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Abstract

In this work we present parallel algorithms based on the use of two-stage meth-

ods for solving the PageRank problem as a linear system. Different paral-

lel versions of these methods are explored and their convergence properties

are analyzed. The parallel implementation has been developed using a mixed

MPI/OpenMP model to exploit parallelism beyond a single level. In order to

investigate and analyze the proposed parallel algorithms, we have used several

realistic large datasets. The numerical results show that the proposed algo-

rithms can speed up the time to converge with respect to the parallel Power

algorithm and behave better than other well-known techniques.

Keywords: PageRank, parallel algorithms, two-stage methods, shared

memory, distributed memory

1. Introduction

PageRank is one of the most known and influential methods for ranking

Web pages [1]. This model, used by the Google search engine, revolutionized

Web search by providing a reliable, spam-resistant way to find reputable Web

pages. The model is based on two key ideas: first, that links between Web pages

provide information about their importance, and second, that the relationship
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between importance and linking is recursive. The PageRank algorithm involves

essentially the computation of the dominant eigenvector of a Markov matrix

describing the behaviour of a model Web surfer jumping from page to page on

the Web hyperlink graph. Originally, the method of choice for computing the

PageRank vector was the Power method [2]. However, in the last years, several

techniques to accelerate the Power method have been developed such as ex-

trapolation methods [3, 4, 5], adaptive methods [6] or Arnoldi-type algorithms

[7, 8, 9]. Taking into account that Brin and Page originally conceived the PageR-

ank problem as an eigenvector problem nearly all research has focused on the

eigenvector formulation of the PageRank. However, the normalized eigenvector

problem can be solved using its linear system formulation opening new research

lines [10]. Recently, some approaches based on linear system formulations have

been considered, see e.g., [11, 12, 13, 14, 15, 16] and the references cited therein.

Additionally, due to the large size of the Web link graph, to deal with real-

istic problems, a promising way of accelerating PageRank is parallel processing.

By using the sparse linear system formulation of the PageRank problem, in [12]

parallel algorithms for computing PageRank based on Krylov subspace meth-

ods are investigated. The analysis of the results shows that the convergence

of Krylov methods strongly depends on the graph and although the Krylov

methods have the highest average convergence rate and fastest convergence by

number of iterations, on some graphs, the parallel running time of these meth-

ods can be greater than the running time of the parallel Power method. In [13],

inner-outer algorithms are investigated for the dense linear system formulation

of the PageRank problem. These inner-outer methods compare favourably with

other widely used schemes. Moreover, their parallel implementation achieves

a substantial gain with respect to the Power method. An OpenMP code was

implemented to work with the matrix stored by either out or in-edges and it

works with Web graphs compressed into bvgraph data structure [17].

In this work we design new parallel algorithms for computing PageRank.

These algorithms use two-stage methods for solving the PageRank problem by

means of its sparse linear system formulation. Concretely, in Section 2 we
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describe the PageRank problem. In Section 3 we review the stationary two-

stage methods with the non-stationary ones. In Section 4 we introduce the

proposed methods and we analyze their convergence. Section 5 explains the

MPI/OpenMP hybrid parallel implementation of the algorithms. In Section

6 some details about sparse matrix storage formats and data partitioning are

given, justifying the approach proposed in this work to solve the PageRank

problem. Section 7 explores the behaviour of the proposed parallel two-stage

algorithms for computing PageRank using realistic test data on a current Sym-

metric Multi-Processing (SMP) supercomputer. Finally, in Section 8 we give

some conclusions. This paper is based upon Migallón et al. [18], but the current

paper includes the following additional research: new strategies for solving the

PageRank problem are considered and their convergence analyzed. In addition,

new numerical experiments are performed and explored.

2. The PageRank problem

PageRank is a probability distribution used to represent the likelihood that

a person randomly clicking on links will arrive at any particular page. The

PageRank problem can be seen as a matrix problem. Concretely, let G =

[gij ]
n
i,j=1 be a Web graph adjacency matrix with elements gij = 1 when there

is a link from page j to page i, with i 6= j, and zero otherwise. Here n is

the number of Web pages. From this matrix we can construct a transition

matrix P = [pij ]
n
i,j=1 as follows: pij =

gij
cj

if cj 6= 0 and 0 otherwise, where

cj =
∑n

i=1 gij , 1 ≤ j ≤ n, represents the number of out-links from a page j.

For pages with a nonzero number of out-links, i.e., cj 6= 0 for all j, 1 ≤ j ≤ n,

the matrix P is column stochastic. Thus, each element of this matrix has

values between 0 and 1, and the sum of the components of each column is 1.

In this case the PageRank vector can be obtained by solving Pπ = π. The

Power method [2] is one of the oldest and simplest iterative methods for solving

this eigenvector problem. When the nonnegative matrix P is irreducible (i.e.,

its graph is strongly connected) and stochastic, the Power method converges
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to the eigenvector corresponding to λmax = 1, and when normalized, it is the

stationary probability distribution over pages under a random walk on the Web.

However, the Web contains many pages without out-links, called dangling nodes.

Dangling pages present a problem for the mathematical PageRank formulation

because in this case the matrix P is non-stochastic and the Power method can

not be used. Moreover, the matrix irreducibility is not satisfied for a Web graph.

In order to overcome these difficulties, Page and Brin [1] change the transition

matrix P to a column stochastic matrix P̄ = α(P + vdT ) + (1 − α)veT , where

d ∈ ℜn is the dangling page indicator defined by di = 1 if and only if ci = 0,

eT = (1, 1, . . . , 1), and the vector v ∈ ℜn is some probability distribution over

pages. This model means that the random surfer jumps from a dangling page

according to a distribution v. Originally uniform teleportation v = e
n
was used.

Then, setting α such that 0 < α < 1, the matrix P̄ is column stochastic,

irreducible and it preserves the L1 norm, that is, ‖P̄ x‖1 = ‖x‖1 and therefore

the Power method can be used to solve the stationary distribution of the ergodic

Markov chain defined by

P̄ π = π. (1)

Note that the parameter α is a parameter that controls the proportion of time

the random surfer follows the hyperlinks as opposed to teleporting. Even though

the parameter α was originally set to 0.85 by Google founders Brin and Page,

this parameter can be increased to capture the true essence of the Web, giving

less weight to the artificial teleportation matrix. However as α → 1, the Power

method takes an increasing amount of time to converge and other techniques

need to be experimented.

Let P
′

= P + vdT , then the normalized eigenvector problem (1) can be

rewritten with some algebraic manipulations as (I − αP
′

)x = (1 − α)v, with

π = x
‖x‖1

. Using this formulation, researchers have recently experimented with

new PageRank techniques [12, 14, 15, 16] such as inner-outer or multisplitting

iterations for solving this linear system. However, the matrix I − αP
′

can

be pretty dense, whenever the number of dangling nodes is large because these
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completely sparse columns are replaced with completely dense columns. For this

reason, it is more suitable to operate on the very sparse matrix P . Following

[10], we can write the PageRank problem in terms of the matrix P . That

is, let the PageRank vector π be such that P̄ π = π, then π can be obtained

solving the linear system (I − αP )x = v, and letting π = x
‖x‖1

. Thinking about

PageRank as a sparse linear system opens new research lines combining iterative

techniques and parallel processing in order to reduce the work associated with

the PageRank vector computation. Taking into account the advantage of the

two-stage methods [19, 20] for parallel computing, we focus on these iterative

schemes for accelerating PageRank computations.

3. Stationary and non-stationary two-stage methods

Consider the problem of solving a linear system

Ax = b, (2)

where A is an n× n nonsingular matrix and x and b are n-vectors. Classical it-

erative methods proceed by solving at each step a simpler linear system induced

by a splitting of A into A = M − N (M nonsingular); i.e., beginning with an

arbitrary vector x(0), the iteration procedure

Mx(l+1) = Nx(l) + b, l = 0, 1, 2, . . . , (3)

is used to compute a sequence of iterate vectors that converges to the solution

of (2) if and only if the iteration matrix M−1N is convergent, that is if the

spectral radius of the iteration matrix is less than one (ρ(M−1N) < 1); see e.g.,

[21].

On the other hand, when the linear systems (3) are not solved exactly,

but rather their solutions approximated by iterative methods, we are in the

presence of a two-stage method; see e.g., [22, 23]. That is, consider the splitting

M = F − G and perform, at each outer step l, q(l) inner iterations of the

iterative procedure induced by this splitting. Thus, the two-stage method can
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be written as follows

x(l+1) = (F−1G)q(l)x(l) +

q(l)−1
∑

j=0

(F−1G)jF−1(Nx(l) + b), l = 0, 1, . . . . (4)

When the number of inner iterations stays fixed in each outer step, i.e., when

q(l) = q, q ≥ 1, it says that the method is stationary, while a non-stationary

two-stage method is such that the number of inner iterations may change with

the outer iteration. Obviously, stationary two-stage methods are special cases

of non-stationary ones.

Given an initial vector x(0), the two-stage iterative method (4) produces the

sequence of vectors

x(l+1) = Tq(l)x
(l) + cq(l), l = 0, 1, 2, . . . , (5)

where Tq(l) = (F−1G)q(l) +
∑q(l)−1

j=0 (F−1G)jF−1N, l = 0, 1, 2, . . ., are the iter-

ation matrices and cq(l) =
∑q(l)−1

j=0 (F−1G)jF−1b, l = 0, 1, 2 . . . .

Let ξ be the exact solution of the linear system (2) and let ǫ(l+1) = x(l+1)−ξ

be the error at the l + 1 iteration. It is easy to prove that ξ is a fixed point

of (5). Thus, ǫ(l+1) = Tq(l)ǫ
(l) = · · · = Tq(l)Tq(l−1) · · ·Tq(0)ǫ

(0), l = 0, 1, 2, . . . .

Therefore, for any initial vector x(0) the sequence of vectors generated by it-

eration (5) converges to the solution of the linear system (2) if and only if

liml→∞ Tq(l)Tq(l−1) · · ·Tq(0) = O, where O denotes the null matrix. Since, for

the stationary case Tq(l) = Tq, for all l = 0, 1, 2, . . . , then the convergence of

(5) is equivalent to requiring ρ(Tq) < 1. In [24] it was shown that if both the

inner and outer splittings are convergent then the stationary two-stage method

converges for large enough q. However, in the non-stationary case, ρ(Tq(l)) <

1, l = 0, 1, 2, . . . , does not necessarily imply liml→∞ Tq(l)Tq(l−1) · · ·Tq(0) = O.

Therefore, tools other than the spectral radius are necessary for its analysis.

Theorems 1 and 2 give conditions on the inner and outer splittings for conver-

gence of both stationary and non-stationary two-stage methods for any number

of inner iterations. First we present some definitions and preliminaries used in

the paper. The notation and terminology adopted in this paper are along the

lines of those used in [21]. Given a matrix A = (aij) we define |A| = (|aij |).
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Clearly all entries of |A| are nonnegative, that is |A| ≥ O. A general matrix

A is called an M -matrix if A can be expressed as A = sI − B, with B ≥ O,

s > 0, and ρ(B) ≤ s. The M -matrix A is singular when s = ρ(B) and nonsin-

gular when s > ρ(B). Let Zn×n denote the set of all real n× n matrices which

have all non-positive off-diagonal entries. A nonsingular matrix A ∈ Zn×n is an

M -matrix if and only if A is a monotone matrix (A−1 ≥ O). For any matrix

A = (aij) ∈ ℜn×n we define its comparison matrix 〈A〉 = (αij) ∈ ℜn×n by

αii = |aii|, αij = −|aij |, i 6= j.

A nonsingular matrix A is said to be an H-matrix if 〈A〉 is an M -matrix. Of

course, M -matrices are special cases of H-matrices.

Definition 1. [21, 22] Let A ∈ ℜn×n. A splitting A = M −N is called

(a) regular if M−1 ≥ O and N ≥ O,

(b) weak regular if M−1 ≥ O and M−1N ≥ O,

(c) H-splitting if 〈M〉 − |N | is an M -matrix, and

(d) H-compatible splitting if 〈A〉 = 〈M〉 − |N |.

Lemma 1. [21] Let A = M −N be a splitting. If the splitting is weak regular

then ρ(M−1N) < 1 if and only if A−1 ≥ O.

Theorem 1. [22] Let A = M − N be a convergent regular splitting, and let

M = F −G be a convergent weak regular splitting. Then, the two-stage iterative

method (4) converges to the solution of the nonsingular linear system Ax = b,

for any initial vector x(0) and for any sequence of inner iterations q(l) ≥ 1, l =

0, 1 . . . .

Theorem 2. [22] Let A = M −N be an H-splitting , and let M = F −G be

an H-compatible splitting. Then, the two-stage iterative method (4) converges

to the solution of the nonsingular linear system Ax = b, for any initial vector

x(0) and for any sequence of inner iterations q(l) ≥ 1, l = 0, 1 . . . .
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4. Two-stage methods for solving PageRank

The PageRank vector π such that P̄ π = π can be obtained solving the sparse

linear system

(I − αP )x = v, (6)

and letting π = x
‖x‖1

; see e.g., [10].

For this purpose, we first propose the use of the iteration scheme (4) for

solving the linear system (6), where the outer splitting is (I − αP ) = M − N ,

with M = I−βP , and N = (α−β)P and the inner splitting is M = F−G, with

F = I and G = βP , β ∈ ℜ. That is, given an initial vector x(0) the proposed

two-stage iterative method produces the sequence of vectors

x(l+1) = Tq(l)x
(l) + cq(l), l = 0, 1, 2, . . . , (7)

where

Tq(l) = (βP )q(l) + (α− β)

q(l)−1
∑

j=0

(βP )jP, l = 0, 1, 2, . . . ,

and cq(l) =
∑q(l)−1

j=0 (βP )jv, l = 0, 1, 2 . . . .

To reduce the number of outer iterations of a two-stage method sometimes

a relaxation parameter ω > 0 is introduced in the inner iterations. For our

problem, this technique really consists of replacing the inner splitting by I −

βP = F̄ − Ḡ, with F̄ = 1
ω
I and Ḡ = 1−ω

ω
I + βP and produces the following

iterative scheme.

x(l+1) = T̄q(l)x
(l) + c̄q(l), l = 0, 1, 2, . . . , (8)

where

T̄q(l) = ((1−ω)I+ωβP )q(l)+ω(α−β)

q(l)−1
∑

j=0

((1−ω)I+ωβP )jP, l = 0, 1, 2, . . . ,

and c̄q(l) =
∑q(l)−1

j=0 ((1− ω)I + ωβP )jv, l = 0, 1, 2 . . . .

Clearly with ω = 1 the two-stage method (7) is recovered. In the case of

ω 6= 1 a relaxed two-stage method is obtained. In what follows, we analyze the
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convergence of the two-stage iterative method (7) and its relaxed version (8) to

solve the PageRank problem.

Theorem 3. Let P be the transition matrix of the PageRank problem and con-

sider its linear system formulation (6). Let α and β be such that 0 < β < α < 1.

(i) The two-stage iterative method (7) converges to the solution of the lin-

ear system (6), for any initial vector x(0) and for any sequence of inner

iterations q(l) ≥ 1, l = 0, 1 . . . .

(ii) If in addition 0 < ω < 1, the theorem holds for the relaxed two-stage

iterative method (8).

Proof. Let I −αP = M −N , with M = I − βP , and N = (α− β)P . Since

0 < β < α < 1, the matrices I − αP and I − βP are nonsingular matrices,

(I − αP )−1 ≥ O and (I − βP )−1 ≥ O. Moreover (α− β)P ≥ O. Therefore, the

splitting I − αP = M − N is a regular splitting and from Lemma 1 it follows

that it is a convergent regular splitting. Taking into account that M = I−βP =

F −G, with F = I and G = βP is a weak regular splitting and (I−βP )−1 ≥ O,

using Lemma 1 and Theorem 1 the proof of (i) is completed.

On the other hand, when 0 < ω < 1, the splitting M = I − βP = F̄ − Ḡ,

with F̄ = 1
ω
I and Ḡ = 1−ω

ω
I+βP is a regular splitting , and therefore the proof

of (ii) follows in the same way as the proof of (i).

Theorem 4. Let P be the transition matrix of the PageRank problem and con-

sider its linear system formulation (6). Let α and β be such that 0 < α < 1 and

0 < α < β < 1+α
2 .

(i) The two-stage iterative method (7) converges to the solution of the lin-

ear system (6), for any initial vector x(0) and for any sequence of inner

iterations q(l) ≥ 1, l = 0, 1 . . . .

(ii) If in addition 0 < ω < 1, the theorem holds for the relaxed two-stage

iterative method (8).
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Proof. Let I −αP = M −N , with M = I − βP , and N = (α− β)P . Since

0 < α < β < 1+α
2 , we can write 〈M〉−|N | = 〈I−βP 〉−|(α−β)P | = I−βP−(β−

α)P = I−(2β−α)P and taking into account that 0 < 2β−α < 2 1+α
2 −α = 1, the

matrix I−(2β−α)P is nonsingular and (I−(2β−α)P )−1 ≥ O. That is 〈M〉−|N |

is an M -matrix. Then, from Definition 1 it follows that I − αP = M −N is an

H-splitting. Taking into account that 〈I−βP 〉 = 〈I〉− |βP |, the inner splitting

M = I − βP = F − G, with F = I and G = βP is an H-compatible splitting

and using Theorem 2 the proof of (i) is completed.

On the other hand, if 0 < ω < 1 it yields 〈I − βP 〉 = I − βP = 〈 1
ω
I〉 −

| 1−ω
ω

I + βP |, then the splitting M = I − βP = F̄ − Ḡ, with F̄ = 1
ω
I and

Ḡ = 1−ω
ω

I+βP is an H-compatible splitting and the proof of (ii) follows in the

same way as the proof of (i).

Example 1 shows that the hypotheses of Theorem 4 on the parameter β

cannot be weakened. The calculations of this example have been performed in

MATLAB.

Example 1. Consider the linear system (6), with

P =





























0 0 1/3 0 0 0

1/2 0 1/3 0 0 0

1/2 0 0 0 0 0

0 0 0 0 1/2 1

0 0 1/3 1/2 0 0

0 0 0 1/2 1/2 0





























,

Setting α = 0.4 and β = 0.71 > 1+α
2 = 0.7 in the iterative scheme (7), the

iteration matrix of the stationary two-stage method Tq(l), with q(l) = q ≥ 10

has spectral radius greater than 1, and so it is not convergent.

As we explained in Section 2, two-stage methods can also be used to solve

the PageRank problem using the following linear system formulation

(I − αP
′

)x = (1− α)v, (9)

10



where P
′

= P + vdT . In this case, setting the outer splitting I−αP
′

= M −N ,

with M = I − βP ′, and N = (α − β)P ′ and the inner splitting is M = F −G,

with F = I and G = βP ′, the two-stage iterative scheme produces the sequence

of vectors

x(l+1) = T̃q(l)x
(l) + c̃q(l), l = 0, 1, 2, . . . , (10)

where

T̃q(l) = (β(P +vdT ))q(l)+(α−β)

q(l)−1
∑

j=0

(β(P +vdT ))j(P +vdT ), l = 0, 1, 2, . . . ,

and c̃q(l) = (1− α)
∑q(l)−1

j=0 (β(P + vdT ))j(1− α)v, l = 0, 1, 2 . . . .

The iteration scheme (10) can be seen as a generalization of the basic inner-

outer method proposed in [13], in which 0 < β < α < 1 and the number of inner

iterations to performing at each outer iteration was obtained by means of an

inner tolerance. In [13] convergence of the inner and outer iterations is analyzed

separately, assuming that the inner system is solved exactly. However, when the

inner iterations are solved inexactly we are in the presence of a non-stationary

two-stage method and only the convergence of the outer and inner splittings

does not assure the global convergence of the method. We want to remark that

the global convergence of the iterative scheme (10) can be assured for α and β

satisfying the same conditions of Theorems 3 and 4; see Theorem 5.

Theorem 5. Let P be the transition matrix of the PageRank problem and con-

sider its linear system formulation (9), with P
′

= P + vdT . Let 0 < α < 1

and β > 0 be such that β < α or α < β < 1+α
2 . Then, the two-stage iterative

method (10) converges to the solution of the linear system (9), for any initial

vector x(0) and for any sequence of inner iterations q(l) ≥ 1, l = 0, 1 . . . .

Proof. Consider the outer splitting I − αP
′

= M −N , with M = I − βP
′

,

and N = (α− β)P
′

and the inner spitting M = I − βP
′

= F −G, with F = I

and G = βP ′. Taking into account the properties of the matrices I − αP
′

and

I − βP
′

the proof follows reasoning in a similar way as in Theorems 3 and 4.
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Although the matrices I −αP and I −αP
′

have similar properties, the ma-

trix I − αP
′

can be too dense, depending on the number of dangling nodes.

However, the matrix I −αP is a very sparse matrix, because a large proportion

of its elements are zero. This is due to most webpages link to only a handful of

other pages. Sparse matrices such as I−αP are welcome for parallel processing.

First, they require significantly less storage since compressed sparse matrix stor-

age formats can be used while very large matrices are infeasible to manipulate

the algorithms using dense-matrix structures. Second, matrix-vector product

involving a sparse matrix requires much less effort than the dense computation.

5. Parallel algorithms: programming models and hardware

In order to design the parallel two-stage algorithm for solving the PageRank

problem, we consider without loss of generality that the transition matrix P is

partitioned into p row blocks of the form

P =

















P1

P2

...

Pp

















,

where each Pi, 1 ≤ i ≤ p, is a matrix of order ni × n, with
∑p

i=1 ni = n.

Analogously, we consider the iterate vectors x(l) and v partitioned according

to the block structure of P . Then, Algorithm 1 describes the proposed paral-

lel algorithm to solve the sparse linear system (6) by means of the two-stage

iterative method (7). In what follows, we have labeled it as the LTW algo-

rithm. Note that, the LTW algorithm allows us to reduce the number of global

iterations by eliminating synchronization points at which a process must wait

for information from other processes being that each part of x(l+1) is updated

more than once (q(l) > 1 times) without waiting for the other parts of x(l+1).

Note that when q(l) = 1, the synchronization among processes is performed at

each lth outer iteration in such a way that all processes use the same current
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vector x(l) to compute their part of the following iterate vector. In this case no

synchronizations and communications among processes are avoided.

A possible way to reduce the number of outer iterations of a two-stage

method consists of introducing a relaxation parameter ω in Algorithm 1 adding

after the computation of (11) the equation y
(k)
i = ωy

(k)
i + (1−ω)y

(k−1)
i . In this

case we obtain a parallel relaxed two-stage algorithm, that we have called RTS

algorithm.

All parallel algorithms analyzed in this work have been implemented in C++

on an HPC cluster of 26 nodes HP Proliant SL390s G7 connected through a

network of low-latency QDR Infiniband-based. Each node consists of two Intel

XEON X5660 hexacore at up to 2.8 GHz and 12MB cache per processor, with 48

GB of RAM. The operating system is CentOS Linux 5.6 for x86 64 bit. Taking

into account the hierarchical hardware design of this high performance system,

the parallel algorithms have been implemented combining distributed memory

parallelization on the node interconnect with shared memory parallelization

inside each node. For this purpose, MPI [25] and OpenMP [26] programming

models were combined into a hybrid paradigm in which MPI is used for data

distribution among nodes and OpenMP to exploit loop level parallelism within

each node. In this way we have used a philosophy of distributed shared memory

(DSM) in which s× c indicates that s nodes of the parallel platform have been

used for data distribution and for each one of these nodes, c OpenMP threads

have been considered. Particularly, if s = 1, the algorithms are executed in

shared memory (SM) using c threads on a single node. Conversely, if c = 1, we

are working on distributed memory (DM) using s nodes.

In order to explain more specifically our approach we can consider Algo-

rithm 1 describes the parallelization of the two-stage method using a distributed

memory programming. In this algorithm, the value of p indicates the number

of MPI processes, each of them assigned to a physical node. In the distributed

shared memory programming, an MPI/OpenMP hybrid parallel algorithm is

considered in which every MPI process, mapped into a multicore node, spawns

a number of OpenMP threads to execute in parallel the computation of (11),
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Algorithm 1: Parallel two-stage method for solving PageRank (LTW al-

gorithm).

Initialization x(0) = e
n
, v = e

n
, q(l), l = 1, 2, · · · , k = 0, l = 0;

for i = 1, 2, . . . , p, do in parallel

repeat

l = l + 1;

y(0) = x(l−1);

for k = 1, 2, . . . , q(l), do

(11)y
(k)
i = βPiy

(k−1) + (α− β)Pix
(l−1) + vi;

y
(k)
j = y

(k−1)
j , j 6= i ;

end

x
(l)
i = y

(q(l))
i ;

Perform an all-gather operation to obtain x(l) = [x
(l)
1 , . . . , x

(l)
p ];

(12)Compute ‖x
(l)
i − x

(l−1)
i ‖1;

Perform a sum all-to-all reduction over ‖x
(l)
i − x

(l−1)
i ‖1 to obtain

δ = ‖x(l) − x(l−1)‖1;

until δ < ǫ;

(13)Compute ‖x
(l)
i ‖1;

Perform a sum all-to-all reduction over ‖x
(l)
i ‖1 to obtain ‖x(l)‖1;

Compute πi =
x
(l)
i

‖x(l)‖1
;

Perform a gather operation over πi to obtain π = x(l)

‖x(l)‖1
in a root

process;

end
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Algorithm 2: Multicore parallel computation of (11).

for k = 1, 2, . . . , q(l)− 1, do

#pragma omp parallel for schedule(dynamic)

for j = startRow, . . . , endRow do

yi[j]
(k) = βPi[j]y

(k−1) + (α− β)Pi[j]x
(l−1) + vi[j];

end

end

Algorithm 3: Multicore parallel computation of (11) and (12).

k = q(l);

#pragma omp parallel for schedule(dynamic) reduction(+:norm)

for j = startRow, . . . , endRow do

yi[j]
(k) = βPi[j]y

(k−1) + (α− β)Pi[j]x
(l−1) + vi[j];

norm+ = fabs(yi[j]
(k) − xi[j]

(l−1));

end

(12) and (13). These three tasks are parallelized using OpenMP by heading the

corresponding “for” loop with a “parallel for” pragma (“#pragma omp parallel

for”) that launches multiple threads that execute the loop iterations in some

system-specific scheme. The computation of (11) was partitioned using a dy-

namic scheduling strategy, where groups of a user determined size (called chunk

size) are assigned to the threads on a first-come, first-served basis. Algorithm 2

describes this scheme in which each iteration j of the parallel “for” corresponds

to the computation of the jth component of the vector y
(k)
i (denoted as yi[j]

(k))

associated to the jth row of the matrix block Pi (denoted as Pi[j]). In our case,

this strategy is preferable than a static scheduling scheme in which groups of

consecutive iterations are assigned to the threads in a round-robin fashion. As

we will see later, a static scheme can lead to an unbalanced computational cost

since the number of nonzero elements in the matrix P would be very different

from one thread to another. On the other hand, no noticeable differences have
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been found depending on the chunk size value used in the scheduling of the

OpenMP parallel loops, except if very low or high values are used.

The computation of (12) and (13) includes a reduction process at the end of

the OpenMP parallel “for”. In both computations, the static scheduling strategy

should be a priori a good strategy because, in these cases, the computational

work is balanced among threads. However, in order to reduce the number of

fork/join concurrency control mechanisms, we have included the computation

of (12) in the same OpenMP parallel “for” that computes (11) at the last inner

iteration, that is, when k = q(l). More specifically, we perform q(l)−1 OpenMP

parallel loops “for” without a reduction procedure, shown in Algorithm 2, and

one last OpenMP parallel loop “for” with a reduction procedure to compute

additionally the norm ‖x
(l)
i − x

(l−1)
i ‖1, shown in Algorithm 3; note that y

(q(l))
i

in the last inner iteration corresponds to x
(l)
i .

6. Data structures and partitioning

There are a multitude of sparse matrix representations, each one with dif-

ferent storage requirements, computational characteristics, and methods of ac-

cessing and manipulating matrix entries [27], [28], [29]. The Compressed Sparse

Row (CSR) format for sparse matrices is perhaps the most widely used format

when no assumptions about the sparsity structure of the matrix is required.

This format stores the matrix using three vectors: one for floating point num-

bers and other two for integers. The floating point vector stores the values of

the nonzero elements of the matrix, following a row-wise method. One of the

integer vectors stores the column indexes of the elements in the values vector.

The other integer vector stores the locations in the values vector that start

a row. Another well-known sparse matrix storage format is the ELLPACK

format. This format stores the sparse matrix on two arrays, one for floating

point numbers, to store the nonzero elements, and one for integers, to store the

columns of every nonzero element. On the other hand, blocking storage formats

based on the CSR format such as the Block Compressed Sparse row (BCSR)
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or the Variable Block Row (V BR) formats could be considered.

Comparisons of these storage formats and other basic formats have been

reported by different authors, see e.g. [27], [30], [31], [32], and the references

cited therein. In [30] the sparse matrix-vector multiplication is analyzed on a

wide class of matrices and on a variety of superscalar architectures, showing

that the use of the CSR format performs better than other basic formats in-

cluding the ELLPACK format. Since the ELLPACK format uses the same

number of elements per row padding with zero elements, if the percentage of

zeros is high and there is a very irregular location of entries in different rows,

then the performance of the ELLPACK data structure decreases and storage

requirements increase [31]. In [32] a comparative study of block based storage

methods for sparse matrix-vector multiplication on multicore architectures is

performed. The analysis includes the BCSR and V BR formats and shows that

when improper blocks are selected, a dramatic performance degradation is ob-

served compared with the use of the CSR format. That is, the performance of

a sparse matrix storage format depends considerably on the nonzero pattern,

the block sizes, and the underlying micro-architectures.

Considering the above-mentioned, in this work, a modified Compressed

Sparse Row (mCSR) format has been used to store the matrices. We rep-

resent the two vectors of indexes of the CSR format by integers without sign

of 32 bits, while the values and the iterate vectors are represented by means of

double precision floating point with 64 bits. Taking into account that, for each

column of a transition matrix, all nonzero elements are equal to a fixed value,

the mCSR format stores once these elements in an ordered vector. For the ex-

periments performed in this work, we have used four datasets of different sizes,

available from http://law.di.unimi.it [33]; see Table 1. These transition matri-

ces have been generated from a web-crawl [34]. The proposed mCSR format

has involved a reduction of memory requirements for these matrices of about

63− 73% with respect to the original CSR format [35]. Table 2 compares both

the sequential and parallel Power algorithms, using this mCSR format and the

bvgraph data structure used in [12] for solving the PageRank problem. As it can
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be seen, the bvgraph data structure does not provide an efficient way to store

the Web graph matrix. In fact, this data structure has caused 4− 8x slowdown

with respect to the mCSR storage format. Therefore, all algorithms treated

here have been implemented to work with the matrix stored using the mCSR

format.

Graph n nnz Dgn (%) Dens M (GB)

it-2004 41,291,594 1,150,725,436 12.76 27.87 4.75

webbase-2001 118,142,155 1,019,903,190 23.41 8.63 5.12

uk-2006-10 93,436,772 3,130,910,405 13.52 33.50 12.71

uk-2007-05 105,896,555 3,738,733,648 12.23 35.31 15.11

Table 1: Graphs collection. n =number of nodes, nnz =number of arcs, Dgn=percentage of

dangling nodes, Dens=density (arcs/nodes), M=memory requirements using mCSR format.

Using bvgraph (hours) Using mCSR (hours)

Graph Iter. Sequential Parallel Sequential Parallel

it-2004 869 3.79 1.05 0.61 0.21

webbase-2001 904 6.83 2.16 0.93 0.38

uk-2006-10 761 7.89 2.73 1.50 0.56

uk-2007-05 745 9.38 2.96 1.89 0.67

Table 2: Execution time of the sequential and parallel Power methods, SM (1 × 4), bvgraph

versus mCSR format, α = 0.99, ǫ = 10−6.

Implementing the two-stage methods for solving PageRank in a parallel en-

vironment opens several possibilities of data partitioning and load balancing.

For this purpose, the use of hypergraph partitioning-based decomposition tech-

niques was analyzed in [36] applied to the parallel computation of the PageRank

vector by means of the Power method using relatively small matrices. Both one

and two-dimensional hypergraph decomposition models were considered using

the parallel hypergraph partitioner tool Parkway 2.0 [37]. The results show
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Figure 1: Row-wise versus nonzero elements distribution, parallel LTW algorithm, DSM (4×

4), ǫ = 10−6.

that hypergraph-based partitioning can reduce the communication volume over

conventional partitioning schemes, however due to the high initial partition-

ing overhead, it seems a not plausible approach for large Web graph transition

matrices.

# MPI Proc. MPI rank # rows Percentage # nonzero elements Percentage

1 0 41291594 100.0% 1150725436 100.0%

2 0 20645797 50.0% 539947754 46.9%

1 20645797 50.0% 610777682 53.1%

4 0 10322899 25.0% 239969086 20.9%

1 10322899 25.0% 299978669 26.1%

2 10322899 25.0% 285580832 24.8%

3 10322897 25.0% 325196849 28.3%

8 0 5161450 12.5% 111962381 9.7%

1 5161450 12.5% 128006708 11.1%

2 5161450 12.5% 140826365 12.2%

3 5161450 12.5% 159152303 13.8%

4 5161450 12.5% 145685174 12.7%

5 5161450 12.5% 139895659 12.2%

6 5161450 12.5% 138425034 12.0%

7 5161444 12.5% 186771812 16.2%

Table 3: Workload assigned to each MPI process, row-wise partitioning, it-2004 matrix.

In this work, we have considered two different methods for partitioning the
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# MPI Proc. MPI rank # rows Percentage # nonzero elements Percentage

1 0 41291594 100.0% 1150725436 100.00%

2 0 21944911 53.1% 575366136 50.0%

1 19346683 46.9% 575359300 50.0%

4 0 12303064 29.8% 287681937 25.0%

1 9641847 23.4% 287684199 25.0%

2 10218835 24.7% 287682404 25.0%

3 9127848 22.1% 287676896 25.0%

8 0 6498561 15.7% 143841795 12.5%

1 5804506 14.1% 143840795 12.5%

2 4661921 11.3% 143840689 12.5%

3 4979923 12.1% 143842857 12.5%

4 5231933 12.7% 143841010 12.5%

5 4986902 12.1% 143841394 12.5%

6 5325390 12.9% 143840837 12.5%

7 3802458 9.2% 143836059 12.5%

Table 4: Workload assigned to each MPI process, nonzero elements partitioning, it-2004

matrix.

link matrix among nodes. The first method is a row-wise partitioning where

each node gets the same amount of rows. The second one is a nonzero elements

partitioning in which each node has to handle approximately the same amount of

nonzero elements. Figure 1 compares these strategies of data distribution. The

notation LTW(q) indicates that, for every l, q(l) = q steps are used in Algorithm

1. Generally, the nonzero elements partitioning has been the best partitioning

strategy not only for the LTW algorithm but also for the Power algorithm.

This is due to the fact that the row-wise partitioning of a sparse matrix may

lead to a load imbalance among processes when the number of nonzero entries

of each block of rows differs immensely. However, the nonzero partitioning

approach has achieved good load balancing among processes since all processes

terminate each global iteration at approximately the same time. Tables 3 and 4

display, for the it-2004 matrix, the number of rows and the number of nonzero

elements assigned to each MPI process when row-wise partitioning and nonzero
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elements partitioning are used, respectively. As it can be seen, the workload

(associated to the number of nonzero elements) becomes unbalanced when row-

wise partitioning is used. For example, when 8 MPI processes are used, the

process with MPI rank equal to 0 has associated a 9.7% of the workload, while

the process with rank 7 has associated a 16.2% of the workload. Conversely,

using the nonzero elements partitioning, all MPI processes have associated a

12.5% of the workload, but obviously different number of rows. Taking into

account the best performance of the nonzero elements partitioning approach, in

what follows, we will afford to work only with this data distribution strategy.

7. Experimental analysis

In this section we analyze the behaviour of the proposed parallel two-stage

algorithms for computing PageRank. For this purpose, we have run our algo-

rithm for several values of α, β and ω. In the experiments reported here, we

have used for the stopping criterion ǫ = 10−6. Furthermore, the chunk size used

in the OpenMP parallel loops was set to 1000.

Figure 2 illustrates the convergence rates for the LTW method, setting a

global convergence scheme and different values of β. The weights given to the

Web link graph in this figure have been α = 0.6 (Figure 2(a)) and α = 0.85

(Figure 2(b)). That is, in Figure 2(a), the model assumes that the 60% of

the time the random surfer follows the hyperlink structure of the Web and the

other 40% of the time he teleports to a random new page. In Figure 2(b)

these percentages are 85% and 15%, respectively. Note that good choices of the

parameter β can be found when the convergence is assured from a theoretical

point of view, that is setting 0 < β < α < 1, or 0 < α < 1 and α < β < 1+α
2 (see

Theorems 3 and 4). Our experience indicates that for setting optimal splittings

in the LTW algorithm one must choose β close to α and less than 1+α
2 . In fact,

the number of iterations starts to decrease as β increases up to optimal values

of β close to that interval. However, when β > 1+α
2 the number of iterations

starts to increase and even the convergence may not be guaranteed.
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Figure 2: Number of iterations of the parallel LTW algorithm, DSM (4× 4), uk-2006 matrix.

Due to the fact that large values of α give more weight to the true link

structure of the Web it is more desirable to choose α close to one. Nevertheless,

we want to point out that each choice of α corresponds to a different PageRank

problem. In light of this, Table 5 compares the top 50 Web pages returned by

the LTW algorithm using α = 0.85 with other values of α. Both, the number of

common Web pages (# cp) and the number of Web pages located in the same

position (# sp) are displayed. As it can be seen, the PageRank vector is very

sensitive to changes in α for these Web graphs.

it-2004 webbase-2001 uk-2006-10 uk-2007-05

α # cp # sp # cp # sp # cp # sp # cp # sp

0.5 40 9 28 0 29 6 28 0

0.6 42 7 29 1 32 7 32 0

0.7 45 10 31 2 40 12 36 1

0.8 47 21 43 3 46 14 43 8

0.9 47 12 46 3 45 2 47 5

0.95 35 7 38 1 39 1 37 4

0.99 8 0 17 1 17 0 19 0

0.995 4 0 9 1 15 0 17 0

Table 5: Comparison of the top 50 Web pages for several values of α in relation to α = 0.85.

Table 6 summarizes the effect of α on the expected number of iterations for

our datasets by means of their median. We also display the confidence intervals
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Iterations % Reduction

α Method Median Mean CI (95%)

LTW(2) 41.5 28.77 [21.01, 36.52]

α = 0.85 LTW(4) 23 60.79 [57.88, 63.69]

LTW(6) 16 72.72 [70.70, 74.74]

LTW(2) 63.5 23.71 [21.26, 26.16]

α = 0.9 LTW(4) 34.5 58.55 [56.73, 60.37]

LTW(6) 24 71.17 [70.64, 71.70]

LTW(2) 127.5 25.92 [17.07, 34.76]

α = 0.95 LTW(4) 68 60.49 [55.86, 65.13]

LTW(6) 48 72.26 [69.11, 75.41]

Table 6: Effect of α in the number of iterations of the LTW algorithms with respect to the

Power algorithm, β = α− 0.01, SM (1× 2).

(CI) for the percentage of reduction in the number of iterations in relation to

the Power method. These intervals have been obtained using a significance level

of 0.05. Taking into account that the sample is small, checking the assumption

of normality is needed. For all cases, the Shapiro-Wilk test does not reject the

assumption of normality. As it can be seen, the LTW algorithms reduce the

number of iterations in relation to the Power method. Then, a good choice for

the value of q is one which balances the realization of more local updates with

the decrease of the global iterations.

In Figure 3 we illustrate the performance of the LTW algorithm for several

values of q, setting α = 0.98. In each subfigure, the total number of processes

remains unchanged (8 and 16 for Figures 3(a) and 3(b), respectively) but varying

the DSM configuration. The best results have been obtained using q = 2 or q = 4

inner iterations at each global iteration of the LTW algorithm outperforming

the LTW(1) algorithm in which synchronization points among processes are not

avoided.

Figures 4 and 5 display the efficiency achieved setting, as sequential reference
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Figure 3: Total running times of the parallel LTW algorithm, α = 0.98, β = 0.97.
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Figure 4: Efficiency, Power method as sequential reference algorithm, α = 0.98, β = 0.97,

q = 4.

algorithms, the Power method and the best LTW algorithm, respectively. We

obtain an acceptable scalability being generally quite efficient to use no more

than 8 threads per each MPI process. This is due to the fact that many pro-

cessing cores sharing the same system bus and memory bandwidth can limit the

real performance advantage.

On the other hand, we have compared the LTW algorithm with the well-

known extrapolation methods [4] and with both the basic inner-outer and the

inner-outer Power iterative algorithms proposed in [13]. For this purpose, these

algorithms have been implemented in parallel using the same storage format

as that used for the LTW and Power algorithms, that is the mCSR format.

Furthermore, the parallel implementation of these methods has also been devel-

oped using a hybrid MPI/OpenMP scheme. We point out that the performance
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Figure 7: LTW versus Power method and In-out methods, DSM, α = 0.98.
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Graph Iterations Using bvgraph (s.) Using mCSR (s.) ratio

it-2004 648 2217.49 387.91 5.72

webbase-2001 620 2240.18 623.98 3.59

uk-2006-10 654 3982.98 989.16 4.02

uk-2007-05 657 4920.34 1175.77 4.18

Table 7: Execution time (seconds) of the In-out Power method, bvgraph versus mCSR format,

SM (1× 8), α = 0.99.

of the OpenMP code proposed in [13] was analyzed using 8 cores and working

with Web graphs compressed into bvgraph data structures. However, Table 7

shows that the use of the mCSR storage format is much more efficient in terms

of execution time.

Figure 6 analyzes the behaviour of the inner-outer algorithms compared

with our LTW algorithm for several configurations of processes. As it can be

expected, the inner-outer Power algorithm [13, Algorithm 2] performs better
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Figure 10: LTW versus extrapolated Power and In-out methods, α = 0.98, uk-2007-05 matrix.

than the basic inner-outer algorithm [13, Algorithm 1]. Nevertheless, the LTW

algorithm outperforms these methods. Figure 7 compares the percentage of time

reduction of the LTW algorithm with respect to both the Power and the inner-

outer Power algorithms for the matrices of Table 1. The time saving of the LTW

algorithm has been more significant for the webbase-2001 matrix obtaining a

time reduction in relation to the parallel Power method of up to 46% and up

to 40% with respect to the parallel inner-outer Power algorithm. For the other

matrices, gains of up to 30% and 25% respectively, are achieved. Note that the

density of the webbase-2001 matrix is the lowest, which yields lower compu-

tational work per iteration. Therefore, the communications between processes

have more influence on the time needed to converge and hence, an algorithm

with less communications can better improve the execution time.

Figures 8, 9 and 10 compare the LTW algorithm with the extrapolation

methods [4]. These methods use successive iterates of the Power method to

estimate the nonprincipal eigenvectors of the hyperlink matrix, and periodically

subtracting these estimates from the current iterate of the Power method. In

practice, the extrapolation only needs to be applied once to achieve maximum

benefit. In this way, the parameter r in Figures 8 and 9 means that the extrap-

olation is applied once at the r + 2 iteration of the Power method by means

of the following expression x(r+2) = x(r+2)−αrx(2)

1−αr . We want to point out that,
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as it was shown in [5], the simple extrapolation (r = 1) is not effective and

slows down the convergence of the Power method. It is due to the fact that the

simple extrapolation assumes that α is the only eigenvalue of modulus α and

this is inaccurate. Moreover, a good choice of the value of r for α = 0.85 in

the extrapolated Power method is r = 6, while for values of α close to 1, small

values of r get poor results and it should be chosen greater than or equal to 50;

see [4] and [5]. Concretely, for α = 0.98, our results indicate that the best r

is r = 50. On the other hand, we also analyze in these figures a combination

of both the extrapolation and the LTW methods, that we have called LTW

EXT algorithm. The idea is to start the LTW(q) iterations (q > 1) using an

initial vector nearest to the solution. For this purpose, after the iterate x(2) is

obtained by the Power method, r iterations of the LTW(1) algorithm are per-

formed followed by an extrapolation. In this case, for α = 0.98, we obtain good

results using 4 ≤ q ≤ 6 and r = 20. As it can be seen in these figures, the gain

obtained by the best extrapolated methods in relation to the Power method is

considerable, outperforming inner-outer Power methods. Furthermore, either

the LTW algorithm or the extrapolated LTW algorithm remains the fastest of

all of them.

ω 0.96 0.97 0.98 0.99 1 1.01 1.02 1.025

RTS(2) 324 322 321 319 318 316 315 318

RTS(4) 174 173 172 171 170 168 215 525

Table 8: Number of iterations of the RTS algorithm, SM (1×4), α = 0.98, uk-2007-05 matrix.

To conclude the analysis of the experiments, we consider the relaxed version

of the LTW algorithm, that is, the RTS algorithm. As it can be seen in Table 8,

the RTS algorithm can reduce the number of iterations for the convergence of

the PageRank problem when compared with its non-relaxed counterpart. For

our problem models, good choices of the value of ω in the RTS algorithm are

close to 1 but greater than 1. Nevertheless, the RTS algorithm only can save up

to 3.5% in the time needed by the LTW to reach a residual of 10−6. Concretely,
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for the data of Table 8 the gain achieved with the RTS algorithm in relation to

the LTW algorithm was of 3.35% for q = 2 and of 0.5% for q = 4. The choice of

an optimal relaxed parameter for the RTS algorithm is problem dependent and

taking into account that for a good ω both the RTS and LTW algorithms need

similar number of iterations for convergence, it seems preferable to use the LTW

algorithm instead of the RTS algorithm. Note that the RTS algorithm performs

extra computation and this approach is advantageous only when the number of

synchronizations (iterations) among processes can be significantly reduced.

8. Conclusion

In this work we have designed several parallel algorithms that use two-stage

methods for solving the PageRank problem by means of its sparse linear sys-

tem formulation. From a theoretical point of view, conditions on the proposed

splittings are analyzed to guarantee the global convergence. The parallel code

has been developed using MPI for data distribution among nodes and OpenMP

to exploit loop level parallelism within each node. The formulation of the al-

gorithm allows each process to calculate an approximation to the solution for

a much smaller size problem than the original one. In addition, this technique

aims to reduce the synchronization points at which a process must wait for

information from other processes. In this sense, the nonzero element partition-

ing approach has achieved better load balancing among nodes than the row-wise

distribution, since all processes terminate each global iteration at approximately

the same time. The displayed numerical experiments show that the proposed

parallel algorithms may be applied to large and sparse linear systems obtained

from the PageRank problem, outperforming well-known methods such as the

extrapolation Power methods [3] and the inner-outer techniques proposed in

[13].
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