

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1016/j.advengsoft.2008.03.014

http://hdl.handle.net/10251/102174

Elsevier

Dear reader,

This is the final author version of the paper. You can find the published one

in the journal web page.

We would appreciate it if you cite our paper.

How to cite us:

PlainText:

Martinez-Llario, Jose & Weber, Jens & Coll, Eloina. (2009). Improving dissolve

spatial operations in a simple feature model. Advances in Engineering Software. 40.

170-175. 10.1016/j.advengsoft.2008.03.014.

BibTeX:

@article{article,

author = {Martinez-Llario, Jose and Weber, Jens and Coll, Eloina},

year = {2009},

month = {03},

pages = {170-175},

title = {Improving dissolve spatial operations in a simple feature model},

volume = {40},

journal = {Advances in Engineering Software},

doi="10.1016/j.advengsoft.2008.03.014"

}

School of Engineering in Geodesy, Cartography and Surveying

Dept. of Cartographic Engineering, Geodesy and Photogrammetry
Universitat Politècnica de València

Camino de vera, s/n. 46022. Valencia. Spain

http://www.upv.es/entidades/DICGF/index-en.html

IMPROVING DISSOLVE SPATIAL OPERATIONS

 IN A SIMPLE FEATURE MODEL

Jose Martinez-Llario1, Jens H. Weber-Jahnke2, Eloina Coll1

1Department of Cartographic Engineering, Geodesy and Photogrammetry. Universidad Politecnica de Valencia. Spain.
2Department of Computer Science. University of Victoria. British Columbia. Canada.

Abstract: This paper presents an algorithm to improve the performance of a spatial operation called 'dissolve' widely

used in Geographic Information System (GIS) through spatial database systems. In simple feature models (lacking of

persistent topology) executing some common spatial operations requires a high amount of system resources. Such

common operations occur for example in the 'OpenGIS Simple Features for SQL' protocol (SFS), a client-server

interoperability standard defined by 'The Open Geospatial Consortium, Inc.' (OGC). The specific spatial operation

studied in this paper is called 'dissolve'. It is carried out using the union spatial operator defined by OGC) and consists

of removing the boundaries between adjacent polygons. The proposed algorithm improves substantially the

performance of this spatial operation and it needs between 100 and 1000 times less amount of resources. This way it

enables the database server to carry out this spatial operation on huge datasets containing up to millions of geometries.

To check and to validate this algorithm a new open source software package (PGAT) has been developed.

Key word: Geographic Information System; Spatial Databases; PostGIS; Dissolve

1. Introduction

The use of spatial databases in Geographic Information

System (GIS) like Oracle Spatial1 or PostGIS2 has

increased substantially in the recent years. One of the

reason of this behavior has been the adjustment of these

systems to well-known standard protocols defined by the

'Open Geospatial Consortium, Inc.' (OGC) like the

'OpenGIS Simple Features for SQL' (SFS) [9]. This

implementation specification defines interfaces that

enable transparent access to geographic data held in

heterogeneous processing systems on distributed

computing platforms using the SQL language. When the

geographic objects are stored using a simple feature

model (SFM) the geometries do not share arc or nodes

[8], that is, they do not hold the topology spatial

relationships in a persistent way [4]. The SFM is not a

best choice for operations taking into account

relationships between features (such as spatial relations,

topological predicates) [6], in fact, some of the spatial

operations defined in the SFS specifications do not work

well because they do not consider the spatial relationships

between different features.

The motivation of this work is to get an algorithm that can

work in a proper way with medium and huge datasets

especially performing spatial operations as removing

boundaries between adjacent polygons. This way, the

institutions (especially public institutions which might be

more interested in using open source software) [2] can use

the open source spatial databases and analyze the

geographic information even if it is made up of millions

of geometries. So far, this could not be possible using free

software and/or standard protocols (SFS and other OGC

1 Oracle Spatial extension. A feature of Oracle Database.

Oracle Corporation. http://www.oracle.com

2 Spatial database extension for PostgreSQL. Refraction

Research, Inc. http://www.postgis.org

protocols). The aim of this research is to make it possible.

One of the operators defined by SFS that does not work in

a proper way is the spatial operator union defined

according to the OGC as “Union (anotherGeometry :

Geometry) : Geometry - Returns a geometric object that

represents the Point set union of this geometric object

with anotherGeometry” (Fig. 1) [10]. This spatial operator

is used to remove the boundaries between adjacent

geometries. It can be applied to polygons, arcs and points

features. Despite the fact that the standard name of this

spatial operator (according to the OGC) is called 'union',

in GIS terminology the resulting operation of applying

this operator is commonly known as 'dissolve'.

It is necessary to say that in any moment we are talking

about an overlapping function but some readers can get

confused because the OGC 'union' spatial operator has the

same function name that the GIS 'union' overlapping

operation.

Fig. 1. OGC Spatial operator union applied to two polygons

The dissolve spatial operation is a common useful

operation in GIS [3]. Take for example a layer containing

urban areas: obtaining the block boundaries starting from

information about lots requires carrying out this spatial

operation by grouping the polygons contained in each

block [7] (obviously the lots spatial table does not contain

any attribute column with information about the

corresponding blocks). As it is described in the next

section this spatial operation does not have an obvious

solution in a simple feature model because the spatial

http://www.oracle.com/
http://www.postgis.org/

database does not know which lots belong to each block

unlike a GIS with persistent topology [3,12]. In other

words the spatial database does not contain any

information about what the disjointed polygons are.

Blocks

Lots

Streets

Fig. 2. Dissolving lots to obtain blocks

To improve the performance of the dissolve spatial

operation we need to collect the spatial relationship

grouping of the disjointed polygons. According to OGC

the spatial operator union can be used for joining

(dissolving) two features. The spatial databases like

Oracle Spatial or PostGIS define a SQL aggregate

operator based on the union operator. This aggregate

function enables these databases to join more than two

features [13]. For example to perform a dissolve operation

in the whole layer lots the SQL sentence is:

INSERT INTO "public"."blocks" ("geom") SELECT

multi (geomunion ("geom")) FROM "public"."lots"

This SQL aggregate (called geomunion in PostGIS and

sdo_aggr_union in Oracle Spatial) works in the following

way: in a first step it joins the first two geometries (A, B)

to obtain just one geometry (c), then it joins this new

polygon (c) with a third geometry (C) to obtain a new

polygon again (d). The process is repeated as many times

as geometries are stored in the spatial table. This way the

new geometries obtained are bigger than the previous

ones. The process uses an increasing amount of

computing resources (memory, time) in each iteration.

The final result is a huge geometry (multi polygon in this

case). Even though the source spatial table contains just a

few thousand of geometries, this final geometry could be

made up of millions of vertexes stored in just one row in

the spatial table. The resulting geometry is very complex,

thus, of limited usefulness for carrying out other spatial

operations. Furthermore, the use of a spatial index in

subsequent operations does not make help because the

table has just one row.

To test the performance of the dissolve operations a

computer with the following characteristics was used:

Pentium Dual Core 2 1600 Mhz with 1 Gb Ram, running

Open Suse Linux 10.2, PostgreSQL 8.1 and PostGIS 1.2.

2.- Approaching the problem

Fig. 3. charts the time to dissolve a spatial table

corresponding to a real cadastral dataset like the one

showed in Fig. 2. The tests have been carried out only

with 10,000 geometries in order to limit the resources

needed for the computation. As it is pointed out in Fig. 3

(non-fragmented), PostGIS takes around 1600 seconds

(almost half an hour) just for dissolving 10,000 polygons

(lots). The resulting spatial table contains only one row.

This geometry is a complex multipolygon made up of

more than 1,400 polygons.

0 2 4 6 8 10

1

10

100

1000

10000

Non-fragmented

Fragmented

Number of geometries to dissolve (x 1000)

T
im

e

(s
e

c
o

n
d

s
)

Fig. 3. Dissolving lots (without using spatial relationships)

One approach to improve the performance consists in

fragmenting the spatial table into several groups and use

the aggregate function in each one of this groups [11,14].

The following code clarifies this option (the column

pgatgid corresponds to an unique integer value):

INSERT INTO "public"."lots_dissolve" ("geom")

 SELECT multi (geomunion ("geom")) AS geom FROM (

 SELECT multi (geomunion ("geom")) AS geom,

 max(pgatgid) AS pgatgid FROM (

 SELECT multi (geomunion ("geom")) AS geom,

 max(pgatgid) AS pgatgid FROM (

 SELECT multi (geomunion ("geom")) AS geom,

 max(pgatgid) AS pgatgid FROM (

 SELECT multi (geomunion ("geom")) AS geom,

 max(pgatgid) AS pgatgid

 FROM "public"."lots"

 GROUP BY mod (pgatgid, 16)

) AS FOO8 GROUP BY mod (pgatgid, 8)

) AS FOO4 GROUP BY mod (pgatgid, 4)

) AS FOO2 GROUP BY mod (pgatgid, 2)

) AS FOO;

This way the computation time can be improved by more

than a factor of 10 (fragmenting the spatial tables in at

least 12 groups) compared with the non-fragmented

approach. Even though the improvement has been

significant the principal problem is remaining, i. e., the

operation still results in a very complex single geometry.

The resulting spatial table is inappropriate as a basis for

any further common operation, e. g., measuring the lots

areas or any spatial operation that involves disjointed lots.

A better approach is to create an algorithm that explicitly

deals with the disjointed polygons (lots inside a block).

To design this algorithm, we needed to take the spatial

relationships between the geometries into account as it is

explained in the next section.

3.- Solution

As the reader can notice, this article does not talk about

how to deal with the object attributes during the dissolve

process. Actually it does not offer any difficulty and it is

completely solved just using the aggregate and statistic

SQL standard functions. The software package developed

to test this algorithm considers all of these options (see

the bottom of the screen capture in Fig. 8). Consequently

the rest of the article the dissolve process referrers just to

the geometry component.

Fig. 4 shows the flowchart used to carry out the dissolve

operation according to the exposed premises in the

previous section (using only the geometry component).

Fig. 4. Flowchart of the proposed algorithm

The first task consists in calculating the spatial

relationships between every polygon in the spatial table.

The result is stored in a table with two columns where

each row represents a pair of polygons that intersect (or

touch) each other.

SELECT s1."pgatgid", s2."pgatgid"

 FROM

 "public"."lots" AS s1,

 "public"."lots" AS s2

 WHERE

 (s1."geom" && s2."geom")

 AND s1."pgatgid" <> s2."pgatgid"

 AND INTERSECTS (s1."geom",s2."geom")

It is crucial that the spatial table (lots) has a spatial index

because the above SQL statement makes an intensive use

of it (s1."geom" && s2."geom") [1]. The next step

consists in grouping the non disjointed polygons. The

result is stored in an auxiliary table with two columns: the

polygon identifier and the group number. Every polygon

inside the same block will belong to the same group

number (therefore there will be as many groups as there

are blocks).

GN = group number of each geometry.

PN= flag indicating that the geometry has been processed.

LN= set of geometries which intersect with the n geometry

(topology data with the spatial relationships).

Initialize conditions:

 group_number = 0

 P = false

// Main function

For each geometry g in the spatial table {

 if Pg = false then fill_geometry (g);

 group_number++;

}

// Recursive function

fill_geometry(g) {

 Pg = true

 Gg = group_number

 For each geometry g' in Lg

 if Pg' = true then fill_geometry (g')

 }

}

Array Gg is stored in an auxiliary table. Then, the

aggregate SQL function will group the geometries by

using this auxiliary table.

The SQL statement corresponding to the last step of the

algorithm is:

INSERT INTO "public"."lots_dissolve" ("geom")

 SELECT multi (geomunion ("geom")) FROM

 "public"."lots","pgat"."tmpDissolve_public_lots_geom"

 WHERE

("pgat"."tmpDissolve_public_lots_geom"."pk_public_lots_pgat

gid" = "public"."lots"."pgatgid") GROUP BY

"pgat"."tmpDissolve_public_lots_geom"."group"

where:

 'tmpDissolve_public_lots_geom' is the auxiliary table

with the column 'group' containing the group numbers of

each lot.

4.- Experiments

To obtain reliable conclusions and make an exhaustive

analysis some tools have been developed under an open

source package called PGAT [5]. This software package

has been developed by the authors of this paper. To apply

the algorithm showed in this paper this package creates

spatial datasets simulating the structure of spatial

clustered polygons according to the user defined

parameters. Then the designed algorithm is applied and

the new dissolved layers can be displayed using PGAT.

4.1.- Software developed

PGAT (PostGIS Analysis Tool) is a graphical interface to

PostGIS focused on mapping the spatial operators defined

in PostGIS to an intuitive user interface. The spatial

operations are performed in the server side unlike most

open source GIS. PGAT is implemented with Java and

uses GeoTools1 (to render the graphics) and db4o2 (to

store and manage the log system), both of them are open

source solutions. The main difference between PGAT and

other programs is that PGAT is focused in performing the

1 An Open Source Library for the manipulation of geospatial

data. http://geotools.codehaus.org

2 An Open Source Object Oriented Database.

http://www.db4o.com

http://geotools.codehaus.org/
http://www.db4o.com/

spatial operations (buffer, dissolve, etc.) on the server side

[16] (PostgreSQL / PostGIS / SFS). This way, PGAT

commits to the interoperability guidelines defined in the

SFS protocol about geospatial operations.

4.2.- Datasets used

The designed spatial tables for testing contain up to

hundred of thousand of simple features distributed in a

spatial matrix as illustrated in Fig. 5 where the layer is

made up of a matrix that divides the space in 10 x 10

zones, each one with 5 polygons (500 geometries in total).

Polygons inside one zone do not touch any polygon

located in any other zone. Therefore the polygons inside a

zone can be considered as lots inside a block as in the

previous example. The dissolve layer is shown in Fig. 6.

Fig. 5. Test layer

Fig. 6. Test layer after dissolving the polygons

We have implemented the proposed algorithm on the

PGAT platform. Fig. 7. shows the configuration box to

carry out the necessary spatial operations. As it can be

seen, the check box 'not join disjointed geometries' is

checked; this way the software will use the proposed

algorithm.

Fig. 7. Dissolve dialog in PGAT

4.3.- Results

These tests have been carried out using PostgreSQL 8.1 /

PostGIS 1.2 and Linux (kernel 2.6). PostgreSQL has been

configured to use 64 MB of shared memory and the

working memory used by the tested algorithm has been

calculated inspecting the server processes by monitoring

them and creating a log file in an automatic way [15]. The

latter is the amount of memory that appears in Fig. 9 and

Fig. 11.

The spatial tables follows a typical OGC structure as it is

shows in the psql terminal, e. g., the next schema is

similar to all of the spatial tables used in this paper to test

the algorithm:

 Table "public.e1"

 Column | Type | Modifiers

----------------------+----------+-----------------------------

 pgatgid | integer | not null default nextval ...

 geom | geometry |

Indexes:

 "public_e1_pkey" PRIMARY KEY, btree (pgatgid)

 "e1_geom_gistidx" gist (geom)

Check constraints:

 "enforce_dims_geom" CHECK (ndims(geom) = 2)

 "enforce_geotype_geom" CHECK (geometrytype(geom) =

'POLYGON'::text OR geom IS NULL)

 "enforce_srid_geom" CHECK (srid(geom) = -1)

The size of these spatial tables (relation size + spatial

indexes + toast size) depends on the number of

geometries. The size of a table with 500 000 geometries

(the biggest one used is this paper to test the proposed

algorithm) is 314 MB.

In a first step the fragmented and the proposed algorithm

are compared. For it the spatial tables used to compare

these two methods contain up to 100 000 geometries (a

matrix with 141 rows by 141 columns with 5 polygons in

each cell). Fig. 8 shows the run times taken by the

fragmented and the proposed algorithm to dissolve these

spatial tables. In this case the proposed algorithm reduces

the run-time required by a factor of 100 compared to the

fragmented one.

0 20 40 60 80 100

1

10

100

1000

10000

Method
proposed

Fragmented

Number of geometries to dissolve (x 1000)

T
im

e

(s
e
c
o
n
d
s
)

Fig. 8. Run time used (comparison)

0 20 40 60 80 100

0

500

1000

1500

2000

Method proposed

Fragmented

Number of geometries to dissolve (x 1000)

M
e
m

o
ry

 (
M

e
g
a
b
y
te

s
)

Fig. 9. working memory (comparison)

Analogously the amount of memory needed is huge if this

algorithm is not used (Fig. 9). The fragmented option

needs about 1,800 MB and the algorithm proposed needs

less than 200 MB for dissolving the same number of

geometries (100,000 geometries).

In a second step just the proposed algorithm is tested but

this time with much bigger spatial tables. Fig. 10 and Fig.

11 show the result of dissolving up to 500,000 geometries

using the proposed algorithm and changing the number of

polygons to dissolve in each zone (5, 10 and 20

polygons).

0 100 200 300 400 500

1

10

100

1000

10000

5 Polygons

10 Pollygons

20 Polygons

Number of geometries to dissolve (x 1000)

T
im

e

(s
e
c
o
n
d
s
)

Fig. 10. Run time used (proposed algorithm)

Obviously the algorithm performance gets worse when

the number of disjointed geometries is increased (see Fig.

10). But even in that case the results keep being

advantageous compared with the fragmented option.

Moreover in typical real cases the number of non

disjointed geometries are not usually bigger than a few

tens.

0 100 200 300 400 500

0

500

1000

1500

2000

5 Polygons

10 Pollygons

20 Polygons

Number of geometries to dissolve (x 1000)

M
e
m

o
ry

 (
M

e
g
a
b
y
te

s
)

Fig. 11. Working memory (proposed algorithm)

4.4.- Real case

The tests carried indicate that the algorithm is very useful

for applications which need to dissolve adjacent

polygons. The last step in this analysis is to make sure

that the spatial model followed is appropriate to be used

with real cases. To that purpose a spatial table

containing all the lots of the city of Valencia (Spain) has

been used. The algorithm will remove the adjacent

boundaries between the lots (around 30 000) to rebuild

the blocks of all the city.

Fig. 12. shows the improved performance of the proposed

algorithm compared with the fragmented one.

Furthermore the resulting spatial table is made up of

single polygons corresponding to each block (dissolved

lots). The dissolve table corresponding to dissolve 30,000

lot polygons contains about 2,000 rows (one row per

block). The Non-fragmented did not work with more then

10 000 geometries because the huge amount of resources

needed to run (dashed line in the legend).

0 5 10 15 20 25 30

1

10

100

1000

10000

Method proposed

Fragmented

Non-fragmented

Number of geometries to dissolve (x 1000)

T
im

e

(s
e
c
o
n
d
s
)

Fig. 12. Run time used for dissolving the lots

The working memory used to dissolve 30,000 polygons is

around 119 MB (method proposed), 602 MB

(fragmented) and 935 MB (non-fragmented). As the user

can check the run-time and memory values are consistent

with the results showed in Fig. 8 and Fig. 9 validating the

algorithm for real cartographic cases.

5.- Conclusions and future work

The authors have designed and evaluated an algorithm for

dissolving polygons that uses much less resources than

the current approaches, e. g., SQL aggregate dividing the

spatial table into several groups. For dissolving a spatial

table made of 100,000 geometries our algorithm requires

200 MB, whereas 1,800 MB are needed for the

fragmentation algorithm. Our tests have been made

comparing the proposed algorithm with the fragmented

one that is already an improvement of using only one

aggregate function. If the proposed algorithm were

compared with the non-fragmented (Fig. 3) the

improvement would be 10 times more (around 1,000

times). The run time performance improvement of the

proposed algorithm is at similar magnitude.

The main conclusion is that the designed algorithm

enables to use spatial databases with big datasets to

dissolve adjacent polygons. This task is not possible using

either just an aggregate function like most users do or

even grouping the aggregate function and fragmenting the

original spatial table because of the huge resources that

the server needs.

Another important advantage is that the resulting spatial

table contains individual polygons, that is, one polygon or

multipolygon for each group of disjointed geometries.

The resulting layer takes advantage of the spatial index

for the next spatial operations that the user may want to

perform. Hence, the resulting individual polygons are

more suitable for further queries of a GIS user.

The algorithm has been developed using standard SQL

and the SFS protocol, therefore it can be implemented

easily in other spatial database systems expecting similar

results. The algorithm has been tested using Oracle

Spatial (a proprietary solution) obtaining satisfactory

results too but the license of this product forbids to public

them.

The performance of the proposed algorithm could be

further improved if the implementation would use trigger

functions to calculate the topology relations and the

adjacent polygons. This way it would not be necessary to

calculate these spatial relationship each time a dissolve

operation is needed. Another interesting work would be to

compare this spatial operation in a simple feature model

with a system that persist topology information. We

intend to study these ideas in our future work.

6.- Acknowledgment

This project has been developed in the University of

Victoria (British Columbia, Canada) thanks to the grant

awarded by "La Secretaria de Estado de Universidades e

Investigacion del Ministerio de Educacion y Ciencia"

from Spain (ref. 2006-0264).

7.- Bibliography

[1] Aref W, Ilyas I. SP-Gist: An extensible database index

for supporting space partitioning trees. Journal of

Intelligent Information Systems 2001;17(2-3):215-240

[2] Coll E, et al. Information and Management in Local

Administration. Research project BIA2003-07914

sponsored by the Spanish Government (CICYT) and the

European Union (ERDF funds).

[3] Davis B. GIS: A Visual Approach, 2nd Edition. New

York: OnWord Press, 2001.

[4] Galdi D. Spatial Data Storage and Topology in the

Redesigned MAF/TIGER System. U.S. Census Bureau.

Geography division. Available online from

http://www.census.gov/, 2005.

[5] Martinez-Llario J. PGAT open source software.

Available online at http://sourceforge.net/projects/pgat,

2007.

[6] Oosterom P, et al. The balance between geometry and

topology. In : Proc of 10th International Symposium on

Spatial Data Handling. Otawa, Canada; 2002.

[7] Oosterom P, Lemmen C. Spatial data management on

a very large cadastral database. Computers, Environment

and Urban System 2001;25(4-5):509-528.

[8] Oosterom P, Verbree E. Storing and manipulating

simple and complex features in database management

systems. Proceedings of the 3rd AGILE Conference on

Geographic Information Science. Helsinki/Espoo,

Finland; 2000.

[9] Open GIS Consortium Inc. Project Document 99-049.

OpenGIS® Simple Features Specification For SQL.

Available online from http://www.opengeospatial.org,

1999.

[10] Open GIS Consortium, Inc. Project Document OGC

05-126. OpenGIS® Implementation Specification for

Geographic information - Simple feature access - Part 1:

Common architecture. Available online from

http://www.opengeospatial.org, 2006.

[11] Oracle® Spatial. Oracle Spatial User's Guide and

Reference, 10g Release 2. Part III - D Complex Spatial

Queries: Examples. Available online from

http://www.oracle.com, 2006.

[12] Rigaux P. et al. Spatial Databases: With Application

to GIS. London: Morgan Kaufmann, 2001.

[13] Refractions Research, Inc. PostGIS documentation.

http://www.census.gov/
http://sourceforge.net/projects/pgat
http://www.opengeospatial.org/
http://www.opengeospatial.org/
http://www.oracle.com/

Available online from http://www.postgis.org, 2007.

[14] Samet H. The design and analysis of spatial data

structures. Boston: Addison-Wesley, 1989.

[15] PostgreSQL Global Development Group. The

PostgreSQL Reference Manual Volume 3: Server

Administration Guide. Bristol: Network Tehory Limited,

2007.

[16] Zhong-Ren P, Ming-Hsiang, T. Internet GIS:

Distributed Geographic Information Services for the

Internet and Wireless Networks. New Jersey: John Wiley

& Sons Canada, 2003.

http://www.postgis.org/

