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Abstract 

In this study, an efficient polygonal finite element method (PFEM) in combination 

with quadratic serendipity shape functions is proposed to study nonlinear static and dynamic 

responses of functionally graded (FG) plates with porosities. Two different porosity types 

including even and uneven distributions through the plate thickness are considered. The 

quadratic serendipity shape functions over arbitrary polygonal elements including triangular 

and quadrilateral ones, which are constructed based on a pairwise product of linear shape 

functions, are employed to interpolate the bending strains. Meanwhile, the shear strains are 

defined according to the Wachspress coordinates. By using the Timoshenko’s beam to 

interpolate the assumption of the strain field along the edges of polygonal element, the shear 

locking phenomenon can be naturally eliminated. Furthermore, the C0–type higher-order shear 

deformation theory (C0–HSDT), in which two additional variables are included in the 

displacement field, significantly improves the accuracy of numerical results. The nonlinear 

equations of static and dynamic problems are solved by Newton-Raphson iterative procedure 

and by Newmark’s integration scheme in association with the Picard methods, respectively. 

Through various numerical examples in which complex geometries and different boundary 

conditions are involved, the proposed approach yields more stable and accurate results than 

those generated using other existing approaches. 

Keywords: Polygonal finite element method, Quadratic serendipity shape functions, 

Functionally graded materials, Porosity, Timoshenko’s beam, Nonlinear dynamics. 
 

*Corresponding author, Tel: +84 906682393. Email address: ngx.hung@hutech.edu.vn (H. Nguyen-Xuan). 



 
2 

1. Introduction 

Functionally graded materials (FGMs) are categorized as a special class of composite 

materials [1] because they are formed of two or more constituent phases of distinct materials. 

As the material properties change continuously and smoothly from one surface to another, 

FGMs are capable of eliminating stress concentration and delamination phenomena which 

generally encountered in conventional laminated composites. Based on advantageous 

properties of ceramic and metal such as resistant to high temperatures and ductility, 

respectively, FGMs are commonly synthesized from these material phases. Thanks to these 

striking features, FGMs have been extensively applied to various engineering applications 

including aerospace, defence, automotive, nuclear power, bio-engineering and other areas [2, 

3]. There have been extensive efforts working on the analysis of FG structures in the literature 

[4-10]. Due to technical issues during the manufacturing process, porosities may appear within 

the FGMs and cause reduction in the strength of the materials. Wattanasakulpong et al. [11] 

reported that there are porosities existing in the middle area of the FGM samples which are 

fabricated by using multi-step sequential infiltration technique. Therefore, it is indispensable 

to consider porosity effects when investigating the nonlinear static and dynamic responses of 

FGM structures. In the literature, there are many studies that take into consideration the FGM 

structures with porosities. However, most of these investigations focus on the vibration 

behavior of porous FG structures such as beams [12, 13], plate structures [14-16] and shell 

structures [17]. Additionally, the buckling problems of porous FG beams and plates have also 

been discussed [18, 19]. Based on the quasi-3D shear deformation theory, Zenkour [20] 

investigated the bending responses of porous FG single-layered and sandwich plates which are 

graded using two types of exponential or polynomial laws. 

Due to the limitations of the three–dimensional (3D) model when solving practical 

problems with complex geometries under arbitrary boundary conditions, several two–

dimensional (2D) model plate theories have been developed and widely employed to predict 

appropriately the structural responses. The classical plate theory (CPT), which was devised 

based on the Kirchhoff–Love assumptions, is the most fundamental plate theory. Even though 

this theory works well for thin plates in which the length-to-thickness ratio is large, it may 

lead to inaccurate predictions as it ignores the shear deformations. First-order shear 

deformation theory (FSDT) [21, 22] which considers the transverse shear deformation effects, 

has been suitably developed for both thin and thick plates. However, this theory requires an 

appropriate shear correction factor whose value depends on various factors such as applied 
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loads, boundary conditions, material coefficients and geometric, to satisfy the traction-free 

boundary conditions at surfaces of the plate. In order to surmount the limitations in CPT and 

FSDT, a large number of different higher-order shear deformation theories (HSDTs) have 

been developed such as third-order shear deformation theory (TSDT) [23, 24], sinusoidal 

shear deformation theory [25], hyperbolic shear deformation theory (HSDT) [26, 27], refined 

plate theories (RPT) [28], and some higher-order theories based on Carrera’s Unified 

Formulation (CUF) [29, 30]. However, the HSDTs require C1–continuity of the generalized 

displacements that cause challenges in calculation of second-order derivatives of deflections if 

one uses conventional finite element analysis. In an effort to overcome this obstacle, Shankara 

and Iyengar [31] proposed the C0–type higher-order shear deformation theory (C0–HSDT) in 

which two variables are added to the displacements and only the first derivatives of deflection 

are required. 

In 2D finite element analysis, the most frequently used element types are triangles and 

quadrilaterals. Nevertheless, it was pointed out that when treating complex microstructures 

modeling or material design, significant troubles in generating quality meshes may remain. 

For example, in polycrystalline materials, each crystal is usually considered as the polygon. 

By using the conventional triangular and quadrilateral elements to discretize these 

microstructures, the high resolution of meshes is required. Fortunately, the drawbacks can be 

easily treated in PFEM by modeling each crystal as one polygonal element. Therefore, many 

researchers have been focusing on developing the generalizations of FEM which rely on 

arbitrary polygonal meshes and include both triangular and quadrilateral elements. In terms of 

computation, PFEM is more flexible in discretization, useful in mesh transitions and 

refinement, well-suited for material design and sometimes more accurate and robust in 

approximating results [32]. In recent years, PFEM has been widely applied in many 

mechanical problems such as nonlinear behavior of polycrystalline materials [33-35], 

nonlinear elastic materials [32, 36], incompressible fluid flow [37, 38], crack modeling [39, 

40], limit analysis [41], topology optimization [42-44], contact-impact problem [45. In terms 

of plate analysis, Nguyen-Xuan [46] firstly proposed a Reissner–Mindlin plate formula that is 

suitable for both thick and thin plates on arbitrary polygonal meshes based on the 

Timoshenko’s beam assumptions. In this work, four barycentric shape function types such as 

Wachspress, mean–value, Laplace and piecewise–linear are considered. Then, using the 

piecewise–linear shape function, Nguyen et al. [47] extended a polygonal finite element to 

laminated composite plates based on the C0 approximations (C0–HSDT). Our current study 
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aims to improve the performance of the original polygonal plate element [46] and we then 

apply it to nonlinear analysis of porous FG plates. 

Compared with the traditional finite elements, the construction of shape functions over 

arbitrary polygon elements is not easy due to the complexity of the general polygonal element 

shape. Therefore, numerous approaches have been proposed to determine the shape functions 

for polygonal elements such as the rational polynomial interpolation functions proposed by 

Wachspress firstly [48], mean value coordinates by Floater [49], maximum entropy 

coordinates by Sukumar [50], natural neighbor interpolants by Sukumar et al. [51], moving 

least squares coordinates [52], the sharp upper and lower bound piecewise-linear functions by 

Floater et al. [53],  etc. The outline the construction of polygonal shape functions is presented 

by Sukumar and Malsch [54]. Recently, the development to higher-order approximations over 

arbitrary polygonal elements has been attracting high level of attention. Using pairwise 

product of linear shape functions, Rand et al. [55] proposed the construction process of the 

quadratic serendipity shape functions over convex polygonal element based on generalized 

barycentric coordinates. Herein, the nodal shape functions are only associated with the 

vertices and the mid-nodes on the edges of polygonal element. Sellam et al. [56] employed the 

quadratic serendipity polygonal elements for generalized elastic solids subjected to torsion. 

Heng et al. [57] utilized a general gradient correction scheme for serendipity element in finite 

elasticity problems. Based on the local generalized barycentric coordinates and triangular 

coordinates, Floater and Lai [58] presented polygonal splines which Sinu et al. [59] further 

developed for constructing serendipity shape functions over hexahedra and convex polyhedral. 

In addition, Sukumar [60] proposed the quadratic maximum-entropy serendipity shape 

functions for both convex and nonconvex polygons.  

In an effort to improve the numerical results and construct a unified formula for the 

arbitrary polygonal finite element including triangular and quadrilateral elements, in this study, 

we propose an effective and novel unified formulation for both thick and thin plate elements 

on arbitrary polygonal meshes. In order to get results that are more accurate, the quadratic 

serendipity shape functions are enhanced to the arbitrary polygonal finite element formulation. 

In addition, based on Soh’s works [61,62] which only were available for triangular and 

quadrilateral elements, the Timoshenko’s beam theory is applied to interpolate the assumption 

of strain field along sides of arbitrary polygonal element. As a result, the shear locking 

phenomenon can be naturally suppressed. According to polygonal elements, the bending 

strains are computed using the quadratic serendipity shape functions while the shear strains 
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employ the Wachspress coordinates at the vertices on polygonal elements. The static and 

dynamic analyses of porous FG plates including both linear and geometrically nonlinear cases 

are performed to demonstrate the superiority in terms of the efficiency and accuracy of the 

present method. Two types of porosity distribution including even and uneven distributions 

with various porosity volume fractions are considered in numerical examples. The impact of a 

few specific parameters such as different porosity distribution, porosity volume fraction, 

material index and thickness ratio on the deflection of porous FG plates, is considered and 

discussed in detail. As shown in the numerical examples, the proposed element, which based 

on the quadratic serendipity shape functions, shows more accurate and stable than those of 

other PFEMs, which were reported in [46]. It should be noted that the mid-side nodes of the 

quadratic serendipity polygonal element are then eliminated in the calculation process, which 

leads to the number of DOFs per polygonal element does not increase when compared with 

the formulation given in [46]. 

The remaining of this study is organized as follows. A brief review of the FGM with 

porosities, the C0-HSDT type as well as a weak form of governing equations of porous FG 

plate for static and dynamic problems is presented in the next section. The formulations of the 

PFEM for porous FG plates with the quadratic serendipity shape functions based on the 

Timoshenko’s beam formulation are given in Section 3. The numerical examples for static and 

dynamic analysis, which include both linear and geometrically nonlinear cases, of porous FG 

plates are presented in Section 4. Finally, Section 5 closes this study with some concluding 

remarks. 

2. C0-type higher-order shear deformation plate theory for porous FG plates 

2.1 Functionally graded materials with porosities 

The model of an FG plate which consists of metal and ceramic is depicted in Fig. 1a. 

This FG plate contains porosities in its structure, which can be dispersed evenly or unevenly 

along the plate thickness direction, as shown in Fig. 1b. Based on the rule of mixtures [63], the 

modified effective material properties throughout the thickness of the FG plates, which 

assumed porosities disperse evenly in the metal and ceramic phases can be given as [12] 

 (1) ( ) ,
2 2m m c cP z P V P Va aæ ö æ ö= - + -ç ÷ ç ÷

è ø è ø
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where  is a porosity volume fraction, this parameter is set to zero for FG plate 

without porosities which is usually called the perfect FG plates. Meanwhile and represent 

the typical material properties of the metal and ceramic phases, respectively, including the 

Young’s modulus  the Poisson’s ratio and the density  The volume fractions of 

metal and ceramic phases, respectively, are assumed to vary with respect to the 

thickness which are defined as follows 

 (2) 

in which is the material index describing the profile of material variation. It is worth noting 

that setting  to 0 leads to a single-phase ceramic material while a homogeneous metallic 

material is obtained as increases towards  

 

 

(a) (b) 

Fig. 1. (a) The FG plate model made of ceramic and metal with porosities 

(b) Plate cross-section for two porosity distributions. 

Then, the modified effective material properties for the ceramic-metal FG plates with 

evenly distributed porosities are given by 

 (3) 

  Similarly, the modified effective material properties of ceramic-metal FG plates with 

unevenly distributed porosities can be expressed as [12] 
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Fig. 2 illustrates the variation in effective Young’s modulus of the prefect and porous 

for ceramic-metal FG (Al/Al2O3) plates estimated based on the rule of mixtures with a 

porosity volume fraction  It can be seen that Young’s modulus of the perfect FG plate 

is highest while the porous FG plate with even distribution has the lowest magnitude. 

Furthermore, the effective Young’s modulus of perfect FG and porous FG with uneven 

distribution plates coincides at the top and bottom surface of the plate while it coincides at the 

middle surface of two porous FG plates.  

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Variations of Young’s modulus of perfect and porous FG plates with  

(a)  (b)  (c)  

2.2 C0-type higher-order shear deformation plate theory 

 Based on the C0-HSDT model [31], the displacement fields at an arbitrary point in the 

plate can be defined as follows 

0.3.a =

0.3:a =

0.5;n = 1;n = 5.n =
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 (5) 

where and are the displacements of a point on the mid-plane of the plate, respectively; 

and denote the rotations of the normal to the mid-plane about the y and x axes, 

respectively; and . Eq. (5) is developed from the higher-order theory by Reddy [23], 

in which derivative of deflection is replaced by warping function  The generalized 

displacement vector with 5 degrees of freedom for C1-continuity element can be transformed 

to a vector with 7 degrees of freedom for C0-continuity element  

For large deformation analysis, the in-plane vector of Green’s strain can be written in 

compact form as follow: 

  (6) 

By substituting Eq. (5) into Eq. (6) and adopting the von Kármán assumptions [64], the 

strain-displacement relations in Eq. (6) can be rewritten as 

  (7) 

where the membrane strain is given by 

  (8) 

in which and are linear and nonlinear parts of the in-plane strains, respectively. 

Meanwhile and are bending strains. The shear strains can be expressed as: 

 (9) 

After adopting the derivation of the Hamilton’s principal and weak formulation, the 

weak form of the nonlinear problem of FG plates under transverse load can be briefly 

expressed as
 

 (10) 

in which includes in-plane and bending strains and represents shear strains. 
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  (11) 

in which 

  (12) 

For nonlinear transient analysis, the weak form of FG plate under transverse load 

without damping effect can be written as 

  (13) 

where the mass matrix m is given as 

  (14) 

in which . 

3. A novel polygonal FG plate element 

3.1 Construction of quadratic serendipity shape function 

In PFEM, a given domain is discretized into arbitrary polygonal elements before the 

shape functions are constructed over each polygonal element. Recently, the quadratic 

serendipity shape functions, which are with vertices and the mid-point of each boundary edge, 

over general polygonal elements have gained increasing attention of many researchers. Rand 

et al. [55] have presented an outline of construction quadratic serendipity shape functions over 

arbitrary convex polygons. Then, Floater [58] has provided a construction of serendipity 

quadratic shape functions over a polygon with any number of nodes based on polygonal 

splines. In this study, the approach presented in [55] is considered in order to construct the 
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essential steps related to this construction of quadratic serendipity shape functions, which 

briefly expressed and illustrated in Fig. 3. 

• Step 1: The shape function associated with vertices of the polygonal element is set. 

In this study, the Wachspress coordinate is used to calculate these shape functions  

• Step 2: The pairwise products of generalized barycentric coordinates  are 

determined. A result of the construction leads to functions in total including mid-

edge nodes and nodes inside the polygonal element. 

• Step 3: An appropriate linear transformation  which are exhaustively reported in 

[55], is applied to the pairwise products of generalized barycentric coordinates and set of 

functions associated with vertices and mid-side nodes of the polygonal element. Note that 

there are only functions are defined in this step which are indexed over vertices and edge 

midpoints of the polygon element. 

• Step 4: In order to satisfy the Lagrangian property, which are known that each function 

takes the value 1 at its associated node and 0 at all other nodes, another linear transformation 

matrix [55] is used to convert into a basis . 

 
Fig. 3. Construction of quadratic serendipity shape functions. 

For further a detail on this construction of quadratic serendipity shape functions for 

arbitrary polygon element, the interested readers are referred to [55]. Fig. 4 depicts the 

quadratic serendipity shape functions for a pentagonal element. 

if
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(a) (b) 

Fig. 4.  The quadratic serendipity shape functions for a pentagonal element 

(a) Vertex node; (b) mid-side node. 

3.2 PFEM formulation for FG plates 

The physical domain is decomposed into approximate including non-

overlapping polygonal elements. The primeval mesh contains elements and nodes, such 

that Let be the nodal basis (shape functions) of polygonal element . 

Herein, the finite element solution  of the displacement model for FGM plates can be 

expressed as 

 (15) 

where is the number of vertices of the polygonal element, is the unit matrix of 7th rank, 

denotes the displacement vector of the nodal degrees of 

freedom of associated with the Ith vertex of the polygonal element; and is the shape 

function at the Ith vertex of polygonal element.  
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membrane, bending and shear strains in Eqs. (7) and (9) can be rewritten in compact forms as 

W hW

Q en nn

1
.e
enh

e=
W » W = Wå f eW

( )u xh

7( ) , in ,
ne nen n

h e
I I I I

I I
W= f =å åu x I d df

nen 7I

{ }, , , , , ,
T

I I I I xI yI xI yIu v w b b f f=d

( )u x If



 
12 

 (16) 

where 
 

 
(17) 

where and are the derivatives of the shape functions with respect to x and y, 

respectively. The matrices and are expressed by 

 (18) 

Now, substituting Eq. (16) into Eq. (10), the governing algebraic equations of the FG 

plate using in PFEM for nonlinear analysis can be expressed in the following form 
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respectively assembled from the element matrices and of the element , which 

can be defined as follows 

 (21) 

in which the matrices and are defined by 

 (22) 

 
(23) 

and is given by 

 (24) 

The in-plane traction matrix is defined by  

 (25) 

where  

The global load vector is expressed by 
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 (28) 

It is well known that the shear locking phenomenon will appear when the plate’s 

thickness becomes smaller. To avoid this shortcoming, a shear locking free polygonal FG 

plate element approach based on an assumed strain field via the Timoshenko’s beam formulae 

is addressed. This approach will be presented in the next subsection.  

3.3 Locking-free polygonal FG plate element 

3.3.1 Deformation of the Timoshenko’s beam element 

   Considering a Timoshenko’s thick beam element as shown in Fig. 5, the 

deflection rotation and shear strain of the thick beam element which based on 

the Timoshenko’s beam theory are correspondingly expressed as follows [61, 62] 

 (29) 

 

Fig. 5. Timoshenko beam element. 

in which 

 (30) 

with and l represent the bending, shear stiffness constants and length of the beam 

element, respectively. It is seen that when the thickness of the plate approaches zeros, in 

Eq. (30) will tend to zeros ( ). Therefore, will also go toward zeros. As 

a result, the transverse shear strain  will be eliminated automatically. Consequently, shear 
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locking issue of the interpolation can be suppressed based on the Timoshenko’s beam theory. 

Now, this theory is extended for FG plate polygonal elements. 

3.3.2 An approximation of assumed shear strains 

Considering an FG plate polygonal element with the edges number  which 

has the normal and tangential directions of each edge is described in Fig. 6, the generalized 

nodal displacement of the polygonal element can be placed in the following vector 

 (31) 

where Adopting the same approach 

[61], Nguyen-Xuan [46] devised the interpolation procedure for shear strain fields along the 

polygonal element edges based on Timoshenko’s beam theory. Accordingly, the assumed 

shear strains of the polygonal element can be written in the matrix form as follows 

  (32) 

 
Fig. 6. The normal and tangential direction of each edge of polygonal element. 

in which the matrix is presented in Eq. (17). And the matrix  

with and can be expressed as, respectively 
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 (33) 

 (34) 

 (35) 

where is presented in Eq. (30). Note that is the Wachspress shape function at 

the vertex of polygonal element and 

   (36) 

3.3.3 A novel approximation of assumed bending strains 

In this study, the assumed bending strains of the arbitrary polygonal element using 

serendipity shape functions is firstly presented based on the work of Soh et al. [62], which 

only were applied for triangular and quadrilateral elements. Accordingly, these strains can be 

expressed in the following compact form 

  (37) 

where  The matrices and can be found in Eq. (17). Meanwhile, 

 with the matrices  and  are defined as, 

respectively 
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 (39) 

 (40) 

in which  And 

  (41) 

where denotes the length of the edge of polygonal element and is 

presented in Eq. (36). It is noted that although the quadratic serendipity shape functions, which 

is added mid-nodes on the edges are employed in this study, the number of DOFs per 

polygonal element does not increase. 

3.4 Nonlinear analysis 

In this study, the Newton-Rapshon procedure [64, 74] is utilized to solve the nonlinear 

equation in Eq. (19). These iterations, in which the solutions in the current step are derived 

from the solutions of previous step, are repeated until the solution converges. For the 

nonlinear transient analysis of FG plates, which the equations of dynamic are dependent on 

both unknown displacements and time domain, a combination the Newmark’s integration 

scheme [65] and Picard methods is adopted in this study. Following this flow chart, at the 

initial time values of displacement velocity and acceleration are prescribed to be 

zeros. When the displacement at time  is obtained, the velocities and accelerations, 

which is first and second derivatives of displacement at this step can be defined as 
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where the values of and following the average acceleration scheme [67]. Now, 

substituting Eq. (42) into Eq. (27), the following equation can be rewritten as follows 

 (43) 

where  

 (44) 

It should be noted that in Eq. (43), all parameters are known from the previous 

solutions, i.e.  except the nonlinearly stiffness matrix which depends on the 

displacements Therefore, the Picard method is employed to re-approximate Eq. (43), 

which can be written as follows 

 (45) 

in which  is the number of iterations. Eq. (45) is iteratively solved until the error of the 

displacement is satisfied. 

4. Numerical examples 

In this section, various numerical examples are investigated to demonstrate the 

accuracy and stability of the proposed approach and the obtained results are compared to other 

published ones in the literature. Unless mentioned otherwise, the material properties of FG 

plates which are employed in all examples are estimated following the rule of mixtures. 

Numerical examples have been carried out for perfect FG plates including both static and 

dynamic problems before extending for porous FG plate with various porosity distributions 

and porosity volume fractions. 
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4.1 Convergence and verification studies 

Firstly, to evaluate the validity and the convergence of the proposed approach, the 

model of an isotropic square plate under uniform load with fully simply supported (SSSS) 

boundary condition will be investigated. The plate has length and the thickness  The elastic 

material properties are: Young’s modulus and Poisson’s ratio  Owing to 

the symmetric properties, only the lower-left corner of square plate is considered. The square 

plate domain is then discretized using n-node polygonal element with four meshes level as 

depicted Fig. 7. The normalized of deflection and moment at the central of the square plate are 

defined and , respectively with . Fig. 8 

shows the convergence of the normalized central deflection and moment of SSSS boundary 

conditions with ratio . The present results are then compared with those of the well-

known MITC4 element and those reported in [46] including polygonal Reissner–Mindlin plate 

element based on Wachspress shape functions (PRMn-W) and piecewise-linear shape 

functions (PRMn-PL), respectively. It can be seen that the obtained results converge well for 

both deflection and moment which the analytical solutions are found in [68]. General 

speaking, the proposed formulation based on the quadratic serendipity shape functions shows 

more accurate results in comparison with the others.  

 
1st mesh 

 
2nd mesh 
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3rd mesh 

 
4th mesh 

Fig. 7. Polygonal meshes of a square plate. 

 

 
 (a) 

 
(b) 

Fig. 8. The convergence of a SSSS plate with ratio  

(a) central deflection; (b) central moment. 

/ 1000.a h =
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Next, in order to investigate the effect of mesh distortion on the numerical results, 

distorted n-node polygonal meshes as shown in Fig. 9 with distorted factor  [69] are 

investigated. The results the central deflection versus with the distorted factors for a thin plate 

with ratio  are illustrated in Fig. 10. It is observed that the proposed element always 

gives accurate and stable results when the meshes are highly distorted. Furthermore, the 

computational efficiency of the proposed formulation is compared with the others including 

PRMn-W and PRMn-PL which are reported by Nguyen-Xuan [46]. Fig. 11 illustrates the CPU 

time for setting up the global stiffness matrix and solving system equation of a SSSS FG 

square plate versus DOFs. The results are compiled by a personal computer with Intel(R) 

Core(TM) i5-7200U, CPU – 2.5 GHz and RAM - 8 GB. 

 

 
 

 
 

 
 

 
 

 
 

 
 

Fig. 9. Distorted polygonal meshes of square plate with distorted 

factors   
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Fig. 10. The effects of distorted mesh on the central deflection of a SSSS plate. 

 

 
Fig. 11. CPU times for setting up the global stiffness matrix and solving system 

equations of a SSSS FG plate. 

Finally, the robustness of the proposed method is further demonstrated for complicated 

domain geometries in Fig. 12a. The complicated plate domain which has thickness and 

under uniform load is discretized into n-node polygonal elements as shown in Fig. 12b. 

The deflection and moment of central point in x-direction against the increase in levels of 

meshes and DOFs for thin plate is illustrated in Fig. 13, respectively. A reference solution of 

this example can be found in [46], which was obtained based on a fine mesh using four-node 

MITC4 elements. As can be seen that the proposed formulation using the serendipity shape 

0.5h =

1p =
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functions performs far better than PRMn-W and PRMn-PL elements, respectively, which is 

reported in [46]. The above numerical results verify the accuracy and reliability of the 

proposed formulations. 

 
a)  

 
b) 

Fig. 12. Model and polygonal mesh of a plate with complicated shape. 
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(a)  

 
(b) 

Fig. 13. The convergence of a plate with complicated shape 

(a) central deflection and (b) central moment. 

4.2 Static analysis of FG plates 

4.2.1 Linear analysis 

The static bending analysis of perfect FG plates will be investigated in this section. 

Table 1 shows the properties of the FG materials which will be used throughout the examples. 

A SSSS FG square plate which is made of alumina and aluminum (Al/Al2O3) is considered to 
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study the effects of ratio and material index on the numerical results. The plate is 

subjected to a distributed sinusoidal load which is defined as  as 

depicted in Fig. 14. The normalized deflection and axial stress at the central of the plate are 

defined by and respectively. The results which are 

generated from the proposed approach are presented in Table 2 comparing with the Carrera’s 

unified formulation by Carrera et al. [70], ES-MITC3 by Nguyen et al. [71], HSDT model is 

reported by Neves et al. [72]. As can be seen, the results which obtained from the proposed 

approach agree well with other reference values for all ratios  and material index  In 

addition, Fig. 15 depicts the distribution of normalized axial and shear stresses through the 

thickness of perfect FG square plate under sinusoidal load with and various material 

index  

 
Fig. 14.  A square FG plate subjected to sinusoidal load. 

Table 1 
Material properties of FG plates 
Property Material 
 Al Al2O3 ZrO2 

 70 380 151 
 0.3 0.3 0.3 

 2707 3800 3000 
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Table 2 
Comparison of normalized central deflections and axial stress of SSSS square 
plates under sinusoidal load. 

 Theory    

        

1 Carrera et al. [70] 0.7289 0.7856 0.5890 2.0068 0.5625 20.149 

ES-MITC3 [71]  0.7271  0.5787 0.5874  1.4825 0.5609 14.894 

HSDT [72] 0.7308 0.5806 0.5913 1.4874 0.5648 14.944 

Present 0.7279 0.5811 0.5882 1.4896 0.5622 14.989 

4 Carrera et al. [70] 1.1673 0.5986 0.8828 1.5874 0.8286 16.047 

ES-MITC3 [71] 1.1593 0.4390 0.8795 1.1719 0.8263 11.862 

HSDT [72] 1.1553 0.4338 0.877 1.1592 0.8241 11.737 

Present 1.1588 0.4391 0.8791 1.1757 0.8280 11.939 

10 Carrera et al. [70] 1.3925 0.4345 1.0090 1.1807 0.9361 11.989 

ES-MITC3 [71] 1.3896 0.3220 1.0061 0.8730 0.9332 8.8566 

HSDT [72] 1.376 0.3112 0.9952 0.8468 0.9228 8.6011 

Present 1.3882 0.3218 1.0051 0.87581 0.9354 8.9198 

 

  
(a) (b) 

Fig. 15.  The stresses through thickness of SSSS Al/Al2O3 FG plate under sinusoidal load with  

(a) axial stress ; (b) shear stress . 
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Next, the bending behavior of SSSS porous FG (Al/Al2O3) plates with different 

porosity distributions and porosity volume fractions under sinusoidal load are considered. 

Table 3 depicts the normalized deflection at the central of the porous FG plates various 

porosity distribution, porosity volume fraction, material index and thickness ratio  In 

addition, Fig. 16 examines the effects of porosity volume fraction and material index on the 

deflection of porous FG plates whose thickness ratio is with two porosity 

distributions, respectively. It is found that increasing the porosity volume fraction leads to 

larger deflections of FG plate since the higher density of internal pores decreases the plate 

stiffness. For both even and uneven distributions, by increasing the material index the 

bending stiffness of porous FG plate reduces which leads to higher deflection of porous FG 

plates. Moreover, the porous FG plate with even distribution have higher deflection than the 

other distribution with the same porosity volume fraction and thickness ratio  especially 

with high values of  This is to be expected since the even distribution provides the lowest 

effective stiffness of plate.  

Table 3    
The normalized central deflections of porous FG square plates under 
sinusoidal load.  
  Even distribution Uneven distribution 

          

4  0.3784 0.4161 0.5651 0.7279 0.3784 0.4161 0.5651 0.7279 

 0.4292 0.4788 0.6969 0.9929 0.3950 0.4361 0.6040 0.8011 

 0.4958 0.5637 0.9186 1.6831 0.4137 0.4587 0.6505 0.8968 

10  0.2956 0.3274 0.4531 0.5882 0.2956 0.3274 0.4531 0.5882 

 0.3353 0.3771 0.5634 0.8182 0.3054 0.3395 0.4793 0.6409 

 0.3874 0.4448 0.7532 1.4502 0.3160 0.3527 0.5096 0.7086 

100  0.2802 0.3109 0.4323 0.5622 0.2802 0.3109 0.4323 0.5622 

 0.3179 0.3582 0.5385 0.7858 0.2888 0.3216 0.4562 0.6113 

 0.3672 0.4226 0.7224 1.4069 0.2979 0.3330 0.4835 0.6739 

/ .a h
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(a) (b) 

Fig. 16. Effects of (a) porosity volume fraction and (b) material index on the normalized central 

deflections of porous FG plate under sinusoidal load. 

4.2.2 Geometrically nonlinear analysis 

Firstly, a fully clamped (CCCC) isotropic square plate which is subjected to uniform 

loading is considered in this section. The aspect ratio is considered. The material 

properties are given as follows: Young’s modulus and Poisson’s ratio  

For the efficient presentation of the results, the normalized central deflection load 

parameter and normal stress in the nonlinear analysis can be defined as 

 (46) 

Table 4 describes the normalized central deflection and normal stress of square 

isotropic plate for both linear and geometrically nonlinear cases. These results are then 

compared with those of other researchers including Levy’s analytical solution [73], Nguyen et 

al. based on a refined quasi-3D IGA based on modified couple stress theory [74], Kant and 

Kommineni’s C0–FEM based on a higher-order theory [75], Urthaler and Reddy’s mixed FEM 

based on FSDT [76]. As can be observed, the obtained results agree well with the analytical 

solutions and other reference results for both normalized deflection and normal stress. For 

further illustration, Fig. 17 performs the normalized deflections and normal stress at the 

central of plate for both linear and geometrically nonlinear cases. As expected, the deflection 

of geometrically nonlinear analysis becomes much smaller than that of linear analysis. 
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Table 4 
Comparison of normalized central deflection and normal stress 

of CCCC isotropic square plate under uniform load with  
 Response Nonlinear Linear 

Present Analytical 
[73] 

IGA-RPT 
[74] 

C0-FEM 
[75] 

MXFEM 
[76] 

Present MXFEM 
[76] 

17.79  0.237 0.237 0.2365 0.2385 0.2328 0.2441 0.2465 
 2.5788 2.6 2.5602 2.6733 2.414 2.4849 2.387 

38.3  0.4704 0.471 0.4692 0.4725 0.4738 0.5255 0.5307 
 5.3568 5.2 5.3256 5.5733 5.022 5.3498 5.138 

63.4  0.6927 0.695 0.6908 0.6948 0.6965 0.8699 0.8785 
 8.1326 8.0 8.0973 8.4867 7.649 8.8558 8.510 

95.0  0.9049 0.912 0.9024 0.9065 0.9087 1.3034 1.3163 
 10.855 11.1 10.8248 11.3500 10.254 13.27 12.745 

134.9  1.1093 1.121 1.1060 1.1100 1.1130 1.8509 1.8692 
 13.54 13.3 13.5187 14.1700 12.850 18.843 18.099 

184.0  1.3049 1.323 1.3008 1.3046 1.3080 2.5245 2.5495 
 16.185 15.9 16.1771 16.9367 15.420 25.701 24.686 

245.0  1.4978 1.521 1.4926 1.4963 1.5010 3.3614 3.3947 
 18.897 19.2 18.9019 19.7633 18.060 34.222 32.869 

318.0  1.6846 1.714 1.6784 1.6820 1.6880 4.363 4.4062 
 21.657 21.9 21.6744 22.6367 20.741 44.418 42.664 

402.0  1.8625 1.902 1.8552 1.8590 1.8660 5.5155 5.5702 
 24.435 25.1 24.4624 25.5367 23.423 56.152 53.933 

 

Next, the proposed method is further studied for simply supported Al/ZnO2 square 

plates subjected to uniformly distributed load. The obtained results for various values of the 

material index are compared to those of Nguyen et al. using isogeometric approach [74] and 

Praveen and Reddy [77] using FEM based on FSDT. It can be observed that a good agreement 

between the results obtained from the present approach and other reference solutions is 

obtained. The comparison of the nonlinear central deflection of simply supported square plates 

with different values of the material index is depicted in Fig. 18. 
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(a) 

 
(b) 

Fig. 17.  Comparisons of nonlinear: (a) normalized central deflection and (b) normalized 

normal stress of fully clamped isotropic square plates with other published works. 
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Fig. 18.  Comparison of nonlinear normalized central deflection of a simply supported square 

Al/ZnO2 under uniformly distributed load. 

 
This section investigates the effects of the porosity volume fraction and the porosity 

distribution on the nonlinear normalized central deflection of porous FG (Al/ZnO2) plates. Fig. 

19 shows the nonlinear normalized central deflection of porous FG with the thickness 

ratio and material index . It is clear that the porous FG plates have higher the 

deflection than a perfect FG plate. As evidently demonstrated in Fig. 19, at the same porosity 

volume fraction, the deflection of FG plates with even porosity distribution is much larger due 

to the reduction in the bending of the plate. Generally, the even porosity distribution 

significantly affects the defection of porous FG plate when the porosity volume fraction reach 

to high value, in this study. Conversely, the uneven porosity distribution is less 

sensitive to the porosity volume fraction since porosities vanish at the top and bottom surface 

of plate. 
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0.6a =



 
32 

 
Fig. 19.  The nonlinear normalized central deflection of porous FG plate. 

4.3 Transient analysis of FG plate 

In order to prove the reliability and the convergence of the present approach for 

transient problems, numerous numerical examples have been investigated to deal with the 

transient analysis of FG plates in this section. In all examples, the transverse load is 

sinusoidally distributed in short time milliseconds which is defined as follows: 

where and values of force are presented in 

Fig. 20 depends on loading types such as step, triangular, sinusoidal and explosive blast, 

respectively. 

 (47) 

where s-1. The chosen time step is in this study. 
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Fig. 20.  Time history of load factor. 

4.3.1 Linear dynamic analysis 

The linear dynamic response analysis of the SSSS Al/Al2O3 square plate with  

which is subjected to a distributed sinusoidal load is considered in this section. The geometry 

of the square FG plate employed in this study is in length and in thickness. Its 

transient response according to the normalized central deflection is depicted in Fig. 21. It is 

observed that the results obtained from the present approach agree well with those of IGA 

reported in [78]. 

 
Fig. 21.  Normalized linear transient central deflection of a simply supported square Al/Al2O3 

plate under a sine load. 
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4.3.2 Geometrically nonlinear dynamic analysis 

This section aims to verify the reliability of the proposed approach for the 

geometrically nonlinear transient analysis. An orthotropic SSSS square plate under a uniform 

step load with MPa is conducted. The material properties and the geometry of plate are 

considered as follows: Young’s modulus shear modulus 

 Poisson’s ratio mass density length of the 

plate and thickness  Fig. 22 presents response of the plate to the loading. 

As expected, the obtained results are in an excellent agreement with the obtained from the 

finite strip method [79]. 

 
Fig. 22. Normalized nonlinear transient central deflection of a square orthotropic plate under uniform 

load.  

Next, the normalized geometrically nonlinear transient response of deflection of the 

Al/Al2O3 plates without porosities which has length and the thickness  are 

investigated. Fig. 23 illustrates time history of the normalized central displacement of perfect 

FG plate with  which is subjected to the step, triangular, sinusoidal and explosive blast 

load, respectively. As seen, the geometrically nonlinear transient responses to all types of 

loading give nearly same period of normalized central deflection, except for sinusoidal loading. 

Furthermore, the plates still deflect and vibrate harmonically after removing the applied load. 

The transient responses of linear and nonlinear of perfect FG plate with under triangular 

are also depicted in Fig. 24. 
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Fig. 23.  Normalized nonlinear transient central deflection of perfect FG plate with under various 

loading types. 

 

 
Fig. 24.  Normalized linear and nonlinear transient deflection of perfect FG plate under triangular 

load with . 

The influences of the material index on the geometrically nonlinear transient of 

normalized central deflection of a perfect FG plate with step load are described in Fig. 25. As 

can be seen, the increase of the material index leads to the reduction of stiffness of plate due 

to more metal phrase in the plate volume. Consequently, the plates will vibrate with higher 

magnitude and period of the deflection. 

1n =

2n =

n

n
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Fig. 25.  Normalized nonlinear transient deflection of perfect FG plate under step load with various 

values of the material index. 

 
In the last example, forced vibration responses of porous FG plate which is composed 

of Al and Al2O3 under explosive blast load with are investigated. The time histories of the 

normalized central displacement of porous FG plate with varying porosity volume fraction and 

distribution are displayed in Fig. 26. As previously discussed, an increase in the porosity 

volume fraction causes larger dynamic deflections. Moreover, this effect is more pronounced 

for porous FG plates with even porosity distribution. 

 
Fig. 26.  Nonlinear transient deflection of porous FG plate under explosive blast load with . 
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5. Conclusions 

In this study, an efficient and novel unified PFEM formulation associated with 

quadratic serendipity shape functions and C0-type HSDT model has been proposed to 

investigate static and dynamic problems of FG plates with porosities. The quadratic 

serendipity shape functions associated in vertices and mid-side nodes of the polygonal element 

were used to interpolate the bending strains while shear strains were calculated according to 

Wachspress coordinates at vertices of the polygonal elements. On the other hand, by using C0-

HSDT theory, the numerical results are more accurate and describe exactly the distribution of 

shear stress of FG plates without employing shear correction factors. Through the proposed 

formulations and numerical examples, several main conclusions are pointed out as follows: 

• A novel unified PFEM associated with quadratic serendipity shape functions and C0-

type HSDT model for static and transient analyses which include both linear and 

geometrically nonlinear cases of FG plates with porosities was introduced. 

• The effects of two porosity distributions and various porosity volume fractions on the 

deflection of porous FG plates are presented. 

• Shear locking issue can be suppressed based on the Timoshenko’s beam theory. 

• With the same DOFs per polygonal element, the results which are generated from the 

proposed approach are stable and more accurate than other PFEMs which were based on the 

Wachspress and piecewise–linear basis functions. 

• Finally, the proposed method could be extended to shell structures for future research 

work. 
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