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Abstract 

This paper will propose a topology optimization approach for the design of large displacement compliant 

mechanisms with geometrical non-linearity by using the element-free Galerkin (EFG) method. In this 

method, the Shepard function is applied to construct a physically meaningful density approximant, to 

account for its non-negative and range-bounded property. Firstly, in terms of the original nodal density 

field, the Shepard function method functionally similar to a density filter is used to generate a non-local 

nodal density field with enriched smoothness over the design domain. The density of any node can be 

evaluated according to the nodal density variables located inside the influence domain of the interested 

node. Secondly, in the numerical implementation the Shepard function method is again employed to 

construct a point-wise density interpolant. Gauss quadrature is used to calculate the integration of 

background cells numerically, and the artificial densities over all Gauss points can be determined by the 

surrounding nodal densities within the influence domain of the concerned computational point. Finally, 

the moving least squares (MLS) method is applied to construct the shape functions using the weight 

functions with compact support for assembling the meshless approximations of state equations. Since 

MLS shape functions are lack of the Kronecker delta function property, the penalty method is applied to 

enforce the essential boundary conditions. A typical large-deformation compliant mechanism is used as 

the numerical example to demonstrate the effectiveness of the proposed method. 

 

 

 

 

 

 

Keywords: Topology optimization; Compliant mechanisms; Shepard function; Meshless method, 

Geometrical non-linearity. 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

3 
 

1. Introduction 

Topology optimization is a numerical approach to determine the best distribution of material within a 

design space under specific loads and boundary conditions, so that the resulting layout can meet a 

prescribed set of performance targets. In the past two decades, as a lately developed approach in structural 

optimization, topology optimization has experienced considerable development with many applications in 

a wide range of engineering disciplines [11]. By now, various schemes have been developed for topology 

optimization of structures, such as the homogenization method [9,21], the solid isotropic material with 

penalization (SIMP) method [53,40,10], the evolutionary structural optimization (ESO) method [51], and 

the level set-based method [45,49,1,34], as well as some improved methods, e.g. the pointwise-density 

interpolation (PDI) method [39,22,27,38]. Topology optimization methods have been applied to a variety 

of applications for structures, materials and mechanisms, e.g. the design of compliant mechanisms. 

 

Unlike the conventional rigid-body mechanisms, which attain mobility from hinges, bearings and sliders, 

compliant mechanisms gain their mobility from relative flexibility of the constituents [24]. The synthesis 

of compliant mechanisms is mainly used to control the ratios between output and input displacements or 

forces, which can be described by geometrical advantage and/or the mechanical advantage. Compared to 

the rigid-body counterparts, compliant mechanisms can be built using fewer parts with less wear, friction, 

noise and backlash, and require less assembly processes. Due to these advantages, compliant mechanisms 

have been widely used in precision control devices and Micro Electro Mechanical Systems (MEMS). 

 

To apply topology optimization in mechanical designs, it is applicable to use linear analysis to find 

structural responses under the assumption of small displacement. But for structures involving large 

displacement or large rotation effect, it is necessary to consider geometrical non-linear analysis in the 

process of topology optimization [15,14,18,43,35,23]. It is also known that many parameters of materials 

may be subject to non-linearity. However in the design of compliant mechanisms the geometrical non-

linearity is more important than material non-linearity [43]. Hence, in regards to topology optimization 

http://en.wikipedia.org/wiki/Boundary_conditions
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for practical compliant mechanisms, it is important to include geometrical non-linearity in the process of 

numerical analysis [47,48,43,35]. For instance, Sigmund [47,48] investigated topology optimization of 

multiphysics compliant actuators with large deformation for single material, and multi-material structures. 

Pedersen et al. [43] developed a topology optimization method for the design of large-displacement 

compliant mechanisms for path-generating. Luo and Tong [35] proposed a parameteric level set method 

for topological shape design of compliant mechanisms with geometrical non-linearity. 

 

It is noted that the numerical process of most works for topology optimization of large deformation 

compliant mechanisms are often based on the standard finite element method (FEM) [43,47,48], which 

relies on meshes or elements that are connected together by meshes in a properly predefined manner. It is 

noted that the accuracy of numerical solution may be degraded seriously due to mesh distortion for the 

analysis of large deformation of compliant mechanisms. In this case, the standard FEM will experience 

difficulties in treating discontinuity caused by the inconsistence of mesh grids [8]. 

 

To overcome this limitation of the standard FEM, several alternative methods have been developed to 

perform numerical analysis for topology optimization problems, without having to keep the connectivity 

of structured elements. To this end, some researchers have tried to apply meshless methods to topology 

optimization problems, only in terms of a set of arbitrarily scattered field nodes rather than structured 

meshes. The meshless or meshfree methods are relatively simple but able to provide sufficient numerical 

accuracy yet stability for certain classes of problems [7,3,31]. The typical meshless methods include the 

smooth particle hydrodynamic method (SPH) [19], the reproducing kernel particle method (RKPM) [32], 

the hp-clouds (HP) method [17], the partition of unity method (PUM) [4], the element-free Galerkin 

(EFG) method [6], the meshless local Petrov-Galerkin (MLPG) method [2], and the point interpolation 

method (PIM) [30,20]. In particular, the EFG method [e.g. 6] with weak forms has received great 

popularity in a range of areas including topology optimization of structures, due to its good numerical 

stability and accuracy for problems of computational solids mechanics. In EFG methods, the MLS 

approximation is usually used to construct the meshless shape functions, and the Galerkin technique of 
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weak-forms is employed to discretise the state equation. This method is “meshless” in terms of the 

interpolation of design variables. However, the background cells independent of field nodes are required 

to integrate a weak form over the problem domain. Furthermore, the MLS approximation is required to be 

enforced to satisfy the Kronecker delta function property. One attractive feature of MLS methods is that 

its continuity can be inherited from the continuity of the selected weight function. 

 

The meshless methods have been applied to topology optimization problems to simulate the large 

deformation effect of structures [15,29,16,23]. However, having respect to topology optimization of large 

displacement compliant mechanisms, the number of research works is relatively small. For example, Du 

et al. [16] applied the EFG method to implement the geometrical nonlinear thermo-mechanical compliant 

mechanisms and showed that the meshless method can overcome the convergent difficulty in standard 

FEM. Luo et al. [36] introduced the meshless Galerkin method into the level set approach to develop a 

topological optimization method, which is further applied to multiphysics compliant actuators involving 

large deformation effect [37]. More recently, He et al. [23] applied PIM [30,20] to topology optimization 

problems for the design of structures and compliant mechanisms involving geometrical nonlinearity. 

 

Since the meshless method is more capable of modelling the large displacement effect of the geometrical 

non-linearity [15,18,43], this paper attempts to propose a meshless topology optimization method for 

micro complaint mechanisms based on the EFG method. In this method, the point-wise densities which 

are considered as design variables are uniformly described based on a set of scattered field nodes inside 

the design domain. Firstly, in terms of the original set of meshless density field, the Shepard function 

method functioned as a density filter is applied to generate a non-local nodal density field with enriched 

smoothness over the design domain. Secondly, instead of using the MLS approximants to formulate both 

the shape function and approximate densities over the computational points, the Shepard function method 

is also employed to approximate the densities on the computational points, while MLS approximants is 

used to formulate the trial function. Since the Shepard function method possesses non-negative and range-

bounded property, it can ensure a physically meaningful approximation of topology optimization design. 
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Finally, the MLS-shape function together with the Galerkin global weak-form is applied to develop the 

meshless approximation for the displacement field. Since the shape function using the MLS approximants 

does not satisfy the Kronecker Delta criterion [6,7], a penalty method is used to enforce the essential 

boundary conditions. To simulate large-displacements of compliant mechanisms, the output displacement 

maximization has been used as an objective function in this study. 

2. Nodal Density-based Approximation Scheme 

Shepard function method is a method for multivariate interpolations of scattered data, which can assign 

values to unknown points by using values from the scattered set of known points. In this study, the 

Shepard function is employed to construct a non-local pointwise density-based approximant, based on the 

concept of elemental SIMP [11]. SIMP has received much popularity due to its implementation easiness 

and conceptual simplicity, which has been widely used to relax the discrete topology optimization 

problem by allowing the design variables taking intermediate densities from 0 and 1. 

 

The Shepard function satisfies the zero order completeness for representing constant function and 

possesses the properties of non-negative and range-bounded, which are the fundamental requirements for 

topology optimization. Thus, a family of Shepard function is firstly used as a non-local approximant to 

construct a density field with global smoothness over the design space. Secondly, it is applied to 

interpolate the point-wise densities of computational points inside the design domain. 

2.1 Shepard function 

Let H( 1,2,... n )i i   denote a set of non-negative data values at the associated sampling points 

 (= , )i i ix X Y  within the support radius r of an arbitrary point x . ( , )i iX Y defines the i th point location in 

the given Cartesian coordinate system. The approximation of the Shepard function method is stated as 

    
Hn

1

  


 i i

i

x x  (1) 

where Hn is the number of the nodes within the influence domain of current point x . The Shepard 

function  i x  is expressed as a normalized formulation, which is given by 
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  
 

 Hn

j 1

ω
 

ω








i i

i

j j

x x
x

x x
 (2) 

where  ω i ix x
 
is the weight function, which is zero outside the domain of influential support, and 

decays with the distance from the interest point. In this study, when the Shepard function is used as the 

nodal density approximant [28,26,27], the weight function can be chosen as 

  
 

2

3
ω max 0,1   

π

 
   

 

i

i i

D x
x x

r r
 (3) 

where      
2 2

i i i iD x x x X X Y Y      . It is noted that the Shepard function  i x  possesses the 

following properties: (1)  
Hn

1

1


 i

i

x ; (2)  1 0i x  . 

2.2 Non-local Nodal Density Approximation using Shepard function 

It is apparent that the Shepard function has a mechanism similar to the smoothing effect of the density 

filtering schemes [12,33]. Meanwhile, the approximated values via the Shepard function are bounded 

between lower and upper values of the sampling points. This is the essential property for ensuring a 

physically meaningful density field approximant in topology optimization. The Shepard function is 

originally defined as a global interpolation. To improve its computational efficiency while maintain a 

reasonable accuracy, this study approximates the density at any field node in terms of the density 

variables of those field nodes located within a compact influence domain “r”, as shown in Fig. 1(a).  

 

With the Shepard function method, any density variable for a meshless field node can be calculated as 

  
Hn

1

( )  


 i i

i

x x  (4) 

where the nodal density variable ( ) x  can be obtained by searching the total number of surrounding 

nodal variables i  within the influence domain of the node x , and ( ) x  is density at the concerned field 

node to be approximated by the Shepard function. Hn is the number of nodes within the influence domain.  
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This weight function is a radially linear „hat‟ function defined by [12]. It means that only nearby points 

are considered in computing any approximated value. It is straightforward that the Shepard function can 

meet the following necessary conditions to ensure a physically meaningful density approximant in 

topology optimization of continuum structures: (1) 0 ( ) 1 x ; (2) ( ) 0  
i

x . 

 

With the density field approximant, the Young‟s modulus at the meshless field node x  can be defined by 

  
Hn

0 0

1

( ) ( )  


 
   

 
 i i

p

p

i

E x x E Ex  (5) 

where 0E  represents the full-solid state material property. The design variable i  acts as the intrinsic 

nodal density allowing intermediate values between 0 and 1. The influence domain of the density 

interpolation is used to identify the design variable points influencing the density value of each 

computational point. It has been shown by [26] that the influence domain size used in the Shepard 

function-based density interpolation has a certain length-scale control effect. It is suggested that values 

between 1 to 3 times of the average distance can provide meaningful solutions, and 1.5 times of the 

average density point distance is an appropriate value for the radius of circular influence domain.  

2.3 Point-wise Density Interpolation using Shepard function 

Secondly, the Shepard function is utilized to construct an interpolation scheme for evaluating point-wise 

densities over all computational points inside the design domain, according to the previously obtained and 

smoothed densities of meshless field nodes. For implementing Gauss quadrature of the system stiffness 

matrix, the background virtual cells are required, which are independent of the set of field nodes. Here, 

4×4 Gauss quadrature is used to numerically calculate the uniform integration cells according to the 

location of the computational points. The densities on the computational points (Gauss points) are 

interpolated via the Shepard function method, which can be given as  

  
s s

s

n n

n

1 1
j 1

( )
(

(
 

ω
(

ω
) )

)

i
i gp

i i j

gp
x

x x
x

x   
 





 
 
 
 

 


 (6) 
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where ( , )= gp gp gpx X Y , and ( , )gp gpX Y defines the location of Gauss point in the given Cartesian coordinate 

system. To let the Shepard function  i x  satisfy the interpolation condition ( ) i j ijx , where 

s, 1,2,...,ni j , a point-wise density field over the computational points can be constructed via the 

interpolation of the Shepard function with the following weight functions, expressed as 

    

2 3

3
2

2
4 4 1/ 2

3

4 4
ω ω 4 4 1/ 2 1

3 3

0 1

i

D D D

D
x D D DD

D


  




      






 (7) 

where 
   

2 2
  

  
gp gp

gp

X X Y Y
D x x

r  

 

As indicated in Fig. 1(b), “r” is radius of influence domain, and there are eight nodes which are 

considered as the associated points to the concerned computational point. It is easy to see that the Shepard 

function here satisfies the following properties: 

(1) Non-negative and range-bounded 0 ( ) 1 i x ; 

(2) Partition of unity ( ) 1  i x ; 

(3) Interpolation condition ( ) i j ijx . 

 

In this way, the Shepard method can ensure a physically meaningful interpolation to generate a point-wise 

density field for the numerical implementation of the SIMP-based topology optimization. By applying the 

Shepard function method in approximating the densities on field nodes and interpolating the densities on 

computational points, the point-wise density approximant is finally expressed as 

  
s H

n n

1 1

( )   
 

  
   

  
 gp j gp i
j

i

i

x x  (8) 
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Using the background cells are required to implement Gauss quadrature of the system stiffness matrix, the 

system stiffness matrix can be expressed as 

 T

Ω

  ( ) dΩ  xK B D B  (9) 

where B  is the geometric strain-displacement matrix, and D  is the elasticity constant matrix. Here, 4×4 

Gauss quadrature is used to numerically calculate the uniform integration cells according to the location 

of the computational points.  

 

Figure 1(a). Influence domain of nodal design variable; (b). Influence domain of computational point 

 

Using the 4×4 Gauss numerical integration, the system stiffness matrix K  can be explicitly expressed by 

        
4 4

T

i j i j i j i j i j

i 1 j 1

h ξ ,η ξ ,η ξ ,η ξ ,η w w
 

 
  JK B D B  (10) 

where  i jξ ,ηD  is the material elastic constants at each Gauss point, w  is the corresponding weighting 

factors and h  is the thickness of material. The elasticity constant  i jξ ,ηD  can be expressed as follows: 

      
s H

i j i j 0 0

n n

1 1

( )ξ ,η ξ ,η  
 

  
  








 j gp ii

j i

D DxxD  (11) 

where D0 is the material elastic tensor of the full-solid state material. Thus, the stiffness matrix of the 

finite element can be explicitly given by 
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        
s H4 4

T

i j 0 i j i j i

n

j

1j

n

1 1 1i

h ξ ,η   ξ ,η ξ ,η w( ) w 
  

  


  
     

     
  Jj gp i
j i

i xxK B D B  (12) 

where nN  is the standard Lagrangian shape function, and en  is the number of nodes in each element and 

equals to 4 here. nx
 
is the coordinates of n th node in each element. 

3. Meshless Approximations using MLS Shape Function 

The moving least squares (MLS) technique is used to construct the meshless approximations, and the 

MLS approximation for a general function ( )u x  at x  can be described as below [6,7]: 

 
1

( ) ( ) ( ) ( ) ( )


  T
p a

m
h

j j

j

u x p x a x x x  (13) 

where ( )p x  is a complete polynomial of order m  acting as the basis at x , and ( )a x  is the vector consisting 

of unknown coefficients. ( )ja x ( 1,..., )j m  are the unknown parameters related to given points, which can 

be determined by minimizing a weighted discrete 2L  norm over all nodes in terms of the pre-known 

parameters Iu . 

 

2

1 1

( ) ( ) ( )
 

 
   

 
 

n m

I j I j I

I j

J w x x p x a x u  (14) 

where n  is the number of nodes within the local support of x . The weight function ( ) 0Iw x x  . Iu  is the 

nodal parameter of u  at Ix x . The minimization of J  with respect to the coefficients ( )a x  results in a 

set of linear equations as 

 
1 1

2 ( ) ( ) ( ) ( ) 0
( )  

 
    

  
 

n m

I j I j I j I

I jj

J
w x x p x a x u p x

a x
 (15) 

The compact form for the above equation is given by 

 ( ) ( ) ( )A a B ux x x  (16) 

Here u  is the vector consisting of the nodal parameters for all nodes inside the support domain, and 

T
21[ , ,..., ]nu u uu . Solving Equation (16) for ( )xa  leads to 

 1( ) ( ) ( )a A B ux x x  (17) 

Substituting the above equation into Equation (13), we have the following the MLS approximant 
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1

( ) ( )  ( )


  u
n

h

I I

I

u x x u x  (18) 

where ( )x  is the vector of MLS shape functions related to the n  nodes in the local support domain of x . 

The shape function ( )I x  associated with node I  at point x  can be written as 

  
1T( ) ( ) ( ) ( )


p A Bx x x x  (19) 

In this study, the cubic spline weight function with 
2 ( )C   continuity is used, and the first-order 

derivative of the weight function, which is continuous over the entire domain, can be easily obtained via 

the chain rule of differentiation.  

 

The weight function and its derivatives are written as a function of the normalized radius  as follows: 

 

2 3

2 3

2 1
4 4         for 

3 2

( ) ( ) 0                            for 1

4 4 1
4 4   for < 1

3 3 2


     


     


        


Iw x x w  (20) 

where 
max


  

II

mI I

x xd

d d c
 

here mId  is the size of the support domain of the thI  node, which can be determined by maxd and Ic . maxd is 

a scaling parameter which is typically selected as 2.0-4.0 for a static analysis, and Ic  is the distance to be 

decided by searching the surrounding nodes at the thI  node. It is noted that the support domains of a 

computational point for the calculation of displacement and the density interpolation are different. In this 

section, the support domain of the computational point is used to approximate the displacement field. In 

general, the computational accuracy of displacement field can be ensured by setting a reasonable value.  

 

In MLS meshless approximations, each node is associated with a weight function of compact support, 

which is required to be non-zero only inside the domain of influence of node I , in order to generate a set 

of sparse discrete equations. A lower order polynomial basis can be used to generate higher continuous 
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approximations by choosing a proper weight function. Thus, the weight function plays an important role 

in meshless approximations. The MLS shape functions ( )IN x  have the following properties [7,3]: 

(1) Order of the basis function is closely related to the consistency for completeness and reproducibility. 

Order 1m   (linear basis) can lead to linear consistency, which refers to the widely studied MLS shape 

function for meshless approximations, termed as “MLS-Shape function”. 

(2) Considering the lowest order 0m   (constant basis), the MLS shape function will degenerate to the 

“Shepard function”, which owns non-negative and bound-ranged properties, like the method used to 

interpolate the densities on computational points.  

(3) Partitions of unity, because the constant term is included in the basis. 

(4) Desirable continuity of the approximation inherits from its weigh function of high continuity. 

4. Geometrically nonlinear analysis using the EFG method 

It is important to consider geometrical nonlinearity in compliant mechanism design, which assumes the 

compliant mechanism undergoes large displacement but the material behaviours remain linear. Using the 

principle of virtual displacement, the equilibrium equation about the nonlinear problem is expressed as 

 ( ) 0d d d  
 

       u f u t u S
i

  (21) 

where S is the second Piola-Kirchhoff stress matrix, u is the displacement vector,  is the Green 

Lagrangian strain vector. f  is the body force in design domain , and t is the force enforced on the 

natural boundary. The residual defined as the error using EFG method is then obtained as follows: 

   d d d 0
  

      R u f t B S
T T T   (22) 

where B is the matrix that transforms a change in displacement into a change in strain, which is a 

function of the nodal displacement u .To solve the nonlinear equation, Eq. (21), the Newton-Raphson 

method [5] is used in this study. The relationship between d and du is required to be determined.  

  d d
 

    R u B S B S K u
T T

Td d d d  (23) 

where  

 d dS D E  (24) 
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 E = Bu  (25) 

Substituting Eq. (24) and (6) into the first integration of Eq. (23) will yield 

  d d d d
 

    B S B DB u K uT T

Dd  (26) 

DK
 
is the tangent stiffness related to the constitutive matrix, which is expressed as: 

  D L NK K K  (27) 

where LK is the usual small displacement stiffness matric as the one based on linear assumption, NK is 

the stiffness matrix caused by the geometrical non-linearity. They are stated as follows: 

 d


 K B DB
T

L L L
 (28) 

  d


   K B DB B DB B DB
T T T

N L N N LL N
 (29) 

where  

 

,

,

, ,

0

0





 

 
 
 
 
 

i x

L i y

i y i x

=B  (30) 

 

, ,

, ,

, , , ,

 

 

   

 
 

  
   

xx i x yx i x

N xy i y yy i y

xx i y xy i x yx i y yy i x

L L

L L

L L L L

B  (31) 

 
1 1 1 1

k k k k

xx k,x x yx k,x xy k,y x yy k,

n n n n

y

k k k k

y y,  , L = u L = u L = u ,  L = u   
   

     (32) 

In Eq. (30), (31) and (32), i,x is the shape function derivative with respect to the coordinates of nodes, k

xu
 

is the displacement component of node k on the x axis. 

 

The second integration in Eq. (23) can be expressed as 

  d d d d
  B S B SB u K uT T

NL NL SΩ= Ω d =  (33) 

where 
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 
 
 
 
 
 

xx xx

xx xx

xx xx

xx xx

S S 0 0

S S 0 0
=

0 0 S S

0 0 S S

S  (34) 

 









 
 
 
 
 
  

i,x

i,y

NL

i,x

i,y

0

0
=

0

0

B  (35) 

SK is the initial stress matrix, which is a symmetric matric dependent on the stress level. Thus, the 

tangent stiffness matrix TK can be expressed as 

 
 d

d
  

R u
K K K K

u
T L N S  (36) 

To solve the non-linear equation, the Newton-Raphson iteration method [5] can be employed. Firstly, the 

initial value 
(1)

u is obtained via the linear equation: 

 L = 0K u f  (37) 

where f  is the force vector.  

 

Then, the displacement, strains and stresses, corresponding to the nodal parameter 
(1)

u are obtained. By 

substituting these values into Eq. (22), the residual 
(1)  between the external and internal forces can be 

obtained. Thus, the increments of the nodal parameters are calculated as: 

 1 (1)( )    Tu K  (38) 

After that, we can figure out the new nodal parameter:
(2) (1) u = u u . The above iteration is repeated 

until u satisfies the specified convergence criterion. 

 

It is noted that the shape function formulated via the MLS method does not satisfy the Kronecker Delta 

condition  i j ijx δ  , which means the nodal parameter iu  is not equal to the value ( )iu x .Therefore, the 

imposition of essential boundary conditions is more complicated than that in the finite element method. In 
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this study, the essential boundary conditions are enforced using the penalty method. The essential 

boundary conditions can be accounted by means of a penalty formulation:  

 

Find 
3( ( ))iu H  , such that 

 
1
  d d d d
2 2t

T T T T

p
u


   

           ε u b u t (u u) (u u)D  (39) 

is stationary, where ( )iH   is the Sobolev space of order i ;
p  is the total potential energy; ε is the strain 

vectors; D is the strain-stress matrix; t is the traction boundary; t is prescribed traction; b is a body force 

vector; the scalar  is a penalty parameter used to enforce the essential boundary conditions. u  are the 

prescribed nodal parameters on the boundary u . 

 

Substituting Eq. (18) into Eq. (39) results in the following total potential energy, in matrix form, as 

    
1

-
2

  T T

p u uu K K u u f + f  (40) 

and invoking the stationary of p  obtains the following linear system: 

    u uK K u f f  (41) 

where K is the tangent stiffness matrix as in Eq. (27), and f is the same as in Eq. (28). uK and uf
 
are 

contributions from the essential boundary conditions, built from the following 2×2 matrices u

ijK  and 2×1 

matrices u

if , respectively, as follows: 

  d  


 K S
u

u

ij i j
 (42) 

and 

  d 


 f Su
u

u

i i
 (43) 

and 

 
 
 
 

1

2

S 0
=

0 S
S  (44) 
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 1

if  is prescirbed on 

if is not prescirbed on ,  1

 ,

0  , 2

1 i u

i u

u
S

u i


 

 
 (45) 

 

An important consideration for using the penalty method is the choice of an appropriate penalty parameter

 . From the experience, the penalty parameter can be chosen as
3 7(10 ~10 ) E , where E is the Young‟s 

modulus of the material under consideration. The penalty method presents the advantages, e.g. the 

dimension of the system is not increased and the matrix in the resulting system is symmetric and positive 

definite, provided that K is symmetric and αis large enough. 

5. Topology optimization of compliant mechanisms 

5.1 Formulation of the optimization problem 

Topology optimization of compliant mechanisms is to design a structure that converts an input to a 

desired output. In this study, the displacement inverter is considered as an example of compliant 

mechanisms. The displacement inverter is used to transfer work from the input port to the output port, and 

it must be possible to control the displacement amplification of the mechanism. The optimal design of the 

inverter is to maximize the displacement/force/work performed on a work piece modelled by a spring 

with stiffness. The stiffness value of the spring on output port can control the displacement amplification.  

 

There are several different objective functions can be available for the design of compliant mechanisms. 

It is noted that most of them are originally for compliant mechanisms under the assumption of linear 

elasticity, which may not well suitable for the problem with geometrical non-linearity. It has shown that 

the displacement output can be used as the objective function to model the large displacement effect of 

them mechanism [43,35]. Thus, the optimization problem using meshless methods can be established as 

 

D

1

Maximize :

Subject to :

( , ) ( ),  ,





 

  




 


 


   



a l H

out

n

j jj=1

min

j j

u

V V = 0,

1,(j = 1,2,...,n)

u u u u u u

 (46) 
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where  

 
1

( , ) ( ) ( ( )) ( )
2

     ij ijkl klf u u u D x u  (47) 

As aforementioned, u is the displacement field, and u  is the virtual displacement field belonging to 1
H . 

u  is the prescribed displacement on the admissible Dirichlet boundary D .  is design variable, which is 

the nodal density in this study. 
jV is the discrete material volume and V is the total material constrain. n is 

the number of the design variables in the space, and 
min

j is the lower bound of the design variables that is 

determined as 0.0001 to avoid the numerical singularity when computing the global stiffness matrix.  

5.2 Design sensitivity analysis 

To solve the optimization problem, it is necessary to compute the sensitivities (first-order derivatives) of 

the structural response with respect to the changes of the design variables, which can be determined by 

using the adjoint sensitivity analysis method. The output displacement can be expressed as 

 Toutu L u  (48) 

where L is a vector with the value 1 at the degree of the output point and with 0 at all other places. 

Introducing a vector of Lagrangian multipliers λ  and assuming the equilibrium has been found by 

solving Eq. (22), nothing is changed by adding the term 
Tλ R  to the objective function (48) as 

 T ( ) T

outu L u+ λ R u  (49) 

 

Then sensitivity of the output displacement can be calculated as 

 
Td d d

d d d   

  
   

  

u R u R
L λ

u

Tout

i i i i

u
 (50) 

where 


 


T

R
K

u
 

Since 0R  and the Lagrangian multiplier vector λ  can be chosen freely, the unknown 
d

di

u
 in Eq. (50) 

can be eliminated when λ  is chosen such that 
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  T d
0

d
 

u
L λKT

i

 (51) 

which can be obtained by solving the system of the following linear equation 

 K λ LT  (52) 

By inserting λ  into the Eq. (50), the sensitivity of the objective function can be simplified as 

 
d

d 






R
λ

Tout

i i

u
 (53) 

6. Numerical Example 

The displacement inverter is used as a numerical example to show topology optimization process of the 

micro compliant mechanism design, as shown in Figure 2. The example is solved based on the proposed 

non-linear modelling of EFG method. The optimality criteria method is used to solve the optimization 

problem. To demonstrate the effectiveness of the proposed approach, the results will be compared with 

that obtained by using non-linear modelling of FEM and linear modelling of EFG method, respectively. 

 

Figure 2. The displacement inverter design problem 

 

As given in Figure 2, the design domain of displacement inverter is 400×400 µm
2
. On the input port, the 

input work is modelled by a linear spring with stiffness Kin and a force Fin. The goal of the optimization 

problem is to maximize the displacement Uout, which is modelled by a spring with stiffness Kout. For 

simplicity of the computation, the design domain is discretised uniformly by using 41×41 nodes as shown 

in Figure 3, and 40×40 cells are used for integration, inside which the 4×4 Guass points are used as the 

computational points (Figure 4). In this case, Yong‟s modulus is 3GPa, Poisson‟s Ratio is 0.3. An input 
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force Fin=1N, and an artificial spring with stiffness Kin=5×10
4
N/m are applied to the input port to 

simulate the input work. An artificial spring with stiffness Kout=0.1×10
4
N/m is used to simulate the 

resistance from a work piece. The material usage is limited to 25%. 

 

   

Figure 3.Design variables in design domain     Figure 4.Computational points in design domain 

 

   

(a)    (b)    (c) 

 

   

(d)    (e)    (f) 
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Figure 5. Topology plots of point-wise nodal densities: (a-e) intermediate results, and (f) optimal design. 

 

As shown in Figure 5, a set of nodal densities acting as design variables of the topology optimization is 

used to represent material distribution which towards the lower limit 0.0001 (weak material phase) and 

the upper limit 1 (solid material phase) during the optimization. We can find that topology optimization is 

actually an iterative process to re-distribute a number of density points in the design space until these 

variables close to a so-called “0-1” distribution. It can be seen that the optimal topology does not have the 

discontinuously scattered nodes. It should be noted that the one-point connected hinges still appear in the 

optimal design, in order to enable the optimal structure have large rotation effect as a mechanism. 

However, the appearance of hinges is unfavourable in manufacturing. Furthermore, such a lumped 

compliant mechanism will easily subject to stress concentration and fatigue breakage [24]. For the issue 

of one-point connected hinges, it is out of the major scope of this paper. The reader may refer to some 

typical papers for more details [46,52].  

 

Using the proposed EFG method, the displacement distortion plot related to the optimal design is shown 

in Figure 6. The output displacement of the optimal design is 37.06 µm. Figure 8 shows curves of the 

objective function and the volume constraint over the iterations. The evolution of the optimization process 

using the proposed EFG method is converged after 103 iterations. According to the curve of the volume 

constraint, the proposed method is mass conservative. We found that the optimal design obtained by the 

proposed non-linear modelling of EFG method is similar to those reported in [11]. The results in this case 

show that the proposed method can find the optimal design of large-displacement compliant mechanisms. 
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Figure 6.Topologies (left) and deformation (right) of optimized mechanism 

 

 

Figure 7. Iteration histories of objective function and volume constraint 

 

To demonstrate the importance of non-linearity in the analysis of compliant mechanisms, the optimal 

topologies and deformations using non-linear modelling of EFG method, linear modelling of EFG method 

and non-linear modelling of FEM are compared under different input and output constraints. For the 

comparison with the FEM method, the design domain is discretised by 40×40 quad element in FEM 

approach while it is discretised by using 41×41 nodes uniformly scattered in the EFG approach. The 

parameters for the three cases are given in Table 1 and the optimal results are shown in Table 2. 

 

Compared with the FEM-based method, it can be seen that the EFG-based method is more capable to 

describe a distinct topology. This is caused by the difference of the design variables in these two methods. 
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In the EFG method, the densities attached to the meshless field nodes are used as the design variables, 

while in FEM method the density of each finite element is assumed to be constant. Through comparing 

the topology obtained by using the linear and non-linear analysis of the EFG method, it can be seen that 

the displacement inverter with the linear EFG model has thinner connections and bars than that obtained 

by the non-linear EFG model. It‟s known the topologies with thinner hinges and bars make it possible for 

the mechanism to bend and implement larger displacement outputs. The main objective of displacement 

inverter is to maximize the displacement at the output port. According to the results obtained in Cases 1 

and 2, the output displacement of the inverter by non-linear EFG model is larger than the linear EFG 

model and non-linear FEM model. The numerical results demonstrate that the non-linear modelling of 

EFG method is more suitable to capture the structural behaviour of large deformation. 

 

Table 1. Initial parameters and corresponding optimal solutions for case 1-3 

Case Fin Kin Kout 
Uout 

(by non-linear  EFG) 

Uout 

(by linear EFG) 

Uout 

(by non-linear FEM) 

1 1N 1×10
4
N/m 1×10

4
N/m 37µm 32µm 29.4µm 

2 0.5N 1×10
4
N/m 0.1×10

4
N/m 60.13 µm 56.1µm, 48.7µm 

3 1N 1×10
4
N/m 0.1×10

4
N/m 122.8µm   

 

Table 2. Comparison of optimized topologies and deformation using different methods 

Case Optimized topology Deformation of optimized mechanism 

1 

 
 

Non-linear modelling using EFG method 
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Linear modelling using EFG method 

 
 

Non-linear modelling using FEM 

2 

 

 

Non-linear modelling using EFG method 

 
 

Linear modelling using EFG method 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

25 
 

 
 

Non-linear modelling using FEM 

3 

 

 

Non-linear modelling using EFG method 

 

Furthermore, to show the advantage of the non-linear EFG method in the design compliant mechanism, 

the input force in Case 2 is enlarged to Fin=1N in Case 3. During the numerical process, it is found that 

both the linear EFG model and non-linear FEM model experience convergent difficulty due to the output 

displacement is too large. For the linear EFG model, this problem may because of the limitation of the 

linear analysis. In regards to non-linear FEM analysis, this problem is due to the distortion of the element, 

which has reached the specified limitation. As to the proposed non-linear EFG method, however, this 

difficulty did not take place, in which the output displacement of optimal design can reach 122.8µm. It is 

known that the displacement is a linear function of the applied load for the linear analysis, which means 

the loads of two cases are proportional and the resulting displacement fields are proportional as well. 

Hence, in linear analysis, two cases with proportional loads must result in the same optimized design. 

However, regarding to non-linear analysis, the resulting displacement is a non-linear function to the 

applied load, which will cause different optimal designs for two cases with proportional loads. Thus, it 
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can be seem that it is essential to use geometrically non-linear analysis in compliant mechanism design, 

and the proposed non-linear EFG method is more capable for large displacement problems.  

7. Conclusions 

This paper proposes an alternative topology optimization method for the design of large displacement 

compliant mechanisms with geometrical nonlinearity. The Shepard function method is applied to generate 

a non-local nodal density field with enriched smoothness over the design domain, so that there is no other 

filter scheme required during the numerical analysis. Furthermore, the Shepard function method is used 

again to interpolate the densities at all computational points. In this way, a physically meaningful material 

density representation is obtained based on a set of design variables located on the meshless field nodes. 

To implement the meshless approximations of state equations, the MLS method is used to construct shape 

functions with weight functions of compact support. The numerical example has demonstrated that the 

proposed method is capable to handle the design of large deformation compliant mechanism, and avoid 

the mesh distortion and convergent problem caused by large deformation. It is straightforward to extend 

the proposed topology optimization method to more advanced mechanics problems. 

 

References 

[1] Allaire G., Jouve F., Toader A.M., Structural optimization using sensitivity analysis and a level-set method, J 

Comput Phys, 194 (2004) 363-393. 

[2] Atluri S.N., Zhu T., A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics, 

Comput Mech, 22 (1998) 117-127. 

[3] Atluri S.N., Shen S., The meshless local Petrov-Galerkin (MLPG) method, Crest, 2002. 

[4] Babuska I., Melenk J.M., The partition of unity finite element method, in, DTIC Document, 1995. 

[5] Bathe K.J., Finite element procedures, Prentice hall Englewood Cliffs, NJ, 1996. 

[6] Belytschko T., Lu Y.Y., Gu L., Element-free Galerkin methods, Int J Numer Meth Eng, 37 (1994) 229-256. 

[7] Belytschko T., Krongauz Y., Organ D., Fleming M., Krysl P., Meshless methods: an overview and recent 

developments, Comput Methods Appl Mech Eng, 139 (1996) 3-47. 

[8] Belytschko T., Moës N., Usui S., Parimi C., Arbitrary discontinuities in finite elements, Int J Numer Meth Eng, 

50 (2001) 993-1013  

[9] Bendsøe M.P., Kikuchi N., Generating optimal topologies in structural design using a homogenization method, 

Comput Methods Appl Mech Eng, 71 (1988) 197-224. 

[10] Bendsøe M.P., Sigmund O., Material interpolation schemes in topology optimization, Arch Appl Mech, 69 

(1999) 635-654. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

27 
 

[11] Bendsøe M.P., Sigmund O., Topology optimization: theory, methods and applications, Springer, 2003. 

[12] Bourdin B., Filters in topology optimization, Int J Numer Meth Eng, 50 (2001) 2143-2158. 

[13] Bruns T.E., Sigmund O., Tortorelli D.A., Numerical methods for the topology optimization of structures that 

exhibit snapthrough, Int J Numer Methods Eng, 55(2002) 1215–1237. 

[14] Buhl T., Pedersen C.B.W., Sigmund O., Stiffness design of geometrically nonlinear structures using topology 

optimization, Struct Multidiscip Optim, 19(2000) 93-104. 

[15] Chen J.S., Pan C.H., Wu C.T., Liu W.K., Reproducing kernel particle methods for large deformation analysis 

of non-linear structures, Comput Methods Appl Mech Eng, 139 (1996) 195-227. 

[16] Du Y., Luo Z., Tian Q., Chen L., Topology optimization for thermo-mechanical compliant actuators using 

mesh-free methods, Eng Optim, 41 (2009) 753-772. 

[17] Duarte C.A., Oden J.T., An h-p adaptive method using clouds, Comput Methods Appl Mech Eng, 139 (1996) 

237-262. 

[18] Gea H.C., Luo J.H., Topology optimization of structures with geometrical nonlinearities, Comput Struct, 79 

(2001) 1977–1985. 

[19] Gingold R.A., Monaghan J.J., Smoothed particle hydrodynamics-theory and application to non-spherical stars, 

Monthly notices of the royal astronomical society, 181 (1977) 375-389. 

[20] Gu Y.T., Liu G.R., A boundary point interpolation method for stress analysis of solids, Comput Mech, 28 

(2002) 47-54. 

[21] Guedes J.M., Kikuchi N., Preprocessing and postprocessing for materials based on the homogenization 

method with adaptive finite element methods, Comput Methods Appl Mech Eng, 83 (1990) 143-198. 

[22] Guest J.K., Prévost J.H., Belytschko T., Achieving minimum length scale in topology optimization using 

nodal design variables and projection functions, Int J Numer Meth Eng, 61 (2004) 238-254 

[23] He Q.Z., Kang Z., Wang Y.Q., A topology optimization framework for geometrically nonlinear structures with 

meshless analysis and independent density field interpolation, Comput Mech, 54 (2014) 629-644. 

[24] Howell L.L., Compliant mechanisms, John Wiley & Sons, 2001 

[25] Jog C., Distributed-parameter optimization and topology design for non-linear thermoelasticity, Comput 

Methods Appl Mech Eng, 132 (1996) 117–134. 

[26] Kang Z., Wang Y.Q., Structural topology optimization based on non-local Shepard interpolation of density 

field, Comput Methods Appl Mech Eng, 200 (2011) 3515-3525. 

[27] Kang Z., Wang Y.Q., A nodal variable method of structural topology optimization based on Shepard 

interpolant, Int J Numer Meth Eng, 90 (2011) 329–342. 

[28] Lekhnitskiĭ S.G., Theory of elasticity of an anisotropic elastic body, Holden-Day, 1963. 

[29] Liew K.M., Ren J., Reddy J.N., Numerical simulation of thermomechanical behaviours of shape memory 

alloys via a non-linear mesh-free Galerkin formulation, Int J Numer Meth Eng, 63 (2005) 1014-1040. 

[30] Liu G.R., Gu Y.T., A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids, 

J Sound Vib, 246 (2001) 29-46. 

[31] Liu G.R., Gu Y.T., An introduction to meshfree methods and their programming, Springer, 2005. 

[32] Liu W.K., Jun S., Zhang Y.F., Reproducing kernel particle methods, Int J Numer Meth Fl, 20 (1995) 1081-

1106. 

[33] Luo Z., Chen L., Yang J., Zhang Y., Abdel-Malek K., Compliant mechanism design using multi-objective 

topology optimization scheme of continuum structures, Struct Multidiscip Optim, 30 (2005) 142-154. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

28 
 

[34] Luo Z., Tong L., Wang M.Y., Wang S., Shape and topology optimization of compliant mechanisms using a 

parameterization level set method, J Comput Phys, 227 (2007) 680-705. 

[35] Luo Z., Tong L., A level set method for shape and topology optimization of large-displacement compliant 

mechanisms, Int J Numer Methods Eng, 76 (2008) 862–892. 

[36] Luo Z., Zhang N., Gao W., Ma H., Structural shape and topology optimization using a meshless Galerkin level 

set method, Int J Numer Methods Eng, 90 (2012), 369-389. 

[37] Luo Z., Zhang N., Ji J., Wu T., A meshfree level-set method for topological shape optimization of compliant 

multiphysics actuators, Comput Methods Appl Mech Eng, 223 (2012) 133-152.  

[38] Luo Z., Zhang N., Wang Y., Gao W., Topology optimization of structures using meshless density variable 

approximants, Int J Numer Methods Eng, 93 (2013) 443-464. 

[39] Matsui K., Terada K., Continuous approximation of material distribution for topology optimization, Int J 

Numer Meth Eng, 59 (2004) 1925-1944. 

[40] Mlejnek H.P., Some aspects of the genesis of structures, Struct Multidiscip Optim, 5 (1992) 64-69. 

[41] Nocedal J., Wright S.J., Springer series in operations research. Numerical optimization, in, New York: 

Springer, 1999. 

[42] Paulino G.H., Le C.H., A modified Q4/Q4 element for topology optimization, Struct Multidiscip Optim, 37 

(2009) 255-264. 

[43] Pedersen C.B.W., Buhl T., Sigmund O., Topology synthesis of large-displacement compliant mechanisms, Int 

J Numer Meth Eng, 50 (2001) 2683-2705. 

[44] Rahmatalla S.F., Swan C.C., A Q4/Q4 continuum structural topology optimization implementation, Struct 

Multidiscip Optim, 27 (2004) 130-135. 

[45] Sethian J.A., Wiegmann A., Structural boundary design via level set and immersed interface methods, J 

Comput Phys, 163 (2000) 489-528. 

[46] Sigmund O., Manufacturing tolerant topology optimization, Acta Mechanica Sinica, 25 (2009) 227-239. 

[47] Sigmund O., Design of multiphysics actuators using topology optimization-Part I: one-material structures, 

Comput Methods Appl Mech Eng, 190(2001) 6577–6604. 

[48] Sigmund O., Design of multiphysics actuators using topology optimization-Part II: two-material structures, 

Comput Methods Appl Mech Eng, 190 (2001) 6605–6627. 

[49] Wang M.Y., Wang X., Guo D., A level set method for structural topology optimization, Comput Methods 

Appl Mech Eng,192 (2003) 227-246. 

[50] Wang Y., Luo Z., Zhang N., Topological Optimization of Structures Using a Multilevel Nodal Density-Based 

Approximant, Comput Model Eng & Sci, 84 (2012) 229-252. 

[51] Xie Y.M., Steven G.P., A simple evolutionary procedure for structural optimization, Comput Struct, 49 (1993) 

885-896. 

[52] Yoon G.H., Kim Y.Y., Bendsøe M.P., Sigmund O., Hinge-free topology optimization with embedded 

translation-invariant differentiable wavelet shrinkage, Struct Multidiscip Optim, 27 (3) 139-150. 

[53] Zhou M., Rozvany G.I.N., The COC algorithm, Part II: topological, geometrical and generalized shape 

optimization, Comput Method Appl M, 89 (1991) 309-336. 


