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Abstract

The PageRank algorithm for determining the importance of Web pages has
become a central technique in Web search. This algorithm uses the Power
method to compute successive iterates that converge to the principal eigen-
vector of the Markov chain representing the Web link graph. In this work
we present an effective heuristic Relaxed and Extrapolated algorithm based
on the Power method that accelerates its convergence. A hybrid parallel
implementation of this algorithm has been designed by combining various
OpenMP threads for each MPI process and several strategies of data distri-
bution among nodes have been analyzed. The results show that the proposed
algorithm can significantly speed up the convergence time with respect to the
parallel Power algorithm.

Keywords: PageRank, parallel algorithms, Power method, relaxation and
extrapolation, shared memory, distributed memory.

1. Introduction

One of the most difficult problems in Web search is the ranking of the
results recalled in response to a user query. Since contemporary Web crawls
discover billions of pages, broad topic queries may result in recalling hundreds
of thousand of pages containing the query terms. Only a few dozens of the
recalled pages are actually presented to the user. Moreover, these results are
presented in order of relevance. A variety of ranking features are used by
Internet search engines to come up with a good order. Some of the query-
independent features are based on page content. Some utilize the hyperlink
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structure of the Web. The PageRank algorithm [1] is one of those that
introduces a content neutral-ranking function over Web pages. This ranking
is applied to the set of pages returned by the Google search engine in response
to posting a search query. PageRank is based in part on two simple common
sense concepts: A page is important if many important pages include links to
it and a page containing many links has reduced impact on the importance
of the pages it links to. This model has been used by Google as part of its
search engine technology.

PageRank is essentially the stationary distribution vector of a Markov
chain whose transition matrix is a convex combination of the Web link graph
and a certain rank 1 matrix. A key parameter in the model is the damp-
ing factor, a scalar that determines the weight given to the Web link graph
in the model. Due to the great size and sparsity of the matrix that repre-
sents the Web link graph, methods based on decomposition are considered
infeasible; instead, iterative methods are used, where the computation is
dominated by matrix-vector products; see e.g., [2]. Traditionally, PageRank
has been computed using the Power method. Many methods to accelerate
the Power method have been developed such that extrapolation methods,
block-structure methods or adaptive methods; see e.g., [3], [4], [5], [6] and
the references cited therein. In recent years opportunities for parallel execu-
tion have broadened their scope; see e.g., [7], [8], [9], [10].

In this paper we present an effective heuristic algorithm based on the
Power method and the use of both relaxation and extrapolation techniques,
and we analyze the parallelization of this heuristic for accelerating the com-
putation of PageRank. The remainder of the paper is structured as follows.
In Section 2 we provide a brief description of the PageRank problem and we
introduce the Power method and some acceleration methods based on the ex-
trapolation technique. In Section 3, the proposed parallel heuristic algorithm
is introduced. The numerical experiments performed in Section 4 show the
behavior of this heuristic on both shared and distributed memory multicore
architectures. Finally, we conclude in Section 5. This paper is based upon
Migallón et al. [11], but the current paper includes the following additional
research: more strategies for partitioning the link matrix among nodes are
investigated and new numerical experiments are performed and explored.

2



2. Computing the PageRank

The PageRank vector [1] is a probability distribution used to represent
the likelihood that a person randomly clicking on links will arrive at any
particular page. This problem can be formulated using matrices. Let G =
[gij ]

n
i,j=1 be a Web graph adjacency matrix with elements gij = 1 when there

is a link from page j to page i, with i 6= j, and zero otherwise. Here n is
the number of Web pages. From this matrix we can construct a transition
matrix P = [pij]

n
i,j=1 as follows: pij =

gij
cj

if cj 6= 0 and 0 otherwise, where

cj =
∑n

i=1 gij, 1 ≤ j ≤ n, represents the number of out-links from a page j.
For pages with a nonzero number of out-links, i.e., cj 6= 0 for all j, 1 ≤ j ≤ n,
the matrix P is column stochastic. Thus each element of this matrix has
values between 0 and 1, and the sum of the components of each column is 1.
In this case the PageRank vector can be obtained by solving the eigenvector
problem Px = x. Since we are interested in a probability distribution, the
sum of the components of x is assumed to be one. When the matrix P ≥
0 is irreducible (i.e., its graph is strongly connected) and stochastic, the
original Power method [12] can be used to compute the PageRank vector.
However, the Web contains many pages without out-links, called dangling
nodes. Dangling pages present a problem for the mathematical PageRank
formulation because in this case the matrix P is non-stochastic and then
the Power method can not be used. Moreover, the matrix irreducibility is
not satisfied for a Web graph. In order to overcome these difficulties, Page
and Brin [1] change the transition matrix P to a column stochastic matrix
P̄ = α(P + vdT ) + (1− α)veT , where d ∈ ℜn is the dangling page indicator
defined by di = 1 if and only if ci = 0 and the vector v ∈ ℜn is some
probability distribution over pages. This model means that the random surfer
jumps from a dangling page according to a distribution v. For this reason v
is called a teleportation distribution. Originally uniform teleportation v = e

n

was used. Then, setting α such that 0 < α < 1 the matrix P̄ is column
stochastic, irreducible and therefore the Power method can be utilized to
solve the stationary distribution of the ergodic Markov chain defined by P̄ ,
P̄ x = x.

A key parameter in this model is the damping factor α that determines the
weight given to the Web link graph in the model. In the original formulation
of PageRank [1] the Power method was applied using α = 0.85. However, a
higher value of α (close to 1) yields to a model that is mathematically closer
to the actual link structure of the Web but makes the computation more
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difficult [13]. This parameter α controls the asymptotic rate of convergence
and as α → 1, the expected number of iterations required for convergence
increases dramatically and new approaches for accelerating the PageRank
computation are required. In fact, the calculation of many PageRank vectors
with different values of α looks promising in order to detect link spammers
[14]. On the other hand, PageRank type algorithms are used in application
areas other than Web search ([15], [16]) where the value of α often has a
concrete meaning and the graphs have a different structure that may not
resemble the bow-tie structure of the Web link graph. It is thus useful to
consider a variety of values of α.

As each iteration of the Power method on a web-sized matrix is so ex-
pensive, reducing the number of iterations by a handful can save hours of
computation. The extrapolation algorithms [13] are successful for reducing
the work associated with the PageRank computation. These methods ac-
celerate the convergence of PageRank using successive iterates of the Power
method to estimate the nonprincipal eigenvectors of the hyperlink matrix,
and periodically subtracting these estimates from the current iterate of the
Power method. In [5] a quadratic extrapolation algorithm, based on the
same idea as Aitken extrapolation, was presented. This work assumed that
none of the nonprincipal eigenvalues of the hyperlink matrix were known.
Algorithm 1 shows the Extrapolation Power methods treated here, where

Algorithm 1: Extrapolation Power method for solving P̄ x = x.

Initialization x0 = e
n
, k = 0;

repeat

xk+1 = αPxk;
γ = ‖xk‖1 − ‖xk+1‖1;
xk+1 = xk+1 + γv;

(1)if k + 1 == r + 2 then xk+1 = xk+1
−αrxk+1−r

1−αr ;

δ = ‖xk+1 − xk‖1;
k = k + 1;

until δ < ǫ;

e = (1, 1, . . . , 1)T and the L1 norm ‖x‖1 =
∑n

i=1 |xi| is used. This algorithm
exploits the knowledge of eigenvalues of the hyperlink matrix. Moreover, the
extrapolation needs to be applied only once; see e.g., [13]. Notice that if
the extrapolation step (1) of Algorithm 1 is removed, the resulting iteration
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scheme describes the Power method applied to the matrix P̄ . Note that al-
though the matrix P̄ is dense, Algorithm 1 has been designed such that it is
not necessary to construct explicitly the matrix P̄ .

3. Parallel Algorithms

In order to design the parallel algorithms, we consider that P is parti-
tioned into p row blocks. Each block Pi, 1 ≤ i ≤ p, is a matrix of order ni×n,
with

∑p

i=1 ni = n. Analogously, we consider the vectors xk and v partitioned
according to the block structure of P . Then, Algorithm 2 describes the par-
allelization of the Power method for solving P̄ x = x, in which each process
actualizes a block of the vector xk+1 and a synchronization of all processes
is performed at each iteration to construct the global iterate vector xk+1.

Algorithm 2: Parallel Power method.

Initialization x0 = e
n
, k = 0;

for i = 1, 2, . . . , p, do in parallel

repeat

xk+1
i = αPix

k;

Compute ‖xk+1
i ‖1;

Perform a sum all-to-all reduction over ‖xk+1
i ‖1;

γ = ‖xk‖1 − ‖xk+1‖1;

(2)xk+1
i = xk+1

i + γvi;
Perform an all-gather operation to obtain
xk+1 = [xk+1

1 , . . . , xk+1
p ];

Compute ‖xk+1
i − xk

i ‖1;

Perform a sum all-to-all reduction over ‖xk+1
i − xk

i ‖1;
δ = ‖xk+1 − xk‖1;
k = k + 1;

until δ < ǫ;

end

In general the asymptotic rate of convergence of the Power method ap-
plied to a matrix depends on the ratio of the two eigenvalues that are largest
in magnitude, denoted by λ1 and λ2. Concretely, the asymptotic conver-
gence rate is the rate at which |λ2/λ1|

k tends to 0. The smaller this ratio,
the quicker the Power method converges. For stochastic matrices such as P̄ ,
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λ1 = 1, therefore |λ2| governs the convergence. In general, numerically find-
ing λ2 for a matrix requires computational effort that one is not willing to
spend just to get an estimate of the asymptotic rate of convergence. However,
taking into account the relation between the spectra of the matrices P + vdT

and P̄ , the link structure of the Web makes it very likely that |λ2| ≈ α;
see e.g., [17]. Thus, a rough estimate of the number of iterations needed to
converge to a tolerance level ǫ = 10−ζ is log10 ǫ

log10 α
. Therefore, to produce scores

with approximately a degree of accuracy of ζ digits about −ζ

log10 α
iterations

must be completed.
On the other hand, taking into account that the Power method is equiva-

lent to use a Jacobi type splitting for solving the linear system (I− P̄ )x = 0,
to improve the rate of convergence we could use a relaxed Jacobi type
splitting. Thus, a relaxation parameter β > 0 can be introduced in Al-
gorithm 2 and replace the computation of xk+1

i in (2) with the equation
xk+1
i = β(xk+1

i + γvi) + (1− β)xk
i . Clearly, with β = 1 equation (2) is recov-

ered. In the case of β 6= 1 we have a parallel Relaxed Power method. Note
that the relaxation parameter needs to be chosen in such a way that the con-
vergence of the method is assured. Since (I−P̄ ) is an irreducible singular M -
matrix, the Relaxed Power method converges provided that 0 < β < 2

1+ϑ(P̄ )
,

where ϑ(P̄ ) = max {|λ|, λ ∈ σ(P̄ ), λ 6= 1}, and σ(P̄ ) is the spectrum of P̄
[18]. Therefore, it is expected that the Relaxed Power method will converge
to the PageRank vector for 0 < β < 2

1+α
.

In a previous paper [19] we presented parallel Relaxed Extrapolated algo-
rithms based on Algorithm 1. As it was shown, these algorithms can speed
up the convergence time significantly with respect to the Power method with
the same degree of accuracy. However, its convergence speed is very depen-
dent on the choice of the parameter r used in the extrapolation. An optimal
value for this parameter is hard to predict, and a poor choice of r could
decelerate the convergence of Algorithm 1 in relation to the Power method.
In order to reduce the number of iterations required by the PageRank Power
method and accelerate the convergence of Algorithm 2, we design here a
heuristic parallel Relaxed Extrapolated algorithm (Algorithm 3) in which
the proposed value for r is obtained from the damping factor α by means of
the expression r =

⌊

1
1−α

⌋

and the extrapolation is applied once at iteration
⌊

1
1−α

⌋

+2. Note that the column sums of (I−αP )−1 are less than or equal to
1

1−α
for the non-dangling nodes and ‖(I−α(P +vdT ))−1‖1 =

1
1−α

[17]. Table
1 shows the values of r in Algorithm 3 for different damping factors and
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the degree of accuracy (−(r + 1) log10 α) obtained before the extrapolation
is performed at the r + 2 iteration. In this way, we propose to performing
the extrapolation before obtaining 1 place of accuracy in the approximate
PageRank vector. Therefore, it is reasonable to test the stopping criterion
only for the relaxed iterations (i.e. for k > r + 1). Note the computation of
‖xk+1‖1 and δ, in Algorithms 2 and 3, is also performed in parallel in such
a way that each process i computes the portions ‖xk+1

i ‖1 and ‖xk+1
i − xk

i ‖1
followed by a reduction of these values.

α r Degree of accuracy
0.85 6 0.494068
0.95 20 0.467804
0.97 33 0.449761
0.98 50 0.447470
0.99 100 0.440845
0.995 200 0.437560

Table 1: Values of r for Algorithm 3 and degree of accuracy obtained at the r+1 iteration.

4. Experimental setup and results

In order to illustrate the behavior of these methods, the algorithms de-
scribed here have been implemented on an HPC cluster of 26 nodes HP Pro-
liant SL390s G7 connected through a network of low-latency QDR Infiniband-
based. Each node consists of two Intel XEON X5660 hexacore at up to 2.8
GHz and 12MB cache per processor, with 48 GB of RAM. The operating sys-
tem is CentOS Linux 5.6 for x86 64 bit. The parallel environment has been
managed using both MPI (Message Passing Interface) [20] and OpenMP
(Open Multi-Processing) [21]. That is, an hybrid MPI/OpenMP implemen-
tation has been designed by combining various OpenMP threads for each MPI
process. Adding OpenMP threading to an MPI code is an efficient way to run
on multicore processors and nodes like those on this cluster. Since OpenMP
operates in a shared memory space, it is possible to reduce the memory
overhead associated with MPI tasks and reduce the need for replicated data
across tasks. Concretely, let p be the number of performed processes, p = s∗c
indicates that s nodes of the parallel platform have been used and for each
one of these nodes, c OpenMP threads have been considered. Therefore, we
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Algorithm 3: Heuristic Parallel Relaxed Extrapolated Power
method (HRELEXT).

Initialization x0 = e
n
, k = 0, r =

⌊

1
1−α

⌋

;

for i = 1, 2, . . . , p, do in parallel

repeat

xk+1
i = αPix

k;

Compute ‖xk+1
i ‖1;

Perform a sum all-to-all reduction over ‖xk+1
i ‖1;

γ = ‖xk‖1 − ‖xk+1‖1;

xk+1
i = xk+1

i + γvi;

if k + 1 == r + 2 then xk+1
i =

xk+1

i −αrxk+1−r
i

1−αr ;
Perform an all-gather operation to obtain
xk+1 = [xk+1

1 , . . . , xk+1
p ];

k = k + 1;

until k > r + 1;
repeat

xk+1
i = αPix

k;

Compute ‖xk+1
i ‖1;

Perform a sum all-to-all reduction over ‖xk+1
i ‖1;

γ = ‖xk‖1 − ‖xk+1‖1;

xk+1
i = xk+1

i + γvi;

xk+1
i = βxk+1

i + (1− β)xk
i ;

Perform an all-gather operation to obtain
xk+1 = [xk+1

1 , . . . , xk+1
p ];

Compute ‖xk+1
i − xk

i ‖1;

Perform a sum all-to-all reduction over ‖xk+1
i − xk

i ‖1;
δ = ‖xk+1 − xk‖1;
k = k + 1;

until δ < ǫ;

end
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use a philosophy of distributed shared memory using p = s× c processes or
threads. Particularly, if s = 1 the algorithms are executed in shared memory
by using p = c threads on a single node. Conversely, if c = 1, we are working
on distributed memory using p = s nodes. To compute PageRank for large
domains there is no possible way to work with the matrix in its full format
because the memory requirements would be too high. Therefore, a sparse ma-
trix format is needed in order to store the matrices. The Compressed Sparse
Row (CSR) format is one of the most extensively used storage schemes for
general sparse matrices, with minimal storage requirements. We represent
the two vectors of indexes of the CSR format by integers without sign of
32 bits, while the values and the iterate vectors are represented by means of
double precision floating point with 64 bits. Taking into account that, for
each column of the matrix, all nonzero elements are equal to a fixed value, it
is stored once in an ordered vector. In this way the memory requirements to
store the matrix with this modified CSR format (CSR′) can be computed by
the following expressionMCSR′ = 32(n+1)+32nnz+64n ≈ 32(3n+nnz) bits.
In the experiments we have used three datasets of different sizes, available
from http://law.dsi.unimi.it [22]. These transition matrices have been gener-
ated from a web-crawl [23]. Table 2 summarizes, for each graph, the number
of nodes n (matrix size), the number of arcs nnz (nonzero elements of the
matrix), the percentage of dangling nodes, the density (arcs/nodes) and the
memory requirements using the proposed CSR′ format. This format [24] has
involved a reduction of memory requirements of about 63−73% with respect
to the original CSR format.

Graph Nodes (n) Arcs (nnz) Dang. nodes Density Memory
it-2004 41,291,594 1,150,725,436 12.76 % 27.87 4.75 GB

webbase-2001 118,142,155 1,019,903,190 23.41 % 8.63 5.12 GB
uk-2007-05 105,896,555 3,738,733,648 12.23 % 35.31 15.11 GB

Table 2: Graphs collection.

Tabla 3 shows the convergence rates of the HRELEXT method (Algo-
rithm 3) for the tested matrices, setting ǫ = 10−6 and different values of
α. Our experience indicates that, good choices of the relaxation parameter
β ∈ (0, 2

1+α
) in the proposed HRELEXT algorithm are between 0.97− 0.99,

obtaining similar convergence rates. This behavior is independent of the
damping factor α. This is due to the fact that the number of iterations
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starts to decrease as β increases up to some good values of β close to 1, after
which the number of iterations increases. Moreover, the number of itera-
tions remains pretty constant when setting β between these values. It seems
that setting β = 0.99 achieves a workable compromise between efficiency and
effectiveness, being that for any damping factor 0 < α < 1, β = 0.99 has
a behavior very similar to that of the best relaxation parameter, getting a
considerable reduction in the number of iterations with respect to the Power
method. Therefore, in our HRELEXT algorithm, we have set this value for
the relaxation parameter β. Tabla 4 compares the convergence rates for the
Power method and the HRELEXT algorithm for the datasets of Table 2.
As it can be seen in this table, the proposed HRELEXT algorithm has sub-
stantially improved the convergence rate relative to the Power method, more
specially for values of α close to 1.

it-2004 β = 0.9 β = 0.95 β = 0.96 β = 0.97 β = 0.98 β = 0.99
α = 0.85 52 50 49 49 49 49
α = 0.95 144 138 137 136 135 135
α = 0.98 308 295 293 290 288 287
α = 0.99 540 522 519 516 513 511
α = 0.995 1006 984 980 976 973 970

webbase-2001 β = 0.9 β = 0.95 β = 0.96 β = 0.97 β = 0.98 β = 0.99
α = 0.85 52 50 49 49 49 49
α = 0.95 144 138 137 136 135 137
α = 0.98 307 294 292 289 287 288
α = 0.99 515 498 495 492 490 490
α = 0.995 917 894 891 887 884 883
uk-2007-05 β = 0.9 β = 0.95 β = 0.96 β = 0.97 β = 0.98 β = 0.99
α = 0.85 51 49 49 49 48 48
α = 0.95 139 134 133 132 131 131
α = 0.98 301 290 288 286 284 283
α = 0.99 570 554 551 548 545 542
α = 0.995 1118 1086 1080 1074 1069 1063

Table 3: Number of iterations of the HRELEXT method, ǫ = 10−6.

Implementing the PageRank calculations in a parallel environment opens
several possibilities of data partitioning (i.e., how the data are divided among
nodes) and load balancing (i.e., to ensure that all nodes perform similar
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Matrix it-2004 webbase-2001 uk-2007-05
α PW HRELEXT% R. PW HRELEXT% R. PW HRELEXT% R.

0.85 60 49 18.33 62 49 20.97 56 48 14.29
0.95 180 135 25.00 185 137 25.95 162 131 19.14
0.97 297 224 24.58 306 228 25.49 263 206 21.67
0.98 441 287 34.92 456 288 36.84 386 283 26.68
0.99 869 511 41.20 904 490 45.80 745 542 27.25
0.995 1719 970 43.57 1800 883 50.94 1446 1063 26.49

Table 4: Percentage of reduction in the number of iterations of the HRELEXT method
with respect to the Power (PW) method, ǫ = 10−6.

amount of work). The most expensive operation performed in the calculation
of the PageRank values is a matrix-vector multiplication. This is a perfectly
parallel operation with several possible methods for partitioning both the
matrix and the vector. We have considered several strategies for partitioning
the link matrix among nodes such as it is described in Algorithm 4. In
this algorithm, n represents the number of rows of the matrix, nnzj is the
number of nonzero elements in the j-th row with nnz =

∑n

j=1 nnzj , s is the
number of partitions to be performing and the vector [PART0, . . . , PARTs]
stores the indexes of the partitions. Furthermore, ωn, ωnnz ∈ ℜ such that
ωn + ωnnz = 1 attach a weight to the number of rows and to the number
of nonzero elements, respectively. Note that when ωn = 1 and ωnnz = 0,
a row-wise distribution (row-wise partitioning, RWP) is chosen, where each
node gets the same amount of rows, while by setting ωn = 0 and ωnnz = 1,
each node has to handle the same amount of nonzero elements (nonzero
elements partitioning, NEP). In the remainder cases, Algorithm 4 obtains
different mixed distributions (mixed partitioning, MP) taking into account
the weighting values (ωn, ωnnz) considered in the algorithm.

Figure 1 shows the time that the HRELEXT algorithm takes for comput-
ing PageRank using row-wise partitioning and nonzero elements partitioning
and the achieved speedup , varying the number of processes, for the webbase-
2001 matrix. Figures 2 and 3 compare these two strategies of data distri-
bution with the use of several mixed distribution according to Algorithm
4. Generally, the nonzero elements partitioning is better than the row-wise
partitioning. However, we can find a mixed distribution between rows and
nonzero elements that reduces the running time with respect to the nonzero
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Algorithm 4: Partitioning method.

umbral = nωn+nnzωnnz

s
;

PART0 = cont = j = 0;
for i = 1, 2, . . . , s− 1, do

while cont ≤ umbral do
j = j + 1;
cont = cont+ (ωn + nnzjωnnz);

end

j = j − 1;
PARTi = j;
cont = 0;

end

PARTs = n;

elements partitioning. For example, for the uk-2007-05 matrix, Figure 2 tell
us that for both shared memory (SM) and distributed shared memory (DSM)
with p = 4∗c processes, the mixed partitioning using ωn = 0.7 and ωnnz = 0.3
behaves better than those distribution strategies. For this matrix, using dis-
tributed memory (DM), we have obtained that ωn = ωnnz = 0.5 is a good
choice for the mixed partitioning. However, the choice of optimal weighting
values (ωn, ωnnz) depends on the structure of the matrix, the number of nodes
used and the proposed processes configuration; see also Figure 3. Figures 4
and 5 provide comparisons for the HRELEXT algorithm in floating-point op-
erations per second (Flops) for various implementations and configurations.
We obtain an acceptable speedup with OpenMP using the 12 available cores
of one node but not comparable with the speedup obtained with MPI using
distributed memory. Note that, for the uk-2007-05 matrix, 5.6 GFlops are
achieved with 12 cores in Figure 4(b). However, using distributed memory
8 Gflops are achieved for this matrix; see Figure 4(a). However, in order to
deal with larger problems and to use all the available memory in an actual
SMP computer, the best strategy of parallelization needs to use at the same
time the benefits of shared and distributed memory multiprocessors. Usually
the best parallel results have been obtained using 1, 2 or 4 threads in each
node. As it can be seen, in Figure 5, the higher the density of the matrix,
the better the results obtained using distributed shared memory.

Figure 6 compares the execution time of the Power method and the
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Figure 1: Row-wise versus nonzero elements distribution. Parallel HRELEXT method,
α = 0.995, p = s ∗ c, ǫ = 10−6, webbase-2001 matrix.
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Figure 4: Data partitioning strategies performance. Parallel HRELEXTmethod, α = 0.98,
ǫ = 10−6, uk-2007-05 matrix.
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Figure 5: Performance of Parallel HRELEXT method on shared distributed memory,
α = 0.98, ǫ = 10−6.
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Figure 6: HRELEXT versus Power method, DSM p = 8 = s ∗ c, α = 0.99, uk-2007-05
matrix.
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Figure 7: HRELEXT versus extrapolated Power methods. Percentage of time reduction
with respect to the parallel Power method, α = 0.99, ǫ = 10−6, it-2004 matrix.

ǫ = 10−5 ǫ = 10−7

POWER It. 531 964
In/Out It. gain 12.8% 11.1%
In/Out time gain 15.3% 13.7%
HRELEXT It. gain 31.8% 21.7%
HRELEXT time gain 37.5% 26.7%

Table 5: HRELEXT versus In/Out methods, α = 0.99, SM p = 8(1 ∗ 8), uk-2007-05
matrix.

HRELEXT methods varying the stopping criterion for the uk-2007-05 ma-
trix. As it can be seen the HRELEXT algorithm speeds up the convergence
time significantly with respect to the parallel Power algorithm. We have
also compared the HRELEXT algorithm with the Extrapolation Power al-
gorithm (see Algorithm 1) and with the inner-outer (In/Out) iterative algo-
rithms proposed in [7]. Figure 7 compares the percentage of time reduction
of the HRELEXT algorithm and the best parallel Extrapolation Power algo-
rithms obtained when varying the value of r, in relation to the parallel Power
method. Table 5 illustrates the gain achieved for the parallel HRELEXT al-
gorithm and the parallel inner-outer algorithms in relation to the parallel
Power method. As it can be appreciated in Figure 7 and Table 5 our pro-
posed HRELEXT algorithm has a better convergence rate and accelerates
the convergence time more significantly than those algorithms.
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5. Conclusions

In this paper an effective heuristic parallel algorithm (HRELEXT) for
accelerating PageRank is presented. The HRELEXT algorithm is based on
the Power method and uses relaxation and extrapolation techniques. The
parallel implementation have been developed using a mixed MPI/OpenMP
model and several strategies for partitioning the link matrix among nodes.
We have compared HRELEXT with the extrapolated methods and some
inner-outer methods obtaining that HRELEXT has considerably improved
the convergence rate relative to the Power method and behaves better than
those methods.
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