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Abstract 

This paper presents an efficient gradient projection-based method for structural topological 

optimization problems characterized by a nonlinear objective function which is minimized over 

a feasible region defined by bilateral bounds and a single linear equality constraint. The 

specialty of the constraints type, as well as heuristic engineering experiences are exploited to 

improve the scaling scheme, projection, and searching step. In detail, gradient clipping and a 

modified projection of searching direction under certain condition are utilized to facilitate the 

efficiency of the proposed method. Besides, an analytical solution is proposed to approximate 

this projection with negligible computation and memory costs. Furthermore, the calculation of 

searching steps is largely simplified. Benchmark problems, including the MBB, the force 

inverter mechanism, and the 3D cantilever beam are used to validate the effectiveness of the 

method. The proposed method is implemented in MATLAB which is open-sourced for 

educational usage. 
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1. Introduction 

Since the introduction of topology optimization to structural design, it has been 

successfully applied to many different types of structural design problems through 

various optimization schemes including density methods [1], boundary variation 

methods (like the level-set approach [2-4]), intelligent optimization methods (like the 

genetic evolutionary method [5]), etc. A comprehensive review can be found from Ref. 

[6-9].  

One typical large class of topology optimization problems can be characterized by 

a nonlinear objective function which is minimized over a feasible region defined by 

bilateral bounds and a single linear equality constraint. In this paper, we focus on 

solving this class of optimal design problems which have a wide range of applications 

[3, 9]. The optimization problem can be mathematically expressed as: 
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in which x is the vector of design variables. Vector l in (1) takes different values for 

different problems. For example, l = Fo for the minimum compliance design problem 

[3]. n is the number of elements used to discretize the design domain. O(x) is the 

objective function, U and Fo are the global displacements and the force vector 

respectively. K is the global stiffness matrix. V(x) and V0 are the material volume and 

design domain volume, respectively. Finally, f is the prescribed volume fraction. 

To solve the above list problem, different methods have been proposed and among 

which, the Solid Isotropic Material with Penalization for intermediate densities method 

(SIMP) [1] is considered the most effective material interpolation scheme thus has been 

widely implemented in industrial applications. The scheme is formulated as follows: 
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where Ee is the Youngs modulus, x is the vector of design variables which are 

constrained to [0, 1], E0 is the stiffness of the material, r is the penalization factor. Using 

this scheme, different approaches, including the Optimality Criteria (OC) method [10, 

11], the Method of Moving Asymptote (MMA) [12], the Sequential Linear 

Programming (SLP) method [13, 14], and the Feasible Direction Method (FDM) [15-

17], etc., have been proposed to solve the structural topology optimization problem and 

each approach has its desirable characteristics. 

The OC method tends to convert the optimization to an equation-solving problem 

using the KT condition, which is attacked by iteratively approaching the fixed point 

[10]. The MMA method transforms the original problem into a series of localized 

strictly convex approximating subproblem which is solved by a dual method [12]. 

Similarly, the SLP method involves sequentially solving an approximate linear 

subproblem using the linearized objective and constraint functions [14]. The FDM, by 

utilizing the gradient at the current point, provides a feasible decent search direction 

and iteratively approach the optimal value. As a major feasible direction method, the 

gradient projection method (GPM) projects each step onto the feasible region [18].  

To the best of our knowledge, comparing with the OC, MMA, and SLP, which 

have been extensively explored, relatively fewer investigations are performed on GPM 

for structural topology optimization. This may because that, people found using 

rudimentary methods like the raw GPM with no specialized scaling and projection 

scheme are less efficient [8]. While in a few current studies, people found that, given 

proper specialization, the GPM can be simple and effective for the current problem and 

has its advantages [15, 19]. Therefore, in the current study, we devote to improve this 

method and its variant in solving the problem defined in Eq. (1). 

When applying the GPM to large scale problems like structural topology 



optimization, the main difficulties we may face are list as follows: 

 Effectively and efficiently obtain proper scaling for the gradient [18] 

 Effectively and efficiently calculate the projection [18, 19] 

 Effectively and efficiently obtain a proper searching step [18, 19] 

 Numerical problems and others [20] 

Although lots of research are devoted to alleviating these problems and details are 

discussed in the following section, there is still space for further improving the GPM 

for the current problem. Particularly, many effective engineering experiences in 

improving structural topology optimization are not fully exploited such as various 

effective sensitivity filters and post processing techniques [8, 15, 21, 22]. In a board 

sense, these techniques implicitly improve the scaling scheme and searching step. 

Whether we could propose a more effective method using these techniques is discussed 

in this paper, and some effective and efficient techniques are proposed.  

The scope of the current study is given as follows. The problem statement is 

presented in Sec. 2. The proposed method is presented in Sec. 3. Sec. 4 provides three 

benchmark problems to validate the effectiveness of the proposed method. Concluding 

remarks are provided in Sec. 5.  

2. Problem Statement 

For the structural topology optimization problem, the differentiable cost function 

O is minimized over a closed convex polyhedron X  ℝn. In the feasible direction 

method, one seeks for a feasible sequence x  X with an iteration of the form 

 1k k k k+ = +x x d  (3) 

in which kℝ+ and xk+kdkX for small enough k [23, 24]. (By stating small enough 

k, we mean that the step size should be chosen properly, so that the new iterate belongs 

to the feasible region.) The subscript i denotes the iteration number. To forestall any 

misunderstanding, we must state from the outset that the terminology used in the current 

study is consistent with those used in Ref. [24]. As one major feasible direction method 

[24], the gradient projection method has the form 

 ( )( )1k X k k kP f+ = + x x x  (4) 

where PX () denotes projection on X. The original gradient projection method has two 

significant drawbacks [24]. The first one is that its convergence is similar to the one of 

steepest descent, which is often slow. This problem is commonly alleviated through 

scaling, like the well-known projected Newton methods [25, 26]. The general form of 

such a scaling scheme is formulated as  

 ( )( )1k X k k k kP f+ = + x x D x  (5) 

in which Dk is a scaling matrix. The second one is the projection operation may involve 

substantial overhead. To solve this problem, one prefers to take advantage of the 

specialty of the constraint, like bounds on x together with a single linear constraint [19, 

27, 28]. 



In practice, another problem we must face is that the scale of the structural 

topology optimization is large, which results in much overhead in calculating Dk and 

the step size k. Common remedies include using approximations to the Hessian matrix 

(2f(xk))
-1 [25-27, 29] and using constant or adaptive cyclic reusing of the Barzilai-

Borwein step as the initial step size [19] instead of the line minimization rule.  

Note that engineering experiences are always embedded in optimization algorithms 

to fully inspire their potentials. Such experiences include gradient modifications  used 

in large scale non-linear optimization problems [30, 31], sensitivity filters [8, 22], and 

grey elements suppression techniques [15, 21]. In a board sense, these techniques 

implicitly improve the scaling scheme and searching step. While to the best of our 

knowledge, these techniques are commonly served as auxiliary preprocessing or 

postprocessing methods for structural topology optimization, and the main part of the 

optimization algorithms are not taken full advantages of these operations. Especially, 

whether we could propose a more effective (or simpler) scaling scheme, projection 

method, and searching step using these techniques are under-studied. The details will 

be discussed in the following section. 

3. Efficiency Improvement 

Gradient modification in structural topology optimization is not a new technique 

and often appears in the form of a sensitivity filter to avoid certain kinds of local 

minimum [22]. Other forms like magnitude modifications where the magnitude is 

modified by its squared root can also be seen for accelerating the process of solving 

certain problems [32]. We found that the effect of the latter technique is similar to a 

well-known technique called gradient clipping [31]. 

Gradient clipping, when used in large scale non-linear optimization, involves 

thresholding the gradient values elementwise if the gradient exceeded an expected 

range [31]. When the traditional gradient descent algorithm proposes to make a very 

large modification, the gradient clipping heuristic intervenes to reduce the modification 

to be small enough that it is less likely to go outside the region where the gradient 

indicates the direction of approximately steepest descent [31]. Most recent research 

gave a theoretical proof that under certain conditions, using gradient clipping, the 

converge speed may be faster than gradient descent with fixed step size [30].  

For structural topology optimization, it is observed that small portions of entries 

in the matrix or tensor of the gradient have a much larger magnitude compared with the 

mean value of gradients. This phenomenon is similar to that encountered in Ref. [30]. 

Particularly in the early stages of optimization, these large values exist in the fragile 

parts along the force-loading path. By stating ‘early stages’, we mean that the design 

variable is not in the near neighbor of its optimal position. The existence of these large 

values restricts the step size of updating and thus hinders the optimization efficiency 

for gradient decedent methods.  

In the current study, we propose a gradient clipping strategy for structural topology 

optimization as given in Eq. (6). The threshold is set empirically to be five times the 

mean value of the magnitude of gradients. (Too small a value means one takes no use 

of the gradient, a situation which is undesired. On the contrary, an extremely large 



threshold means one does not clip the gradient.) This modification can be viewed as a 

generalized non-linear scaling scheme for the gradient, which can accelerate the 

optimization in the early stages of the optimization for many problems as illustrated in 

Section 4. 

 ( )( ) ( )( )( )
mod
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Grey elements suppression is a kind of post-processing [21]. The primary purpose 

of these techniques is to generate more distinct solid and void designs. Generally, the 

post-processed structure has a performance that is very close to the optimized structure 

[21]. Note that special problems that are extremely binarization sensitive out pass the 

investigating range of the current study and will not be considered here. 

A generalized expression for thresholding based grey elements suppression 

technique is formulated as follows,  
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in which 1 and 2 are predefined thresholds and the shifting factor l is used to 

guarantee the volume fraction. It can be seen that if xmax –1= xmin +2, Eq. (7) is 

equivalent to thresholding based binarization. In this paper, we empirically set 1=2 to 

be a small constant no more than 0.3 or 0.75 times the volume fraction. This treatment 

is similar to the constraint thickness given in Ref. [17], which is used to eliminate 

numerical problems such as zigzag stepping and others in feasible direction methods.  

Except for eliminating numerical problems, Eq. (7) leads to a gap between the 

largest or the smallest grey value in x to the nearest bound, namely xmin or xmax. It is 

found that we could take advantage of this gap to simplify the calculation of the 

projection and step size. In detail, one can simplify the projection onto a convex 

polyhedron to that onto a simplicial cone when performing gradient projection. Note 

that this assumption is reasonable only when Eq. (7) is performed and the step size  is 

sufficiently small. Otherwise, one should use the method in Refs. [19, 33] instead. 

Different from calculating the projection onto the simplicial cone using the common 

technique given in Ref. [33], the current study provides an even simpler analytical 

solution that can be used to approximate the result considering the special structure of 

the constraint. The details are given in the following. 

To make the explanation clearer, we modify the problem stated previously a bit by 

using an equivalent problem which considering the projection of the search direction d 

onto an x-dependent simplicial cone C(x) as follows: 
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The first two inequality constraints in Eq. (8) means that if the current x is on the 



boundary of X, the search direction should not point to the outside of X. The last equality 

constraint indicates that along the search direction, the volume of x does not change.  

        Let PC(x)(d) be the projection of d onto C(x). Then, if we know all inequality 

constraints that are active on PC(x)(d). (By stating that one inequality constraint is active 

on a vector, we mean that the equality holds for this inequality constraint.) Then, all 

corresponding inequality constraints in Eq. (8) can be changed by equality constraints, 

and inequality constraints corresponding to inactive ones can be discarded. Then, 

PC(x)(d) can be calculated by projecting d on to the null space of the matrix representing 

all active constraints (including the last equality constraint in Eq. (8)) [34]. The first 

problem we have to address is how to calculate the null space and corresponding 

projection in a cheap way. This is because when a large-scale problem is encountered, 

even a single matrix multiplication is time (and memory) costing, not to mention the 

matrix decomposition involved in obtaining the null space [35, 36]. Fortunately, owing 

to the special structure of the constraints in Eq. (8), we found that there is an analytical 

solution to this problem. Details are proposed as follows. 

By concatenating all normal vectors of all active constraints on PC(x)(d) (in the form 

of row vectors for easy calculation in MATLAB), we obtain a matrix N  ℝnℝm+1. 

Note that given proper shuffling of the indices of the components of x, the matrix N can 

always be written in the following form. 
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We denote the bases of the orthogonal complement of the subspace spanned by N as 

M ℝnℝ n-m. Then, M can be expressed as follows. 
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where M1 is the matrix consisting of the bases of the orthogonal complement of the 

subspace spanned by N1. This can be easily verified by noting that NTM = 0 and MTM 

= I. To calculate M1, we proposed an analytical expression as follows: 
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in which n1 is the number of columns in M1. M1 can be further decomposed into a low-

rank matrix and a sparse one, that is 
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Denoting d = [d1 d2]
T, the projection PC(x)(d) can be expressed by 
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Suppose there are n1 elements in d1, then 
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Note that the proposed method gives an explicit analytical expression for the null 

space projection and no matrix multiplication exists. Therefore, for large scale problems, 



the proposed method is efficient both in memory and time costs. 

The next problem is to find out all active constraints on PC(x)(d). (Please be careful 

that they are distinct from the active constraints on d.) This can be done by checking 

the redundancy of constraints one by one with limited overhead since the projection 

operation given in Eq. (14) is so cheap. While we find in our experiments that the set 

of all active constraints on PC(x)(d) can be well approximated in practical by the 

expansion method in Algorithm 1. For most problems in practice, the procedure given 

in Algorithm 1 can be accomplished within a few steps. In addition, observation of less 

than 3% redundant constraints existing after running Algorithm 1. 

 

Algorithm 1 

Initially, let i = 0 and N0 = [1, 1, …, 1]  

Do calculate PC(x)(d) according to Ni using Eq. (14) 

While PC(x)(d) does not satisfy the constraint (8) 

➢ Concatenate all vectors of conflicting constraints to Ni 

➢ Increase i by one 

Finally, one has an approximation of N as well as the corresponding PC(x)(d)  

 

        The final step is to calculate the optimal searching step . Using line minimization 

rule is impractical for the large-scale problem unless reusing of values for multiple 

iterations is adopted. A more practical choice is to use a constant step [37] or the BB 

step used in Ref. [19] and clip the step by a maximum value max, so that xk+kdk is 

feasible. The maximum value is defined as:  
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An interesting finding in experiments is that the maximum step max itself is a 

decent choice for the step size which shows an adequate amount of decrease for each 

iteration. Experiences show that, although this is not the optimal step size, it does take 

a good balance between computation cost and optimization efficiency for many 

problems. A possible explanation for this phenomenon may be that the SIMP scheme 

diminishes the contribution of elements with intermediate densities (gray elements) to 

the total stiffness. The penalty factor steers the optimization solution to elements that 

are either solid black or void white [1]. 

4. Numerical Examples 

Three benchmark examples including an MBB beam (minimum compliance 



design problem), a compliant force inverter mechanism (compliant mechanism design 

problem), and a 3D cantilever beam are provided in this section to demonstrate the 

performance of the proposed method.  

MBB 

The benchmark problem of finding the optimal material distribution, associated 

with the MBB beam, in terms of minimum compliance, with a constraint on the total 

amount of material, is presented in this section as an example.  

 

 

Figure 1 Design domain of the MBB beam 

 

In accordance with Ref. [38], the design domain, the boundary conditions, and the 

external load for the MBB beam are shown in Figure 1. The design domain is 

discretized with 6020, 15050, and 300100 square elements, respectively. The 

volume fraction f is set to 0.5. The Youngs modulus E0 = 1 and the penalization factor 

is r = 3. Both the proposed method and the OC method are implemented in MATLAB 

and applied to this problem (the OC method is implemented using Andreassen’s 88 

lines of code in MATLAB [38]). As suggested by the authors, density and sensitivity 

filters with a radius of rmin = 2.4, 6 and 12, respectively, are used in the OC method to 

eliminate the numerical difficulties. Similarly, in our work, a Gaussian filter with a 

radius of rmin = 1.1, 2.0 and 4.0 for density and rmin = 0.55, 1.0 and 2.0 for sensitivity is 

used. In addition, we set 1 = 2 = 0.3. It should be noted that the filter sizes for both 

methods cannot be further reduced or local minima would emerge. All the experiments 

are executed on a personal computer with an Intel CORE i9 9900X processor, 128 GB 

memory, Windows 10 (64-bit), and MATLAB R2019b. 



 

Figure 2 Convergence curves for the MBB beam compliance minimization problem using 

two different methods 

 

The normalized compliance as a function of iterations for both methods is plotted 

in Figure 2. Several conclusions can be drawn from this example. First of all, both 

methods almost converge in less than 30 iterations, which shows that they can 

efficiently converge to an optimum design from a uniform grey starting guess. Second, 

for both methods, a steep drop is observed at the initial several steps and the 

convergence speed of the OC method slows down after that. Results show that the 

proposed method can converge to a smaller normalized compliance value 

(approximately 3% improvement on average) with fewer iterations (approximately 60% 

improvement on average). Finally, a larger number of grey elements exist in the layout 

of the OC method, which shows that the proposed method is less likely to converge to 

chessboard patterns with smaller filters. The optimized designs of the MBB beam and 

corresponding compliance O obtained using different methods with different 

refinements are illustrated in Figure 3. The results demonstrate that, given proper filter 

settings, different refinements do not lead to different topologies. 

 

Figure 3 Optimized design of the MBB beam and corresponding compliance O obtained with 

the variant of the 88-line code (bottom) and the proposed one (top). A mesh with 6020 

elements (left), 15050 elements (middle), and 300100 elements (right) has been used. 
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Gripper 

To demonstrate the effectiveness of the proposed method in dealing with compliant 

mechanisms, a benchmark example, associated with the compliant force converter 

mechanism, is provided. 

Figure 4 depicts the design domain of a compliant force inverter mechanism with 

single input-output behavior. The inverter outputs a displacement in the opposite 

direction to the actuating force. The fixed bound area and the external force Fi are 

denoted in the figure. 

 

Figure 4 Design domain and boundary conditions of the compliant force inverter mechanism 

 

The design domain is discretized with 100100 square elements. The volume 

fraction f is set to 0.2. An artificial spring with stiffness ko is attached to the output port 

and a dummy load Fo is applied at the output port, which is expected to produce a 

horizontal displacement uo to the left. The goal is to maximize the geometric advantage 

( GA = uo = ui ) of the mechanisms. The objective function used in this paper is 

formulated as [39]: 
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where K(x) is the global stiffness matrix of the structure. u1 and u2 represent the 

displacement fields of structures when only Fi or the dummy load Fo is applied, 

respectively. For the proposed method, a close operation [40] with a radius of rmin = 1 

for density, rmin = 1.84 for sensitivity, and 1 = 2 = 0.15 is utilized.  



 

Figure 5 Convergence curves for the complaint force inverter mechanism design problem 

with the GA set as the objective function. (a) The changes of objective functions; (b) The 

changes of volume fractions. 

 

The GA as a function of iterations for the force inverter mechanism is plotted in Fig. 

5. The iteration history and the associated layouts are plotted in the figure. To compare 

the performance of the proposed method with that of the GCMMA, the iteration history 

of GCMMA is also plotted.  

We can find from the figure that both methods almost converge in less than 40 

iterations, which shows that both approaches can efficiently locate a good design from 

a uniform grey starting guess. The proposed method shows a faster convergence speed 

(approximately 50% improvement) and converges to a smaller normalized compliance 

value (approximately 7% improvement) which shows that the proposed method is able 

to deal with compliant mechanisms optimization problems. The proposed method is 

more likely to converges to a binarization layout. While a larger number of grey 

elements exist in the layout of the MMA method. It should be noted that, though the 

proposed method shows a better quality in the example, it does not mean that this 

method is better than MMA for every case since multiple hyperparameters are included 

in both methods. The tuning of these parameters can also lead to an improvement. The 

optimized designs of the mechanism obtained using different methods are illustrated in 

Figure 6.  

 

 

Figure 6 Optimum topologies for the inverter mechanism (a) Layout of the proposed method 

(b) Layout of GCMMA  
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It should also be noted that the used algorithm is identical to the one used in the 

MBB example. The difference mainly lies in the objective function, which means that 

the proposed method can be applied to a different type of problem with less 

modification. 

 

3D Cantilever Beam 

 

Figure 7 Design domain of a 3D cantilever beam 

 

To show the effectiveness of the proposed method in dealing with 3D problems, a 

cantilever beam problem is provided in this section. The design domain of the cantilever 

beam is illustrated in Fig. 7. The prismatic beam is fully constrained in one end and a 

unit distributed vertical load is applied downwards on the lower free edge of the other 

end. The dimension of the computational domain is 602010.  

Different methods including the OC method, the GCMMA and the proposed one 

are used to solve this problem. The settings for the OC method are identical to those 

used in Ref. [41]. The settings for the GCMMA are identical to those used in Ref. [42]. 

The generalized compliance as a function of iteration for the three methods is plotted 

in Fig. 8. 



 
Figure 8 Convergence curves for the 3D cantilever beam using the OC, GCMMA, and the 

proposed method. (a) The changes of objective functions; (b) The changes of volume 

fractions. 

 

We can find from the results that all three methods converge rapidly in the first 

several steps. While, the OC method slows down quickly and converges to a relatively 

larger magnitude of generalized compliance. The proposed method gains 

approximately 7% improvement in the magnitude of generalized compliance 

comparing with that of the GCMMA and 11% improvement comparing with that of the 

OC. The steepest convergence rate is observed for GCMMA from Figure 8. The reason 

can be attributed to the fact that the material fraction constraint is not strictly satisfied 

at the initial stage for GCMMA (in other words, more material is contained in the 

mechanism). The optimized designs at different iterations for the proposed method are 

also illustrated in Fig. 8. 

 

 

Figure 9 Optimum topologies for the 3D cantilever beam with a mesh of 602010. (a) The 

proposed one; (b) The OC method; (c) The GCMMA. 

 

The final designs of the 3D cantilever beam using different methods are illustrated 

in Fig. 9. The final layout obtained using the OC and the GCMMA are similar to each 

other. While the topology obtained by the proposed method (shown in Fig. 9(a)) is quite 

different from and more compact comparing with Fig. 9(b) and Fig. 9(c). The results 

show that the proposed method is more likely to locate an optimum result. 

        The efficiency of a method is affected by two things. One is the convergence rate, 

the other is the computation costs. Since the projection in the current study has an 

analytical formulation and is dimension irrelative, the computation is fast. For all 
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methods, the time costs for each iteration depend on both the FEA process and an 

updating procedure. The updating time costs for different methods in each iteration is 

plotting in Fig. 10. The results show that the updating cost of the proposed method is 

negligible compared to the other two methods. Note that as the scale of the problem 

increases, the time costs due to the FEA process is dominant. Nevertheless, the 

proposed method would find its advantage when the time and memory costs for the 

updating procedure matters.  

 

Figure 10 Time costs of the updating process (exclude the FEA process) for each iteration of 

the three methods 

5. Conclusion and Discussion 

In this work, we proposed a modified gradient projection method with improved 

efficiency and neglectable loss of accuracy for structural topology optimization 

problems. Through gradient clipping, as well as the modified projection, the efficiency 

of the original gradient projection method has been greatly improved. It should be noted 

that since the projection is approximated by an analytical expression, the calculation 

involves negligible computation and memory costs. In addition, the determination of 

searching steps can be simplified accordingly. 

Benchmark problems, including the MBB, force inverter mechanism, and 3D 

beam are analyzed using the proposed method, the results validate the effectiveness of 

the method. The method is also implemented in MATLAB and open-sourced for 

educational usage. It is recommended that the readers try our code for a better 

understanding of the proposed method. 

It should be noted that adaptive filters and hybrid method may improve the 

efficiency to a certain extent. But this part is out of the scope thus will be considered in 

the future work.  

6. Replication of results 

The method proposed in this paper is implemented in MATLAB and open-sourced on 

GitHub for educational usage. (https://github.com/zengzhi2015/EGP) For commercial 

usage, please contact the authors.  
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