

Jamova cesta 2

1000 Ljubljana, Slovenija

http://www3.fgg.uni-lj.si/

DRUGG – Digitalni repozitorij UL FGG

http://drugg.fgg.uni-lj.si/

Ta članek je avtorjeva zadnja recenzirana

različica, kot je bila sprejeta po opravljeni

recenziji.

Prosimo, da se pri navajanju sklicujte na

bibliografske podatke, kot je navedeno:

 University

 of Ljubljana

 Faculty of

 Civil and Geodetic

 Engineering

Jamova cesta 2

SI – 1000 Ljubljana, Slovenia

http://www3.fgg.uni-lj.si/en/

DRUGG – The Digital Repository

http://drugg.fgg.uni-lj.si/

This version of the article is author's

manuscript as accepted for publishing after

the review process.

When citing, please refer to the publisher's

bibliographic information as follows:

Zupan, E., Saje, M. 2011. Integrating rotation from angular velocity. Advances in

Engineering Software 42: 723-733, DOI: 10.1016/j.advengsoft.2011.05.010.

 Univerza

v Ljubljani

Fakulteta

za gradbeništvo

in geodezijo

http://www3.fgg.uni-lj.si/
http://drugg.fgg.uni-lj.si/
http://www3.fgg.uni-lj.si/en/
http://drugg.fgg.uni-lj.si/
http://dx.doi.org/10.1016/j.advengsoft.2011.05.010

Integrating rotation from angular velocity

Eva Zupan 1 and Miran Saje 2

University of Ljubljana, Faculty of Civil and Geodetic Engineering, Jamova 2,
SI-1115 Ljubljana, Slovenia

Abstract

The integration of the rotation from a given angular velocity is often
required in practice. The present paper explores how the choice of the
parametrization of rotation, when employed in conjuction with different
numerical time-integration schemes, effects the accuracy and the computa-
tional efficiency. Three rotation parametrizations – the rotational vector,
the Argyris tangential vector and the rotational quaternion – are combined
with three different numerical time-integration schemes, including classical
explicit Runge-Kutta method and the novel midpoint rule proposed here. The
key result of the study is the assessment of the integration errors of various
parametrization–integration method combinations. In order to assess the
errors, we choose a time-dependent function corresponding to a rotational
vector, and derive the related exact time-dependent angular velocity. This is
then employed in the numerical solution as the data. The resulting numerically
integrated approximate rotations are compared with the analytical solution. A
novel global solution error norm for discrete solutions given by a set of values
at chosen time-points is employed. Several characteristic angular velocity
functions, resulting in small, finite and fast oscillating rotations are studied.

1 Introduction

The integration of rotation from the given angular velocity is often required
in practice. The application areas include such diverse fields as navigation in
aerospace technologies, robotics, animating rotations in computer graphics,

1 E-mail address: eva.zupan@fgg.uni-lj.si
2 Corresponding author. E-mail address: miran.saje@fgg.uni-lj.si

describing curvatures with rotations in structural mechanics, and classical dy-
namics of rigid bodies. For example, in a strapdown inertial navigation system
[1,6,15,26,27], the gyroscopes measure the angular velocity of the space vehicle.
In order to obtain the global position of the vehicle, the coordinate transfor-
mation matrix between the body-fixed and the spatial coordinate systems is
needed. This requires the real-time integration of the angular velocity-rotation
differential equation. An accurate, yet computationally economical solution is
thus vital in designing a strapdown navigation system. A conceptually similar
application is also typical in a real-time optical tracking of human body motion
employed in robotics and computer graphics [11,24,32]. A further example can
be taken from structural mechanics, where in a curvature-based finite-element
formulation, one needs to integrate the rotation from the given curvature field
[38,39].

The choice of finite rotation parameters is often discussed in literature, see
e.g. [2,3,18]. To the best knowlege of the authors, none of them, however,
has analysed the combined influence of different rotation parameters and time
integrators.

As the differential equation under consideration is strongly non-linear, an an-
alytical solution is not possible for angular velocities other than those being
constant in time, and hence a numerical method has to be applied. The primary
objective of the present paper is to study how the choice of the parametriza-
tion of rotation, when employed in conjunction with different numerical time-
integration schemes, effects the accuracy and the computational efficiency in
numerical integration of rotations from the given time-dependent angular ve-
locity. We compare three rotation parametrizations, i.e. the rotational vector,
see, e.g. [3,7,22,34,38], the tangential vector introduced by Argyris [2] and
the rotational quaternion [40], and three different numerical time-integration
schemes, namely, two alternative midpoint rules (one from [33], while the other
appears to be new) and the classical fifth-order Runge-Kutta method.

The key result is the assessment of the integration errors of the above listed
parametrization–integration method combinations. In analyzing the errors, we
define the time-dependent function corresponding to a rotational vector, and
determine the related exact time-dependent angular velocity function. This
one is then employed as the angular velocity in the numerical solution. The
resulting numerically integrated approximate rotations are finally compared
with the analytical solution. Three characteristic types of angular velocity
functions are studied: (i) the angular velocity, representing small rotations in
a relatively long time interval; (ii) the angular velocity, representing moderate,
yet well oscillating rotations; and (iii) the angular velocity is such that the
rotations are both large and highly oscillating.

In the rotation matrix error analysis, the drift, skew and scale errors are often

2

employed as the local error measures [23,26]. Although these error measures
carry on some more physical or geometrical meaning, the large number of scalar
components that need to be compared makes these measures less appropriate
for assessing the global error. Therefore we choose the L2 function norms of
the rotational vector components as an appropriate mathematical norm that
measures the solution deviations globally.

2 Rotation and angular velocity

From the mathematical point of view the rotation is a unitary operator R :
IR3 → IR3 on the (Hilbert) vector space IR3 whose action R :

⇀
a �→ R

⇀
a can be

written as
⇀
a1 = R

⇀
a (1)

and RR∗ = R∗R = I, for R∗ being the Hilbert space adjoint of R [31, p. 312].
The properties of the rotation operator are well described in, e.g. [2,3,12].

If rotation R changes with time t, we denote it by R (t). The compositum of
the derivative of rotation with respect to time t and the adjoint operator R∗

defines the skew-hermitian angular velocity operator

Ω =
·
RR∗ = −Ω∗. (2)

This operator plays a fundamental role in dynamics of deformable and rigid
bodies. When Ω (t) is a given function of time, Eq. (2) represents the differential
equation for the rotation in terms of the angular velocity. Our objective here
is to integrate Eq. (2) for R (t) numerically.

Remark 1 The same differential equation is encountered not only in dynam-
ics, but also in statics of spatial beams. There, the role of Ω is played by the
skew-hermitian curvature operator K dependent on the arc-length of the beam,
s. When the curvature is the basic unknown of the beam formulation, as in
Zupan and Saje [38,39], rotation R (s) has to be determined from K = R′R∗

with K (s) being a given function of s.

It is convenient to introduce a spatial coordinate system consisting of a fixed
but otherwise arbitrary reference point O, and a fixed orthonormal basis Bg =(
⇀
g 1,

⇀
g 2,

⇀
g 3

)
. Then the operators R, R∗ and Ω can be represented by the com-

ponents of the rotation matrix R, its transposed matrix RT and the angular
velocity matrix Ωg, respectively. The rotation matrix is a proper orthogonal
matrix RRT = RTR = I with detR = +1, and Ωg is a skew-symmetric

3

matrix

Ωg = S (ωg) =

⎡⎢⎢⎢⎢⎢⎣
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤⎥⎥⎥⎥⎥⎦ = −ΩT
g . (3)

The components of the matrix Ωg are expressed with the components of the

axial vector
⇀
ω, ωg =

[
ω1 ω2 ω3

]T
, of the operator Ω. In kinematics the axial

vector
⇀
ω is known as the angular velocity vector.

Rotation R (t) maps the fixed basis into another orthonormal vector basis

BG =
(
⇀

G1 (t) ,
⇀

G2 (t) ,
⇀

G3 (t)
)
, usually attached to the centroid of a moving

body, and is therefore called the body basis :
⇀

Gi (t) = R (t)
⇀
g i.

The angular velocity matrix can be expressed in either of the two bases as

Ωg =
·
RgR

T , (4)

ΩG=RT
·
RG. (5)

Here, the indices [...]g and [...]G stand for the fixed and the body basis, re-
spectively. Note that the components of the matrix R are identical in the two
frames, i.e. Rg = RG. That is why the indices are omitted.

3 Parametrization of rotations

The rotation is fully described by the 3×3 proper orthogonal matrixR. Such an
orthogonal matrix is uniquely represented by three independent scalar parame-
ters, yet it is not singularity free nor bijective. There exists several parametriza-
tions based on three or more scalars. Here we discuss only the parametrizations
by the rotational vector, the tangential vector and the rotational quaternion.
The common ground of these three parametrizations is the notion of the rota-
tion as a movement of a rigid body by an angle ϑ about the axis of rotation,
specified by a unit vector

⇀
n.

3.1 Rotational vector

The rotational vector,
⇀

ϑ, is widely used in finite-element formulations of geo-
metrically exact three-dimensional beam and shell theories ([9,20,38,34], and

4

many others). The length of the rotational vector, ϑ =

∣∣∣∣⇀ϑ∣∣∣∣, equals to the angle

of rotation about the unit vector,
⇀
n, establishing its direction,

⇀

ϑ = ϑ
⇀
n. Let

ϑg denote the one-column matrix of
⇀

ϑ with respect to the fixed basis. When
the rotation matrix is represented by the rotational vector, it takes the form

R (ϑg) = I +
sinϑ

ϑ
Θg +

1− cosϑ

ϑ2
Θ2

g, (6)

attributed to Rodrigues. Skew-symmetric matrix Θg is composed from the
components of the rotational vector as S (ϑg) described in Eq. (3). Hence, ϑg

is the axial vector of Θg.

When R (ϑg) is inserted into Eq. (4), we obtain Eq. (2) expressed in terms of
the rotational vector with respect to the fixed basis:

·
ϑg = T

−1 (ϑg)ωg, (7)

where

T−1 (ϑg) = I − 1

2
Θg +

1

ϑ2

(
1− ϑ

2 tan ϑ
2

)
Θ2

g (8)

is the inverse of the matrix operator T g = T (ϑg) = I+
1−cos ϑ

ϑ2 Θg+
ϑ−sinϑ

ϑ3 Θ2
g.

The differential equation (7) has a singularity problems at ϑ = 2kπ, k ∈ ZZ\{0},
because 2kπ

tan kπ
and 1

2kπ·tan kπ
tend to infinity. At these critical points the solution

of the equation still exists as the modified form of the same equation, ωg =

T (ϑg)
·
ϑg, has only one removable singularity at ϑ = 0, due to lim

ϑ→0

1−cos ϑ
ϑ2 = 1

2

and lim
ϑ→0

ϑ−sinϑ
ϑ3 = 1

6
. We can still expect numerical problems whenever angle of

rotation ϑ approaches the values 2kπ, k ∈ ZZ\{0}.

3.2 Tangential vector

Parametrization of rotation by the tangential vector
⇀

ψ = tan ϑ
2

⇀
n was suggested

by Argyris [2]. The vector
⇀

ψ has the norm
∣∣∣∣⇀ψ∣∣∣∣ = ψ = tan ϑ

2
and the direction

⇀
n.

Note that ψ tends to infinity for ϑ = π+2kπ, k ∈ ZZ. Therefore the tangential
vector can be used for parametrization of rotation only for the angles ϑ between
two consecutive values π + 2kπ and π + 2 (k + 1)π. Let ψg denote the one-

column matrix representation of
⇀

ψ with respect to the fixed basis. The related
rotation matrix is derived by the help of Eq. (6) and reads

A
(
ψg

)
= I +

2

1 + ψ2

(
Ψg +Ψ2

g

)
, (9)

5

Table 1

Formulae for calculating ψ,
·
ψ, q̂ and

·
q̂ from ϑ.

ϑ =
√
ϑ21 + ϑ22 + ϑ23 n = ϑ

ϑ

·
ϑ =

·
ϑ·ϑ
ϑ

·
n =

·
ϑ
ϑ − ϑ

·
ϑ

ϑ2

ψ = tan ϑ
2n

·
ψ =

·
ϑ

cos2 ϑ
2

n+ tan ϑ
2

·
n

q̂ =

⎡⎣ cos ϑ
2

n sin ϑ
2

⎤⎦ ·
q̂ =

⎡⎣ −
·
ϑ
2 sin

ϑ
2

·
n sin ϑ

2 + n
·
ϑ
2 cos

ϑ
2

⎤⎦
where Ψg = S

(
ψg

)
is a skew-symmetric matrix whose axial vector is ψg. It

is composed from the components of the axial vector as described in Eq. (3).

Inserting Eq. (9) and its time derivative into Eq. (4) gives the differential
equation (2) in terms of the tangential vector as

·
ψg = U

−1
(
ψg

)
ωg, (10)

U−1
(
ψg

)
=

1 + ψ2

2
I +

1

2

(
−Ψg +Ψ2

g

)
. (11)

As described above the solution ψ can be computed only for angles in range
ϑ ∈ (π + 2kπ, π + 2 (k + 1)π), for some k ∈ ZZ. Note that the computation of
the matrices Ag and U

−1
g does not require evaluating trigonometric functions,

which somewhat speeds up the computations.

In the numerical implementation, we need formulae to compute ψg and
·
ψg

from a given rotational vector. They are displayed in Table 1.

3.3 Rotational quaternion

Quaternions have been recently often discussed in relation with the struc-
tural mechanics and classical dynamics of rigid and deformable bodies, see
e.g. [17,27,29,32,40]. Therefore only fundamentals need to be presented here.
Systematic descriptions can be found in mathematical textbooks [28] or [37].
Quaternion can be defined as a formal sum of a scalar and a vector: â = a0+

⇀
a .

For arbitrary quaternions â = a0 +
⇀
a and b̂ = b0 +

⇀

b (a0, b0 ∈ IR,
⇀
a,

⇀

b ∈ IR3),
and a scalar λ ∈ IR, the following operations are defined :

i. sum: â+ b̂ := (a0 + b0) +
(
⇀
a +

⇀

b
)
,

ii. multiplication by a scalar: λâ := λa0 + λ
⇀
a ,

iii. quaternion multiplication: â◦b̂ :=
(
a0b0 − ⇀

a · ⇀b
)
+
(
b0

⇀
a + a0

⇀

b +
⇀
a × ⇀

b
)
.

6

These operations make the set of quaternions IH an algebra. The quaternion
multiplication (iii) is not a commutative operation as it contains the cross-
vector product. Note that set IH including only the first two of the above
operations is also a four-dimensional linear space over IR and is thus isomorphic
to a linear space IR4.

We furthermore define the quaternion â∗ = a0 − ⇀
a conjugated to â, with a

property
(
â ◦ b̂

)∗
= b̂∗ ◦ â∗. The quaternion norm is defined as |â| = √

â ◦ â∗ =√
a20 +

∣∣∣⇀a ∣∣∣2. If, for a quaternion â, it holds â = −â∗, then it must be of the form

â = 0+
⇀
a , and is called a pure quaternion. Such a quaternion can be uniquely

identified with its vector part and the linear spaces of pure quaternions and
IR3 are isomorphic. Any quaternion â = a0 +

⇀
a can also be written in an al-

ternative polar form â = |â|
(
cos θ +

⇀
an sin θ

)
, where

⇀
an =

⇀
a∣∣∣⇀a ∣∣∣ is a unit vector;

angle θ can be extracted from the quaternion using cos θ = a0|̂a| and sin θ =

∣∣∣⇀a ∣∣∣
|̂a| .

In order to present quaternions as members of the linear space in the compo-
nential form, we have to introduce a basis. Instead of choosing an arbitrary
orthonormal basis of the four dimensional vector space, we rather expand the
previously chosen bases of the three-dimensional linear space; elements of bases

Bg and BG are extended into pure quaternions ĝi = 0 +
⇀
g i, and Ĝi = 0 +

⇀

Gi

and the fourth base quaternion is added as ĝ0 = Ĝ0 = 1+
⇀
0. This construction

clearly results in an orthonormal basis of the 4-dimensional quaternion space.
Then any quaternion can be represented with respect to either the fixed or

the body basis, represented as a one-column matrices âg =
[
ag0 ag1 ag2 ag3

]T
and âG =

[
aG0 aG1 aG2 aG3

]T
, respectively.

Now we discuss a unit quaternion. Assume that q̂ = q0+
⇀
q is a unit quaternion,

|q̂| = 1, with the polar representation being q̂ = cosϑ +
⇀
n sinϑ. Then we

introduce two linear transformations, defined alternatively by the left and the
right multiplication:

φL (q̂) : x̂ �−→ q̂ ◦ x̂ (12)

φR (q̂) : x̂ �−→ x̂ ◦ q̂. (13)

7

The transformations φL (q̂) and φR (q̂) are represented in the matrix notation
spanned by the fixed basis:

φL (q̂) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0 −q1 −q2 −q3
q1 q0 −q3 q2

q2 q3 q0 −q1
q3 −q2 q1 q0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
φR (q̂) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0 −q1 −q2 −q3
q1 q0 q3 −q2
q2 −q3 q0 q1

q3 q2 −q1 q0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

It is easy to show that the above matrices fulfil the following relations:

detφL (q̂) = 1 φL (q̂)φL (q̂)
T = φL (q̂)

T φL (q̂) = I (15)

detφR (q̂) = 1 φR (q̂)φR (q̂)T = φR (q̂)T φR (q̂) = I. (16)

Any 4× 4 matrix satisfying properties listed in Eqs. (15) or (16) is an element
of the special orthogonal group SO (4). Therefore the operators defined in Eqs.
(12) and (13) are both rotations in IR4 and both rotate by angle ϑ [37].

Rotating a pure quaternion by only φL (q̂) or φR (q̂) does not result in a pure
quaternion. A compositum does, however; i.e. if â is a pure quaternion, then

â1 = φL (q̂)φR (q̂∗) â = q̂ ◦ â ◦ q̂∗

is also a pure quaternion. Because φL (q̂) and φR (q̂∗) each rotates by the same
angle, their compositum, φL (q̂)φR (q̂∗), results in the double angle rotation.
Thus the subsequent application of the unit quaternion

q̂ = cos
ϑ

2
+

⇀
n sin

ϑ

2
(17)

on an arbitrary pure quaternion â = 0 +
⇀
a

â1 = q̂ ◦ â ◦ q̂∗ (18)

results in a pure quaternion â1 = 0 +
⇀
a1 rotated by the angle ϑ. q̂ in (17) is

called the rotational quaternion, ϑ is the full angle of rotation and
⇀
n is the

unit vector specifying the axis of rotation.

The double quaternion product on â in Eq. (18) can be replaced by the action
of the matrix Q (q̂) = φL (q̂)φR (q̂∗) on â. In terms of parameter q̂, this 4× 4
rotation matrix reads

Q (q̂) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 2q20 + 2q21 − 1 2q1q2 − 2q0q3 2q0q2 + 2q1q3

0 2q1q2 + 2q0q3 2q20 + 2q22 − 1 −2q0q1 + 2q2q3

0 −2q0q2 + 2q1q3 2q0q1 + 2q2q3 2q20 + 2q23 − 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

8

Note that its 3×3 submatrix is identical to the rotation matrix R. For further
details see [37] or [40].

In terms of quaternions, the rotation–angular velocity differential equation (2)
takes the form [37]

ω̂g = 2
·
q̂ ◦ q̂∗, or (19)

ω̂G = 2q̂∗ ◦ ·
q̂. (20)

Here the quaternion ω̂ is a pure quaternion ω̂ = 0 + ω and ω is the angular
velocity vector.

The formulae for the computation of q̂ and
·
q̂ from the given rotational vector

are displayed in Table 1.

4 Solution algorithms

Eq. (2) represents the system of the first-order differential equations in time.
In structural mechanics it is common to use a midpoint-rule type of time
integrators or a version of the Newmark algorithms, see, e.g. [20,30,33,34,35],
while the Runge-Kutta methods are used only occasionally [7,8].

In discussing the accuracy and efficiency of the time-integration scheme as
a function of the rotation parametrization, we will limit our analysis to the
following time-integration schemes:

(1) The midpoint rule proposed by Simo, Tarnow and Doblare [33], where
the averaged rotation matrix in the time step is used; this scheme will be
referred to as ‘MP-R’.

(2) The midpoint rule with the averaged quaternion parameter, here marked
by ‘MP-q’.

(3) The explicit fifth-order Runge-Kutta method ode45 as implemented in
the commercial program Matlab [25].

The first and the third of the above integration methods are well known. The
MP-R method was first presented by Simo et al. [33] and later on used in the
analysis of the spatial beam structures by several other authors, e.g. [19,21].
The ode45 method is one of the most often used explicit integration methods
implemented in the Matlab environment.

9

4.1 MP-R

We assume that the rotation matrixR (tn) is parametrized by ϑ (tn) and given
at time tn. To obtain the rotation matrix at time tn+1, we require that Eq. (5)
is satisfied at mid-time tm = tn+tn+1

2
. Following Simo et al. [33] the midpoint

values of Rm, Ωm and
·
Rm are evaluated by the midpoint rule as:

Rm =
R (ϑ (tn+1)) +R (ϑ (tn))

2
,

·
Rm =

R (ϑ (tn+1))−R (ϑ (tn))

dt
, (21)

Ωm=
ΩG (tn+1) +ΩG (tn)

2
.

dt = tn+1−tn is the given time increment. HereR is assumed to be parametrized
by ϑ, yet formally equal expressions hold, if R were parametrized by ψ or q̂.
By inserting (21) into (5) we get the algebraic equation

R (ϑ (tn+1))−R (ϑ (tn))

dt
=

(
R (ϑ (tn)) +R (ϑ (tn+1))

2

)(
ΩG (tn) +ΩG (tn+1)

2

)

with the exact solution for R (ϑ (tn+1)) being

R (ϑ (tn+1)) = R (ϑ (tn))

(
I +

dt

2
Ωm

)(
I − dt

2
Ωm

)−1

.

Here (see [33])(
I +

dt

2
Ωm

)(
I − dt

2
Ωm

)−1

= I +
2

1 + 1
2
‖dtωm‖2

(
dt

2
Ωm +

(dt)2

4
Ω2

m

)
.

(22)
After R (ϑ (tn+1)) has been obtained, ϑ (tn+1) is extracted from R (ϑ (tn+1))
by Spurrier’s algorithm [36]. Although the rotation matrix Rm is approxi-
mated by the average value of R (ϑ (tn+1)) and R (ϑ (tn)), and is therefore not
orthogonal, the rotation matrix R at new time tn+1 fulfils the orthogonality
condition.

The rules (21)–(22) are also applied for parameter
⇀

ψ, only that R (ϑ (t)) is
replaced with A (ψ (t)). Similarly, if we use parameter q̂, R (ϑ (t)) is replaced
with the 3×3 submatrix of Q (q̂ (t)). Hence, these schemes are algorithmically
equivalent, yet in numerical calculations, they can behave differently.

Remark 2 The midpoint values of the rotation matrix may, alternatively, be

computed from the average values of parameters
⇀

ϑ and
⇀

ψ. Such a proposi-

10

tion would result in a different midpoint rotation matrix, yielding non-linear
algebraic equations which cannot be solved in a closed analytical form.

The midpoint method is a generalizated Euler method and gives the second-
order accurate solution. The method has a local truncation error O (dt3) [10].

4.2 MP-q

As pointed out above, the midpoint rule that employs averaged parameters
⇀

ϑ or
⇀

ψ, results in the non-linear algebraic equations which must be solved
iteratively. In contrast, such an alternative midpoint rule when applied in the
quaternion equation (19) yields linear algebraic equations and is, thus, a com-

putationally efficient numerical scheme. The midpoint values of q̂, ω and
·
q̂ are

evaluated as

q̂m =
q̂ (tn+1) + q̂ (tn)

2
,

ωm=
ωG (tn+1) + ωG (tn)

2
, (23)

·
q̂m =

q̂ (tn+1)− q̂ (tn)
dt

.

Consequently, the midpoint angular velocity quaternion is ω̂m =

⎡⎢⎣ 0

ωm

⎤⎥⎦. Mul-

tiplying Eq. (20) by 1
2
q̂ gives

·
q̂ =

1

2
ω̂G ◦ q̂. (24)

Eq. (24) is required to be satisfied at time tm. After inserting Eq. (23) into Eq.
(24), we obtain the system of linear equations for q̂ (tn+1)

q̂ (tn+1)− q̂ (tn)
dt

=
1

2

ω̂G (tn+1) + ω̂G (tn)

2
◦ q̂ (tn+1) + q̂ (tn)

2
,

which is conveniently written in the matrix form

q̂ (tn+1) = A b̂, (25)

where

11

A=
4 dt2

16 + dt2 |ωm|2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
dt

−ωm1 −ωm2 −ωm3

ωm1
4
dt

−ωm3 ωm2

ωm2 ωm3
4
dt

−ωm1

ωm3 −ωm2 ωm1
4
dt

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ IR4,4

b̂=

⎡⎢⎣ 1
dt
q0 (tn)− 1

4
q (tn) · ωm

1
dt
q (tn) +

1
4
(q0 (tn)ωm + ωm × q (tn))

⎤⎥⎦ ∈ IR4,1

and ωm = [ωm1, ωm2, ωm3]
T . Thus q̂ (tn+1) can be obtained directly from the

given q̂ (tn), ωG (tn), ωG (tn+1), and dt by operating a matrix on a vector. Note
that q̂ (tn+1) obtained from Eq. (25) is not the rotational quaternion. Finally,
the computed q̂ (tn+1) is normed to reduce the scale and the screw errors of
rotation [26].

The matrix A has the following properties: (i) it is a normal matrix, AAT =
ATA; (ii) its determinant is positive

detA =
256dt4(

16 + dt2 |ωm|2
)2 > 0;

it has double conjugated eigenvalues

λ1,2,3,4 =
4 dt

(
4− dt

√
− |ωm|2

)
16 + dt2 |ωm|2

whose absolute values are equal to 4 dt√
16+dt2|ωm|2

< dt. Therefore the method

is stable for dt ≤ 1, see [4, pp 806–808]. It has to be pointed out that this
integration method does not require the evaluation of a rotation matrix at any
time.

4.3 Runge-Kutta methods

The Runge-Kutta methods are widely used and often implemented in com-
mercial computer programs. The methods are well documented in standard
textbooks of numerical analysis (e.g. [14] and [16]).

A typical Runge-Kutta method assumes the solution of the differential equa-

12

tion
·
y (t) = f (t, y (t)) at time tn+1 in the form

y (tn+1) = y (tn) +
s∑

i=1

γiki with ki = dt f

⎛⎝tn + dt αi, y (tn) +
i∑

j=1

βijkj

⎞⎠ ,
(26)

where s is the number of stages of the method, dt = tn+1 − tn is the time
step, and coefficients αi, βij, γi specify the particular method. The order of
the method is derived from the comparison between the approximation (26)
and the exact Taylor series expansion.

In what follows we will employ a time-step adapting fifth-order explicit Runge-
Kutta method ode45, implemented in the commercial program Matlab [25].
It is a seven-stage explicit Runge-Kutta formula-based routine suitable for
exact integration, see Dormand and Prince [13], which stems from the work of
Fehlberg. The details on Fehlberg’s approach can be found in [10]. The Butcher
array of the method reads [13]:

0

1/5 1/5

3/10 3/40 9/40

4/5 44/45 −56/15 32/9

8/9 19372/6561 −25360/2187 −212/729

1 9017/3168 −355/33 46732/5247 49/176 −5103/18656

1 35/384 0 500/1113 125/192 −2187/6784 11/84

5179/57600 0 7571/16695 393/640 −92097/339200 187/2100 1/40

35/384 0 500/1113 125/192 −2187/6784 11/84 0

.

The last two lines give the fourth-order and the fifth-order accurate solution.
The method was constructed such to provide the minimal local truncation error
of the fifth-order solution O (dt6), while the difference between the fourth and
the fifth-order solutions is sufficiently large to enable the step-size control. The
Matlab environment enables the error control for both the absolute and the
relative local errors, which adapts the time step accordingly.

The method can easily be applied for the solution of Eq. (2) in conjunction
with any of the three parametrizations, employing Eqs. (7), (10) and (19),
respectively. For the sake of brevity of notation, we will indicate the choice of
the parametrization as ode45 (ϑ), ode45 (ψ), and ode45 (q).

13

5 Numerical tests

The tests of accuracy, stability and efficiency of the above described numer-
ical methods when combined with different parametrizations of rotations are
performed for characteristic numerical examples. The first example presents
a small planar rotation in a relatively large time interval. The second exam-
ple includes moderate rotations with oscillations of different amplitudes and
frequencies. The third example includes unlimited highly oscillating spatial
rotations.

All computations have been performed in the Matlab 7.8 environment on the
PC with Intel Core2 processor which runs at 2.66GHz.

5.1 Comparison measures

Firstly we introduce some further notations and the comparison measures
needed for the assessment of the methods.

Notations.

• Exact rotational vector.
We choose analytical functions for the components of the rotational vec-
tor ϑ (t)= [ϑ1 (t) , ϑ2 (t) , ϑ3 (t)] and compute a N × 3 matrix [ϑ (ti)]ti∈T =
[ϑ1 (ti) ,ϑ2 (ti) ,ϑ3 (ti)]ti∈T consisting of the values of ϑ (t) at chosen times
ti ∈ T . Using Eq. (2) and ϑ (t) we derive the N×3 matrix of angular velocity
vectors [ω (ti)]ti∈T = [ω1 (ti) ,ω2 (ti) ,ω3 (ti)]ti∈T . These functions and their
point values will be termed exact functions and exact values. Because the
computed results of the rotational vector are saw-toothed (constrained to an

interval
[
−π

2
, 3π

2

]
, see Sec. 5.4), the constrained exact rotational vector values

are also computed for comparisons and are denoted by
[
ϑ (ti)

]
ti∈T

. They are

obtained from [ϑ (ti)]ti∈T by first calculating the rotation matrix from the

Rodrigues formula (6) and then extracting ϑ by the Spurrier algorithm [36].
This algorithm is computationally stable and does not introduce the error
bigger than the round-off error of the computer.

• Exact tangential vector and quaternion.
Exact tangential vector and rotational quaternion are computed directly
from the exact components of the rotational vector using the formulae from
Table 1.

• Computed (approximate) rotational vectors and quaternions.
Computed results of the rotational quantities carry exact notations of the
particular parametrization, ϑ, ψ, or q, and method, MP − R, MP − q, or

14

ode45.

Comparison measures. The results of the numerical solution are given as
a discrete set of values at time-points in interval [0, tN]. A small translation
with respect to time in the case of a highly increasing solution can represent
a relatively small error of the solution on the whole, and the introduced error
measure should be able to consider such an error properly. This is achieved by
introducing the global L2 function norm [31]

‖f‖2 =
√∫ b

a
|f |2 dx.

Function |f |2 must be integrable on the interval [a, b], i.e. f ∈ L2 ([a, b]). The
L2 norm of the difference between the two functions f, g ∈ L2 ([a, b]) is then
given by

‖f − g‖2 =
√∫ b

a
|f − g|2 dx.

For our present objective, which is to discuss the global error of the solution,
the combination of the absolute and the relative L2 norm,

RL2 =
‖f − g‖2

max {1, ‖f‖2}
,

is found more appropriate. Here, f denotes the exact function and g its approx-
imation. Note that a constant difference between the solution and the exact
function during the time interval induces a linearly increasing RL2 norm. To
make the discrete set of resulting values a square integrable function, we as-
sume the linear interpolation over each time increment and use the trapezoidal
integration rule.

In what follows we will see that the RL2 norm is in some examples limited to
one. This happens only when two conditions are satisfied: (i) the magnitude
of the norm of the analytical solution is larger than one, i.e. max {1, ‖f‖2} =
max ‖f‖2, and (ii) the numerical result g is underestimated so that ‖f − g‖2 ≈
‖f‖2. Hence, when RL2 approaches value one, the results are no longer reliable.

5.2 Example 1: Bounded planar rotation

In our first numerical example, the rotational vector is given by

ϑ (t) =
[
sin2(2t), 0, cos (2t)

]
.

Here the norm of the rotational vector is bounded, |ϑ| = ϑ ≤ 1. Fig. 1 shows
the time variations of the components of the three rotational parametrizations

15

0 2 4 6 8 10
-1

-0.5

0

0.5

1

t

ro
ta

ti
on

al
v
ec

to
r

p
ar

am
et

er

1st component
2nd component
3rd component
norm

0 2 4 6 8 10
-1

-0.5

0

0.5

1

t

A
rg

y
ri

s
ve

ct
or

p
ar

am
et

er

1st component
2nd component
3rd component
norm

0 2 4 6 8 10
-1

-0.5

0

0.5

1

t

q
u
at

er
n
io

n
p
ar

am
et

er

1st component
2nd component
3rd component
4th component

Figure 1. Example 1: Graphs of the exact rotation component functions and vector
norms for different parametrizations.

and related vector norms. The quaternion norm is 1 and is therefore not dis-
played in the figure. We assume a relatively large time interval [0, 100]. We
employ method ode45, and prescribe the local relative error to be less than
10−10. The number of adaptive time steps ranges from 2805 to 3061 for various
parametrizations. The constant time step for midpoint integrators is taken to
be 0.033, resulting in 3031 steps.

The comparisons of the RL2 error norms on the complete time interval for dif-
ferent parametrizations and the associated computational times are presented
in Table 2. Small differences in error between different parametrizations when
ode45 method is applied are due to the different number of time steps. The
rotational vector needs the largest number of time steps to satisfy the local
error demand. The accuracy of the MP-R methods when applied to all three
parametrizations is comparable. The error for the MP-q method is about one
half of the MP-R methods. The most effective methods in terms of the com-
putational time appears to be MP-R(ψ). The growth of the RL2 error norms
with time are displayed in Fig. 2 for the component k = 1, where the errors
appear to be the largest. Note that the RL2 error grows nearly linearly with
time for any method and parametrization, which indicates the nearly constant
spacing between exact and approximative rotation parameters with time.

As observed from Table 2, the computational times and the number of time
steps of the high-order Runge-Kutta ode45 and midpoint methods are very
similar, while the RL2 errors differ substantially. It is found instructive to
compare the midpoint methods to the low-order Runge-Kutta method all hav-
ing a comparable theoretical accuracy. Such a method implemented in Matlab
environment is the 4-stage Bogacki-Shampine 2(3) Runge-Kutta method, de-
noted as ode23, with a little lower turnication error as the midpoint method
[5]. The comparisons are displayed in Table 2, see column ODE23. The local
relative error is taken to be less than 10−4. The results show that ode23 re-
quires about two to three times longer computational time for roughly equal
number of time steps as applied in midpoint methods, but its accuracy is bet-
ter. This can be atributed to the slightly higher order of the method and to

16

Table 2
Example 1: Comparisons of errors, numbers of time steps, and computational times.

method m ODE45 ODE23 MP-R MP-q

parameter α ϑ ψ q ϑ ψ q ϑ ψ q q

time steps 3061 2805 2869 3318 3402 3184 constant: 3031

comp. time [s] 0.86 0.63 0.67 1.95 1.51 1.55 0.78 0.57 0.87 0.90

RL2 [0,m] – – 0.003 – – 0.02 – – 0.05 0.03

RL2 [1,m] 0.004 0.007 0.006 0.01 0.02 0.07 0.4 0.5 0.4 0.2

RL2 [2,m] 0.003 0.003 0.001 0.5 0.1 0.2 0.8 0.9 0.8 0.5

RL2 [3,m] 0.0002 0.005 0.002 0.01 0.01 0.06 0.2 0.2 0.2 0.07

the adaptive time-stepping implemented in ode23.

Figure 2. Example 1: Graphs of the RL2 error of the 1st component of the rota-
tional vector for different parametrizations; left for method ode45, and right for the
midpoint methods.

0 50 100
0

1

2

3

4

5

6

7

8
10- 3

t

R
L

2
[1

,
]

m

m=ode45(�)

m=ode45(�)

m=ode45(q)

0 50 100
0

0.1

0.2

0.3

0.4

0.5

t

R
L

2
[1

,
]

m

m=MP-R(�)

m=MP-R(�)

m=MP-R(q)

m=MP-q

In general, all the above described methods turn out to be appropriate for such
a simple plane rotation. As expected the tangential vector shows the fastest
performance. Among the midpoint rules MP-q seems to be the most accurate.

5.3 Example 2: Oscillating moderate rotation

Here we attempt to solve system (2) for two different rotational vectors, whose
components experience oscillations of very different frequencies and ampli-

17

tudes, both for the planar

ϑ (t) =
[
sin2(2t), 0, sin (t) + 0.08 · cos(100t)

]
, t ∈ [0, 10] (27)

and the three-dimensional case

ϑ (t)=
[
sin2(2t), cos (t) + 0.08 · sin(100t), sin (t) + 0.08 · cos(100t)

]
, t∈[0, 100] .

(28)
The applied time intervals of the solution are [0, 10] and [0, 100], respectively.
Fig. 3 shows how the components and the vector norms change with time for
the rotational vector given in (27). The local relative error in the method ode45
was taken to be equal or less than 10−10.

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

t

ro
ta

ti
on

al
ve

ct
or

p
ar

am
et

er

1st component
2nd component
3rd component
norm

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

t

A
rg

y
ri

s
v
ec

to
r

p
ar

am
et

er

1st component
2nd component
3rd component
norm

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

1

1.5

t

q
u
at

er
n
io

n
p
ar

am
et

er

1st component
2nd component
3rd component
4th component

Figure 3. Example 2, Eq. (27): Graphs of the exact rotation component functions
and vector norms for different parametrizations.

For the integration of Eq. (2) in the time interval [0, 10], the ode45 method
required from 3825 to 4585 time steps depending on the parametrization; a
large number of time steps well indicates that the problem is more demanding.
The time step size varies between 0.00086 and 0.0031. The constant time step
used in the midpoint methods is 0.0025, which corresponds to 4000 time steps.

Table 3
Example 2, Eq. (27): Comparisons of errors, numbers of time steps and computa-
tional times.

method m ODE45 MP-R MP-q

parameter α ϑ ψ q ϑ ψ q q

time steps 4585 4145 3825 constant: 4000

comp. time [s] 1.64 0.91 0.90 0.92 0.63 0.70 0.71

RL2 [0,m] - - 0.0029 - - 0.030 0.029

RL2 [1,m] 0.00005 0.0015 0.0008 0.003 0.023 0.010 0.009

RL2 [2,m] 0.0001 0.00004 0.00006 0.016 0.009 0.009 0.008

RL2 [3,m] 0.009 0.014 0.020 0.242 0.256 0.238 0.234

18

Table 3 shows the comparisons of the resulting accuracy and the computa-
tional times for ϑ (t) from Eq. (27). For the same local accuracy demands,
ode45 method, when combined with rotational quaternion, needs the minimum
number of time steps and results in the fastest performance. Small differences
in global accuracy are due to different numbers of time steps.

The errors of the midpoint methods are roughly at least one order larger than
those of the ode methods, yet very similar for all midpoint methods used. This
is also clearly displayed in Fig. 4, which shows the evolution of the RL2 error
norms with time for the biggest error component. In contrast to Example 1,
the errors of the MP-R(q) and MP-q are nearly equal.

0 5 10
0

0.005

0.01

0.015

0.02

t

R
L

2
[3

]
,m

m=ode45(�)

m=ode45(�)

m=ode45(q)

0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t

R
L

2
[3

]
,m

m=MP-R(�)

m=MP-R(�)

m=MP-R(q)

m=MP-q

Figure 4. Example 2, Eq. (27): Graphs of the RL2 error of the 3rd component of the
rotational vector for different parametrizations; left for method ode45, and right for
the midpoint methods.

Similar conclusions can be stated for the fully spatial example, Eq. (28), in
the long-range analysis (Fig. 5), where about 10-times larger numbers of time
steps are used (48397, 44637 and 41457 for methods ode45 (ϑ), ode45 (ψ) and
ode45 (q), respectively, and 50000 equal time steps for all midpoint rules). We
can again observe a nearly linear RL2 error, which indicates constant spacing
between exact and approximative rotation parameters with time for the ode45
integrators, while for the midpoint integrators RL2, errors are clearly growing
and before t = 50 the errors are of the same order as the result. This clearly
indicates that three-dimensional case of Example 2 is too demanding for the
second-order midpoint integrators.

19

0 50 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t

R
L

2
[3

,
]

m

m=ode45(�)

m=ode45(�)

m=ode45(q)

0 50 100
0

0.2

0.4

0.6

0.8

1

t

R
L

2
[3

,
]

m

m=MP-R(�)

m=MP-R(�)

m=MP-R(q)

m=MP-q

Figure 5. Example 2, Eq. (28): Graphs of the RL2 error norm of the 3rd component
of the rotational vector for different parametrizations; left for method ode45, and
right for the midpoint methods.

5.4 Example 3: large rotation

This example explores the integration of large rotations. The numerical ex-
perimentations show that the crossing of value 2π does not necessarily appear
to be a problem, if the rotational vector parametrization is employed. If, e.g.
ϑ (t) = [0, 0, 100t+ 0.01], and the time interval [0, 10], the angle of rotation ϑ
crosses the multiple of 2π exactly 159 times. Yet solving Eq. (2) presents no
trouble. Note also that the MP-R(ϑ) integrator gives us the restricted results
for the rotational vector (see Fig. 6). Similar conclusions hold for the spatial

a
n
al

y
ti

ca
l
so

lu
ti

on

0

200

400

600

800

1000

1200

0 2 4 6 8 10
t

0 0.2 0.4 0.6 0.8 1-2

-1

0

1

2

3

4

5

t

so
lu

ti
on

b
y

M
P

-R
(

)
�

0 2 4 6 8 10
0

200

400

600

800

1000

1200

t

so
lu

ti
on

b
y

o
d
e4

5(
)

�

Figure 6. The rotational vector component functions for ϑ = [0, 0, 100t + 0.01].

rotation ϑ (t) = [t + 1, 2t, 3t] and the time interval [0, 10]. In this test the angle
of rotation crosses the multiple of 2π five times. In both examples ode45 (ψ)
fails to obtain the solution. The second graph in Fig. 6 indicates that the angles
−π

2
and 3π

2
represents the limits of the restriction interval for the results com-

20

puted by method MP-R(ϑ). These limits are not related to the critical points of
the operator defined in Eq. (8). The restricted results for the rotational vector

are compared to the restricted exact values
[
ϑ (ti)

]
ti∈T

mentioned earlier.

An example in which ode45(ϑ) fails, because the time-step size has to be re-
duced below the smallest value allowed, is (Fig. 7)

ϑ (t) =
[
2 + sin2(2t), t, 5t3 − 4t

]
. (29)

0 2 4 6 8 10

-2

0

2

4

6

8

10

t

ro
ta

ti
on

al
v
ec

to
r

p
ar

am
et

er

1st component
2nd component
3rd component
norm

0 0.5 1 1.5 2
-100

-50

0

50

100

t

A
rg

y
ri

s
ve

ct
or

p
ar

am
et

er

1st component
2nd component
3rd component
norm

0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

t

q
u
at

er
n
io

n
p
ar

am
et

er

1st component
2nd component
3rd component
4th component

Figure 7. Example 3, Eq. (29): Graphs of the exact rotation component functions
and vector norms for different parametrizations.

0 5 10
0

0.2

0.4

0.6

0.8

1

t

R
L

2
[3

,
]

m

m=ode45(�)

m=ode45(�)

m=ode45(q)

0 5 10
0

0.2

0.4

0.6

0.8

1

t

R
L

2
[3

,
]

m

m=MP-R(�)

m=MP-R(�)

m=MP-R(q)

m=MP-q

Figure 8. Example 3, Eq. (29): Graphs of the RL2 error norm of the 3rd component
for different parametrizations; left for method ode45 and right for the midpoint
methods.

The early failure is experienced for vector parametrizations (for the rota-
tional vector parametrization, at t ≈ 1.296609, and for the Argyris vector

21

parametrization, at t ≈ 0.5375769) but not for the quaternion parametriza-
tion. Here the advantage of the quaternion parametrization is its restriction
to unity, as well as the absence of any singularity. The method ode45 (q) re-
quired 45613 time steps on the whole time interval [0, 10] and the time step
size ranges between 2.9 · 10−5 and 0.026. The constant time step used in the
midpoint methods is 0.0002, which corresponds to 50 000 time steps.

Remark 3 The analyses using ode45(ϑ) and ode45(ψ) also fail, if we simplify
the rotational vector by imposing ϑ1 (t) = 0 or ϑ2 (t) = 0 in Eq. (29). If we put
ϑ1 (t) = ϑ2 (t) = 0, only method ode45(ψ) fails, however.

Remark 4 Ibrahimbegović and Mikdad [20] noticed that the direct implemen-
tation of the Newmark scheme on the total rotational vector results in inability
of the method to continue the computation, when the norm of the rotational
vector approaches 2π. This is consistent with the present numerical results,
showing that the computed value for ϑ at the critical time ti = 1.296580... is
6.28265... i.e. 0.999 91... · 2π.

As observed from Fig. 8, only the method ode45 (q) gives sufficiently accurate
results and an economic computational time. None of the midpoint methods is
capable to obtain sufficiently accurate solution in the whole time interval. The
midpoint method when combined with the quaternion parametrization, MP-q,
seems to be most successful, however. Those using the vector parametrization
experience a sudden blow up of the error; for the Argyris vector parametriza-
tion, the blow up occurs roughly at the first critical point, and for the rotational
vector parametrization, around the second critical point. Among all the mid-
point methods, the MP-q method appears to be the most accurate and its
result acceptable for t < 3. When LR2 norm is close to one, results become
completely unreliable.

Regarding the performance of the ode methods near failure, the failure of
ode45 (ϑ) is indicated by a rapid decrease of the time step. This takes place
as soon as the rotational vector norm becomes roughly a 2π-multiple. At an
instant of time, when the rotational vector norm is very close to 2π, a time
step, smaller than the machine precision is needed to satisfy the local error
demand; consequently, the singularity is nearly met and the failure of the
method ode45 (ϑ) cannot be avoided. The reason for a sudden error blow up
of the MP-R(ϑ) method is similar. Here, the time step is constant, but again
rather small, so that there exists a high probability that one of the time steps
will be close enough to induce a near-singularity of the system matrix. Because
we do not control demands for the local error in the MP solvers, the solver
continues with the calculations, yet the results are useless, henceforth.

As we have already mentioned, solvers using the tangential vector parametriza-
tion of rotation are effective only for rotations with angle of rotation lying

22

within the time interval (π + 2kπ, π + 2 (k + 1)π), for some k ∈ ZZ. That is
why the failure of the ode45 (ψ) cannot be avoided, when the norm of the
Argyris tangential vector becomes large resulting in the angle of rotation of
about π+2nπ. The numerical failure of MP-R(ψ) does not appear, but results
are nonetheless useless.

6 Conclusions

The differential equation relating rotation and angular velocity has been nu-
merically integrated for the rotations when the angular velocity is a given
function of time. We have studied the effect of the choice of the parametriza-
tion of rotation, when employed in conjunction with different numerical time-
integration schemes, on the accuracy and the computational efficiency. We
have combined the rotational vector, the tangential vector or the rotational
quaternion with either one of the two alternative midpoint methods or with
the Runge-Kutta method.

By employing various angular velocities, representing small, moderate and
highly oscillating rotations as input, we have found out that the quaternion
parametrization of rotations combined with the newly developed midpoint in-
tegration outperforms in accuracy the classical one developed in [33] at roughly
the same computational demands. We have also found out that the numeri-
cal instability has not emerged with any of the quaternion-based integration
methods if compared to rotational and tangential vector parametrizations.

While in the rotation matrix error analysis, the drift, skew and scale errors
are often employed as the local error measures [23,26], we have here used the
L2 norm of the rotational vector and quaternion components which is a well
defined mathematical norm appropriate as the measure of the global error of
the solution on the whole time interval.

Acknowledgment

This work was supported by the Slovenian Research Agency through the re-
search programme P2-0260. The support is gratefully acknowledged.

23

References

[1] M. S. Ahmed, D. V. Ćuk, Comparison of different computation methods for
strapdown inertial navigation systems, Scientific-Tehnical Review 55 (2005) 22–
29.

[2] J. Argyris, An excursion into large rotations, Comput. Methods Appl. Mech.
Engrg. 32 (1982) 85–155.

[3] S. N. Atluri, A. Cazzani, Rotations in computational solid mechanics, Arch.
Comput. Methods Engrg. 2 (1995) 49–138.

[4] K. J. Bathe, Finite Element Procedures, Prentice-Hall International, Inc., 1996.

[5] P. Bogacki, F. Shampine, A 3(2) pair of Runge-Kutta formulas, Appl. Math.
Letters 2 (1989) 1–9.

[6] J. E. Bortz, A new mathematical formulation for strapdown inertial navigation,
IEEE Transactions on Aerospace and Electronic Systems 7 (1971) 61–66.

[7] C. L. Bottasso, M. Borri, Integrating finite rotations, Comput. Methods Appl.
Mech. Engrg. 58 (1986) 79–116.

[8] C.L. Bottasso, A new look at finite elements in time: a variational interpretation
of Runge-Kutta methods, Appl. Numer. Math. 25 (1997) 355–368.

[9] B. Brank, J. Korelc, A. Ibrahimbegović, Dynamics and time-stepping for elastic
shells undergoing finite rotations, Computers & Structures 81 (2003) 1193–1210.

[10] J.C. Butcher, The numerical analysis of ordinary differential equations: Runge-
Kutta and general linear methods, John Wiley&Sons, Chichester – New York –
Brisbane – Toronto – Singapore, 1987.

[11] S. B. Choe, J. J. Faraway, Modeling head and hand orientation during motion
using quaternions, Society of Automotive Engineers (2004) 1–7.

[12] M. A. Crisfield, Non-linear Finite Element Analysis of Solids and Structures,
Volume 2, Advanced Topics, John Wiley & Sons, Chichester–New York–
Weinheim–Brisbane–Singapore–Toronto, 1997.

[13] J. R. Dormand, P. J. Prince, A family of embedded Runge-Kutta formulae, J.
Comp. Appl. Math. 6 (1980) 19–26.

[14] G. A. Evans, Practical Numerical Analysis, John Wiley&Sons, Chichester – New
York – Brisbane – Toronto – Singapore, 1995.

[15] B. Friendland, Analysis of strapdown navigation using quaternions, IEEE
Transactions on Aerospace and Electronic Systems 14 (1978) 764–768.

[16] C. F. Gerald, P. O. Wheatley, Applied Numerical Analysis: fifth edition,
Addison-Wesley publishing company, 1994.

24

[17] S. Ghosh, D. Roy, Consistent quaternion interpolation for objective finite
element approximation of geometrically exact beam, Comput. Methods Appl.
Mech. Engrg. 198 (2008) 555–571.

[18] A. Ibrahimbegović, On the choice of finite rotation parameters, Comput.
Methods Appl. Mech. Engrg. 149 (1997) 49–71.

[19] A. Ibrahimbegović, S. Mamouri, Energy conserving/decaying implicit time-
stepping scheme for nonlinear dynamics of three-dimensional beams undergoing
finite rotations, Comput. Methods Appl. Mech. Engrg. 191 (2002) 4241–4258.

[20] A. Ibrahimbegović, M. al Mikdad, Finite rotations in dynamics of beams and
implicit time-stepping schemes, Int. J. Numer. Methods Engrg. 41 (1998) 781–
814.

[21] G. Jelenić, M.A. Crisfield, Dynamic analysis of 3D beams with joints in presence
of large rotations, Comput. Methods Appl. Mech. Engrg. 190 (2001) 4195–4230.

[22] G. Jelenić, M. Saje, A kinematically exact space finite strain beam model–finite
element formulation by generalized virtual work principle, Comput. Methods
Appl. Mech. Engrg. 120 (1995) 131–161.

[23] Y. F. Jiang, Y. P. Lin, Error analysis of quaternion transformations, IEEE
Transactions on Aerospace and Electronic Systems 27 (1991) 634–639.

[24] S. M. Johnson, J. R. Williams, B. K. Cook, Quaternion-based rigid body rotation
integration algorithms for use in particle methods, Int. J. Numer. Meth. Engrg.
(2007), doi: 10.1002/nme.2210.

[25] The MathWorks, Inc. MATLAB, Using Matlab, Natick, 1999.

[26] R. E. Mortensen, Strapdown guidance error analysis, IEEE Transaction on
Aerospace and Electronic Systems 10, 451–457, 1974.

[27] W. F. Phillips, C. E. Hailey, G. A. Gebert, A review of attitude kinematics for
aircraft flight simulation, Modeling and Simulation Technologies Conference,
14-17 August 2000, Denver, Colorado.

[28] I. R. Poreous, Clifford Algebras and the Classical Groups, Cambridge University
Press 1995.

[29] I. Romero, The interpolation of rotations and its application to finite element
models of geometrically exact rods, Comput. Mech. 34 (2004) 121–133.

[30] I. Romero, F. Armero, An objective finite element approximation of the
kinematics of geometrically exact rods and its use in the formulation of an
energy-momentum conserving scheme in dynamics, Int. J. Numer. Methods Eng.
54 (2002) 1683–1716.

[31] W. Rudin, Real and Complex Analysis, Third edition, McGraw-Hill Book
Company, 1987.

[32] K. Shoemake, Animating rotation with quaternion curves, ACCM Siggraph. 19
(1985) 245–254.

25

[33] J. C. Simo, N. Tarnow, M. Doblare, Non-linear dynamics of three-dimensional
rods: exact energy and momentum conserving algorithms, Int. J. Numer.
Methods Engng. 38 (1995) 1431–1473.

[34] J. C. Simo, L. Vu-Quoc, On the dynamics in space of rods undergoing large
motions - a geometrically exact aproach, Comput. Methods Appl. Mech. Engrg.
66 (1988) 125–161.

[35] J. C. Simo, K. K. Wong, Uconditionaly stable algorithms for rigid body dynamics
that exactly preserve energy and momentum, Int. J. Numer. Methods Engng. 31
(1991) 19–52.

[36] R. A. Spurrier, Comment on “Singularity-free extraction of a quaternion from
a direction-cosine matrix”, J. Spacecraft 15 (1978) 255.

[37] J. P. Ward, Quaternions and Cayley Numbers, Kluwer academic Publishers,
Dordrecht/Boston/London, 1997.

[38] D. Zupan, M. Saje, Finite-element formulation of geometrically exact three-
dimensional beam theories based on interpolation of strain measures, Comput.
Methods Appl. Mech. Engrg. 192 (2003) 5209–5248.

[39] D. Zupan, M. Saje, The three-dimensional beam theory: Finite element
formulation based on curvature, Comput. Struct. 81 (2003) 1875–1888.

[40] E. Zupan, M. Saje, D. Zupan, The quaternion-based three-dimensional beam
theory, Comput. Methods Appl. Mech. Engrg. 198 (2009) 3944–3956.

26

	NaslAES2011
	ZupanSajeBlack

