistic operation in
a CRSN, taking spectrum conditions into account. Spectrum
sharing problem for cognitive radio networks (CRN) are inves-
tigated in [12, 13, 14, 15, 16]. Main drawback of these schemes
is missing consideration of detection and monitoring require-
ments of sensor networks. In our design, we specifically target
to exploit collaborative effort of sensor nodes on the same event
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and achieve reliability opportunistically while reaching consen-
sus among actor nodes in an estimation interval.

Spectrum sharing solutions in other CRN mainly focus on
throughput maximization and are proposed to efficiently uti-
lize the scarce spectrum opportunities. In [12], spectrum shar-
ing for multi-hop cognitive radio networks is studied. In
[13, 14, 15, 16] spectrum sharing schemes for multiple input
multiple output systems have been proposed. The primary rea-
son for their inapplicability in CRSN is their notion of rate
maximization. Furthermore, reliable estimation of event fea-
tures, collaborative nature of CRSN nodes, coordination re-
quirements of CR actor nodes and spectrum efficiency must
be addressed while designing spectrum management algorithms
for large scale distributed sensing networks. Hence, there is a
need for a novel spectrum access mechanism in CRSN that em-
phasizes on collective reliability, spectrum efficiency and sim-
plicity.

CR based communication in Smart Grid has been investi-
gated in various fronts, such as quaity-of-service (QoS) or pri-
ority based access schemes [17, 18], network infrastructure pro-
posals [19], investigation of important parameters in CR based
network design [20], multimedia communications [21], and
green communications [22]. However, reliability is not inves-
tigated thoroughly, even though it is one of the most important
requirements.

In this paper, first, we analyze reliability in event estimation
by defining a distortion metric. We characterize required spec-
trum opportunity to attain desired estimation distortion level
while minimum amount of channels are accessed, based on
spectrum mobility parameters, i.e., licensed user activity, in-
terference, spectrum sensing and handoff durations, as well as
real-time distributed sensing parameters, i.e., observation noise,
delay-bound on reaching consensus, and energy consumption
limitation per estimation interval. Then, we study required
duration for reaching consensus among actor nodes after col-
lection of samples from sensors and generating local estimate
based on the interruption probability due to licensed user inter-
ference. Two regimes are identified: One in which sufficient
spectrum opportunity exists and consensus can be achieved
among actor nodes, and one in which actor nodes try to mini-
mize the disagreement as much as they can support, i.e., provide
opportunistic consensus, due to limited spectrum availability.
The regime of operation depends on the licensed user activity
on channels, and the early regime is desirable but achievable
only for sparse licensed user existence on the spectrum. It is
concluded that in certain environments under sparse spectrum
occupancy by licensed users, spectrum access duration of sen-
sor nodes can be adaptively reduced to enable convergence to
consensus for actors in an estimation interval. Contribution of
this paper can be outlined as follows

1. Analyze reliability in event detection: Local estimation
distortion at actor node is modelled with respect to sens-
ing signal-to-noise ratio (SNR), reporting rate and channel
error rate.

2. Opportunistic Consensus: A cooperative scheme is pro-
posed, where actor nodes share their local event estima-

tions through opportunistic access of licensed channels to
reach a global consensus about the event signal. We show
that our scheme increases reliability.

3. Consensus Convergence: Impact of interruptions due to li-
censed user arrivals, mis-detection of licensed users, and
wireless channel errors on reaching consensus is formu-
lated. Prolongation in the consensus convergence time is
studied under opportunistic spectrum access (OSA).

The remainder of the paper is organized as follows. In Sec-
tion 2, distributed sensing architecture composed of cognitive
radio sensor and actor nodes is elaborated. Problem formula-
tion and reliability analysis is presented in Section 3. Factors
that effect reliability are discussed in Section 4. Opportunis-
tic consensus is analyzed in Section 5. Simulation results are
presented in Section 6, and paper is concluded in Section 7.

2. Network Setup

We assume that the network in question consists of multi-
ple wireless sensor nodes, each equipped with a cognitive radio
(CR) and an actuator node with multiple CR transceivers. These
nodes communicate among each other via opportunistic spec-
trum access (OSA) to perform remote monitoring and actuation
tasks. Collected samples s by sensor node m on event signal
θ are delivered to the actor node during the reporting interval
τr over assigned channel c within spectrum access duration τa

to satisfy reliability requirement Do of distributed event obser-
vations. Reliability measure for estimation of the actor node
is defined in terms of distortion D (mean square-error) of the
estimated event signal over a τa.

Sensor nodes occupy a single CR transceiver with capability
of adjusting its operating frequency to any channel c in desig-
nated spectrum band by the actor node, i.e., channel set C of the
actor node. Channels are shared between selected sensor nodes
participating in event data delivery. Sensor node behavior in a
channel c consists of data transmission τt, spectrum sensing τs

and spectrum handoff τh periods. We assume each sensor node
is assigned to a specific channel for periodic spectrum sensing
by the actor node, such that in spectrum sensing intervals τs

all sensor nodes perform spectrum sensing to detect spectrum
holes, i.e., vacant channels. With detection of licensed user,
sensor node using that channel performs spectrum handoff and
traverses channels provided by actor node to find a spectrum
opportunity.

Spectrum handoff duration τh includes durations of consec-
utive channel switching τcs and spectrum sensing τs at the new
channel, until a vacant channel is found, i.e., duration between
the instant where event reporting stopped due to licensed user
detection and the instant when communication is resumed in
a vacant channel. To achieve desired distortion level Do in an
estimation interval τe, sensors are assigned to channels by the
actor node, such that they complete their transmission in spec-
trum access interval τa. Since τe includes τa as well as delays
due to cognitive cycle functionality durations, we have τe > τa.

Channels assigned by the actor node, i.e., c ∈ C, are taken
to be homogeneous in terms of licensed user activity and inter-
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ference. Energy constraints Ω for sensor nodes limit the energy
that can be spent for event reporting in an estimation interval.
These constraints are taken to be non-equal due to heteroge-
neous event arrivals in the field and remaining energy of sensor
nodes. This energy variation brings limitation to event reporting
duration τr of sensor nodes, and hence, causes heterogeneities
for number of samples reported by each sensor.

3. Reliable Distributed Sensing

In this section, we lay out the problem formulation and
present initial arguments of our analysis on reliability. We de-
fine a so called distortion metric D, which is the mean squared
error (MSE) of our estimation of the event signal. We show
how reliability depends on spectrum utilization of primary users
(PU) as well as channel conditions.

Sensor nodes receive the event signal with varying power lev-
els due to certain factors such as their distance from the event,
device imperfections and noise. Furthermore, each sensor node
has different amount of energy left in their battery. It is also pos-
sible that the sensor nodes utilize energy harvesting, in which
case, the amount of energy harvested per unit time may vary
from sensor to sensor. As a result, the amount of energy that can
be consumed during the reporting of events Ωe, differ among
the sensors.

There are also external influences on sensor event data re-
ports such as varying wireless channel conditions, changes in
PU channel utilization patterns, etc. Our aim is to incorporate
all of these effects into a single metric that serves as a good
indicator for reliability in event estimation.

We assume that the event signal at time t, i.e., θ(t), is received
at sensor node m, with dispersion loss γ(t) and added noise η(t)
as

sm(t) = γm(t) · θ(t) + ηm(t) (1)

For estimation of event signal from received samples from
sensor nodes, actors use the best linear unbiased estimator
(BLUE) [29] for local estimation. For a linear estimation type
given above, where samples of ηm are zero-mean, uncorre-
lated and have equal variances, BLUE is minimum-variance
unbiased estimator. This allows us to make no assumptions
on sensing noise distribution as long as noise power ξ2 is
known. Therefore, we do not assume any specific distribution
for sensed signal and noise. Each sensor sends measured signal
sm(t) to the actor node, where θ is estimated from the received
version of sm(t).

We take both θm(t) and ηm(t) are i.i.d. over time. We also
assume that θm(t), and ηm(t) have zero mean with power σ2

θ

and ξ2m, respectively. Sensors communicate with actor via op-
portunistic spectrum access. Actor generates an estimate of
the event at the end of each event estimation interval. Under
independence over time and space assumption, indices are ig-
nored for all variables. This delay bounded distributed sensing
scheme can also bee seen as real-time, since it put timeliness
constraint on event reports. Received sample vector by the actor
at the end of each event estimation interval τe, i.e., r, is combi-
nation of sensing noise and sensed signal as r = γ ·θ+η, where

r =
[
r1, · · · , rMs

]T , γ =
[
γ1, · · · , γMs

]T , and η = [η1, · · · , ηMs ]
T ,

where Ms is the number of sensor nodes selected by actor node.
Estimate of event signal using BLUE is formulated as follows
[29]

θ̂ =
[
γT R−1

s γ
]−1
γT Rs

−1r (2)

Sample covariance matrix Rs for received samples at actor is
a Ms dimensional rectangular diagonal matrix whose diagonal
entries are ξ2m, and other entries are 0. We define a distortion
metric D̃, as the the mean square error for BLUE can be deter-
mined as [29]

D̃ = E
[
(θ̂ − θ)2

]
=

[
γT Rs

−1γ
]−1

=

Ms∑
m=1

(
γ2

m

ξ2m

)−1

(3)

Taking into account the fact that number of samples provided by
each sensor ζm, will be different due to various factors such as
spectrum handoff and packet errors, we define a corresponding
distortion metric D as follows:

D =
Ms∑

m=1

(
ζm
γ2

m

ξ2m

)−1

(4)

Naturally, ζm depends on factors such as packet error rate e(p)
m ,

and number of encountered spectrum handoffs. The number of
packets that are correctly received by the actor can be expressed
as

ζm = r(p)
m (1 − e(p)

m ) (5)

where, r(p)
m is the amount of packets that node m was able to

send within a reporting interval, while avoiding the PU by per-
forming spectrum handoff whenever necessary. In the follow-
ing section, we analyze the effects of these factors on ζm, and
consequently on distortion.

4. Analysis of Factors that Effect Reliability

In this section, we present an analysis of factors that effect
reliability, such as spectrum handoff and packet errors.

4.1. Impact of Spectrum Mobility

Incorporation of cognitive radio capability into sensor and
actor nodes enables reporting of event data over licensed bands
to mitigate crowded spectrum problem. However, intermittent
communications due to opportunistic spectrum access and in-
terruptions due to licensed user interference must be addressed.
To this end, actual spectrum access time of sensors, based on
spectrum sensing and spectrum handoff functionalities is found.

Here, r(p)
m , i.e., the experienced number of packets sent by

node m while utilizing licensed spectrum bands opportunisti-
cally is obtained. First, we derive the mean data communi-
cation duration E{τdata} before licensed user arrival in chan-
nels C assigned by the actor node. Under exponential inter-
arrival and inter-departure durations assumption for PU traffic
[23, 24, 25, 26], average data communication duration E{τdata},
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i.e., average duration from starting communication in channel
C until a licensed user is detected is found as

E{τdata} = E{I}τt (6)

where E{I} is the mean number of (τs + τt) durations before
licensed user arrives at a channel in C. To calculate E{I}, we
define the probability of having i intervals without licensed user
arrival at the accessed channel as

Pr[I = i] = (Phole)i−1(1 − Phole) (7)

where Phole is vacancy probability of a channel in C. Mean of I
can be found as

E{I} =
∞∑

i=1

i · Pr[I = i] =
1

1 − Phole
. (8)

To find the mean of spectrum handoff duration E{τh}, i.e., the
mean of total channel switching and spectrum sensing durations
until data transmission can be started in a vacant channel, we
define probability of finding a vacant channel via l consecutive
handoffs Pr[L = l] as

Pr [L = l] = Phole(1 − Phole)l−1 (9)

where we assume licensed user arrivals at different channels of
C are independent from each other. When a licensed user com-
munication is detected at any of accessed channels sensor nodes
accessing that channel traverses channels provided by the actor
to find a vacant channel, where licensed user detected channel
corresponds to c = 0. Time spent while performing l consecu-
tive handoffs can be found as

τh(l) = l · (τcs + τs) (10)

where τcs is channel switching time when moving between
channels. As a result, E{τh} can be obtained as

E{τh} =
∞∑

l=1

τh(l)Pr[L = l]

=

∞∑
l=1

l · (τcs + τs)Phole(1 − Phole)l−1

= (τcs + τs)
1

Phole
(11)

To find the number of packets sent by sensor node m, i.e.,
r(p)

m , we use the fact that the total time spent by a node in spec-
trum sensing, data transmission and spectrum handoff must not
exceed the reporting period τr. With this restriction, we can
find the expected number of handoffs experienced by sensor m,
i.e., hm. We require

E{I}(τs + τt) + hm(E{τh} + E{I}(τs + τt)) (12)

Therefore, we need the maximum value of hm that satisfies

hm ≤
τr − E{I}(τs + τt)

E{τh} + E{I}(τs + τt)
(13)

If we define such hm as h∗m,

r(p)
m =

h∗mE{τdata}νm
8lp

(14)

where lp is the packet size in bytes and νm is the transmission
rate in bits/sec. Instantanepus throughput can be defined as T =
r(p)

m /τr

4.2. Packet Error Rate

Each sensor communicates with the actor node over orthogo-
nal channels that experience independent shadowing and zero-
mean AWGN. We use the log-normal channel for received
power calculations, which is experimentally shown as the ac-
curate model for low power communication in sensor networks
[27]. In this model, the received power at a receiver at distance
d from a transmitter is given by

Pr(d) = Pt − PL(d0) − 10η log10(
d
d0

) + Xσ, (15)

where Pt is the transmit power in dBm, PL(d0) is the path loss
at the reference distance d0 in dB, η is the path loss exponent,
and Xσ is the shadow fading component with Xσ ∼N(0, σ). We
denote the communication signal-to-noise ratio (SNR) at the ac-
tor with and without licensed user interference as Ψw, and Ψl,
respectively. SNR at the receiver without licensed user inter-
ference Ψw is given by Ψw = Pr(d) − Pn in dB, where Pn is
the communication noise power in dBm. On the other hand,
SINR at the receiver due to licensed user activity is given by
Ψl = Pr(d) − Pn − P(k)

l in dB, where P(k)
l is the interference

caused by licensed user activity at actor node k. To obtain bit
error rate Pb to use in analytical derivations, the non-coherent
frequency shift keying (FSK) modulation scheme is selected.
The bit error rate of this scheme is given by [28]

Pb =
1
2

exp(−(Eb/N0)/2), Eb/N0 = Ψ
BN

R
(16)

where BN is the noise bandwidth, and R is the data rate. Finally,
packet error rate (Pp) for packet length lp becomes

Pp = 1 − (1 − Pb)lp (17)

To determine average packet error rate e(p)
m incorporating li-

censed user interference due to opportunistic spectrum access,
we propose an error model based on false-alarm P f and de-
tection Pd probabilities, and licensed user state transition, i.e.,
birth β and death α rates. False-alarm, i.e., detection of licensed
user communication when licensed user is actually not commu-
nicating, probability is represented by P f and detection proba-
bility when licensed user is communicating Pd. Licensed user
activity modelled using two state discrete Markov chain model
with ON and OFF states [23, 24, 25, 26]. Licensed user being
active (1−Phole) and being inactive Phole probabilities are equal
to β/(β+α) and α/(β+α), respectively. Before finding e(p)

m , we
describe two different cases in which licensed user interference
occurs as follows
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Licensed user ON Licensed user OFF

τc
t τ c

s τc
tτc

s

Licensed user departure

(a) (b)

Figure 1: Licensed user interference patterns when mis-detection occurs, no
state change in (a) and state transition occurs in (b).

1. Although licensed user is active, it may not be de-
tected, i.e., mis-detection can occur, with probability (1 −
Phole)(1 − Pd). In this case, nodes continue to commu-
nicate, though there is ongoing licensed user communica-
tion. Hence, they get exposed to licensed user interference,
which is illustrated in Fig. 1.

2. A spectrum band can be identified as vacant and employed
by sensor nodes with probability Phole(1 − P f ). How-
ever, licensed users may start communication during the
nodes’ transmission period. Thereby, until the next spec-
trum sensing period, sensor nodes are unaware of the li-
censed user presence and continue to communicate under
licensed user interference, which is illustrated in Fig. 2.

Licensed user may change its state during τt, or it can keep its
state along whole τt duration. Having τt is relatively small with
respect to average active and inactive durations of licensed user,
e.g., 1/α and 1/β, respectively, is a more realistic assumption
than having large τt that is longer than licensed user transmis-
sion duration. Thus, we assume τt is smaller than both 1/α and
1/β.

Interference due to mis-detection exhibits two different pat-
terns according to τt as in Fig. 1 (a) and (b). It can be through
whole τt period as in Fig. 1 (a) or licensed user state may
change to inactive from active as in Fig. 1 (b). The probabil-
ity that the licensed user is transmitting during the entire τt can
be obtained as e−ατt , and the probability that licensed user goes
inactive state from active during τt can be found as 1 − e−ατt .
If the licensed user state does not change during the τt, the li-
censed user interference persists over the entire transmission
period and in which error rate is Pl

p. However, if state transi-
tion between active and inactive states occurs during τt, average
error rate converges to (1 − Phole)Pl

p + PholePw
p . Thus, average

packet error rate for the mis-detection case P1
p can be expressed

as

P1
p = (1 − Pd)

β

α + β

·
(1 − e−ατt )

βPl
p + αPw

p

α + β
+ e−ατt Pl

p

 (18)

Similarly, if licensed user is inactive and there is no false-
alarm, interference only happens when licensed user state tran-
sition occurs during τt, as illustrated in Fig. 2 (b). Av-
erage packet error rate converges to again approximately to

τc
s τc

t τc
s τc

t

Licensed user ON Licensed user OFF
Licensed user arrival

(a) (b)

Figure 2: Licensed user interference patterns when licensed user is initially
OFF while spectrum sensing, no state change in (a) and state transition occurs
in (b).

(1−Phole)Pl
p+PholePw

p with probability 1−e−βτt . Average packet
error rate in this case P2

p becomes

P2
p = (1 − P f )

α

α + β

·
(1 − e−βτt )

βPl
p + αPw

p

α + β
+ e−βτt Pw

p

 (19)

Then, to find overall packet error rate e(p)
m in opportunistic spec-

trum access incorporating licensed user interference, we add
and normalize P1

p and P2
p as

e(p)
m =

P1
p + P2

p
β(1−Pd)+α(1−P f )

α+β

(20)

4.3. Spectrum Access Duration and Sensor Scheduling Order
The analysis presented in the previous sections provides us

with the following expression for distortion metric

D =
Ms∑

m=1

(
ζm
γ2

m

ξ2m

)−1

=

Ms∑
m=1

(
(1 − e(p)

m )r(p)
m
γ2

m

ξ2m

)−1

= σ2
θ

Ms∑
m=1

(
(1 − e(p)

m )r(p)
m Λm

)−1

=
σ2
θ

8lpE{τdata}

Ms∑
m=1

(
h∗mνm(1 − e(p)

m )Λm

)−1
(21)

Minimum number of sensor nodes satisfying distortion con-
straint can be reached via ordering sensors in the descending
sensing SNR (Λm) order, i.e., m = 1 is the largest SNR sen-
sor node, and using in (3) with maximum allowed τ(m)

r until
distortion constraint is satisfied. According to this formulation,
instead of using all sensors, only the right group of sensor nodes
can be determined and still the distortion threshold D0 can be
achieved.

In this section, we analyze the contribution of data carried
at each channel to distortion. The event observation distor-
tion at an actor node is discretized into contribution of each
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channel Dc, i.e., total distortion is expressed as the addition of
samples belonging to different channels, addressing the reduc-
tion in the reported samples over a channel by the spectrum
access duration τa during estimation interval τe. Sensor nodes
can move among spectrum holes via spectrum handoff as a li-
censed user arrives at current accessed channel. However, sen-
sor nodes’ communication is interrupted by periodic spectrum
sensing as well as spectrum handoff triggered by licensed user
arrival. Therefore, effect of opportunistic spectrum availability
on event sensing reliability is investigated analytically accord-
ing to proposed distributed sensing distortion model.

To this end, we defineM(c) as the source sensors of the actor
assigned to cth channel for sharing during τa. D for proposed
distributed sensing scheme can be expressed as

D =

∑
c

D−1
c

−1

(22)

where Dc is the distortion resulted by observations of sensors
at channel c. It is dependent on the accessible duration τa of
a channel assigned by the actor during an estimation interval
and required reporting duration of sensors τ(m)

r sharing the same
channel. τas are independent and identically distributed (i.i.d.)
random variables with mean µ representing data communica-
tion duration in an estimation interval for channels of the actor
node. Dc is the distortion achieved when spectrum access dura-
tion τa in an estimation interval is allowing ωth sensor starting
from m = 1 to share that channel for event reporting, and it can
be expressed as

Dc =

[ ω−1∑
m=1

D−1
m + D−1

ω

(τa −
ω−1∑
m=1

τ(m)
r

τ(ω)
r

)]−1
, (23)

for
ω−1∑
m=1

τ(m)
r ≤ τa ≤

ω∑
m=1

τ(m)
r , m ∈ M, ω ∈ M

where ω is the last sensor node that was reporting using the
channel c at the instant of licensed user arrival, and Dm is dis-
tortion solely depending on samples from sensor m, which can
be obtained using formulation in Section 4.3 as

σ2
θ

8lpE{τdata}
(
h∗mνm(1 − e(p)

m )Λm

)−1
(24)

Furthermore, it is deduced that Dc is equal to (
∑|M(c) |

m=1 D−1
m )−1 for

τa ≥
∑|M(c) |

m=1 τ
(m)
r . When τa ≥

∑|M(c) |
m=1 τ

(m)
r , sensors assigned to

channel c are able to find an opportunity to completely transmit
their observations to actor during the estimation interval, and
desired Dc will be achieved. However, when τa ≤ µ, reporting
of sensors assigned to a channel are limited by spectrum access
duration (τa ≤

∑|M(c) |
m=1 τ

(m)
r ), and contribution to total estimation

distortion Dc is calculated using (23) via replacing τa with its
realization. Latest reporting sensor ω at accessed channels can
be determined via

∑ω−1
m=1 τ

(m)
r ≤ τa ≤

∑ω
m=1 τ

(m)
r , and its unfin-

ished reporting duration can be found as τa −
∑ω−1

m=1 τ
(m)
r .

Each channel’s contribution to distortion of total estimation
at actor varies based on sensing SNR Λm of assigned sensors
to a channel. Therefore, another important issue is the schedul-
ing order of source nodes assigned to same channel. Address-
ing the interruptions due to opportunistic communication, and
hence, random τa duration in an estimation interval τe, schedul-
ing spectrum access of source nodes with respect to their ob-
servation SNR Λm in descending order, i.e., highest SNR hav-
ing node (m = 1) accesses first at designated channel, is found
favourable.

5. Opportunistic Consensus

In this section, based on the previous analysis, we propose
a consensus scheme to increase reliability of event estimation.
We assume a case where there are multiple actor nodes, each
with its own set of sensors. Each sensor-actor group of nodes
operate as described in previous sections. However, after actor
nodes make a local estimation of the event signal, they com-
municate their local estimate with other actors to mitigate dis-
agreement and reach a global agreed state. We, first, present an
overview of used consensus model, and then, investigate con-
sensus convergence duration with respect to different algebraic
connectivity of actor network for various licensed user arrival β
and interference Pl values.

While reaching a consensus is trivial for small scale actor
networks, for a large scale actor network computing the global
estimate Θ based on local estimates θ̂k requires multiple itera-
tions and packet exchanges among actors. Inter-actor commu-
nication is subject to licensed user interference. This can either
be in the form of licensed user arrival during transmission or
mis-detection of licensed user presence during spectrum sens-
ing period. In case of transmission errors, iteration is stopped
and this failed step is repeated via automatic repeat request. The
exchange of information among actors is performed via a slot-
ted and collision-free medium access control (MAC) scheme.
Consensus convergence time τc is determined as the multipli-
cation of number of required iterations Υ to reach consensus
and iteration duration τi, i.e., τc = Υ · τi.

5.1. Overview of Consensus Model

We use a cognitive radio actor network composed of K actor
nodes. Actor k can communicate with actor l if l is a neighbor
of k on a graph G = (V, E), where V denotes the set of ver-
tices, i.e., actor nodes, and E ⊆ V × V denotes set of the edges
between vertices, i.e., links between actor nodes. The adja-
cency matrix A of the graph G is composed of binary-valued
entries ak,l that indicates existence of a link between actor k and
l. Value of ak,l is equal to 1 if actor k and l are connected, and
ak,l = 0 if there is no link between actor k and l. We assume
the links E are bidirectional, and hence, the graph G is undi-
rected. Furthermore, A is a symmetric matrix with 0 diagonal
entries, and since

∑
k,l ak,l =

∑
l,k al,k, the undirected graph G is

called balanced. The degree matrix D of G is a diagonal matrix
with entries dk,k = |Nk | and zero off-diagonal elements, where
|Nk | =

∑
k,l ak,l is the number of nodes in the neighborhood set
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Nk of actor k. Let L be the Laplacian matrix of the graph G,
which is defined as L := D − A. Entries lk,l of L are as

lk,l = ll,k =

|Nk | if k = l
−ak,l if k , l

(25)

Aim of consensus algorithm is to make each actor node reach
a globally optimal estimate θ̂∗ from a set of measurements, i.e.,
local estimates θ̂k of actor nodes in our system model. This is
achieved via exchange of local estimates among nearby actors
without utilization of a fusion center. By definition of L sum of
all columns or rows is equal to 0, which implies that L has an
eigenvalue of 0. Accordingly, associated eigenvector is 1 since
L1 = 0, or 1TL = 0T. Therefore, reached final estimate is of
the form α1, and consensus value α is equal to average of local
estimates of actors. If G is a connected balanced and undirected
graph, a consensus is asymptotically reached with

Θ =
∑

k

Θ̂k(0)/K (26)

Since minimization of the difference between states of actors
is the aim of consensus algorithm, the disagreement, i.e., error,
function is defined as

J(Θ̂) =
1
2
Θ̂

T
LΘ̂ =

1
4

K∑
k=1

L∑
l=1

ak,l(Θ̂k − Θ̂l)2 (27)

Using steepest descent technique the minimum of J(Θ) can be
achieved in discrete time as

Θ̂k(t + 1) = Θ̂k(t) + ϑ
∑
l∈Nk

ak,l(Θ̂k(t) − Θ̂l(t)) (28)

where ϑ is the step-size. In matrix form, dynamics of the actor
network can be expressed as

Θ̂(t + 1) = PΘ̂(t) (29)

where I is the identity matrix, and P = I−ϑL. Value of ϑ is se-
lected appropriately to ensure all eigenvalues of P are less than
1. The consensus algorithm is initialized with local estimates
of actor nodes, i.e., Θ̂k(0) = θ̂k.

In the next section, the described inter-actor distributed esti-
mation framework is used for assessing consensus convergence
duration under opportunistic spectrum access.

5.2. Algebraic Connectivity and Consensus Convergence
While the performance of consensus algorithm is character-

ized by its convergence rate, i.e., time elapsed to reach consen-
sus, convergence speed is lower bounded by the lowest non-
zero eigenvalue of P, i.e., λ2, which is also called algebraic
connectivity of the graph. Consensus is reached exponentially
in discrete-time for connected graphs [5] such that

||Θ̂(t) −Θ||
||Θ̂(0) −Θ||

≤ O(e−(1−ϑλ2(L))τc ) (30)

We state the reaching consensus condition as ||θ(t)−θ∗ ||
||θ(0)−θ∗ || ≤ ε.

Therefore, the time elapses until convergence τc can be defined

as the time needed to smallest eigenvalue of the dynamical sys-
tem can be reduced by a factor ε ≪ 1. A step of iteration fails if
licensed user arrives or in case of mis-detection during commu-
nication of local estimate. Then, a new vacant channel is moved
and failed step is repeated there. Failed step is detected after the
end of iteration, hence, iteration is re-started. Instead of trying
to know when exactly pu arrived during iteration. To mitigate
disagreement for a unit amount 1/(1 − Pp) · 1/(1 − ϑλ2(L)) it-
erations are needed, and hence, τc is found as

τc =
1

1 − Pp

log(ε)
1 − ϑλ2(L)

E{τi} (31)

where τi is the time required for a single iteration, i.e., duration
in which all actor nodes communicate their local state once with
their neighbor actors. We elaborate calculation of mean of τi in
the following.

5.3. Estimation Interval Partitioning For Consensus
Estimation interval must be partitioned adaptively address-

ing varying spectrum parameters with spectrum mobility. Ob-
jective of our scheme is to provide sufficient duration for com-
munication of local states among actor nodes after completion
of local estimation. We first describe MAC for inter-actor com-
munication and formulate mean iteration duration E{i}. Then,
estimation interval partitioning is introduced.

Actor nodes employ a ρ-persistent carrier sense multiple ac-
cess (CSMA) mechanism for MAC such that they access chan-
nel during slot intervals with a probability of ρ if channel is no
other actor node is sensed to be transmitting. Expected number
of actor nodes that will transmit when channel becomes idle
is given by |Nk |ρ. If |Nk |ρ > 1, then a collision is expected
to occur. To prevent collisions and resultant retransmissions, ρ
should be chosen accordingly, i.e., ρ < 1/|Nk |. For this scheme,
successful transmission probability of actor node k can be found
as

ςk = ρ(1 − ρ)|Nk |−1 (32)

Using ςk, mean number of channel access trials φk before gain-
ing access to channel is found as

E{φk} =
∞∑

l=0

lςk(1 − ςk)l−1 (33)

Finally, mean duration of an iteration can be found as

E{τi} =
K∑

k=1

τslotE{φk} (34)

where τslot is the channel access duration of an actor node while
broadcasting its local state to neighbor actors. Found E{τi} is
incorporated into (31), to find τc.

Spectrum access duration for sensor nodes is adjusted to al-
low convergence of consensus algorithm. To this end, although,
higher available spectrum access τa duration is possible, τa is
reduced at the expense of increased number of required chan-
nels during local estimation. Reduced spectrum access duration
τ∗a is determined as

τ∗a = min
k
{µk} − τc (35)
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Figure 3: Comparision of calculated and achieved instantaneous throughput due
to opportunistic spectrum access for τt = 0.1, τt = 0.08, τt = 0.06, τt = 0.03
sec.

where τ∗a ≥ max
m
τ(m)

r . Using developed scheme, α and β values
are found. Instantaneous throughput values, Tk, for channels
Ck of actor node k under opportunistic spectrum access are de-
termined and updated according to spectrum opportunities. We
now provide performance assessment of our scheme.

6. Performance Evaluation

In this section, we provide simulation results related to the
provided analysis and the proposed consensus scheme.

6.1. Instantaneous Throughput
Performance of proposed instantaneous throughput determi-

nation model is shown in Fig. 3. Analytically calculated in-
stantaneous throughput is shown to be closely following simu-
lations. τs and τcs is set to 0.02 and 0.005 sec, respectively. Phole
is varied from 0.1 to 0.9. Calculated instantaneous throughputs
for τt = 0.1, 0.08, 0.06, and 0.03 sec overshoot the achieved
ones after a critical value of Phole, e.g., after Phole = 0.3 cal-
culated instantaneous throughput exceeds the achieved one for
τt = 0.08 sec., and similar relationship between simulated and
analytic results is observed for other τt values, as well. There-
fore, in our design of consensus algorithm, we introduce safety
factor κ to reduce calculated throughput by a little amount to
compensate for possible overshoots.

We use developed framework to evaluate the instantaneous
throughput values, Tk, and calculate the mean of the spectrum
access duration µk in an event estimation interval for sensor
nodes connected to actor node k, i.e., m ∈ Mk, as µk = Tkτe.

6.2. Error Rate
Accuracy of proposed analytical packet error rate calculation

scheme is presented in Fig. 4. For received power calculations,
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Figure 4: Comparison of analytically calculated packet error rate and simula-
tion results with respect to licensed user arrival rate β for SNR values under
licensed user interference of Pl = 5 and 15 dB.

transmission power Pt is set to -5 dBm, noise power Pn is set to
-90 dBm, path loss exponent η is set to 3, shadowing standard
deviance σ is set to 3.8, distance is taken to be 5 m, reference
distance d0 is taken to be 1 m, reference path loss PL(d0) is
taken as -40 dB, and BN/R ratio is taken to be unity. Value of
τt is taken to be 0.05 sec, Pd is equal to 0.9, P f is equal to 0.1,
and α is equal to 10. Simulations are repeated 1000 times and
results are averaged. It is shown in Fig. 4, the analytic formu-
lation follows the simulation values closely. While packet error
rate is in the order of 10−5 when the licensed user interference
Pl is 5 dB, packet error rate becomes in the order of 10−2 when
Pl increases to 15 dB.

6.3. Consensus Convergence Duration
Numerical results are provided to display the consensus con-

vergence duration with respect to algebraic connectivity λ2(L)
and available spectrum opportunity in terms of licensed user in-
terference and channels errors. The prolongation of consensus
convergence duration with respect to various algebraic connec-
tivity values of actor graph G, i.e., from 1 to 20, is discussed.
Value of ε is set to −40 dB. Value of E{τi} is set to 0.05 sec. To
investigate effect of spectrum mobility, effect of licensed user
interference Pl is assessed for 5 and 10 dB, and effect of birth
rate of licensed user β is assessed for 10 and 20.

In Fig. 5, we show that as the instantaneous throughput de-
creases, required number of channels to schedule sensors in-
creases. However, this decrease becomes marginal after a cer-
tain point, e.g., Tk = 0.8. This fact also suggests that it is pos-
sible to decrease spectrum access duration for sensor-to-actor
communication, τa, to provide sufficient time opportunity to
reach consensus among actor nodes without increasing spec-
trum efficiency by increasing required number of channels un-
der sparse licensed user activity.

For consensus convergence duration τc, it has been shown in
Fig. 6 that as the algebraic connectivity λ2 increases, effect of
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spectrum mobility, i.e., Pl and β, decreases. Effect of increasing
λ2 becomes marginal after a certain point, e.g., τc reduces to its
half value when λ2 increases from 1 to 2, however, when λ2 is
increased from 9 to 10, this increase does not imply any signifi-
cant reduction of τc. For Pl = 5 dB, τc follows the same pattern
for β = 10 and 20. It is deduced that for low licensed user inter-
ference, β value does not effect the τc. However, for Pl = 10 dB,
experienced τc increases with β. Sufficient time opportunity to
reach consensus among actor nodes should be provided to reach
consensus before end of the estimation interval. Therefore, we
incorporate analytically formulated consensus duration to limit
spectrum access duration for local estimation of actors, i.e., τa.

6.4. Adaptive Spectrum Sharing for Consensus
In this section, we present simulation results on the perfor-

mance of proposed sensing framework. In Fig. 7, consen-
sus reaching performance is presented with respect to algebraic
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Figure 7: Consensus reaching rate of actor nodes.
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Figure 8: Consensus disagreement of actor nodes.

connectivity for different Tk values. Pl is set to 15 dB. It is
shown that for different λ2 values, consensus is reached irre-
spective of algebraic connectivity. Our scheme achieves higher
consensus reaching rate performance with high instantaneous
throughput values, i.e., consensus reaching rate decreases with
decreasing min{Tk} = from 0.6 to 0.2. Reducing spectrum ac-
cess duration of sensor nodes in local estimation, provides this
performance gain in channels having high licensed user activ-
ity spectrum bands. Proposed estimation interval partitioning
scheme strictly reduces spectrum access interval in accordance
with sparse spectrum availability and high licensed user inter-
ference. Reduction of local estimation duration is benefited in
high licensed user interference scenarios, and for low instanta-
neous throughput case, higher duration for consensus conver-
gence is left.

In Fig. 8, disagreement among actors at the end of estimation
interval is presented. With increasing algebraic connectivity λ2,
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left duration for consensus decreases. Therefore, higher num-
ber of incomplete consensus phases yields higher disagreement
than desired disagreement ε, which is set to 10−4. Since the pre-
dicted τc decreases with increased λ2, spectrum access interval
for local estimation increases, as well. Due to randomness in
licensed user activity, this reduction in τc results in increase of
disagreement among actor nodes. However, as it is shown in
Fig. 8, disagreement is still very close to and in the order of the
objective value.

7. Conclusions

In this paper, reliable spectrum access and reaching consen-
sus with cognitive radio sensor and actor nodes is discussed.
Furthermore, a consensus scheme is proposed to increase reli-
ability by enabling consensus convergence of actor nodes with
minimum spectrum access. Effects of licensed user in terms
of both interruption and interference are modeled, and impli-
cations on design and performance are highlighted. Proposed
scheme is shown to be satisfying consensus convergence re-
quirements, especially in dense licensed user activity and high
interference scenarios which can be encountered in various por-
tions of the Smart Grid. Some of the future research directions
can be listed as investigation of the effects PU mobility on op-
portunistic consensus and comparison of consensus results un-
der different PU channel occupancy models.
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