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Abstract

To cope with the diversity of Internet of Things (IoT) requirements, a large

number of Medium Access Control (MAC) protocols have been proposed in sci-

entific literature, many of which are designed for specific application domains.

However, for most of these MAC protocols, no multi-platform software imple-

mentation is available. In fact, the path from conceptual MAC protocol pro-

posed in theoretical papers, towards an actual working implementation is rife

with pitfalls. (i) A first problem is the timing bugs, frequently encountered in

MAC implementations. (ii) Furthermore, once implemented, many MAC proto-

cols are strongly optimized for specific hardware, thereby limiting the potential

of software reuse or modifications. (iii) Finally, in real-life conditions, the perfor-

mance of the MAC protocol varies strongly depending on the actual underlying

radio chip. As a result, the same MAC protocol implementation acts differently

per platform, resulting in unpredictable/asymmetrical behavior when multiple

platforms are combined in the same network. This paper describes in detail

the challenges related to multi-platform MAC development, and experimentally

quantifies how the above issues impact the MAC protocol performance when

running MAC protocols on multiple radio chips. Finally, an overall methodol-
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irfan.jabandzi@ugent.be (Irfan Jabandžić), ingrid.moerman@ugent.be (Ingrid Moerman),
eli.depoorter@ugent.be (Eli De Poorter)

c©2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license



ogy is proposed to avoid the previously mentioned cross-platform compatibility

issues.

Keywords: MAC design architectures, Portability, Compatibility,

Cross-platform design, ContikiMAC, TSCH

1. Introduction

In the fast growing world of Internet of Things (IoT) devices, wireless sensor

networks are deployed in increasingly diverse application domains, ranging from

smart homes to factories of the future [1]. Each of these domains have inher-

ently different application requirements such as throughput, battery lifetime,5

reliability, etc. Wireless network designers need to take into account the trade-

offs between these performance metrics. As an example, when using wireless

IoT devices to replace wired control loops in industry processes, the network

protocols should focus on providing low latency and high reliability, whereas

temperature monitoring applications often emphasize long network lifetime re-10

quirements.

To this end, an important design decision is the choice of the Medium Access

Control (MAC) protocol, which manages how and when the wireless medium is

accessed. Countless protocols have been designed with advantages and disad-

vantages regarding different performance metrics, making it challenging to make15

an informed decision about the optimal protocol [2]. Some architectures even

load several protocols on the device, in order to select the optimal at runtime [3].

For example the TSCH (time synchronized channel hopping) MAC protocol is

designed for reliability and low battery usage but has high jitter (deviation of the

inter-arrival time between packets) [4], whereas using CSMA/CA (carrier-sense20

multiple access with collision avoidance) results in low jitter and high through-

put but a higher battery consumption [5]. Many open-source implementations

of these MAC protocols contain performance limitations. (i) They are often de-

signed for one specific hardware platform (for example the CC2420-radio) and

thus can not be reused for other radio chips. (ii) Conversely, many IoT operating25
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systems only support a single MAC implementation (e.g. RIOT OS only sup-

ports CSMA/CA [6]). (iii) Finally, in case multi-platform support is available,

the MAC performance typically degrades due to the use of a feature-poor hard-

ware abstraction layer (e.g. Contiki [7] and openWSN [8]). This limited pool of

implemented MAC protocols per radio/operating system combination hinders30

MAC innovations since researchers can not directly use the desired MAC pro-

tocol on their development systems. The alternative, implementing the MAC

logic from scratch or porting an existing MAC implementation to a new plat-

form, requires extensive knowledge of the target OS and radio chip. Even then

it takes a significant amount of time to port a protocol to new platforms, since35

MAC protocols interact with low level hardware components and as a result

have a large and difficult to understand code base. An improvement would con-

sist of implementing MAC protocols once in a hardware independent language,

and reuse the code on all desired platforms. These multi-platform protocol

implementations could be made available on a MAC protocol cloud storage [9].40

Unfortunately, even if devices are able to run the same MAC protocol code,

hardware differences might still subtly alter the behavior of a MAC protocol

compared to the one running on other radio platforms or legacy devices. For

example, the stability and speed of the clock might differ resulting in different

timings. If the timing differences become too large, this can result in asymmet-45

rical link behavior. In more extreme cases, the MAC protocol performance can

degrade or even become incompatible between the different hardware platforms

[10].

The existence of asymmetric links can have an effect on the performance of

higher layers, as is shown in [11, 12]. Furthermore, [13] demonstrates that the50

presence of an asymmetrical link performance severely hurts the performance of

the RPL routing protocol.

In contrast to most scientific papers which focus on the design of novel MAC

protocol algorithms, this paper proposes a methodology which allows efficient

implementation of MAC algorithms on real hardware while simultaneously sup-55

porting portability and interoperability between multiple platforms. To this
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end, this paper discusses three challenges that influence the performance of

MAC implementations running on different hardware platforms.

Challenge 1: The lack of feature-rich API’s which still support

portability. Existing MAC API’s or MAC design frameworks do not offer60

the means to create a protocol which is multi-platform, while still allowing full

access to the platform capabilities. In this paper, a hierarchical layered imple-

mentation approach is proposed which makes it possible to trade in portability

for performance. Our approach gives the developer an informed choice of either

building a protocol which is fully portable, or a protocol which uses low-level65

network/radio capabilities.

Challenge 2: MAC protocol instruction timings have a strong

hardware dependency. MAC protocols contain numerous timers that de-

termine exactly when radio features such as sleep, transmit, clear channel as-

sessment (CCA), etc. should be executed. However, transitions between radio70

states are often not documented. Many implementations cope with this by ei-

ther using timings which are too strict due to a lack of understanding of the

low-level timing dependencies of the radio chip instructions, thereby introduc-

ing unpredictable MAC behavior. Others choose timings which are too large

in order to ensure cross-platform compatibility, thereby reducing throughput75

and reducing energy efficiency. We demonstrate that the burden of tweaking

timers should not fall upon the MAC implementer, but rather the MAC compiler

should automatically adjust timings based on the platform in use.

Challenge 3: Multi-platform networks exhibit unpredictable be-

havior. Even when multiple platforms with different radio chips run the same80

MAC software, issues remain when deploying these different devices in the same

network. Unfairness between platforms can occur due to inherent hardware and

timing differences. We demonstrate that it is possible to equalize the behav-

ior of a MAC protocol across different platforms to avoid these unpredictable

unfairness effects.85

The rest of the paper is structured as follows. First, Section 2 gives an

overview of related work describing previous approaches aiming to support
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MAC protocols running on multiple embedded devices and/or operating sys-

tems. Next, Sections 3, 4 and 5 experimentally quantify1 the performance

impact for each of the three above challenges and subsequently propose and90

evaluate a solution using state-of-the-art MAC design approaches. Finally, Sec-

tion 6 concludes the paper by giving an overview of all previously mentioned

solutions.

2. Related work

This section discusses state-of-the art approaches for dynamic MAC frame-95

works which show promise for multi-platform design.

2.1. Multi-platform MAC architectures

Although a multitude of IoT platforms currently exist, several problems

related to running a MAC protocol on different platforms remain unsolved. The

authors of [15] highlight several performance issues with (radio duty cycling)100

MAC protocols, most of which are caused by incorrect timing implementations.

It is worth noting that the correct implementation of timers is identified as

problematic, even when implementing a MAC protocol for a single platform.

This paper puts forward recommendations which could prevent most of the

identified issues from happening.105

In terms of MAC protocol reuse, a number of existing research papers provide

a cross-platform MAC implementation by creating an abstraction layer between

the MAC and network layer per operating system [16, 17]. They allow the

use of a platform specific MAC protocol on multiple operating systems. One

can argue that, although minimizing the effort of a MAC protocol running on110

1All experimental evaluations used the w-iLab.t wireless testbed facilities, which is a state

of the art IoT testbed in Europe [14]. The testbed contains large-scale deployments of sensor

nodes of different hardware types, which have been used to conduct cross-platform experi-

ments. All conducted experiments were performed in a single-hop star topology.
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multiple operating systems, this is not really cross-platform MAC design but

rather cross-operating system MAC design.

Several operating systems, e.g. Contiki [7] and Mantis OS [18], provide an

interface for physical layer calls, a so called hardware abstraction layer (HAL).

Due to the need for simplicity, these API interfaces omit hardware specific in-115

formation such as data rates, timings, power modes. As a result MAC protocol

developers can not utilize more advanced hardware capabilities. Even worse,

MAC protocol implementers lack information regarding the exact implementa-

tion and timing constraints of the HAL interfaces. For example, the off-function

for the TMote Sky platform in Contiki does not inform the user about the re-120

quired time to execute this command. Moreover, the actual implementation

puts the radio in a low power mode (LPM) rather than completely off, resulting

in energy loss. An interface needs to be clear and informative, as the developer

should not be limited in his possibilities while creating the MAC protocol code.

A more rich interface is provided by the Wireless MAC Processor (WMP),125

which is a programmable MAC architecture devised to run a MAC protocol

defined in terms of a state machine [19]. It offers flexibility to easily create

and adapt novel protocol ideas. However, WMP is only available for the Air-

Force54G chipset from Broadcom and thus does not support cross-platform

MAC portability and reusability.130

Another MAC design architecture is the Time Annotated Instruction Set

Computer (TAISC) framework, which has a number of advantages compared to

traditional MAC protocol development architectures [20]. The main innovation

of TAISC was the introduction of time-annotated radio instructions. The com-

piler adds exact timing information which can be used by an execution engine135

for instruction scheduling. Although the authors hint that this approach could

help to support multi-platform compilation, this claim is not further explored

or experimentally validated.

In conclusion, several multi-platform MAC protocol architectures already

exist. Unfortunately, most of them only offer a hardware abstraction layer, and140

do not solve other possible multi-platform issues. In this paper, the TAISC
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concept of radio instruction time annotation is utilized and extended to solve

the multi-platform problems stated by this paper.

2.2. State-of-the-art low power MAC protocols

To quantify the impact of multi-platform design on the MAC performance,145

this paper will use two different types of low-energy MAC protocols: the contention-

based ContikiMAC and the TDMA-based TSCH MAC protocol.

ContikiMAC is a frequently used CSMA-based protocol. From [21]: ”Con-

tikiMAC is a radio duty cycling protocol that uses periodical wake-ups to listen

for packet transmissions from neighbors. If a packet transmission is detected150

during a wake-up, the receiver is kept on to be able to receive the packet. To

transmit a packet, a sender repeatedly sends its packet until it receives a link

layer acknowledgment from the receiver.” Due to its complex time dependent

nature and the fact that it is available for multiple platforms, ContikiMAC

represents an ideal protocol for evaluation.155

In addition, we also evaluate an implementation of IEEE802.15.4e TSCH,

a standardized Multi Frequency Time Divison Multiple Access (MF-TDMA)

variant that is dominant in TDMA MAC protocols for wireless sensor networks.

From [4]: ”Through time synchronization and channel hopping, TSCH enables

high reliability while maintaining very low duty cycles.”160

These two widely used MAC protocols serve as a showcase of typical MAC

development challenges. The workings of these MAC protocols are visualized in

Figure 1.
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(a) Conceptual figure of ContikiMAC. The cycletime is the time

between consecutive CCA check cycles. CCA RX is a CCA

check performed to listen for incoming frames. CCA TX is a

CCA check performed to listen if medium is available to trans-

mit a data packet.

(b) Conceptual figure of IEEE802.15.4e TSCH. The most im-

portant metric for this paper is macTimeSlotLength, which is

the time duration necessary to safely transmit a data packet

and to receive the consecutive acknowledgement (ACK).

Figure 1: Illustration of the protocol logic from two widely used MAC protocols: (a) Contiki-

MAC and (b) IEEE802.15.4e TSCH.

3. Challenge 1: The lack of feature-rich API’s that support portabil-

ity.165

Context. When setting up a wireless sensor network, the MAC protocol is

one of the most important decisions as it impacts how efficiently the medium is

accessed. If the desired MAC protocol is not available on a platform of choice

it needs to be implemented or ported, which is a time consuming process due

to the code complexity and hardware dependencies.170
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Problem. In most operating systems and/or MAC development architec-

tures (e.g. Contiki and openWSN) MAC implementations use a hardware ab-

straction layer (HAL) or radio driver which provides an interface towards the

instruction set of the radio chip. A number of limitations are caused due to the

inherent design of common hardware abstraction layers.175

• A first common pitfall is the creation of a generic instruction set which

limits the possibilities of the designer. Most radio chips have advanced

features which should be used to their fullest extent in order to create a

MAC protocol which is as efficient as possible. However, these are often

not included in the hardware abstraction layer due to many interdepen-180

dencies between the radio system states. For example, putting a device

to sleep mode requires a wide range of checks on multiple subsystems

of the hardware platform before you can safely decide which LPM mode

is possible without loss of data or control of your device. To avoid this

complexity, e.g. in Contiki and openWSN the on/off function call is in-185

stead implemented as an idle function on some platforms which will not

save energy and is different in terms of timing. A developer who only

uses the abstraction layer and is not aware of the underlying hardware

implementation, will not realize why his protocol is suboptimal.

• Alternatively, some MAC architectures provide a more elaborate interface190

which is more expressive and intelligent in terms of behavior dependen-

cies. For example RIOT OS and TAISC allow full access to the radio state.

Unfortunately, the extended abstraction layer has a drawback. Since not

all radio chips support these advanced capabilities they might not be able

to run the protocol code, again hindering portability of the MAC imple-195

mentation.

• TinyOS builds on the concept of abstraction layers. At the lowest layer,

the hardware presentation layer (HPL) provides chip specific hardware

features (memory access, timers, ADC/DAC, etc.) without providing ex-
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plicit interfaces for MAC design. Specifically for MAC design, two abstrac-200

tion levels are offered: (i) the hardware abstraction layer (HAL) provides

platform dependent radio level instructions (e.g. chip specific), and (ii)

the hardware interface layer (HIL) provides generic, platform independent

MAC level instructions.

As such, current MAC protocol architectures either support multiple plat-205

forms by offering only a generic radio/platform-independent instruction set, or

they offer full radio control but allow no portability options.

Solution. In contrast to existing hierarchies, the major differences between

our approaches are as follows. (i) TinyOS and RIOT MAC interfaces are in-

herently time-unaware, leaving the burden of calculating when to execute a210

command to the developer, thereby reducing protocol efficiency and hindering

portability. (ii) In contrast to the 2 API layers of TinyOS which are either chip

specific or very generic, we introduce 3 time-annotated layers. As such, the

developer can choose to write a MAC protocol which is not portable (similar

to the TinyOS HAL API, but more efficient due to time annotations), portable215

between devices of the same technology (not supported by TinyOS), or fully

portable between all devices (similar to the TinyOS HIL API, but more efficient

due to time annotations). (iii) Finally, we have extended the tier-architecture

with fallback compilation functions. These functions allow MAC designers to

implement a protocol for optimal performance while still allowing compilation220

towards higher platform independent layers, which is to the best of our knowl-

edge a novel addition.

More specifically, three levels of compatibility were identified.

1. Radio functionality level. Using this abstraction layer, the MAC pro-

tocol implementation will only be compatible with platforms using the225

exact same radio chip. This allows to use all radio features.

2. Technology level. Using this abstraction layer, the MAC protocol im-

plementation will be compatible with platforms using the same technology

type (e.g. BLE, Lora, IEEE802.15.4, etc.). For example the set bandwidth
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Figure 2: An example hierarchical MAC API is defined allowing explicit portability trade-offs.

The radio functionality level provides all features of the radio and only offers compatibility

between platforms using the same radio chip. The technology level offers all features of a

specific network technology, and are thus compatible with radios supporting the same network

type. The last level offers a fully platform independent instruction set. If a function does not

exist on a hardware platform, a fall back function or dummy implementation is automatically

selected in the compilation phase.

function is available for all LoRa radio chips (but not for e.g. IEEE802.15.4230

radios).

3. Full platform independence. Using this abstraction layer, the MAC

protocol implementation will be compatible with most wireless radio chips.

This functionality layer offers basic radio functions (on/off, send, etc.),

which are available on most wireless hardware platforms.235

In Figure 2 the three levels are visually represented. A developer can choose

which interfaces to use, and thus by extension with which platforms he wants

to be compatible with. The higher hierarchies contain more generic, often less

efficient, implementations of the radio chip specific function calls.

For each function, fall-back functions are explicitly provided. This way, it is240

possible to implement MAC protocols using a rich-feature HAL, but to still be

able to compile MAC protocols to other, less-feature rich platforms2. For ex-

ample, in case fine-grained low power modes are unavailable, the MAC compiler

replaces these function calls with the more general “off”-instruction. Some un-

2These fall-back mechanisms provide timing information which can also be used to allow

interoperability between different radio chips (see Section 5)
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usable configuration functions (e.g. set preamble for 2.4GHz networks) can be245

replaced by a placeholder instruction (“NOPI”) while keeping the MAC protocol

logic intact3. Since all fallback functions are time-annotated, the timing impact

of using these functions can automatically be compensated by the compiler (see

Section 4).

Evaluation. The hierarchical MAC API functionality has been imple-250

mented in the TAISC framework and its benefits have been evaluated using an

example scenario. We consider a simple MAC protocol that has been designed

for a radio that supports the creation of hardware acknowledgements (lowest

API level). When the same MAC protocol is later compiled for a radio without

hardware acknowledgement support, the compiler provides a warning and au-255

tomatically replaces this functionality with a fallback function (in this case: a

software based acknowledgement generation). To validate the correctness, the

impact of using this specific fall-back function was experimentally quantified.

For the experiment, a Zolertia Remote device aims to achieve maximum uni-

directional throughput to a second device using the ALOHA MAC protocol.260

Using hardware acknowledgements, the maximum throughput was measured

to be 153.8kbps. Next, we artificially disabled hardware support for acknowl-

edgement generation. Rather than breaking the MAC protocol, the compiler

automatically used the software acknowledgement fall-back option. The result-

ing throughput was 142.5kbps (a decrease of only 7%), showing that fallback265

functions are a viable approach when porting MAC protocols to hardware with

different capabilities, allowing the MAC protocol to run on less-feature rich

platforms, albeit at slightly decreased performance.

4. Challenge 2: Hardware dependent instruction execution times

Context. MAC protocol implementations mainly consist of time critical270

code, e.g. when to start listening to the wireless medium or when to start

3In case no fallback is available on the requested compatibility level a compiler warning is

shown.
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transmitting. These timers impact the efficiency of the protocol (e.g. reducing

the time spent awake or impact the number of transmissions per unit of time)

and thus by extension the overall energy consumption of the system.

Problem. Unfortunately, due to hardware differences, there exist large275

timing differences between platforms. To illustrate the impact of these timing

differences between platforms, Figure 3 shows the time required to turn a radio

on, switch to a specific radio channel, load and transmit a short packet of 32

bytes and turn the radio off again for different IEEE802.15.4-compliant radios4.

This sequence represents for example the minimum duration of a TDMA slot. As280

shown in Figure 3 the performance differs dramatically between devices even for

a basic sequence of radio instructions. Failure to take into account these specific

platform timings into the MAC implementation results in suboptimal timings,

which can cause the protocol logic to break. Because the MAC implementation is

typically created for one specific radio chip, instances running on other platforms285

often contain hard to identify bugs [15].

Ideally, each separate radio function call should happen as soon as possible.

However, slower platforms might not be able to perform all needed functionality

within the defined limited amount of time. This poses a dilemma for the MAC

designer: should he include additional safeguard time between each function290

call, thereby making the protocol less efficient but more portable?

• Consider for example the ContikiMAC time between two consecutive Clear

Channel Assessments (CCA) checks. According to the official documen-

tation, this time is assumed to be 500µs. Figure 4 represents the average

CCA timings directly measured on several hardware platforms. None of295

them come even close to reaching the target time, making it likely that

a short packet cannot be detected by the CCA checks. To make matters

worse there is a time difference between CCA checks in transmit- and

receive-mode, due to the logic in between the checks being different.

4Respectively the CC2420 radio on the TMote Sky and the Zolertia Z1, the CC2520 radio

on the RM090 and the CC2538 radio on the Zolertia Re-mote
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Figure 3: Comparison of the duration of basic radio instructions. The instruction timings

vary significantly between different platforms.

• Conversely, developers can include margins in their timings, to counter300

clock drift or to ensure multi-platform compatibility. An example can be

found in the CSMA/CA implementation in Contiki, which waits to re-

ceive an acknowledgment. Even if the acknowledgment has already been

received the radio remains in the receive state until the AFTER ACK-

DETECTED WAIT TIME has passed. Not only is this wait period too305

long, the MAC protocol also does not react to events happening at the

physical layer. A radio should go to idle or LPM when the acknowledg-

ment is received. Although this choice might ensure the protocol runs on

multiple radio platforms, it results in performance degradations.

Solution. The above problems can be alleviated by having more knowledge310

regarding the timing of different instructions for different hardware platforms.

These timings are hard to calculate theoretically since they depend on many

external factors (clock speed, transition type, etc.). Instead, we propose to

benchmark the execution time of different instruction timings (e.g. CCA tim-

ings, duty cycle, packet transmission timings, etc.) automatically before compile315
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Figure 4: Time between consecutive ContikiMAC CCA checks for different platform, demon-

strating that the timing varies significantly depending on the platform. The figure also illus-

trates that the default ContikiMAC duration (horizontal line) is too strict for the considered

platforms. Fifty measurements were performed per plaform/CCA type combination. The

variance of the measurements was negligible, since for the slowest devices it was measured to

be only 0.025µs.

time, so that these values can be included in the MAC code.

Injecting real radio instruction execution durations measured on the device

ensures the protocol logic will not break due to wrongly chosen timings, and re-

moves the need to include large margins to reach multi-platform compatibility.

From a practical point of view, measuring the instruction timings (rather than320

code block timings) is more useful since the data can then be reused for future

MAC implementations. Measuring the instruction timings could be done in two

ways. (i) Either the instructions are executed, and the timings are measured

by a second device. In this case, the authors advice to use designated devices

(e.g. a logic analyzer) which are more accurate and precise. (ii) Alternatively, a325

pre-compiler can automatically execute each used individual instructions suffi-

cient times to derive statistically relevant information about its execution times.

These instruction timings can be stored locally, or could be shared through an
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automated repository with external database. Using these values, the duration

of logical blocks can be calculated out of the individual instruction timings. The330

burden of selecting optimal timing information is now shifted from the MAC

developer to the pre-compiler, allowing the MAC developer to focus on im-

plementing the protocol logic without manually choosing the platform-specific

timings.

To estimate the duration of each instruction, the benchmarking framework335

needs to be able to predict the duration of instructions with variable execution

times, caused by several factors.

• The first factor of variability is caused by configurable function param-

eters, for example the number of bytes to be transmitted. This can be

solved by measuring how long it takes to execute a single unit (e.g. the340

transmission duration of a byte is 32 µs), which can be used to calculate

the duration of larger transmissions.

• The second factor is the occurrence of interrupts during function execu-

tion. If an interrupt occurs, the instruction timing is dependent on the

duration of the interrupt service routine (ISR). This can partly be solved345

by running the MAC protocol in the highest possible interrupt context,

minimizing the possibility that the execution of the MAC protocol can be

interrupted or delayed.

• Lastly, the instruction execution timing can be influenced by clock drift.

To handle this, a number of measurements should be performed to cap-350

ture the distribution of instruction durations (e.g. min, max, average

duration). The evaluation in this paper assumes a worst case scenario, to

make sure that the instruction is always completed in the defined amount

of time. Alternatively, the performance could be increase by assuming an

instruction duration which is valid in e.g. 95% of the time (95 percentile).355

Evaluation. To evaluate these concepts, we extended TAISC with an auto-

mated benchmarking framework for time duration. For every evaluated platform
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an XML is created with the instruction times for all instructions of all three hi-

erarchical HAL layers of Section 3. This multi-platform XML document is then

used to support cross-platform compilation of MAC code. This information is360

used for scheduling the next instruction: at what point in the future should a

next instruction be executed to make sure that execution does not start before

the current one has finished, e.g. the off-instruction should not be executed

as a tx-instruction is still active. The next instruction should be scheduled as

close as possible to the end of the current instruction5. This allows to approach365

the limits of the system in a controlled manner: the result is a MAC imple-

mentation that can be compiled to multiple radio platforms with limited, or

even non-existing margins. Next the performance gains will be evaluated for

the MAC protocols: ContikiMAC and IEEE805.15.4g TSCH.

Figure 5a shows the timing improvements of the automatically calculated370

timings, compared to the default Contiki implementation, for basic ContikiMAC

operations. For every operation, the automated timing calculation outperforms

the default implementation. The performance benefits from the shorter acquired

timings. the CCA times are a lot closer towards the physical limit of the device,

up to 33.67% better compared to the default implementation. Also the IFS375

is 13.32% better compared to the default implementation. Thus, by including

automated time annotations, the performance significantly improves and the

protocol logic can efficiently be reused on multiple radio platforms. The better

timings achieved through time-annotation also have an impact on radio energy

consumption as the radio is more likely to be in the correct state at the right380

moment, e.g. the radio is less in the energy-consuming ’on’-state. Figure 5b

shows the improvement in energy consumption of several basic ContikiMAC op-

erations. The RM090 benefits with a major improvement in energy consumption

as the radio goes into lower power mode if no operations need to be executed,

while in the default implementation it only goes to idle-mode. This difference385

5It should be noted that the provided MAC API instructions have a very predictable

performance (variance is less than 1µs).
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becomes apparent in the duty cycle and CCA check operations in figure 5b as

the energy consumption for the RM090 is considerably lower. In figure 5b it can

be seen that the same improvement does not happen on the Zolertia Re-mote,

since the radio can only put into a lower power mode if the MCU is also put in

low power mode making it impossible to control from the MAC layer.390

In contrast to ContikiMAC, TSCH is a synchronized TDMA MAC proto-

col. The default slot sizes described in the IEEE802.15.4 and IEEE802.15.4e

standards include large margins for two main reasons: (i) to compensate clock

drift on the devices, and (ii) to use multiple device types within the same net-

work. Current TSCH implementations are compatible because the slot duration395

is chosen so slower radio platforms can adhere to these timings, regardless of

the actual presence of such platforms in the network. The default fixed slot du-

ration (TsSlotDuration) of 15ms is not optimal for the performance: a reduced

slot duration would improve the network performance (energy consumption and

throughput). Hence, the current approach towards portability does not result400

in optimal performance. The XML containing instructions was used to auto-

matically calculate the minimal TSCH slot duration for a number of platforms

(not including clock drift), for which the result can be observed in figure 6. The

timings are either significantly shorter, or might require more then 15ms depend-

ing on the selected modulation. This demonstrates the limitations of imposing405

manual slot durations, which can be overcome by automatically calculating the

actually needed instruction timings.
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(a) Several timings of ContikiMAC were measured on both the the time

annotated instruction version and the default version. This graph rep-

resents the improvement (in %) which the time annotated instructions

offer compared to the default ContikiMAC.

(b) For several operations, the energy consumption was measured on

both the the time annotated instruction version and the default version.

This graph represents the improvement (in %) which the time annotated

instructions offer compared to the default ContikiMAC.

Figure 5: Performance evaluation (timings and energy consumption) from including instruc-

tion timing information in the ContikiMAC protocol: the MAC protocol is automatically

optimized for the capabilities of each individual radio platform.
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Figure 6: Automatically calculated minimum TSCH slot duration per platform. The default

TSCH slot duration (15ms) is indicated by a horizontal line.
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5. Challenge 3: Multi-platform networks exhibit unpredictable be-

havior.

Context. Previous sections focused on problems related to running the410

same MAC protocol code on different devices. This section describes problems

that arise from having multiple devices of a different hardware type in the

same network. Even when these devices run the same MAC protocol code, the

performance might still differ due to time differences introduced by a different

physical layer implementation and a different CPU clock speed.415

Problem. To demonstrate the performance impact of different platforms

running the same code, an experiment was conducted where different hardware

platforms send data to a central server. All nodes form a star topology, whereby

the leaves were 5 RM090 and 5 Zolertia Remote devices, all using the default

implementation of the ContikiMAC protocol (with a cycle time of 125ms) and420

the same configuration (channel, transmission power, clear channel assessment

threshold, etc). All nodes were configured to transmit a single packet per second

to a central node. The experiment was repeated twice, each time with a different

type of device as central node. Figure 8a shows the percentage of successfully

sent packets over the total per platform. Although the same software code was425

used, the percentage of successful packet transmissions of the Zolertia Remote is

significantly higher than the ones of the RM090, since the Zolertia Remote can

access the medium more quickly due to faster instruction timings (see Figure 3).

As such, there is a need to ensure fairness in the presence of different hardware

platforms, since this is not inherently offered by the use of the same MAC430

protocol.

Solution. To counter cross-platform incompatibility the execution duration

of the different instructions should be equalized across the different platforms.

• One solution is to add wait periods to ensure that instructions require the

exact same amount of time on all platforms in the network (Figure 7a).435

For each instruction, the corresponding duration of the worst platform

in the network is used as the target duration. Figure 7a shows how this
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(a) An additional margin is added after each instruction to ensure all instructions have the same

duration across all platforms.

(b) A single margin is added before the full instruction sequence to ensure that the execution

of the critical time components (for example TX or CCA) happens simultaneously across all

platforms.

Figure 7: Approaches to equalize the MAC performance across multiple device types within

the same network, thereby ensuring fairness and cross-platform compatibility.

approach ensures that all platforms now finish the packet transmission

in the same amount of time. By using the time-annotated commands to

calculate the additional wait periods, the performance of all platforms is440

equalized, at the cost of extending the duration of some states on faster

platforms6.

• Alternatively, it is possible to use the timing information to reschedule

essential instructions (such as TX instructions) so that they start at the

6For example in 7a, platform B goes to the radio on state faster compared to platform A.

By doing so, the radio is already consuming energy when it is not yet strictly necessary.
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same time across different platforms. Most MAC logic blocks consist of445

three phases: (i) a preparation phase, (ii) a critical execution, and (iii)

parsing of the execution results. By adding wait periods or margins at the

beginning of the MAC block, the instructions can be scheduled so that the

time critical execution occurs simultaneously (Figure 7b). This approach

ensures fairness and does not negatively impact energy efficiency of the450

individual platforms, but it does require knowledge about which parts of

the execution should be aligned.

Evaluation. The cross-platform compatibility solutions have been evalu-

ated by extending the TAISC framework with a ”sync”-command that can be

used for multi-platform designs. Every MAC protocol instruction sequence can455

be annotated with one such sync command indicating the critical execution

part. Using these extensions time-critical parts of the MAC protocol (e.g. a

frame transmission) are scheduled immediately after the sync, and the prepara-

tion for the time-critical execution (e.g. copying a packet into the radio buffer,

putting the radio in the correct state) are scheduled before. It becomes possible460

to align critical parts of instruction blocks, e.g. put the radio in receive mode

just before another node transmits a packet, without the need to calculate the

timings/margins by the MAC implementer. The impact of these changes is

shown in Figure 8b. Compared to the same experiment in default Contiki from

Figure 8a, the platforms now share the spectrum fairly due to the alignment of465

the time critical execution parts.
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(a) Percentage of transmitted packets over the total for two platforms

running the same MAC code in a single network. The performance

variation between different platforms is significant.

(b) Percentage of transmitted packets over the total for two platforms

running the same MAC code in a single network. By using time anno-

tations (Section 4) the overall performance increases. By also aligning

the critical execution parts (Section 5), the fairness increases.

Figure 8: Impact of different platforms in a single network running the same MAC code on

different hardware.
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6. Conclusions

Scientific literature regarding MAC protocols currently focuses on the design

and evaluation of new MAC protocol prototypes, most often without consider-

ing reuse of code towards future platforms. As a consequence, the availability of470

MAC protocols designed for a specific device is often very limited. Even though

multi-platform MAC protocol implementations exist, performance degradation

and offered functionality differing from defined/designed behavior caused by

hardware differences and implementation mistakes are common. In addition,

multi-platform network deployments suffer from unfairness and unpredictable475

performance since, as it was proven, the same MAC protocol logic on multiple

devices behaves differently in terms of timing due to hardware differences. Con-

sequently, different devices running the same MAC protocol logic can become

incompatible with one another.

Table 1: Summary of how the three proposed solutions in this paper contribute to the porta-

bility, compatibility and reuse of multi-platform MAC protocols.480

Solution Portability Compatibility Reuse

1. Hierarchical framework x x

2. Automatic benchmarking x

3. Instruction aligning x

This paper described in detail the challenges related to multi-platform MAC

development, and experimentally quantified how the above issues impact the

MAC protocol performance when deploying and executing MAC protocols on485

multiple radio chips. (i) Firstly, it was shown that current interfaces are either

too radio chip specific, thereby hindering portability of MAC protocols, or too

general, thereby forcing developers to generate inefficient code. By providing a

hierarchical framework of interfaces, our proposed methodology allows efficient

code implementation while allowing fall-backs to alternative implementations490

for portability. (ii) Secondly, it was shown that MAC timings depend strongly

on the underlying hardware. By automatically benchmarking the duration of
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MAC instructions, our approach is able to optimize the MAC towards the spe-

cific radio chip timings, thereby exhibiting better performance in terms of radio

energy consumption (up to 82% improvement), timings (up to 33% improve-495

ment) and throughput compared to the existing multi-platform implementa-

tions. (iii) Thirdly, we proved that the same MAC protocol implementation

acts differently per platform, resulting in unfair/unpredictable behavior when

multiple platforms are combined in the same network. By adding margins to

equalize the duration of all radio instructions, or by aligning the critical in-500

structions across multiple platforms, these unpredictable effects are removed

and fairness is restored. Table 1 summarizes which purpose each the proposed

solutions serves in the overall goal of achieving portable, multi-platform MAC

protocols.

Figure 9: Flow diagram summarizing the three solutions to multi-platform issues in MAC

protocols.
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It is worth noting that all three solutions can be applied individually, or the can505

be combined with each other towards an overall methodology for the design of

portable MAC protocols. The different steps of the methodology are visualized

in Figure 9. By following the described steps it becomes possible to achieve

a MAC design which (i) is more developer friendly, by moving the burden of

time annotation towards the pre-compiler, (ii) is more efficient compared to510

traditional approaches, significantly improving MAC performance and energy

efficiency and (iii) allows efficient reuse and combination of MAC protocols over

a wide range of IoT platforms without additional development efforts.
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