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Abstract

Vehicular networks supporting cooperative driving are among the most interesting and challenging ad-hoc networks. Platooning, or
the act of coordinating a set of vehicles through an ad-hoc network, promises to improve traffic safety, and at the same time reduce
congestion and pollution. The design of the control system for this application is challenging, especially because the coordination
and cooperation between vehicles is obtained through a wireless network. So far, control and network issues of platooning have
been investigated separately, but this is definitely a sub-optimal approach, as constraints of the networked control system impose
bounds on the network performance, and network impairments translate into disturbances on the controlled system. In this work we
design a cooperative driving system from a joint network and control perspective, determining upper bounds on the error subject
to packet losses in the network, so that the actual inter-vehicle gap can be tuned depending on vehicle or network performance.
Extensive simulations show that the system is very robust to packet losses and that the derived bounds are never violated. In
addition, since the leader control law is part of the proposed control approach, we show that, besides taking into account external
events and reacting within the given constraints to ensure the overall road safety, the system can be easily integrated into global
traffic optimization tools that mandate the platoon behavior.

Keywords: platooning, networked-control design

1. Introduction

Cooperative driving is a promising solution to reduce traffic
congestion and increase safety, thus addressing at once two ma-
jor problems of modern transportation on roads. Wireless com-
munication enables vehicles to share information about their
status and the sensed surrounding environment: this drastically
increases their perception of what happens around them and
enables cooperation. Using only standard in-car sensors, as
currently done by prototype self-driving vehicles, does not em-
power this ability, thus in many ways self-driving vehicles share
the same limitations of human drivers. Instead, as an example,
a wireless link can let a vehicle know the future intended trajec-
tory of another one (at an intersection, as a long term destination
or cruising speed, etc). Of course, this feat cannot be achieved
with on-board sensors only.

Cooperative Adaptive Cruise Control (CACC) is a commu-
nication enhanced version of a standard Adaptive Cruise Con-
trol (ACC), capable of maintaining a very small inter-vehicle
spacing while ensuring passengers’ safety. While commercial

∗Dr. Giordano was partially supported by the DTF grant at the Delft Uni-
versity of Technology.
∗∗Dr. Segata was partially supported by the University of Trento within the

framework of young researcher support (Bando Giovani Ricercatori 2018).
Email addresses: g.giordano@tudelft.nl (Giulia Giordano),

msegata@disi.unitn.it (Michele Segata), blanchini@uniud.it
(Franco Blanchini), locigno@disi.unitn.it (Renato Lo Cigno)

ACC systems implement a time-headway spacing policy with
a time-headway not smaller than 1 s [1] (meaning a distance
not smaller than 36 m at 130 km/h), CACC systems can imple-
ment smaller time headways or even spacing policies in which
the distance is constant (e.g., 5 m) independent of the cruising
speed [2]. The CACC forms trains of vehicles, called platoons,
so this application is also known with the name of cooperative
automatic driving, or platooning. Platooning provides bene-
fits in terms of efficiency, safety, and driving comfort [3, 4].
A smaller inter-vehicle gap allows for a better use of the road
infrastructure (where most of the space is now simply wasted
due to safety distances), improves traffic flow, reduces con-
gestion and, at the same time, the waste of fuel due to start
and stop dynamics caused by congestion itself. Since statistics
show that human driving is the cause of more than 90 % of the
accidents [5], we can expect that an automated system taking
control over driving tasks would also improve safety. Finally,
comfort is improved: the “former driver” does no longer need
to focus on driving and is free to engage in other activities.

When designing a cooperative driving system, we need to
face a control-theoretical problem that is inevitably intertwined
with networking problems. The control algorithm receives as
input information about the other vehicles in the platoon (e.g.,
speed, position, or acceleration), which is conveyed via wire-
less links, through periodic broadcast (or beaconing), as well
as via local sensors that can improve the precision of distance
and relative speed measures. Data packets can be lost due to the
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Figure 1: Platooning ad-hoc network.

inherent nature of wireless links, and this in turn has a dramatic
impact on the performance of the application. Bad performance
of autonomous driving can result in injuries or loss of life. Fig-
ure 1 depicts the typical ad-hoc network supporting platooning
with the Dedicated Short Range Communications (DSRC) ap-
proach [6]. The network is established via 802.11p [7] beacons
and moves with the platoon. Different networking approaches
as C-V2X [8] may require an adaptation of the design, but the
basic principle we propose remains the same. The ad-hoc net-
work is needed both for intra-platoon communication (for con-
trol purposes) and for inter-platoon communication (for coordi-
nation and maneuvering). Vehicles participating in the ad-hoc
network might get support (e.g., for finding a nearby platoon) or
advises (e.g., for traffic regulation and safety) from a fixed in-
frastructure. Ad-hoc networks are the key enabler of future In-
telligent Transportation Systems (ITSs), independent of the ac-
tual application [9, 10, 11]. Clearly, different applications have
different requirements. Cooperative driving and safety applica-
tions are among the most challenging from the point of view
of the ad-hoc network, as delays and/or loss of information can
result in poor application performance. The design of proper
protocols is thus extremely challenging [12, 13], but very often
only network performance metrics are taken into account.

The impact of wireless impairments on the control perfor-
mance is not considered, or considered only partially, in most
of the works in the field. In this paper we propose a cooper-
ative driving algorithm that specifically takes into account er-
ror dynamics due to loss of data and ensures that a predefined
safety bound is never violated, given a particular worst-case
scenario. This paper extends our previous work [14] includ-
ing detailed derivations and proofs that were omitted for the
sake of brevity, introducing possible extensions, and especially
proposing a new mode, the override mode, capable of handling
external events, such as the presence of slower vehicles ahead
or infrastructure-mandated changes of the cruising speed. This
additional feature is crucial, since it makes the proposed algo-
rithm a complete platooning control system.

To the best of our knowledge, this is the first attempt to
jointly design a control algorithm and a dedicated communica-
tion protocol that takes into account packet losses. Our main
contributions can be summarized as follows:

• The design jointly considers control and network perfor-
mance. The controller parameters can be tuned to obey
predefined bounds on the position error, given an upper
bound on the input error caused by network impairments
(Sections 3 and 5). Simulations show that the controller
never violates the imposed safety constraints (Section 7);

• The algorithm can maintain a constant spacing policy

thanks to a leader plus bidirectional control topology, which
comes with no additional network overhead with respect
to a commonly assumed leader- plus predecessor-following
scheme (Sections 2 and 7);

• The algorithm handles the presence of slower vehicles
ahead or infrastructure-based speed advises and reacts to
them within given constraints (i.e., a safety distance or a
target position). In case the given constraints are missed
by the proposed standard controller, the system switches
to a modified, more aggressive control mode for a short
period of time. This mechanism is detailed in Section 6
and analyzed by means of simulations in Section 7.

2. Background and Related Work

The design of a cooperative automatic driving (or platoon-
ing) system is definitely a challenging task, addressed by a large
body of literature. Different solutions have been proposed, with
different design assumptions and thus characteristics. The main
goal is to keep the inter-vehicle gap as small as possible, while
ensuring passengers’ safety. The key difference to standard
ACC solutions is the use of wireless communication for shar-
ing control data with potentially all the vehicles in the platoon.
Wireless communication allows a vehicle to “see” behind and
ahead other vehicles; this is not possible by using standard sen-
sors, which can only detect objects that are in direct line-of-
sight. Even if a sensor could detect objects that are not within
the line-of-sight, it could only detect events after their occur-
rence. Communication enables a vehicle to inform the others
about what it is going to do, letting them “know the future”.
Communications for platooning are achieved by means of Co-
operative Awareness Messages (CAMs) or beacons, broadcast
messages sent periodically every T s; when a new beacon is
generated it supersedes the previous one, so that stale informa-
tion is lost rather than propagated with delay. Propagation and
processing delays are negligible compared to T .

A key design choice is the logical control topology, indi-
cating from which members each vehicle is considering data
to compute the control action. This is different from the actual
network topology, which is typically broadcast-like. Even if the
network topology is a full mesh, the control algorithm may sim-
ply exploit a subset of the received information. In fact, the real
network topology is unknown in the design phase, as it depends
on the context, the technology, and the higher level protocols.
A conservative, “technology agnostic” choice may be to use
the information received from the front vehicle only: informa-
tion received from other vehicles (for instance, in a broadcast-
like communication technology such as IEEE 802.11p) will
simply be ignored. Possible control topologies proposed in
the literature are: predecessor-following [1, 15]; leader- and
predecessor-following [16, 17, 18, 19], which considers in ad-
dition the information of the first vehicle; bi-directional [20]
and potentially all-to-all [21]. The choice of the control topol-
ogy affects the system performance, in particular with respect
to the gap policy. Predecessor-following control topologies are
proven to be string-stable only under a constant time headway

2



gap policy [1, 16]: the distance is constant in time, hence the
faster the vehicles, the larger the gap. If this policy is not re-
spected, then the string-stability property is violated: distance
errors at the head of the platoon may be propagated and am-
plified towards the end, potentially leading to collisions. By
adding a link to the leader, instead, the system can be string-
stabilized with respect to a constant spacing gap: the distance
is fixed and it is not related to cruising speed [16].

String-stability, however, is not generally related to the dis-
tance (or the time headway) vehicles should maintain to avoid
collisions in case of packet losses. The performance of a co-
operative automatic driving system is typically analyzed with a
pure control-theoretic approach, so that a quantitative charac-
terization of the safety gap as a function of the network condi-
tions is hard to find in the literature [22]. A contribution in this
direction is [23], which proposes a different control framework
(event-triggered control) that deals with the variable sampling
time induced by network delays and losses, showing string-
stability of the proposed control system.

In our work, instead, we propose a joint network and control
design of a cooperative automatic driving system, which allows
us to compute the minimum inter-vehicle distance depending
on worst-case network condition. If the constraints considered
for the worst-case analysis are respected, then the distance error
cannot be larger than the computed bound. To the best of our
knowledge, this is the first attempt to realize such kind of joint
network-control system.

3. Control Algorithm

We propose a distributed controller (inspired by an anal-
ogy with spring-damper mechanical systems, or impedance-
matched transmission lines [24]) that ensures string stability,
as proven by Eq. (27) in Section 3.3. As in [14], the control
action on each vehicle relies on information about the vehicle
in front and the one behind (bidirectional topology); all vehi-
cles share a common dynamic reference speed v(t), which can
be either imposed by the first vehicle of the platoon, resulting
in a control topology similar to [16], or decided by any other
vehicle, or taken from an external source (e.g, speed indica-
tions coming from the infrastructure). Even the leader follows
the reference speed with a transient. The common reference
speed is shared through the communication link, which is local
(and for technologies such as IEEE 802.11p or Cellular-V2X
even broadcast); hence, the propagation delay mainly comes
from medium access control procedures, and is negligible (a
few milliseconds) compared to the system dynamics. Table 1
reports the main notation used throughout the paper.

All vehicles are governed by the dynamic equation

ÿi = ui + δi

where ÿi is the acceleration resulting from the controlled input
ui and the disturbance δi. The control action ui depends on the
position and speed of the vehicle i, the positions and speeds of
the vehicles in front and behind (if any), the desired distance,
and the reference speed:

ui = −k(yi−yi+1−d)−k(yi−yi−1 +d)−h(ẏi− ẏi+1)−h(ẏi− ẏi−1)−r(ẏi−v).

v(t) reference speed (equal for all vehicles)

a(t) average position of the platoon, it can be interpreted
as the barycenter of the platoon

yi, ẏi, ÿi position, speed, and acceleration of vehicle i

zi, żi, z̈i differential position, speed, and acceleration of
vehicle i w.r.t. vehicle i − 1, i = 2, . . .,N

ui controller input to vehicle i

d desired distance between vehicles

k elastic coefficient

h inter-vehicle friction coefficient

r vehicle-reference friction coefficient

δi communication-induced disturbance term

NL maximum number of consecutive packets lost

T beacon interval

Table 1: Main notation used in the paper.

The resulting dynamic system has the following equations. For
vehicle 1 (the leader),

(1)ÿ1 = −k(y1 − y2 − d) − h(ẏ1 − ẏ2) − r(ẏ1 − v) + δ1,

for vehicles i = 2, . . .N − 1,

(2)ÿi = −k(yi − yi+1 − d) − k(yi − yi−1 + d)
− h(ẏi − ẏi+1) − h(ẏi − ẏi−1) − r(ẏi − v) + δi

and, for vehicle N,

(3)ÿN = −k(yN − yN−1 + d) − h(ẏN − ẏN−1) − r(ẏN − v) + δN .

The control algorithm is designed by choosing the coefficients
h, k, and r. The noise term δi is essentially due to packet losses
because delays are negligible in DSRC systems. Furthermore,
as beacons are sent by default ever T = 100 ms, which is a
fairly large sampling time for control systems, the loss of pack-
ets means that the information available at the controller can be
grossly wrong, introducing uncertainties much larger than sen-
sor or GPS errors. Section 5 discusses in detail the relationship
between packet losses and δi.

3.1. Analysis

Consider the model in Eqs. (1) to (3) with d = 0. This
is equivalent to changing the variables as ŷi = yi + d(1 − i),
i = 1, . . . ,N, so that the condition ŷ1 = ŷ2 = · · · = ŷN is
achieved when the true distance between consecutive vehicles
is d as desired; we drop the hat to keep the notation simpler.

Let 1̄ be the all-one vector 1̄> = [ 1 1 . . . 1 ] and define the
average position as

a(t) =

∑N
i=1 yi

N
=

1̄>y
N
. (4)
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Then we introduce a new vector z(t) whose components are the
differences zi = yi−1 − yi, i = 2, . . . ,N:


z2(t)
z3(t)

...
zN(t)

 =


1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 −1





y1(t)
y2(t)
y3(t)

...
yN(t)


, (5)

which can be synthetically written as

z(t) = Dy(t), (6)

where D ∈ R(N−1)×N is the matrix in Eq. (5). Note that the
vector [ a(t) z>(t) ]>, including the average position and the
differences, is in one-to-one correspondence with y(t).

Let us now define the Laplacian matrix L .
= D>D ∈ RN×N

and matrix M .
= DD> ∈ R(N−1)×(N−1). Consider the Singular

Value Decomposition of matrix D:

D = P[ 0̄N−1 Ω ]Q>, (7)

where 0̄N−1 is an all-zero vector of size N − 1, matrix Ω ∈

R(N−1)×(N−1) is diagonal and its positive diagonal entries are the
singular values of D, while P ∈ R(N−1)×(N−1) and Q ∈ RN×N

are orthonormal matrices [25], hence P>P = I and Q>Q = I
(where I denotes the identity matrix of the appropriate size).
Recall that the Laplacian matrix of a connected undirected graph
has a single zero eigenvalue, while all other eigenvalues are real
and positive. Then we can express our Laplacian matrix L as

(8)
L = D>D = Q[ 0̄N−1 Ω ]>[ 0̄N−1 Ω ]Q>

= Q
[

0 0̄>N−1
0̄N−1 Ω2

]
Q> .

= QΛ2Q>,

where Λ2 ∈ RN×N is a diagonal matrix whose diagonal entries
are the eigenvalues of the Laplacian matrix L, given by 0 and
the diagonal entries of Ω2. Since it will be useful later in Sec-
tion 3.4, we recall that the first column Q1 of matrix Q is the
normalized eigenvector associated with the zero eigenvalue of
the Laplacian matrix, hence Q1 = 1̄/

√
N.

We can also write

M = DD> = P[ 0 Ω ][ 0 Ω ]>P> = PΩ2P>, (9)

hence the eigenvalues of matrix M are all the nonzero eigenval-
ues of L (i.e., the diagonal entries of Ω2).

With a few algebraic manipulations, the overall system can
be written in matrix form as

ÿ = −kLy − hLẏ − rẏ + r1̄v(t) + ∆, (10)

where ∆ =
[
δ1 . . . δN

]>
couples the control system with the net-

work performance.
To derive the dynamics of the average position a, we pre-

multiply Eq. (10) by 1̄>/N:

(11)
1
N

1̄>ÿ = −
k
N

1̄>Ly −
h
N

1̄>Ly −
r
N

1̄> ẏ +
r
N

1̄>1̄v(t) +
1
N

1̄>∆

Then, since it can be shown that L1̄ = 0 and 1̄>1̄ = N, we get

ä(t) = −rȧ(t) + rv(t) +
1
N

1̄>∆, (12)

which does not depend on k and h, while it does depend on the
average components ∆av

.
= 1

N 1̄>∆ of the disturbance.
To derive the dynamics of the differences z, let us pre-multiply

Eq. (10) by matrix D and exploit the fact that L = D>D:

(Dÿ) = −kDD>(Dy) − hDD>(Dẏ) − r(Dẏ) + rD1̄v(t) + D∆.

Then, since D1̄ = 0 and M = DD>, we have

z̈ = −kMz − hMż − rż + D∆. (13)

Eq. (13) does not depend on the reference speed v(t), which
can be changed as needed, without altering the system dynam-
ics or hampering safety. Also, Eq. (13) only depends on the
disturbance component D∆ orthogonal to the average (the aver-
age disturbance ∆av changes the average position: it moves all
vehicles of the same amount and does not affect their spacing).

The overall system can now be analyzed by separately study-
ing the evolution of Eq. (12) and of Eq. (13). Interestingly, the
choice of the design parameters can be decoupled: r only af-
fects the dynamics of the average a, while h and k only affect
the dynamics of the differences z. In Section 3.2 we investigate
the average properties of the platoon, while in Section 3.3 we
explore the performance in terms of the differential dynamics.
We also briefly discuss the error dynamics in Section 3.4.

3.2. The average dynamics
Analyzing the average platoon dynamics provides a design

criterion for parameter r. To study the transient from zero speed
to the desired speed v(t), we consider the system in Eq. (12)
with initial conditions a(0) = ȧ(0) = 0, meaning that the pla-
toon is at rest in an initial position (assumed to be 0, without
loss of generality). Its solution yields the average position

a(t) = vt −
v
r

+
v
r

e−rt, (14)

with average speed ȧ(t) = v − ve−rt and average acceleration
ä(t) = rve−rt. The acceleration is maximal at the beginning and
equal to amax = rv. The time constant

τa =
1
r

(15)

can be selected by choosing r based on the trade-off between
promptness and comfort. Increasing the value of r clearly speeds
up the convergence, but has two counter-effects. First, a high r
might cause undesirable accelerations, perceived as uncomfort-
able by the passengers [26]; so, the parameter r should guaran-
tee that amax is compatible with the comfort standards. Second,
r determines the overall platoon convergence speed to new con-
ditions and increasing it requires to increase the inter-vehicle
distance for safety reasons; in fact, a faster overall response
entails that, in presence of information loss, the intra-platoon
errors are larger, which is one of the fundamental results of this
paper (see Section 5).
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3.3. The difference dynamics
A smooth average behavior of a platoon is important, but

the dynamics of the differences zi is fundamental for safety and
group behavior: zi = d means that two vehicles are at the double
of the desired distance d, while zi = −d means collision. The
key design specification is therefore

|zi|≤ αd, (16)

where 0 < α < 1 is a safety coefficient.
We show in this section that the system in Eq. (13) with ∆ =

0 is asymptotically stable: in the absence of disturbances, z(t)
converges to 0 as desired; in the presence of disturbances due to
packet losses, instead, z can grow and must be kept bounded to
prevent collisions. Indeed, in the following we will give bounds

of the form ‖z‖≤ K, where ‖z‖=
√∑

i

z2
i is the Euclidean norm

of z; this implies that the bound on all distances is |zi|≤ K.
In wireless ad-hoc networks, disturbances are essentially

originated by packet losses, as delays are negligible. If a packet
is not received by a vehicle, then there is a lack of information
on the positions of the preceding and/or following vehicles. The
typical (and, given the small beaconing time, the only reason-
able) assumption in this case is that the vehicles are at the same
distance with the same differential speed as the last transmitted
information. The discrepancy between the actual relative posi-
tion and speed and the estimated ones introduces a disturbance.
Denoting by y

i
the stale old information, Eq. (2) yields

(17)
ÿi = −k(yi − y

i+1
− d) − k(yi − y

i−1
+ d)

− h(ẏi − ẏ
i+1

) − h(ẏi − ẏ
i−1

) − r(ẏi − v).

Now define the error terms δyi = y
i
− yi, the derivative error

δẏi = ẏ
i
− ẏi, and δv = v − v to rewrite the dynamics as in (2),

where the term δi is now re-defined as

δi = hδẏi+1 + hδẏi−1 + kδyi+1 + kδyi−1 + rδv. (18)

Equation (18) gives a clear criterion to co-design the constants
h and k and the communication system to keep the error within
safe boundaries. Once a packet loss has occurred, we can in-
vestigate how the system recovers after the occurrence and how
the system behaves if the packet losses occur repeatedly in a
burst leading to a potentially larger difference between the true
information and the last received one.

To diagonalize the system, so that it is easier to study its
stability, let us introduce the new variable

x = P>z, (19)

where P is the orthonormal matrix such that M = PΩ2P>, as in
Eq. (9), where the diagonal entries of Ω2 = diag{Ω2

1, . . . ,Ω
2
N−1}

are the eigenvalues of M (i.e., the nonzero eigenvalues of L).
Then, Eq. (13) can be rewritten as

ẍ = −kΩ2x − hΩ2 ẋ − rẋ + δ̂, (20)

with δ̂ = P>D∆. Since P is orthonormal, it does not change the
Euclidean norm: ‖x‖= ‖P>z‖= ‖z‖.

If we apply the Laplace transform, with zero initial condi-
tions, we have

X(s) = [s2I + (hΩ2 + rI)s + kΩ2]−1∆̂(s) = Γ(s)∆̂(s), (21)

where Γ(s) is a diagonal matrix of transfer functions

Γ(s) = diag
 1

s2 + (hΩ2
i + r)s + kΩ2

i

 . (22)

The denominators of the transfer functions Γi(s) are second or-
der polynomials with positive coefficients, hence stability is en-
sured because their roots (the poles of the transfer functions)
have a negative real part. With a suitable choice of the design
parameters, we can rule out even damped oscillations. In fact,
we can prove the following result.

Proposition 1. The poles of the transfer functions Γi(s) are real
and negative if

h >
k
r
. (23)

Proof. The discriminants of the second order polynomials at
the denominator of Γi(s) are

∆Gi = (hΩ2
i + r)2 − 4kΩ2

i = h2Ω4
i + r2 + 2rhΩ2

i − 4kΩ2
i .

The roots of these polynomials are real provided that ∆Gi > 0.
If rh > k, then

∆Gi > h2Ω4
i + r2 + 2rhΩ2

i − 4rhΩ2
i = (hΩ2

i − r)2 > 0.

�
We assume that Eq. (23) holds, hence all poles are real and

negative, and we consider two problems:

1. The reaction of the platoon to an erroneous position of
one of more vehicles (with no disturbances);

2. The reaction of the platoon to disturbances that are bounded
in norm as ‖δ̂‖≤ ρ.

For the first problem, we assume that D∆ = 0 and that at
some time (t = 0 without loss of generality) there is a mismatch
in the position: z(0) = z0, with zero speed. Then, we consider
the Laplace transform: Since L[z(t)] = Z(s), L[ż(t)] = sZ(s) −
z0 and L[z̈(t)] = s2Z(s) − sz0, from Eq. (13) we get

[s2I + (hM + rI)s + kM]Z(s) = [sI + (hM + rI)]z0. (24)

Since X(s) = P>Z(s) and x0 = P>z0, while I = PP> and M =

PΩ2P>, we get

X(s) = [s2I + (hΩ2 + rI)s + kΩ2]−1[sI + (hΩ2 + rI)]x0

.
= Φ(s)x0 = diag

 s + (hΩ2
i + r)

s2 + (hΩ2
i + r)s + kΩ2

i

 x0. (25)

Then, the components of x evolve independently. Let us con-
sider the inverse transform φ(t) = diag{φi(t)} = L−1[Φ(s)]. We
have that φi(0) = 1, from the initial value theorem (limt→0 φi(t) =
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lims→∞ sΦi(s)). Hence φ(0) = I. Moreover, all φi(t) are strictly
decreasing, as can be shown by considering their derivative:

(26)

L[φ̇i(t)] = sΦi(s) − φi(0)

= s
s + (hΩ2

i + r)

s2 + (hΩ2
i + r)s + kΩ2

i

− 1

=
−kΩ2

i

s2 + (hΩ2
i + r)s + kΩ2

i

.

This transfer function has real poles only, no zeros, and a neg-
ative coefficient at the numerator, so its inverse Laplace trans-
form φ̇i(t) is negative [27, 28]. Hence, all φi(t)’s are equal to 1
at t = 0 and converge to 0 for t → ∞ (since the poles of the
transfer function are real and negative). Therefore, they must
be always positive and bounded as ‖φ(t)‖≤ 1 for all t. Hence,
|xi(t)|< |x0,i| for t > 0. Coming back to z, the inverse transform
of Z(s) is z(t) = Pφ(t)P>z0. So, for a perturbation of size ‖z0‖,

‖z(t)‖= ‖Pφ(t)P>z0‖≤ ‖φ(t)‖‖z0‖≤ ‖z0‖, for t > 0. (27)

The previous inequality ensures string-stability, namely, the prop-
agation of the perturbation has effects that do not exceed in size
the perturbation itself. Intuitively, string-stability means that
the closed-loop system behaves as a transmission line with no
reflections, where any propagating wave is suitably damped.
Assume there is a misplacement (error) measured by |zi(0)|= ζ,
then ‖z0‖= ζ, this implies that ‖z(t)‖< ζ. Since the norm is
greater or equal than the magnitude of any component, |zk(t)|≤ ζ
for all the components k, hence no component will exceed the
initial size ζ. More formally:

Proposition 2. If zi(0) = ζ 6= 0 and z j(0) = 0 for j 6= i, then
|zk(t)|≤ ζ for all t > 0 and for all the components k.

To determine the effect of a nonzero disturbance ∆, we can
consider Eqs. (13) and (20) indifferently, since the transforma-
tion P> is norm-preserving (the norms of z and of x = P>z are
equal). Consider Eq. (20) with ‖δ̂(t)‖≤ ρ. Then, the transfer
function is Γ(s): X(s) = Γ(s)∆̂(s).

If we assume zero initial conditions and consider the inverse
Laplace transform γ(t) = L−1[Γ(s)], the solution is given by the
convolution x(t) =

∫ t
0 γ(σ) δ̂(t − σ)dσ. Then

‖x(t)‖=

∥∥∥∥∥∥
∫ t

0
γ(σ) δ̂(t − σ)dσ

∥∥∥∥∥∥
≤

∫ t

0
‖γ(σ)‖‖δ̂(t − σ)‖dσ ≤ ρ

∫ t

0
‖γ(σ)‖dσ

≤ ρ

∫ ∞

0
‖γ(σ)‖dσ = ρmax

k

∫ ∞

0
|γk(σ)|dσ = ρmax

k

∫ ∞

0
γk(σ)dσ.

We removed the absolute value because γk(σ) is a positive func-
tion. In fact, it has real poles only, no zeros and a positive coef-
ficient at the numerator [27, 28]. The value of the integral can
be computed by means of the final value theorem:∫ ∞

0
γk(σ)dσ =

1
s2 + (hΩ2

i + rI)s + kΩ2
i

∣∣∣∣∣∣
s=0

=
1

kΩ2
i

.

This results in the bound

‖x(t)‖≤ ρ
1

kΩ2
1

, (28)

where Ω2
1 is the smallest eigenvalue of M (i.e., the smallest

nonzero eigenvalue of L). Recall that ‖x(t)‖= ‖z(t)‖.
The error given by Eq. (18) scales with k, h and r, if we

assume that v is fixed and exactly known. On the other hand,
Eq. (23) is assumed to hold, hence hr > k. If we take h/k =

(1 + ε)/r, with ε > 0, the overall error scales linearly with k:

‖δi‖ = k
∥∥∥∥∥1 + ε

r
d
dt
δyi+1 +

1 + ε

r
d
dt
δyi−1 + δyi+1 + δyi−1

∥∥∥∥∥
≤ kδMi , (29)

hence, since ‖δ̂‖= ‖P>D∆‖ and ‖D‖≤ 2,

‖δ̂(t)‖≤ 2kδM
.
= ρ, (30)

where δM is a bound for the cumulative error of position and
speed (according to some norm). Then, we get the bound

‖x(t)‖≤
2δM

Ω2
1

, (31)

which depends uniquely on the eigenvalue Ω2
1.

3.4. The error dynamics
We briefly discuss here the dynamics of the error vector

e = y − 1̄
1̄>y
N

=

[
I −

1̄1̄>

N

]
y,

whose ith component is the difference between yi and the aver-
age of y:

ei = yi −
1̄>y
N

= yi −
1
N

N∑
j=1

y j.

Consider Eq. (10) and pre-multiply it by B .
= [I − 1̄1̄>

N ]. Since
BL = LB and B1̄ = 0, we get

ë = Bÿ = −kBLy − hBLẏ − rBẏ + Br1̄v(t) + B∆

= −kLe − (hL + rI)ė + ∆err,

where ∆err
.
= B∆. Note that the evolution of the error variable

does not depend on v.
We can show that the variance ‖e‖/

√
N is decreasing over

time. Let e0 be a nonzero initial condition and ∆err = 0. Then,
in the Laplace transform domain,

[s2I + (hL + rI)s + kL]E(s) = [sI + (hL + rI)]e0. (32)

Adopting the decomposition in Eq. (8), we can write

E(s) = Q[s2I + (hΛ2 + rI)s + kΛ2]−1[sI + (hΛ2 + rI)]Q>e0,

where Λ2 = diag{0,Ω2}. Define the diagonal transfer function
matrix

Ψ(s) = diag
 s + (hΛ2

i + r)

s2 + (hΛ2
i + r)s + kΛ2

i

 ,
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whose first diagonal term is equal to 1/s, because the first eigen-
value of the Laplacian L is Λ1 = 0, while the other diagonal
terms are the same as those in Φ(s):

Ψ(s) = diag
{

1
s
,Φ(s)

}
.

Denoting by ψ(t) the inverse Laplace transform of Ψ(s), we get

e(t) = Qψ(t)Q>e0. (33)

Note that ψ(t) has the same diagonal entries as φ(t) and an extra
diagonal entry (the first) that is equal to 1: ψ11(t) = 1. Hence,
we can conclude that ‖e(t)‖ is non-increasing. Now, we observe
that an initial condition e0 is meaningful if it has 0 mean: in
fact, in view of the error definition, its mean must be

1̄>

N
e =

1̄>

N
y − 1̄>1̄

1̄>y
N2 = 0,

since 1̄>1̄ = N. Also, the first row of Q> is equal to 1̄>/
√

N,
the eigenvector associated with the 0 eigenvalue of L, hence the
constant term associated with the mode ψ11(t) = 1 disappears
in Eq. (33). This proves that the variance ‖e(t)‖/

√
N is indeed

decreasing and asymptotically converges to 0 (for t → ∞).

4. Actuator dynamics, delays and asymmetric control

We briefly discuss here some potential extensions of our
model. In particular, we have assumed that the transmission
delay τdl is small enough compared to the time scale of vehicle
dynamics. We have also assumed homogeneity in the vehicles.
This assumption is legitimate as long as acceleration is the con-
trol input. In the case of non-homogeneous vehicles, the prac-
tical implementation of our scheme simply requires a low-level
control loop to actuate the desired acceleration profile. How-
ever, this loop may have an actuation lag associated with a time
constant τact. We can explicitly consider both the transmission
delay τdl and the actuation lag τact in the system dynamics in
Eq. (17), thus obtaining the Laplace-transformed expression:

s2yi =
e−τdl s

1 + τact s
[
−k(yi − yi+1) − k(yi − yi−1)

− sh(yi − yi+1) − sh(yi − yi−1) − r(syi − v) + δi(s)
]

(34)

Adopting exactly the same algebraic steps as before, we find

Γ(s) = diag


e−τdl s

1+τact s

s2 + e−τdl s

1+τact s
(hΩ2

i + r)s + e−τdl s

1+τact s
kΩ2

i

 (35)

of which (22) is a special case for τdl = 0 and τact = 0. Then
we can easily check the level of delay and of lag tolerated by
the network to avoid instability, by analyzing the non-rational
transfer functions in (35) adopting standard control tools, such
as the Nyquist diagram.

Another interesting extension is the asymmetric control ac-
tion suggested in [29, 30, 31], where each vehicle “trusts” the
preceding vehicle more than the following one (or the other way

round). We can enforce this asymmetry by introducing a posi-
tive factor λ2 in the system equations:

ÿi =
[
−λ2k(yi − yi+1) − k(yi − yi−1)

− λ2h(ẏi − ẏi+1) − h(ẏi − ẏi−1) − r(ẏi − v) + δi(s)
]

This case can be handled in our proposed setup: if we consider
again zi = yi−1 − yi and d = 0, we get a system of the same
form as (13), where now, unfortunately, M is non-symmetric
in general. However, to fix this issue, it is enough to scale the
variables: we redefine zi as zi = λi−1(yi−1 − yi) and we get

z̈i = −k
[
−λzi+1 + (1 + λ2)zi − λzi−1

]
− h

[
−λżi+1 + (1 + λ2)żi − λżi−1

]
− rżi + δ̃i(s)

which has the same form as (13), with M still being a symmet-
ric positive definite matrix. All our considerations then hold
unchanged in this more general case.

5. Mapping Packet Losses to Error Bounds

In an ad-hoc mobile network, the loss of packets is by far the
major source of disturbance: Delays are negligible with direct
communications, and sensor errors are limited. The loss of con-
secutive packets instead means that the controller is “blinded”
for hundreds of milliseconds. Let NL be the maximum num-
ber of consecutive losses (burst) than can occur in the chan-
nel with a certain probability bound. Above this value the net-
work is faulty, and the system should enter a disaster recovery
phase, which is out of the scope of this paper. Here we do
not focus on a specific technology: our contribution is technol-
ogy independent, and it is not important whether we are using
IEEE 802.11p, 5G Cellular-V2X, or Visible Light Communica-
tion (VLC) (or a combination of them, as envisioned in [32]):
Depending on the technology we will have different values for
NL, but this does not affect the analysis.

For the worst-case analysis we want to compute the bound
imposed by the loss of NL consecutive packets on the distur-
bance term δi. We consider the error in Eq. (18). The error is
expressed as the sum of the position, speed, and reference speed
errors multiplied by their coefficients. With respect to the posi-
tion and the speed error, the upper bound can be computed by
considering the maximum jerk J̄ (the derivative of acceleration)
a vehicle can implement. We compute the bounds on position
and speed error as

δ̄ẏ =

∫ (NL+1)T

0

∫ t

0
J̄dt dt =

J̄
2

((NL + 1)T )2 (36)

δ̄y =

∫ (NL+1)T

0

∫ t

0

∫ t

0
J̄dt dt dt =

J̄
6

((NL + 1)T )3 , (37)

where T is the packet transmission interval. With respect to
the reference speed error, the bound depends on how much the
reference can change. In cruising conditions sharp changes of
the reference are not needed and we set a maximum allowed
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change in reference speed named v̄ between consecutive pack-
ets. Combining Eqs. (18), (36) and (37) yields the error bound

δM = 2
(
h

J̄
2

T 2
NL + k

J̄
6

T 3
NL

)
+ rv̄ · (NL + 1). (38)

where TNL = ((NL + 1)T ). It is necessary to double the position
and speed error bounds to consider both preceding and follow-
ing vehicles. Finally, to compute the maximum possible error,
we consider the smallest non-zero eigenvalue Ω2

1 of L = D>D,
computed using the singular value decomposition of matrix D
and exploiting the fact that ‖z‖≤ 2δM

Ω2
1

, in view of Eq. (31) and

of the fact that ‖x‖= ‖z‖. Note that the value Ω2
1 depends on

the number of vehicles: The larger the number of vehicles, the
smaller Ω2

1. Finally, we set the inter-vehicle distance to

d >
2δM

Ω2
1

cs, (39)

where cs ≥ 1 is a safety coefficient. Since 2δM

Ω2
1

represents the
upper bound on the error, Eq. (39) represents a lower bound on
the distance to guarantee 100 % safety under the given network
and vehicle dynamics constraints. This bound is fully consistent
with the bound (17) in [31], which also involves the smallest
non-zero eigenvalue of the Laplacian matrix: for large platoons,
large errors δM due to communication faults require a larger
distance margin. The bound we found, as the one in [31], can
probably be reduced with heuristics and with model-predictive
tools; however, as our bound refers in this case to the complete
lack of information, for instance due to jamming, and not to the
loss of information at individual receivers, we believe that the
correct way to design the system is through the introduction of
redundant communication technologies.

Figure 2 plots the bound ‖z‖max=
2δM

Ω2
1

and, thus, the mini-
mum safety distance d as a function of the platoon size N, for
different maximum jerks J̄ and number of consecutive losses
NL. The remaining parameters are fixed: T = 100 ms, v̄ =

1 km/h per packet1, k = 0.5, h = 0.71, r = 1. The choice of
100 ms is common within platooning control literature, both in
research and in real world experiments [1]. The platoon size N
has the largest impact, as the bound grows more than linearly
with N. The parameters NL and J̄ also play a significant role,
but the impact is not as large. In good network conditions the
control system is definitely performing well, as the worst-case
upper bound is below 3 m even with 8 vehicles. In non-ideal
network conditions, instead, there is an important trade-off in
the choice of the parameters. To have small inter-vehicle dis-
tances, we either need to ensure a high network reliability (thus,
a low NL) or limit the size of the platoon. Indeed, this allows the
easy regulation of d and its dynamic adaptation to the network
conditions. Otherwise, the performance of the vehicle can also
be considered and, if needed, altered for system tuning. For ex-
ample, by limiting the maximum jerk to 4 m/s3 the system can

1This corresponds to 10 km/h per second with the given T , which is much
more than the normal speed change we expect while cruising.
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Figure 2: Error bound ‖z‖max as function of the platoon size N, for different
maximum jerks J̄ and burst size NL.

maintain a relatively small distance while being robust to heavy
packet losses. It is important to remember that the bound ‖z‖max

is computed as a worst-case which, in reality, might never oc-
cur: NL packets per vehicle are “jammed” so that no vehicle
receives any information for (NL + 1)T s. In Section 7, we show
that the norm of the distance errors in realistic conditions is
much smaller than the bound ‖z‖max.

6. Handling External Events

The design of the controller considers standard cruising only,
which is the main purpose of a platooning control algorithm.
A platoon, however, is also required to react to emergencies
and external events. One example is an emergency braking ma-
neuver [33], but an external event might not necessarily trig-
ger an emergency mechanism. For instance, the platoon might
encounter a slower vehicle upfront or it might receive a speed
advise from the road infrastructure. Both examples require a
deceleration, although we can refer to an “emergency maneu-
ver” only when the deceleration is perceived as uncomfortable
by a passenger (more than 4 m/s2 [26]).

Differently from conventional CACC systems, where the
leader is controlled by an independent law, our design controls
leader’s behavior as well. If we are required to change the cruis-
ing speed in reaction to an external input, setting the reference
speed v to such value might not be enough, as the algorithm
smoothly (i.e., exponentially) converges to the desired speed.

Proper handling of external events depends on the event it-
self. Here we consider three instances. The first one is an emer-
gency braking maneuver, where the platoon simply needs to
come to a complete stop as quickly as possible. The second
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one is maintaining a safe distance to a vehicle in front. The last
one is adapting the cruising speed within a given distance after
a road infrastructure speed advise.

6.1. Emergency Braking

As discussed, to realize an emergency braking, setting the
reference speed v = 0 is not enough, as the algorithm smoothly
converges to the desired speed with a comfortable decelera-
tion and not in “emergency mode”. To realize an emergency
braking maneuver we thus need to modify controller parame-
ters “on the fly”, in particular by acting on the desired speed v
and the vehicle-reference friction coefficient r. Let us assume
that the vehicle initiating the maneuver is traveling at speed v0.
To implement the maneuver, we introduce a new control mode,
namely the “override mode”, in which the leader (or any vehi-
cle in the platoon) follows a desired acceleration towards a ref-
erence speed instead of the one computed by our proposed con-
trol system. In this mode, given a desired acceleration ÿdes and
a desired speed ẏdes, the parameter r is continuously adapted
using the following formula:

r =

∣∣∣∣∣ ÿdes

ẏi − ẏdes

∣∣∣∣∣ . (40)

In addition, the reference speed v is set to ẏdes. The vehicle re-
questing the override continuously updates the value of r and
broadcasts it, together with the desired speed ẏdes, to other ve-
hicles. In the same beacon, the vehicle also advertises the over-
ride command, so the others can use the values r and ẏdes inside
the message instead of the default ones. Notice that the override
mode might cause the violation of the minimum safe distance
‖z‖max, as we are changing the parameter r and the reference
speed v by an amount that can potentially be larger than v̄. This
mode needs thus to be used only for small periods of times in
case of emergency situations.

Implementing an emergency braking with a given decelera-
tion ÿdes simply requires setting ẏdes = 0 in Eq. (40), thus setting
r =

ÿdec
ẏi

.

6.2. Maintaining a Safe Distance

Monitoring the presence of other vehicles requires the leader
of the platoon to analyze the surrounding environment with on-
board sensors, such as radars or LiDARs. These sensors detect
objects within their detection range together with their distance
d and relative speed ḋ. Normally, the leader is controlled by an
independent control law that exploits such information and im-
plements, for example, an ACC. To control the leader, we can
run an ACC in parallel and use its computed acceleration ÿacc

only if required.
In particular, we can consider two cases. Let ẏ f be the speed

of the vehicle detected by leader’s sensors. In the first case, the
vehicle ahead is slower but, progressively reducing the refer-
ence speed v to ẏ f without violating the rate of change v̄ (in
km/h per packet) is enough to maintain the proper safety dis-
tance. This permits us to use the proposed control law without
violating the error bound ‖z‖max.

In the second case, instead, the reaction of the proposed
control law can not bring the platoon into a safe situation quickly
enough. This can be the result, for example, of a vehicle cutting
in, i.e., changing lane without respecting the backward safety
distance. Another example is when the platoon approaches a
much slower vehicle. In this case, the acceleration value ÿacc of
the ACC system needs to be used instead. In particular, ÿacc can
be plugged in the formula used for the emergency braking case,
together with the front vehicle speed ẏ f .

The reaction of the proposed control system to a slower ve-
hicle ahead requires to change the reference speed v. For this
reason, we implement the following simple control loop:

ẏtarget = min(ẏ f , ẏdes) (41)
v = v + min(v̄,max(−v̄, ẏtarget − v)). (42)

Equation (41) computes the speed the platoon should converge
to, i.e., the minimum between the speed of the vehicle ahead
(ẏ f ) and the desired cruising speed (ẏdes). Equation (42) instead
causes the reference speed v to approach the target, but the rate
of change of v can not be larger than v̄. To respect the limit of
v̄ km/h per beacon, Eq. (42) sampling frequency must be the
same as the beacon rate.

Finally, we need to compute both the proposed control al-
gorithm and an ACC in parallel to obtain two acceleration val-
ues. The acceleration to be actuated is simply chosen as the
minimum between the two. If the ACC acceleration is chosen,
then the system needs to use the override mode defined in Sec-
tion 6.1. The condition which triggers the override mode is

ÿacc < ÿ0 − ε. (43)

This condition avoids continuously switching between standard
and override mode when the acceleration values are compara-
ble. In here, we set ε = 0.5 m/s2.

The ACC control algorithm we consider here is the one de-
fined in [16], that is:

ÿacc = −
1
T

(
ẏ − ẏ f + λ (T ẏ − d)

)
. (44)

Equation (44) implements a proportional-derivative control with
a time headway spacing policy. In particular, T = 1.2 s is the
time headway, d is the radar-measured distance to the front ve-
hicle, and λ a design parameter set to 0.1.

6.3. Infrastructure-based Speed Advises
In this scenario we assume that the infrastructure can com-

municate to the platoon a change in the cruising speed for safety
or traffic smoothness reasons. In addition, we assume that the
infrastructure also mandates that the change in speed should
be realized in a given distance ydes. Given the constraints, we
can compute the constant acceleration required to change the
cruising speed. In particular, given the current cruising speed
v and the desired cruising speed ẏdes, the time and the distance
required to perform the maneuver with an acceleration ÿ are
simply

t =
ẏdes − v

ÿ
, ydes =

ẏdes + v
2

t. (45)
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By combining the equations, we obtain

ÿ =
ẏ2

des − v2

2ydes
. (46)

The proposed control system can adjust the cruising speed
by an amount which is at most v̄ per beacon. The resulting ac-
celeration is thus v̄ ·br, where br is the beacon rate. If |v̄ ·br |≤ |ÿ|,
then the system is required to use the override mode. The ab-
solute value accounts for speed advises mandating an increase
of the cruising speed, so a positive acceleration. If instead
|v̄ · br |> |ÿ|, the reference speed can be adjusted by ÿ

br
every

beacon. This does not violate the maximum change in ref-
erence speed v̄ per beacon and satisfies the distance require-
ment ydes. In fact, the distance requirement might be violated
by a small amount due to vehicle dynamics, as the control law
does not consider the actual amount of driven meters. This im-
plies that the acceleration computed when the speed advise is
received is not re-evaluated but simply kept constant until the
speed reaches the target.

7. Performance Evaluation

We implement the proposed control system in the platoon-
ing simulator Plexe [34], which allows testing the performance
of platooning control algorithms under realistic vehicle dynam-
ics and communication models. It is especially valuable for
assessing implementation-related issues as, e.g., the effect of
asynchronous packets’ transmission times. As the data exchange
rate (10 Hz) between vehicles is slower than the actuation con-
trol loop (100 Hz [1]) and vehicles might not be synchronized,
the data provided to the algorithm might be incoherent from a
time perspective. As an example, the own GPS position might
be up to date, while the position of the front and back vehicles is
“frozen” to the value included within the last received beacon.

To cope with this issue the control system includes a pre-
dictor, which computes missing values by interpolation. More
formally, assume that ÿt0 , ẏt0 , and yt0 are the acceleration, speed,
and position of a vehicle at time t0. To estimate speed and po-
sition of such vehicle at time t, the control system computes

ẏt = ẏt0 + ÿt0 (t − t0) , yt = yt0 +
t − t0

2
(
ẏt + ẏt0

)
. (47)

The use of Eq. (47) makes Plexe simulation extremely realistic
as this is what on-board controllers are expected to do.

7.1. Error Dynamics Comparison
We first show the dynamics of the vehicles without network

impairments. The goal is to understand the behavior of the con-
troller, which is qualitatively different from the solutions pro-
posed in the literature. We compare our algorithm with the
controller designed in [1], which is a well-known CACC using
a time headway spacing policy.

Figure 3 shows the distance error dynamics between ve-
hicles Vi and Vi−1 for a platoon of 8 cars under a sinusoidal
disturbance. For the CACC designed by Ploeg et. al. [1], the
leader changes its speed following the sinusoidal pattern, while
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(b) Our proposal
Figure 3: Qualitative comparison between a classic algorithm and the proposed
solution (distance errors under a sinusoidal disturbance).
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v

Figure 4: Spring-damper representation of the proposed control system.

for our controller we change the reference speed v. Figure 3a
shows the classical attenuation of the error dynamics towards
the tail of the platoon, thanks to the string-stability property.
Our approach (Fig. 3b) is string stable as well, but the maxi-
mum attenuation occurs at the middle of the platoon and the
dynamics are symmetric with respect to the center.

We can make an analogy between our algorithm and a spring-
damper system (Fig. 4). We can imagine that consecutive ve-
hicles are connected through a spring-damper, and an addi-
tional damper representing the reference speed v. The controller
coefficient k refers to the spring elastic module, h is instead
the damping factor between cars, while r describes the rigid-
ity of the dampers connecting cars to the “virtual body” that
moves at speed v(t), thus setting the platoon reference speed.
When changing the reference speed the vehicles are pushed
back/pulled forward all at the same time, and the “inner” springs
take care of attenuating the internal errors. A non trivial con-
sequence of this controller structure is that position errors are
compensated balancing the control effort between the front and
rear vehicle, while in most other controllers the effort is all on
the rear vehicle. This is in line with the “philosophy” of an
autonomous driving platoon and not of a human-driven vehicle
followed by partially automated vehicles. Further discussion on
this topic is beyond the scope of this paper.
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7.2. Error Bound Analysis.
As a second analysis we perform a set of simulations to em-

pirically show that the error bound computed in Section 3.3 is
always respected. To achieve this, we implement a scenario
where the leader vehicle continuously changes the reference
speed v by an amount v̄ for each packet (i.e., every T sec-
onds). In addition, we consider a channel causing burst losses
at the receivers. In particular, each received packet has a cer-
tain probability of triggering a burst of losses. If a burst is trig-
gered, the vehicle discards all the incoming packets received
until the time nLT has elapsed, loosing nL consecutive packets
for each vehicle. nL is drawn from a discrete uniform distri-
bution U(1,NL). After the end of a burst, each receiver waits
a minimum amount of time before starting the next one. The
analysis on the bound is indeed valid when considering the sys-
tem at steady state. After a burst of losses, the system needs a
certain amount of time to converge (cf. Eq. (15)) to eliminate
the accumulated error. However, we also consider very small
network up-times (as small as 100 ms) to show the robustness
of our approach. Finally, we consider a first order actuation lag
with a time constant τ = 0.5 s, i.e., the response of the engine
and the braking system to actuation commands ÿ is modeled by

the transfer function ÿreal =
1

τs + 1
ÿ, which is a common as-

sumption confirmed by field operational tests [1, 16, 18, 17]. In
the analysis we consider homogeneous vehicles, i.e., τ is equal
for all the vehicles. The extension to non-homogeneous ve-
hicles is possible, as discussed in Section 4. In practice, the
same strategy can be implemented directly also on a string of
non-homogeneous vehicles, provided that τ is large enough to
account for the dynamics of the less-performing vehicle [1]. Ta-
ble 2 summarizes simulation parameters. Even though the burst
loss process to simulate interference is synthetic, the underlying
network model emulates a DSRC link using the IEEE 802.11p
and 1609.4 standards.

For each simulation s, we compute the norm of the error
vector as

‖zs‖= max
k

√√√ N∑
i=1

(
dk,i − d

)2, (48)

where dk,i is the distance between vehicles Vi and Vi−1 at sim-
ulation step k and d is the target distance. We then verify that
‖zs‖≤ ‖z‖max for all the simulations, where ‖z‖max is the theoretic
bound for the norm, computed upon the parameters chosen for
that particular simulation.

In the computation of the theoretic bound, however, the
maximum jerk J̄ is not clearly defined. In the real world it can
either be a physical limit of the engine or the braking system,
or a design parameter. In the simulations there is no such limit.
For this reason, we post-analyze the maximum jerks obtained in
the simulations. Figure 5 shows an histogram of the maximum
jerk value of each simulation. Small maximum jerks (1.5 m/s3

to 3.5 m/s3) occur when packet loss events are unlikely and for
small values of the r parameter. Recall that r balances the trade-
off between settling time and driving comfort, so a higher value
is more likely to cause large acceleration changes. Medium jerk
values (5.5 m/s3 to 8 m/s3) are caused by a large value of the r

Parameter Value

k, h, T , τ 0.5, 0.71, 100 ms, 0.5 s
r

√
0.5, 1, 4

nL 1, ∼ U(1, 3), ∼ U(1, 5)
Start burst probability 1, 5, 10, 20, 30, 40, and 50 %
Minimum no-burst time 0.1 s, 0.3 s, 0.5 s, 1 s, and 3 s
v̄ 1 km/h per packet
Repetitions 10
Path loss model Free space (α = 2.0)
PHY model IEEE 802.11p
MAC model 1609.4 single channel (CCH)
Frequency 5.89 GHz
Bitrate 6 Mbit/s (QPSK R = 1/2)
Access category AC VI
MSDU size 200 B (byte)
Transmit power 20 dBm

Table 2: Simulation parameters.
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Figure 5: Distribution of maximum jerks measured over all simulation runs.

parameter (r = 4), or a small r value combined with moderate
packet losses. Finally, heavy losses cause large maximum jerk
values, as the system obtains control data after long periods of
silence, requiring strong actions to compensate the error. To
compute the theoretic error bounds we use the minimum of the
values shown in Fig. 5, i.e., 1.5 m/s3.

Figure 6 plots the simulation and theoretic bounds for dif-
ferent combinations of the r and NL parameters. Simulation
bounds are marked with points, theoretic bounds with crosses.
The graph clearly shows that the theoretic bounds are respected.
The margin between simulation and theory is large and this is
due to two facts.

First, the bound ‖z‖max is computed on the worst case: A
change in the reference speed, a burst loss of NL packets, and
a change in the dynamics with the maximum jerk should occur
at the same time. This is very unlikely even in a synthetic sce-
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Figure 6: Plot of the simulation (‖zs‖) and the theoretic (‖z‖max) bounds, for
different combinations of the r and NL parameters. The ‖z‖max values for
(r,NL) = (4, 3) and (4, 5) are out of scale and are not shown for the sake of
clarity.
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Figure 7: Comparison of the speed dynamics when setting v = 0 km/h from
v = 100 km/h with and w/o adaptive r.

nario like the one we consider, especially because the jerk is a
consequence of the control action computed by the algorithm.

Second, the predictor implemented within the control sys-
tem counteracts the effects of packet losses, estimating the posi-
tion and the speed of other vehicles during network down time.
The effectiveness of the predictor is evident, as the impact of
the burst length is smaller compared to the impact of r.

7.3. Emergency Braking
In this and in the following sections we analyze the behavior

of our control system in the presence of an external input, as
described in Section 6.

Figure 7 shows the behavior of the system in an emergency
braking maneuver, comparing the standard cruising mode (i.e.,
simply setting the reference speed v = 0 km/h) and the override
mode for a desired deceleration of 8 m/s2. When the leader sets
the reference speed v = 0 but does not adapt r, the platoon takes
15 s to come down to a complete stop, while when r is adapted
to the situation of a sudden unforeseen stop the platoon comes
to a complete stop in 3 s to 4 s. The average behavior is always
smooth and depends only on how r is changed.

Figure 8 shows the differential dynamics of the maneuver
in terms of relative vehicles distance in the same conditions of
Fig. 7 in three different conditions: Without adapting r (Fig. 8a);
adapting r (Fig. 8b); and adapting r when the maneuver is initi-
ated by the fourth vehicle in the platoon V3 and not by the first
one V0 as usual (Fig. 8c). As expected, dynamically changing r
allows a faster deceleration, but ends in a larger spacing error,
that remains in any case in the order of tens of cm. Interestingly,
if the stop is declared by a vehicle in the middle of the platoon, a
feature this controller enables, distance errors are smaller. After
the platoon comes to a complete stop, the vehicles keep moving
very slowly to bring the inter-vehicle distance exactly to d, but
these are movements of centimeters and vehicles can be conve-
niently stopped at any distance if desired.

One observation to make in this scenario is that the theoretic
bound ‖z‖max is not valid during the emergency maneuvers, as
the parameters of the controller change and the scenario is no
more a standard cruise, but an emergency stop. The platoon,
however, remains very stable and distances, as shown by re-
sults, remain well within safety, and indeed within the “cruising
bound”, even if it is not theoretically valid.

7.4. Maintaining a Safe Distance
To show the reaction of the proposed control system to “ex-

ternal” vehicles we add one additional car in our simulation that
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Figure 8: Comparison of the relative vehicles’ position when setting v = 0 km/h
from v = 100 km/h without adapting r (a), adapting r (b), and adapting r (c)
when the stop is declared by V3.

performs a cut in maneuver. The car performs the maneuver
at different distances ahead of the platoon and relative speeds.
In particular the cut in vehicle performs the maneuver 50 m,
100 m, 200 m, and 300 m ahead of the platoon and with a nega-
tive relative speed of 10 km/h, 20 km/h, 30 km/h, and 40 km/h,
i.e., the cut in vehicle travels slower than the platoon. After a
certain amount of seconds, the cut in vehicle leaves the lane, so
the platoon is free to accelerate to the desired cruising speed.

For the sake of brevity we show the results for the three
most significant scenarios. In particular, Figs. 9 to 11 show the
acceleration and the speed of the leading vehicle. Acceleration
plots show the proposed controller and ACC computed acceler-
ations (control inputs), as well as the one chosen between the
two (control acceleration). In addition they show the actual ac-
celeration (i.e., post actuation dynamics). Speed plots show the
speed of the front vehicle ẏ f , which is set to infinity if no vehicle
ahead is detected, the reference speed v of the proposed control
system, and the actual leader speed ẏ0. If the override mode is
used, both plots show a shaded box indicating the amount of
time the mode was active.

In all the simulation scenarios, the cut in vehicle changes
lane and moves in front of the platoon after 1 s of simulation
time, and leaves the lane after 9 s. On speed plots, this is shown
by two vertical lines, representing the change in the speed de-

12



actual acceleration
control acceleration
ACC acceleration
proposed controller acceleration
override mode

0 5 10 15 20

-6

-4

-2

0

2

ac
ce
le
ra
ti
on

(m
/s

2
)

time (s)

(a) acceleration

leader speed ẏ0
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Figure 9: Acceleration and speed plots showing the response to a slower vehicle
cut in maneuver for a distance of 100 m and a relative speed of 20 km/h. In this
scenario the override mode was never triggered.

tected by the radar. For example, in Fig. 9b, at 1 s the front
vehicle speed ẏ f changes from infinity (no vehicle ahead) to
80 km/h, while at 9 s, ẏ f changes from 80 km/h to infinity, in-
dicating that the cut in vehicle left the lane and it is no more
ahead of the platoon.

The first scenario (Figs. 9a and 9b) shows the case where the
smooth adaptation of the reference speed v is enough to respect
the safety gap. In Fig. 9a, this is shown by the fact that ACC
acceleration is larger than the one computed by our proposed
control algorithm. The fact that the ACC acceleration becomes
positive is simply because the algorithm tries to converge to
the exact safety distance. Given that the deceleration imposed
by our control system causes the safety distance to be larger
than required, the ACC outputs a positive acceleration. In the
speed plot (Fig. 9b), it can be seen that the reference speed is
smoothly decreased and converges to the front vehicle speed
ẏ f . At 9 s, when the cut in vehicle leaves the platoon lane, the
leader accelerates to converge to the desired cruising speed.

The second scenario (Figs. 10a and 10b) shows a limit case.
The system computes that there is the need to use the override
mode. This causes the reference speed v to be immediately set
equal to the front speed ẏ f . However, as soon as this happens,
the acceleration value computed by the proposed control sys-
tem becomes smaller than the ACC-computed one, causing the
override mode to be immediately disabled.

The third scenario (Figs. 11a and 11b) shows the use of the
override mode. As a vehicle with a relative speed of 20 km/h is
detected only 50 m ahead, the ACC requires a strong decelera-
tion. The override mode, however, is only activated for a small
period of time (roughly 1 s in this scenario). The control is the
handed back to the standard cruising mode. For this scenario,
we also plot the complete platoon dynamics (Fig. 12). The con-
trol algorithm is robust to the change of the driving mode, re-
sulting in a distance error smaller than 10 cm.
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Figure 10: Acceleration and speed plots showing the response to a slower ve-
hicle cut in maneuver for a distance of 100 m and a relative speed of 30 km/h.
In this scenario the override mode was never triggered.

7.5. Infrastructure-based Speed Advises

Figures 13 to 15 show the acceleration and the speed dy-
namics of the leading vehicle subject to speed advises. We
show the results of three significant scenarios. In the first one
(Figs. 13a and 13b) the infrastructure requires an abrupt change
in speed, i.e., from 100 km/h to 40 km/h in just 100 m. This
triggers the override mode that brings the speed to the required
target in roughly 5 s.

In the second scenario (Figs. 14a and 14b) the required speed
change is smaller (i.e., from 100 km/h to 60 km/h in 100 m) and
it is thus possible to adapt the reference speed v without violat-
ing the rate of change v̄. Here, the proposed control algorithm
brings the speed down to the target value in roughly 6 s. As the
override mode is not used, the convergence is smoother, causing
the target distance to be violated by a small amount. A change
from 100 km/h to 60 km/h in 6 s corresponds to a travelled dis-
tance of roughly 130 m.

The final example (Figs. 15a and 15b), instead, shows an
extremely smooth case, where the infrastructure mandates a
change in speed from 100 km/h to 60 km/h within 500 m. This
is the typical case of road works, where vehicles are required to
slow down for the safety of the workers. Such a smooth speed
transition over a long time period can not be accomplished by
human drivers, which would rather drive with a constant speed
of 100 km/h and then suddenly slow down at the speed sign.
The control system, instead, can implement any infrastructure-
mandated slow down procedure, as shown by the results.

8. Concluding Discussion

In this work we designed a cooperative automatic driving
algorithm from a joint network and control perspective. We
derived safety bounds on the inter-vehicle distance depending
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Figure 11: Acceleration and speed plots showing the response to a slower ve-
hicle cut in maneuver for a distance of 50 m and a relative speed of 20 km/h.

on vehicle dynamics and packet losses caused by network im-
pairments, showing by means of simulations that such bounds
are never violated. On the contrary, the bounds are respected
with a large margin due to the robustness of the algorithm to
packet losses. In addition, we have shown that the proposed al-
gorithm can be extended to account for external inputs, such
as emergency braking scenarios, slower vehicles ahead, and
infrastructure-mandated speed changes. This is a fundamen-
tal improvement that makes our algorithm practically usable as
a complete platooning control system.

Future work includes extending the proposed approach to 2-
dimensional platooning formations (such as vehicles moving in
parallel lanes) with an arbitrary connection topology, exploiting
the fact that the string topology represents the worst-case sce-
nario when computing the smallest eigenvalue of generalised
Laplacian matrices [35].
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Figure 13: Acceleration and speed plots showing the response to infrastructure
speed advises for a target distance of 100 m and a target speed of 40 km/h.
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Figure 14: Acceleration and speed plots showing the response to infrastructure
speed advises for a target distance of 100 m and a target speed of 60 km/h. In
this scenario the override mode was never triggered.
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Figure 15: Acceleration and speed plots showing the response to infrastructure
speed advises for a target distance of 500 m and a target speed of 60 km/h. In
this scenario the override mode was never triggered.
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