
Archived 2019 J. Comput. Sci. & Technol.

The link to the formal publication is via

https://doi.org/10.1007/s11390-007-9007-9

Higher-Level Hardware Synthesis of The KASUMI Al-

gorithm

Issam W. Damaj

Electrical and Computer Engineering Department, Hariri Canadian Academy of Sciences and Tech-
nology, Meshref P.O.Box: 10 Damour- Chouf 2010 Lebanon

E-mail: damajiw@hariricanadian.edu.lb

Abstract Programmable Logic Devices (PLDs) continue to grow in size and currently contain
several millions of gates. At the same time, research effort is going into higher-level hardware syn-
thesis methodologies for reconfigurable computing that can exploit PLD technology. In this paper,
we explore the effectiveness and extend one such formal methodology in the design of massively
parallel algorithms. We take a step-wise refinement approach to the development of correct recon-
figurable hardware circuits from formal specifications. A functional programming notation is used
for specifying algorithms and for reasoning about them. The specifications are realised through
the use of a combination of function decomposition strategies, data refinement techniques, and off-
the-shelf refinements based upon higher-order functions. The off-the-shelf refinements are inspired
by the operators of Communicating Sequential Processes (CSP) and map easily to programs in
Handel-C (a hardware description language). The Handel-C descriptions are directly compiled
into reconfigurable hardware. The practical realisation of this methodology is evidenced by a case
studying the third generation mobile communication security algorithms. The investigated algo-
rithm is the KASUMI block cipher. In this paper, we obtain several hardware implementations
with different performance characteristics by applying different refinements to the algorithm. The
developed designs are compiled and tested under Celoxica’s RC-1000 reconfigurable computer with
its 2 million gates Virtex-E FPGA. Performance analysis and evaluation of these implementations
are included.

Keywords Data encryption, Formal Models, Gate Array, Methodologies, Parallel algorithms

1 Introduction

The rapid progress and advancement in elec-
tronic chips technology provides a variety of
new implementation options for system engi-
neers. The choice varies between the flexible
programs running on a general purpose proces-
sor (GPP) and the fixed hardware implemen-
tation using an application specific integrated
circuit (ASIC). Many other implementation op-
tions present, for instance, a system with a
RISC processor and a DSP core. Other op-
tions include graphics processors and microcon-
trollers. Specialist processors certainly improve
performance over general-purpose ones, but this

comes as a quid pro quo for flexibility. Combin-
ing the flexibility of GPPs and the high per-
formance of ASICs leads to the introduction of
reconfigurable computing (RC) as a new imple-
mentation option with a balance between ver-
satility and speed.

Field Programmable Gate Arrays (FPGAs),
nowadays are important components of RC -
systems, have shown a dramatic increase in
their density over the last few years. For ex-
ample, companies like Xilinx [1] and Altera [2]
have enabled the production of FPGAs with
several millions of gates, such as in Virtex-II
Pro and Stratix-II FPGAs. The versatility of
FPGAs, opened up completely new avenues in

ar
X

iv
:1

90
4.

03
75

6v
1

 [
cs

.A
R

]
 7

 A
pr

 2
01

9

https://doi.org/10.1007/s11390-007-9007-9

2 J. Comput. Sci. & Technol.

high-performance computing.

The traditional implementation of a func-
tion on an FPGA is done using logic syn-
thesis based on VHDL, Verilog or a similar
HDL (hardware description langauge). These
discrete event simulation languages are rather
different from languages, such as C, C++ or
JAVA. An interesting step towards more success
in hardware compilation is to grant a higher-
level of abstraction from the point of view of
programmer. Designer productivity can be im-
proved and time-to-market can be reduces by
making hardware design more like programming
in a high-level langauge. Recently, vendors have
initiated the use of high-level languages depen-
dent tools like Handel-C [3], Forge [4], Nimble
[5], and SystemC [6].

With the availability of powerful high-level
tools accompanying the emergence of multi-
million FPGA chips, more emphasis should be
placed on affording an even higher level of ab-
straction in programming reconfigurable hard-
ware. Building on these research motivations,
in the work in hand, we extend and examine
a methodology whose main objective is to al-
low for a higher-level correct synthesis of mas-
sively parallel algorithms and to map (com-
pile) them onto reconfigurable hardware. Our
main concern is with behavioural refinement,
in particular the derivation of parallel algo-
rithms. The presented methodology system-
atically transforms functional specifications of
algorithms into parallel hardware implementa-
tions. It builds on the work of Abdallah and
Hawkins [7, 8] extending their treatment of data
and process refinement.

This paper is divided so that some of the
following sections introduce the adopted devel-
opment methodology. Section 3 presents the
theoretical background. In Section 4, we put
some emphasis on the approach to develop dif-
ferent implementations of the KASUMI cryp-
tographic algorithm. The following section de-
tails the development steps. Section 7 demon-
strates selected implementations. In Section 8,
we analyze and evaluate the performance of the
suggested implementations. Finally, Section 10
concludes the paper.

2 The Development Method

The suggested development model adopts the
transformational programming approach for de-
riving massively parallel algorithms from func-
tional specifications (See Figure 1). The func-
tional notation is used for specifying algorithms
and for reasoning about them. This is usually
done by carefully combining a small number of
higher-order functions that serve as the basic
building blocks for writing high-level programs.
The systematic methods for massive parallelisa-
tion of algorithms work by carefully composing
an ”off-the-shelf” massively parallel implemen-
tation of each of the building blocks involved
in the algorithm. The underlying parallelisa-
tion techniques are based on both pipelining and
data parallelism.

Higher-order functions, such as map, filter,
and fold, provide a high degree of abstraction in
functional programs [9]. Not only they do allow
clear and succinct specifications for a large class
of algorithms, but they also are ideal starting
points for generating efficient implementations
by a process of mathematical calculation using
Bird-Meertens Formalism (BMF). The essence
of this approach is to design a generic solu-
tion once, and to use instances of the design
many times for various applications. Accord-
ingly, this approach allows portability by im-
plementing the design on different parallel ar-
chitectures.

In order to develop generic solutions for gen-
eral parallel architectures it is necessary to for-
mulate the design within a concurrency frame-
work such as Hoare’sCSP [10]. Often parallel
functional programs show peculiar behaviours
which are only understandable in the terms of
concurrency rather than relying on hidden im-
plementation details. The formalisation in CSP
(of the parallel behaviour) leads to better un-
derstanding and allows for analysis of perfor-
mance issues. The establishment of refinement
concepts between functional and concurrent be-
haviours may allow systematic generation of
parallel implementations for various architec-
tures.

The previous stages of development require
a back-end stage for realising the developed de-

Higher-Level H.W. Synthesis of The KASUMI Crypto.: 3

High-Level Functional Specification

Network of Communicating CSP
Processes

Reconfigurable Hardware

Transformational
Derivation

Automated Compilation
Handel-C

Refinement to
Processes

CSP Algebraic
Laws

Developed
Libraries

Functional
Calculus

Strategies for
Parallelism

Place and
Route Tools

Figure 1: An overview of the transformational derivation and the hardware realisation pro-
cesses.

signs. We note at this point that the Handel-
C language relies on the parallel constructs in
CSP to model concurrent hardware resources.
Mostly, algorithms described with CSP could
be implemented with Handel-C. Accordingly,
this langauge is suggested as the final recon-
figurable hardware realisation stage in the pro-
posed methodology. It is noted that, for the
desired hardware realisation, Handel-C enables
the integration with VHDL and EDIF (Elec-
tronic Design Interchange Format) and thus
various synthesis and place-and-route tools.

3 Background

Abdallah and Hawkins defined in [8] some
constructs used in the development model.
Their investigation looked in some depth at data
refinement; which is the means of expressing
structures in the specification as communication
behaviour in the implementation.

3.1 Data Refinement

In the following we present some datatypes
used for refinement, these are stream, vector,
and combined forms.

The stream is a purely sequential method of
communicating a group of values. It comprises
a sequence of messages on a channel, with each
message representing a value. Values are com-

municated one after the other. Assuming the
stream is finite, after the last value has been
communicated, the end of transmission (EOT)
on a different channel will be signaled. Given
some type A, a stream containing values of type
A is denoted as 〈A〉.

Each item to be communicated by the vec-
tor will be dealt with independently in paral-
lel. A vector refinement of a simple list of items
will communicate the entire structure in a sin-
gle. Given some type A, a vector of length n,
containing values of type A, is denoted as bAcn .

Whenever dealing with multi-dimensional
data structures, for example, lists of lists, im-
plementation options arise from differing com-
positions of our primitive data refinements -
streams and vectors. Examples of the com-
bined forms are the Stream of Streams, Streams
of Vectors, Vectors of streams, and Vectors
of Vectors. These forms are denoted by:
〈S1,S2, ...,Sn〉 , 〈V1,V2, ...,Vn〉, bS1,S2, ...,Snc,
and bV1,V2, ...,Vnc.

3.2 Process Refinement

The refinement of the formally specified func-
tions to processes is the key step towards under-
standing possible parallel behaviour of an im-
plementation. In this section, the interest is in
presenting refinements of a subset of functions -
some of which are higher-order. A bigger refined

4 J. Comput. Sci. & Technol.

set of these functions is discussed in [7].
Generally, These highly reusable building

blocks can be refined to CSP in different ways.
This depends on the setting in which these func-
tions are used (i.e. with streams, vectors etc.),
and leads to implementations with different de-
grees of parallelism. Note that we don’t use CSP
in a totally formal way, but we use it in a way
that facilitates the Handel-C coding stage later.
Recall for the following subsections that values
are communicated through as an elements chan-
nel, while a single bit is communicated through
another eotChannel channel to signal the end of
transmission (EOT).

3.2.1 Basic Definitions

The produce/store process (PRD/STORE)
is fundamental to process refinement. It is used
to produce/store values on/from the channels
of a certain communication construct (Item,
Stream, Vector, and so on). These values are
to be received and manipulated by another pro-
cesses.

The feed operator in CSP models func-
tion application. The feed operator is written
�.

P � Q =
(P [mid/out] || Q [mid/in])\{mid}

Consider a potential refinement for f , a
process F . The operator v denotes a process re-
finement, where the left hand side is a function,
and the right hand side is a process. To state
that f is refined to F , or in other words, the
process F is a valid refinement of the function
f , the following may be used:

f v F

These rules were proven once [7], and in this
paper we use them systematically to refine the
functional specification into a network of com-
municating processes.

3.2.2 Process Refinement of
Higher-order Functions

Now the attention is turned to the refine-
ment of higher-order functions presented in [8],

showing the refinement of the high-order func-
tion map as an instance. Employing this func-
tion in stream and vector settings is presented.

Streams A process implementing the
functionality of map f in stream terms should
input a stream of values, and output a stream
of values with the function f applied.

In general, the handling of the EOT chan-
nels will be the same. However, the handling of
the value will vary depending on the type of the
elements of the input and output stream.

SMAP(F) =
µX • in.eotChannel ? eot →
out .eotChannel ! eot → SKIP
2

F [in.elements.channel/in,
out .elements.channel/out]; X

Vectors In functional terms, the func-
tionality of map f in a list setting is modelled
by vmap f in the vector setting. Consider F
as a valid refinement of the function f . The
implementation of VMAP can then proceed by
composing n instances of F in parallel, and di-
recting an item from the input vector to each
instance for processing. In CSP we have:

VMAPn(F) = |||i=n
i=1

F [ini/in, outi/out]

3.3 Handel-C as a Stage in the
Development Model

Based on datatype refinement and the skele-
ton afforded by process refinement, the desired
reconfigurable circuits are built. Circuit reali-
sation is done using Handel-C, as it is based on
the theories of CSP [10] and Occam [11].

From a practical standpoint, each refined
datatype is defined as a structure in Handel-C,
while each process is implemented as a macro
procedure. We divide the constructs correspond-
ing to the CSP stage into 2 main categories for
organisation purposes. The first category rep-
resents the definitions of the refined datatypes.
The second category implements the refined
processes.

Higher-Level H.W. Synthesis of The KASUMI Crypto.: 5

The refined processes are divided into differ-
ent groups; the utility, basic, higher-order pro-
cesses. A separate group contains the macros
that handle the FPGA card setup and general
functionality.

The datatypes definitions are implemented
using structures. This method supports recur-
sive as well as simple types. The definition for
an Item of a type Msgtype is a structure that
contains a communicating channel of that type.

#define Item(Name, Msgtype)

struct {

chan Msgtype channel;

Msgtype message;

} Name

For generality in implementing processes the
type of the communicating structure is to be
determined at compile time. This is done using
the typeof type operator, which allows the type
of an object to be determined at compile time.
For this reason, in each structure we declare a
message variable of type Msgtype.

A stream of items, called StreamOfItems, is
a structure with three declarations a communi-
cating channel, an EOT channel, and a message
variable [8]:

#define StreamOfItems(Name, Msgtype)

struct {

Msgtype message;

chan Msgtype channel;

chan Bool eotChannel;

} Name

A vector of items, called VectorOfItems, is a
structure with a variable message and another
array of sub-structure elements [8].

#define VectorOfItems(Name, n, Msgtype)

struct {

struct {

chan Msgtype channel;

} elements[n];

Msgtype message;

} Name

Other definitions are possible, but it affects
the way a channel is called using the structure
member operator (.).

The utility processes used in the implemen-
tation are related to the employed datatypes.
The Handel-C implementation of these pro-
cesses relies on their corresponding CSP imple-
mentation. In the following, we present an in-
stance of these utility macros.

macro proc ProduceItem(Item, x){

Item.channel ! x;}

macro proc StoreItem(Item, x){

Item.channel ? x;}

This group of macros represents the fine-
grained processes. A sample basic macro proce-
dure Addition is included as an example.

macro proc

Addition(xItem, yItem, output){

typeof (xItem.message) x,y;

xItem.channel ? x;

yItem.channel ? y;

output.channel ! (x + y);}

3.3.1 Higher-Order Processes
Macros

An example for an implementation in
Handel-C of the CSP refinement of a higher-
order function (map) in its vector setting is done
as follows:

macro proc

VMAP (n, vectorin, vectorout, F) {

typeof (n) c;

par (c = 0 ; c < n ; c++){

F(vectorin.elements[c],

vectorout.elements[c]);}}

In a similar procedure to what have been
introduced before, the implementations of the
stream and vector settings SZipWith and VZip-
With are straightforward.

Different tools are used to measure
the performance metrics used for the analysis.

6 J. Comput. Sci. & Technol.

These tools include the design suite (DK) from
Celoxica, where we get the number of NAND
gates for the design as compiled to the Elec-
tronic Design Interchange Format (EDIF). The
DK also affords the number of cycles taken by
a design using its simulator. Accordingly, the
speed of a design could be calculated depend-
ing on the expected maximum frequency of the
design. The maximum frequency could be de-
termined by the timing analyzer. To get the
practical execution time as observed from the
computer hosting the RC-1000, the C++ high-
precision performance counter is used. The in-
formation about the hardware area occupied by
a design, i.e. number of Slices used after placing
and routing the compiled code, is determined by
the ISE place and route tool from Xilinx.

4 The Third Generation of Mo-
bile System Security Algorithms

The KASUMI is a modern and strong en-
cryption algorithm designed for the use in the
Third Generation Partnership Project (3GPP)
security functions for mobile systems [12]. KA-
SUMI ciphers a 64-bit input data block by re-
peating a round procedure 8 times. The round
composes a 32-bit non-linear mixing block (FO)
and a 32-bit linear mixing block (FL). The FO-
block is an iterated ”ladder-design” consisting
of 3 rounds of a 16-bit non-linear mixing block
FI. In turn, FI randomising function is defined
as a 4-round structure using non-linear look-up
tables S7 and S9. All functions involved will
mix the data input with key. The used S7 and
S9 have been designed in a way that avoids lin-
ear structures in FI - this fact has been con-
firmed by statistical testing. Each functional
component of KASUMI has been carefully stud-
ied to reveal any weakness that could be used
as a basis for an attack on the entire algorithm.
The fact that the key schedule of KASUMI is
very simple did not constitute any real weak-
ness. There seems to be no gain in practice by
making it more complicated.

Hardware implementation of this crypto-
graphic algorithm is currently an active area
of research. The KASUMI was addressed by
HoWon et al [13], and Alcantara et al [14]. In-

tel [15] proposed architecture processors for 3G
control including the KASUMI. Moreover, SCI-
WORX [16] produced a system board for the
KASUMI cipher.

5 Formal Functional Specifica-
tion

We will consider the following specifications
for the key scheduler, and the main algorithm
(KASUMI). The key scheduler takes the pri-
vate key as an input, and outputs a desired set
of subkeys. This set of subkeys is of 4 packs (See
Figure 2). The KASUMI takes two inputs, the
generated subkeys and the input data, and it
gives their corresponding output.

Generally, the functional specification style
applied throughout this research uses higher-
order functions as the main keys for later par-
allelism. As a start, we define some types to be
used in the following formal specification:

type Private = [Bool]

type SubKey = [Bool]

type DataBlock = [Bool]

The following specifications are also tested
using the Hugs98 Haskell compiler.

5.1 Key Scheduling

As shown in Figure 2, the 64 16-bit subkeys
are organised into 4 packs of 8 sets of subkeys
kLi1, kLi2, kOi1, kOi2, kOi3, kIi1, kIi2, and kIi3,
where i is an index corresponding to the round
number where a subkey is to be used. These
subkeys are generated from the 128-bit encryp-
tion private key.

Key scheduling is specified as the function
keySchedule that inputs a private key and out-
puts 4 packs of subkeys. We divide each pack
into 6 groups for later ease of distribution to
the encrypting rounds. Each group is a list
of subkeys selected from the predefined lists
kLi1, kLi2, kOi1, kOi2, kOi3, kIi1, kIi2, and kIi3.
For instance, the first pack would contain:

Higher-Level H.W. Synthesis of The KASUMI Crypto.: 7

Key Scheduler

key

[[kL 11, kL 12], [kO 11, kO 12, kO 13] , [kI 11, kI12, kI13],
[kL

21
, kL

22
], [kO

21
, kO

22
, kO

23
] , [kI

21
, kI

22
, kI

23
]]

pack
1

...
pack4

[[kL71, kL72], [kO 71, kO72, kO 73] , [kI 71, kI72, kI73],
[kL 81, kL82], [kO 81, kO82, kO 83] , [kI 81, kI 82, kI 83]]

Figure 2: Key scheduling building blocks

[[kL11, kL12], [kO11, kO12, kO13], [kI11, kI12, kI13],
[kL21, kL22], [kO21, kO22, kO23], [kI21, kI22, kI23]]

The specification of keySchedule is for-
malised as follows:

keySchedule :: Private -> [[[Subkey]]]

keySchedule key = merge(g)

where

[kLi1, kOi1, kOi2, kOi3] =

mapWith

(map map [(shift 1), (shift 5),

(shift 8), (shift 13)])

(mapWith [id, (shift 1),

(shift 5),(shift 6)]

(copy (segs 16 key) 4))

[kLi2, kIi1, kIi2, kIi3] =

mapWith [(shift 2), (shift 4),

(shift 3), (shift 7)] (

copy ks’ 4)

ks’ = zipWith fullexor (segs 16 key)

(map itob [291, 17767, 35243, 52719,

65244, 47768, 30292, 12816])

g = ((map group).transpose)

[kLi1, kLi2, kOi1, kOi2, kOi3,

kIi1, kIi2, kIi3]

merge(gr) =

[(gr!!i)++(gr!!(i+1)) |

i <- [0,2,4,6]]

The function keySchedule generates the sub-
keys by firstly determining the predefined ks

and ks’. ks is specified using the function segs as
(segs 16 key). Recall that segs selects n sublists
from a list xs.

After specifying ks, we formalise the com-
putation for ks’ using the higher-order function
zipWith zipping two lists with the function exor.
These lists corresponds to ks and C. After ks
and ks’ are ready, KASUMI subkeys are de-
termined employing the higher-order functions
mapWith and map. Also, using the functions
shift and copy.

Finally, the functions group and transpose
arrange the subkeys in the form mentioned ear-
lier. The arranged groups are then merged into
final 4 packs. To easily understand these steps
we include the chart shown in Figure ??.

5.2 The KASUMI Block Cipher

The KASUMI block cipher has two inputs,
a 64-bit data block in addition to the private
key. The corresponding ciphered output is also
a 64-bit data block. In this specification, we
suggest the division of the KASUMI structure
into 4 similar rounds. Where each single round
is of two subrounds, called first and second sub-
rounds. The 4 generated packs of subkeys (us-
ing the function keySchedule) are distributed to
the KASUMI 4 rounds respectively. The total 8
subrounds of the KASUMI constitute a Feistel
network. This is visualised in Figure ??.

KASUMI is formally specified as the func-
tion kasumi which inputs two lists of bool input
and key. This function outputs a list of bool
corresponding to the ciphered data. The spec-
ification is done by folding a function singleR-

8 J. Comput. Sci. & Technol.

ound with the input over the generated subkeys
packs. With respect to the network shape, the
foldable single round is specified as the function
singleRound.

kasumi ::

DataBlock -> Private -> DataBlock

kasumi input key =

foldl singleRound input

(keyScheduling key)

A single round is of two blocks, the odd
block formalised as the function firstSubRound
and the even round formalised as the function
secondSubRound. The function singleRound is
specified as the functional composition of the
functions firstSubRound and secondSubRound.
The inputs to the function singleRound are an
input block of data and a single pack of subkeys.

singleRound ::

DataBlock -> [[Subkeys]] -> DataBlock

singleRound input64 subKeys =

secondSubRound (firstSubRound input64

subKeys)

The function firstSubRound could be de-
scribed as follows. It firstly takes the 64-bit
data input block and divides it into two left and
right 32-bit words as shown in Figure ??. It also
inputs a pack of subkeys and distributes them
to their specific destinations. The data input
left half is passed to a function fL, which cor-
responds to the FL block. The function fL for-
wards its output to a function fO (the functional
specification of the FO block). The output from
the function fO is XORed with the right half of
the input data giving the final left half l1. The
firstSubRound outputs a 64-bit word, which is
the concatenation of the final left half with the
initial left half. Also, it outputs the subkeys
needed for the second subround.

firstSubRound ::

DataBlock -> [[SubKey]] ->

(DataBlock,[[SubKey]])

firstSubRound

input64 [kLo, kOo, kIo, kLe, kOe, kIe] =

(l1++r1, [kLe, kOe, kIe])

where

[r1, r0]=

[take 32 input64, drop 32 input64]

[l1, t1, t2]=

[(fullexor r0 t2),

(fL r1 kLo),

(fO t1 kOo kIo)]

The function secondSubRound divides the
input 64-bit data block into two left and right
halves. The left half with the suitable subkeys
are passed to the function fO. The output from
the function fO is forwarded to the function fL.
The output from the function fL is XORed with
the input right half to give the final left half
l2. The secondSubRound outputs a 64-bit word,
which is the concatenation of the final left half
with the final right half r2.

secondSubRound ::

(DataBlock, [[SubKey]]) -> DataBlock

secondSubRound

(input64, [kL, kO, kI]) = l2 ++ r2

where

[r1, r2]= [drop 32 input64,

take 32 input64]

[l2, t1, t2]= [(fullexor r1 t2),

(fO r2 kO kI),

(fL t1 kL)]

The remaining fL, fI, fO, s7, and s9 building
blocks are specified in a similar style.

6 Algorithms Refinements

We move now to the second stage of devel-
opment following the same proposed method.

Higher-Level H.W. Synthesis of The KASUMI Crypto.: 9

The refinement of the key scheduling, and the
KASUMI specifications are presented in the fol-
lowing subsections.

6.1 Key Scheduling

Getting closer to hardware implementation,
the general datatypes used in specifying the
function keySchedule are refined as follows:

keySchedule :: Int128→ bbbInt16cc6c4

The key is a 128-bit Integer item, and the
output packs of groups of lists can be refined
to a vector of 4 vectors, each of 6 vectors of
16-bit Integer items. The refined processes
KEYSCHEDULE corresponds to the function
keySchedule.

keySchedule v KEYSCHEDULE

From the specification, the process
KEYSCHEDULE inputs the key and then it di-
vides it into segments using the process SEGS
the refinement of segs. These segments are
broadcasted to be later used for 5 times. At
this point, two parallel events could occur corre-
sponding to the right and left branches depicted
in Figure 4. The right branch of processes re-
fines the following part of the specification:

ks’ = zipWith fullexor (segs 16 key)

(map itob [291, 17767, 35243,

52719, 65244, 47768,

30292, 12816])

[kLi2, kIi1, kIi2, kIi3] =

mapWith [(shift 2), (shift 4),

(shift 3), (shift 7)]

(copy ks’ 4)

To compute for ks’ the vector setting refine-
ment of zipWith (VZIPWITH) is used. Then
the vector refinement of mapWith, VMAP-
WITH, is used to compute for the first set of
subkeys.

The parallel left branch of processes com-
putes for the second set of subkeys by piping two

instances of the refined process VMAPWITH.
This refines the following recalled specification:

[kLi1, kOi1, kOi2, kOi3] =

mapWith (map map

[(shift 1),(shift 5),

(shift 8), (shift 13)])

(mapWith

[id, (shift 1), (shift 5),(shift 6)]

(copy (segs 16 key) 4))

The remaining processes are used to refine
the functions responsible for ordering the sub-
keys in the suggested form - packs of groups of
lists. The complete network of processes (see
Figure 4) is described as follows:

KEYSCHEDULE = (32 � SEGS) ‖
IBROADCAST5[d/out] ‖
(

(([291, 17767, 35243, 52719, 65244,

47768, 30292, 12816] � VZIPWITH (EXOR))

�8 IBROADCAST4[d/out] ‖
VMAPWITH ([SHIFT (2),SHIFT (4),

SHIFT (3),SHIFT (7)])

)

‖
(

VMAPWITH ([SHIFT (1),SHIFT (1),

SHIFT (5),SHIFT (6)])�4

VMAPWITH [ID ,VMAP(SHIFTL(5)),

VMAP(SHIFTL(8)),VMAP(SHIFTL(13))]

)

) �8 TRANSPOSE �8 VMAP(GROUP) �8

MERGE

where

group v GROUP

merge v MERGE

shift v SHIFTL

The process TRANSPOSE is the standard
matrix transpose.

10 J. Comput. Sci. & Technol.

Figure 4: The process KEYSCHEDULE

6.2 The KASUMI Block Cipher

The KASUMI block is the main ciphering
part used for the confidentiality and integrity al-
gorithms standardised for 3GPP. Based on the
functional specification stage of development,
we suggest two refined designs for implement-
ing the KASUMI block. The first is a 4 rounds
pipelined design, while the second proposes a
single round stream-based design.

6.2.1 First Design

In this design, we construct a fully pipelined
network implementing the KASUMI block.
Four single rounds are replicated to work in par-
allel forming a pipeline of processes. Accord-
ingly, this design is expected to have a high de-
gree of parallelism, and therefore to be highly
efficient. However, this processes-replicating
implementation will require the use of large
amounts of processing resources.

The first step in refining the function kasumi
observes its inputs as items with a precision of
64 bits for the data block and 128 bits for the
key. This is described as follows:

kasumi :: Int64→ Int128→ Int64

where kasumi v KASUMI

As for this design, the four groups of subkeys
are piped from the process KEYSCHEDULE to
the replicated SINGLEROUND processes. The
foldl higher-order function in this case is refined
to its vector setting VVFOLDL. Thus, the pro-
cess KASUMI is refined as follows:

KASUMI = KEYSCHEDULE ‖
VVFOLDL(SINGLEROUND)

Note that the upper input to each SIN-
GLEROUND is a list of list of subkeys, refined
as a vector of vectors. This is depicted in Fig-
ure 5.

Moving to the refinement KASUMI sub-
blocks, datatypes employed in the function sin-
gleRound could be refined as follows:

singleRound :: Int64→ b[Int16]c6 → Int64

where singleRound v SINGLEROUND
Recall the functional specification for a sin-

gleRound, we have:

singleRound input64 subKeys =

Higher-Level H.W. Synthesis of The KASUMI Crypto.: 11

Figure 5: The process KASUMI, first fully-pipelined design

secondSubRound

(firstSubRound input64 subKeys)

This functional composition is refined to
piping of two processes FIRSTSUBROUND
and SECONDSUBROUND. The process SIN-
GLEROUND is depicted in Figure 6 (a) and
described as follows:

SINGLEROUND = FIRSTSUBROUND �
SECONDSUBROUND
where

firstSubRound v FIRSTSUBROUND
secondSubRound v SECONDSUBROUND

In refining the function firstSubRound, the
datatypes could be refined as follows:

firstSubRound :: Int64 → b[Int16]c6 →
(Int64, b[Int16]c3)

Recalling the functional specification:

firstSubRound input64

[kLo, kOo, kIo, kLe, kOe, kIe] =

(l1++r1, [kLe, kOe, kIe])

where

[r1, r0]= [take 32 input64,

drop 32 input64]

[l1, t1, t2] = [(fullexor r0 t2),

(fL r1 kLo),

(fO t1 kOo kIo)]

The process FIRSTSUBROUND after get-
ting its inputs, and depending on the functional
specification, firstly broadcasts the input left
half r1 to be used twice. Then, the subkeys are
produced to the processes FL and FO in the

order needed. The communications between
FL and FO is implicitly synchronised by the
(‖) operator. The output from FO is passed
to the process EXOR with the produced input
right half. At this point, the process CONCAT
is synchronising on the output of the processes
EXOR and the broadcasted r1. Finally, the re-
maining subkeys are produced to be forwarded
to the process SECONDSUBROUND. These
processes are shown in Figure 6 (b).

FIRSTSUBROUND =

(in1?input64→ SKIP) |||
(|||i=5,j=2

i=0,j=0 in2.elements[i][j]?kss[i][j]→ SKIP);

BROADCAST2(input64[32..63])[d/out] ‖
((PRD(kss[0][0]) ‖ PRD(kss[0][1])) � FL) ‖
((PRDv (kss[0]) ‖ PRDv (kss[1])) � FO) ‖
(PRD(input [0..31]) � EXOR))

‖ CONCAT ‖ PRDv (kss[3]) ‖
PRDv (kss[4]) ‖ PRDv (kss[5])

where

fL v FL

fO v FO

Similarly, and for the function secondSub-
Round the refinement is done as follows:

secondSubRound :: (Int64, b[Int16]c3)→ Int64

SECONDSUBROUND =

(in.fst?input64→ SKIP) |||
(|||i=2

i=0 (|||j=2
j=0 in.snd .elements[i]?kss[i][j]));

BROADCAST2(input64[32..63])[d/out] ‖
((PRD(kss[1]) ‖ PRD(kss[2])) � FO) ‖
((PRD(kss[0][0]) ‖ PRD(kss[0][1])) � FL) ‖
(PRD(input [0..31]) � EXOR)) ‖ CONCAT

12 J. Comput. Sci. & Technol.

Figure 6: The processes (a) SINGLEROUND, (b) FIRSTSUBROUND, and (c) SECOND-
SUBROUND

6.2.2 Second Design

In this design, the subkeys packs are passed in
a stream setting to a single SINGLEROUND
process. This stream refinement of foldl imple-
mented by SVFOLDL will use the SINGLER-
OUND process to compute for the final desired
folded result. This design affords an economical
use of computing resources. However, it is a
quid pro quo for efficiency. This CSP network
is pictured in Figure 7 and implemented as fol-
lows:

KASUMI = KEYSCHEDULE ‖
SVFOLDL(SINGLEROUND)

6.2.3 Third and Fourth Designs

The aim of introducing the third and fourth de-
signs is to reduce the communication in the fine
levels, mainly inside the FL, FI, and FO blocks.
These blocks will be implemented with basic
operations instead of communicating processes.
For example, an addition will be implemented
using a (+) operator instead of a process ADDI-
TION. The refinement of the remaining blocks
is to be the same. Also, the external commu-
nications with the FL, FI, and FO blocks will
be the same. The third design uses the new de-
scriptions for the F-blocks to modify the first
fully-pipelined design, while the fourth design
applies the changes to the second stream-based

design.

7 Reconfigurable Hardware Im-
plementations

Based on the refined networks of CSP pro-
cesses we include samples of the Handel-C code
used in the realisation of the hardware circuit.

Getting a sample from KASUMI ’s main
blocks, we present the macro SingleRound real-
ising the processes SingleRound. The correspon-
dence with the CSP description is very clear
by refereing to the implementation presented in
the previous stage. In this macro, the macros
FirstSubRound and SecondSubRound are piped
in parallel to create the macro SingleRound as
follows:

macro proc SingleRound

(input64, skeysVoV, output64) {

par{

FirstSubRound

(input64, skeysVoV, midTuple);

SecondSubRound

(midTuple, output64);}}

The macros implementing the refined net-
work of processes describing the KASUMI, are

Higher-Level H.W. Synthesis of The KASUMI Crypto.: 13

Figure 7: The process KASUMI, second design

called from the macro Kasumi. This macro im-
plements the first design.

macro proc Kasumi(input64,

keysPacks, output64) {

VFOLDL(input64, keysPacks,

4, SingleRound, output64);}

8 Performance Analysis and
Evaluation

In this paper, we have demonstrated a
methodology that can produce intuitive, high-
level specifications of algorithms in the func-
tional programming style. The development
continues by deriving efficient, parallel imple-
mentations described in CSP and realised us-
ing Handel-C that can be compiled into hard-
ware on an FPGA. We have provided a concrete
study that exploited both data and pipelined
parallelism and the combination of both. The
implementation was achieved by combining
behavioural implementations ’off-the-shelf’ of
commonly used components that refine the
higher-order-functions which form the building
blocks of the starting functional specification.

The development is originated from a spec-
ification stage, whose main key feature is its
powerful higher-level of abstraction. Dur-
ing the specification, the isolation from paral-
lel hardware implementation technicalities al-
lowed for deep concentration on the specifica-
tion details. Whereby, for the most part, the
style of specification comes out in favor of using

higher-order functions. Two other inherent ad-
vantages for using the functional paradigm are
clarity and conciseness of the specification.
This was reflected throughout all the presented
studies. At this level of development, the cor-
rectness of the specification is insured by con-
struction from the used correct building blocks.
The implementation of the formalised specifica-
tion is tested under Haskell by performing ran-
dom tests for every level of the specification.

The correctness will be carried forward to
the next stage of development by applying the
provably correct rules of refinement. The avail-
able pool of refinement formal rules enables a
high degree of flexibility in creating parallel
designs. This includes the capacity to divide a
problem into completely independent parts that
can be executed simultaneously (pleasantly par-
allel). Conversely, in a nearly pleasantly paral-
lel manner, the computations might require re-
sults to be distributed, collected and combined
in some way. Remember at this point, that the
refinement steps are systematic and done by
combining off-the-shelf reusable instances of
basic building blocks.

In the following we will address the results
found after compiling, placing and routing, and
running the proposed designs. In Table ?? the
key scheduling design occupied 8905 Slices and
performed at a throughput of 27.7 Mbps. The
KASUMI block algorithm in the stream-based
second design occupied 13225 Slices and per-
formed at a throughput of 1.68 Mbps (See Ta-
ble 2). The third and fourth designs outper-
formed the second design with speeds of 4.92
Mbps and 32 Mbps. The fourth design had a
better running frequency (72.71 MHz) than of

14 J. Comput. Sci. & Technol.

the third design (49.06 MHz).

These testing results, as compared to the
requirements and to other hardware implemen-
tations, reveal the high cost of applying the
methodology in that manner. Even if some tun-
ing were made, tracking the critical paths in
timing analysis to increase the maximum pos-
sible frequency of the design does not promote
an elevated expectancy of the throughput. The
high cost in hardware resources arises from the
applied systematic rules blinding possibilities
for intuitive ad hoc optimisations. The trials
for better speed could continue in a similar way
to those undertaken in the KASUMI third and
fourth designs. Nevertheless, this lessens the
use of communications on the fine-grained pro-
cesses levels.

9 Acknowledgement

I would like to thank Dr. Ali Abdallah,
Prof. Mark Josephs, Prof. Wayne Luk, Dr.
Sylvia Jennings, and Dr. John Hawkins for
their insightful comments on the research which
is partly presented in this paper.

10 Conclusion

Recent advances in the area of reconfig-
urable computing came in the form of FPGAs
and their high-level HDLs such as Handel-C.
In this paper, we build on these recent tech-
nological advances by presenting, demonstrat-
ing and examining a systematic approach for
synthesizing parallel hardware implementations
from functional specifications. We have ob-
served a case study from applied cryptogra-
phy, namely the KASUMI algorithm for 3GPP.
The testing of the realised reconfigurable cir-
cuits allowed the ciphering with KASUMI in a
throughput of 32 Mbps with an occupied area of
5594 Slices. However, this confirms the conclu-
sion showing the expense of using the higher-
level approach adopted. Future work includes
extending the theoretical pool of rules for re-
finement, the investigation of automating the
development processes, and the optimisation of

the realisation for more economical implemen-
tations with higher throughput.

11 References

[1] Xilinx. Information available from.
http://www.xilinx.com.

[2] Altera. Information available from.
http://www.Altera.com.

[3] Celoxica. Information available from.
http://www.celoxica.com.

[4] D. Edwards, S. Harris, and J. Forge. High
performance hardware from java. Xilinx
Whitepaper http://www.xilinx.com.

[5] Y. Li, T. Callahan, E. Darnell, R. Harr,
U. Kurkure, and J. Stockwood. Hardware-
software codesign of embedded reconfig-
urable architectures. In Proceedings of
the 37th Design Automation Conference,
page 30, Los Angeles - USA, June 2000.

[6] SystemC Network. Information available
arom. http://www.systemc.org.

[7] A. E. Abdallah. Functional process mod-
elling. Research Directions in Parallel
Functional Programming, (Springer Ver-
lag, October 1999), pages 339–360, Octo-
ber 1999.

[8] A. E. Abdallah and J. Hawkins. Formal
Behavioural Synthesis of handel-c Parallel
Hardware Implementation for Functional
Specifications. In Proceedings of the 36th
Annual Hawaii International Conference
on System Sciences, pages 278–288. IEEE
Computer Society Press, January 2003.

[9] R. Bird. Introduction to Functional Pro-
gramming Using Haskell. Addison Wesley,
1999.

[10] C. A. R. Hoare. Communicating Sequential
Processes. Prentice-Hall, 1985.

[11] INMOS Ltd. OCCAM 2 reference manual.
Prentice-Hall International, 1988.

Higher-Level H.W. Synthesis of The KASUMI Crypto.: 15

Table 2: Testing results of the KASUMI block cipher implementation

[12] SAGE. Report on the evaluation of 3GPP
standard confidentiality and integrity algo-
rithms. Technical report, ETSI, October
2000.

[13] H. Kim, Y. Choi, M. Kim, and H. Ryu.
Hardware implementation of 3GPP
KASUMI crypto algorithm. The 2002
International Technical Conference
on Circuits/Systems, Computers and
Communications(ITC-CSCC), 1:317 –
320, July 2002.

[14] J. Alcantara, A. Vieira, F. Galvez-Durand,
and V. Alves. A methodology for dy-
namic power consumption estimation using
VHDL descriptions. Symposium on Inte-
grated Circuits and Systems Design, pages
149 – 154, September 2002.

[15] Intel. Information available from.
http://www.intel.com.

[16] SCI-WORX. Information available from.
http://www.sci-worx.com.

	1 Introduction
	2 The Development Method
	3 Background
	3.1 Data Refinement
	3.2 Process Refinement
	3.2.1 Basic Definitions
	3.2.2 Process Refinement of Higher-order Functions

	3.3 Handel-C as a Stage in the Development Model
	3.3.1 Higher-Order Processes Macros

	4 The Third Generation of Mobile System Security Algorithms
	5 Formal Functional Specification
	5.1 Key Scheduling
	5.2 The KASUMI Block Cipher

	6 Algorithms Refinements
	6.1 Key Scheduling
	6.2 The KASUMI Block Cipher
	6.2.1 First Design
	6.2.2 Second Design
	6.2.3 Third and Fourth Designs

	7 Reconfigurable Hardware Implementations
	8 Performance Analysis and Evaluation
	9 Acknowledgement
	10 Conclusion
	11 References

