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Abstract

A Spatial Query Language enables the spatial analysis of Building Information Models and the extraction of partial models that
fulfill certain spatial constraints. Among other features, the developed spatial query language includes topological operators, i.e.
operators that reflect the topological relationships between 3D spatial objects. The paper presents definitions of the semantics of
the topological operators within, contain, touch, overlap, disjoint and equal in 3D space by using the 9-intersection model. It further
describes a possible implementation of the topological operators by means of an octree-based algorithm. The recursive algorithm
presented in this article relies on a breadth-first traversal of the operands’ octree representations and the application of rules that
are based on the color of the octants under examination. Because it successively increases the discrete resolution of the spatial
objects employed, the algorithm enables the user on the one hand to handle topological relationships in a fuzzy manner and on the
other hand to trade-off between computational effort and the required accuracy. The article also presents detailed investigations
on the runtime performance of the developed algorithm.
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1. Introduction1

Humans view buildings primarily as an aggregation of2

physical objects with well-defined geometry and specific3

spatial relations. In most cases, the architectural and/or4

structural function of a particular building component is5

closely related to its shape and its position in relation to6

other building components. For architects and engineers7

involved in designing buildings, geometric properties and8

spatial relations between building components accordingly9

play a major role in finding solutions for most of the design10

and engineering tasks. However, software tools that allow11

for a sophisticated spatial analysis of digital building mod-12

els are not yet available.13

The current lack of building model management soft-14

ware supporting geometric-topological analysis can be ex-15

plained by the fact that, over the last decade, research in16

the field of computer-supported building design has con-17

centrated mainly on the development of a semantic object-18

oriented building model, also called Building Product Model19

or Building Information Model (BIM) [1–4]. These efforts20
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have resulted in the widely known standards Industry Foun-21

dation Classes (IFC) [5] and CIS/2 [6].22

Central model management servers or product model23

servers are seen as the most important IT infrastructure24

component for the future, as they promise to solve many of25

the issues involved in the highly collaborative design and26

engineering of buildings [7,8]. The main task of these model27

servers is to store the building information model cen-28

trally and manage all accesses to it. Product model servers29

specialized in handling IFC data that are already on the30

market include the Secom IFC Model Server, the Jotne31

EDMServer and the EuroStep Model Server, for example.32

A very important prerequisite for asynchronous collabo-33

rative engineering is the creation of partial models. To al-34

low the user to extract parts of the full building model, the35

product model servers provide query languages which make36

it possible to formulate conditions that need to be fulfilled37

by the resulting set of building components.38

Unfortunately, the existing product model servers are39

unable to interpret the geometric information that is im-40

plicitly or explicitly contained in the building models, since41

they are not familiar with the spatial semantics of partic-42

ular attributes and relationships. Accordingly, the expres-43

sive power of the query languages provided by the product44

model servers, such as the Partial Model Query Language45

[9] of the Secom IFC Model Server or the Product Model46
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human thinking

qualitative spatial constraints

building geometry

Fig. 1. The qualitative spatial operators provided by the Spatial
Query Language form an intermediate level of abstraction.

Query Language of the EuroStep Model Server, is limited47

to numerical comparisons and tests on those spatial rela-48

tionships that are predefined in the product data model.49

This has to be seen as a major deficiency, since spatial50

relations between building components play a significant51

role in most of the design and engineering tasks of the AEC52

domain. To fill this technological gap we have developed53

concepts and techniques for a 3D Spatial Query Language54

for Building Information Models. The technology we have55

devised makes it possible to select specific building com-56

ponents by means of qualitative spatial constraints. These57

constraints form an intermediate level of abstraction be-58

tween the technical view on building geometry using ver-59

tex coordinates, for instance, and the way humans think60

about buildings and the relations between their compo-61

nents (Fig. 1).62

Possible applications for this innovative 3D Spatial63

Query Language for Building Information Models range64

from verifying construction rules to extracting partial65

models that fulfill particular spatial constraints. Such a66

partial model resulting from a spatial query may serve as67

input for a numerical simulation or analysis, or might be68

made exclusively accessible to certain participants in a col-69

laborative scenario. Also, the spatial query language can70

provide basic knowledge required for qualitative spatial71

reasoning [10].72

The proposed 3D Spatial Query Language relies on a spa-73

tial algebra that is formally defined by means of point-set74

theory and point-set topology [11–13]. Besides fully three-75

dimensional objects of type Body, the algebra also provides76

abstractions for spatial objects with reduced dimensional-77

ity, namely by the types Point, Line and Surface. This is78

necessary because building models often comprise dimen-79

sionally reduced entities, such as load points, power lines,80

plates, slabs etc. All types of spatial objects are subsumed81

by the super-type SpatialObject.82

The spatial operators available for the spatial types are83

the most important part of the algebra. They consist of84

– metric (distance, closerThan, fartherThan etc.),85

– directional (above, below, northOf etc.) and86

– topological (touch, within, contains etc.)87

operators.88

While the metric operators are presented in [14] and the89

directional operators in [15], this paper discusses the defi-90

nition and implementation of the topological operators.91

2. Related work92

2.1. Spatial query languages93

The overall concept of providing a Spatial Query Lan-94

guage for analyzing Building Information Models is closely95

related to concepts and technologies developed in the area96

of Geographic Information Systems (GIS). Such systems97

maintain geographical data, such as the position and shape98

of cities, streets, rivers etc. and provide functionalities for99

the spatial analysis of this data. Due to the nature of this100

domain most GI systems only support spatial objects in101

two-dimensional space.102

The first implementations of spatial query languages on103

the basis of SQL were realized in the GIS context. In the104

late 1980’s, a multitude of different dialects were developed,105

including PSQL [16], Spatial SQL [17], GEOQL [18], KGIS106

[19] and TIGRIS [20]. A good overview of the different di-107

alects and the basic advantages of a SQL-based implemen-108

tation is provided in [21].109

The GIS research community also coined the phrase Spa-110

tial Database to describe database management systems111

(DBMS) that provide spatial data types and spatial index-112

ing techniques and thus allow for an easy and efficient access113

to spatial data [22,23]. There is now a wide range of com-114

mercial 2D spatial database systems, the most widespread115

ones being PostGIS, Oracle Spatial and Informix Geode-116

tic Datablade. The majority of available spatial databases117

comply to the standard developed by the OpenGIS con-118

sortium that defines a common interface for accessing 2D119

spatial data and accordingly enable the exchangeability of120

the database component in an overall GI system [24].121

The potential benefits of using GI systems for the analy-122

sis of dynamical processes in buildings are discussed in [25]123

. The author states that, even if component-oriented CAD124

systems provide sophisticated functionality for geometric125

modeling, they normally lack comprehensive spatial anal-126

ysis capabilities. For this reason, Ozel stores floor plans of127

buildings in a GIS database in order to use its 2D spatial128

analysis facilities. The author underlines that 3D spatial129

analysis would be a much more powerful tool for analyzing130

processes in buildings.131

Up to now, spatial database systems that support 3D132

spatial analysis are only to be found in a research con-133

text. The investigations set out in [26], for example, clearly134

show that the spatial analysis capabilities of the commer-135

cial database system Oracle Spatial are limited to 2D space,136

even though it is possible to store simple 3D geometry.137

[27] introduces a database system that allows for the spa-138

tial analysis of 3D CAD models. It provides simple volume,139

collision and distance queries, but supports neither topo-140

logical nor directional predicates. The implementation of141

the system relies on a voxel approximation of the CAD142

parts stored in the database and a special index structure143

optimized for this representation. We follow a similar ap-144

proach here but employ the hierarchical data structure oc-145
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tree, which is dynamically created while processing a topo-146

logical query.147

2.2. Topological operators148

Topological operators are used to query the topological149

relationship between two spatial entities. Since topological150

operators return a Boolean value, they are also denomi-151

nated topological predicates.152

Topological relationships can be formally described as153

follows [28]: Let X and Y be topological spaces. A map-154

ping f : X → Y is continuous if for each open subset V of155

Y the set f−1(V ) is an open subset of X. If the mapping f156

is a bijection and both f and f−1 are continuous, then f is157

called a topological isomorphism. Topological isomorphisms158

maintain neighborhood relationships between points dur-159

ing the mapping. Typical isomorphisms are translation, ro-160

tation and scaling (scaleFactor �= 0) as well as any combi-161

nation of these transformations. Topological relationships162

are those relationships that are invariant under a topolog-163

ical isomorphism.164

Topological relations are among the most intensively in-165

vestigated spatial relationships in the context of spatial166

query languages. Soon it became obvious that the impre-167

ciseness and ambiguity of colloquial language demands a168

formal definition of topological relationships. The main169

challenge is to find a set of qualitatively distinct relation-170

ships that is large enough to allow for a suitable classifica-171

tion and at the same time small enough to keep it manage-172

able for the user.173

The first substantial step towards a formalization of174

topological relationships was the development of the 4-175

intersection model by Egenhofer et al. [29,30]. To formally176

specify the semantics of topological predicates the model177

determines the intersections between the interior and the178

boundary of the first object and the interior and the bound-179

ary of the second one as an empty or non-empty set. In180

theory there are 16 possible configurations but, depending181

on the dimensionality of the geometric object in question,182

only a subset can be found in reality.183

The concept was first employed on intervals in one-184

dimensional space [31] and later extended to relations185

between simple regions in R
2 [30]. In both cases 8 differ-186

ent relations have been distinguished to which the natural187

language denominations disjoint, touch, equals, inside,188

contains, covers, coveredBy and overlap could be assigned.189

To resolve topological relations between line elements in190

R
2 more precisely, the 4-intersection model has been up-191

graded to the 9-intersection model (9-IM) by incorporat-192

ing the exteriors of both operands [30]. The resulting nine193

intersections are recorded in a 3 × 3 matrix:194

I =

⎛
⎜⎜⎜⎝

A◦ ∩ B◦ A◦ ∩ ∂B A◦ ∩ B−

∂A ∩ B◦ ∂A ∩ ∂B ∂A ∩ B−

A− ∩ B◦ A− ∩ ∂B A− ∩ B−

⎞
⎟⎟⎟⎠ .

B

A

A disjoint B
B disjoint A

B

A

A inside B
B contains A

A

B

A contains B
B inside A

A B

A equals B
B equals A

B

A

A meets B
B meets A

B

A

A coveres B
B coveredBy A

A coveredBy B
B covers A

A overlaps B
B overlaps A

A

B

B

A

Ø Ø ¬Ø

Ø Ø ¬Ø

¬Ø ¬Ø ¬Ø

¬Ø ¬Ø ¬Ø

Ø Ø ¬Ø

Ø Ø ¬Ø

¬Ø Ø

Ø

Ø

¬Ø Ø

¬Ø ¬Ø ¬Ø

¬Ø Ø

Ø

Ø

Ø ¬Ø

Ø Ø ¬Ø

Ø Ø ¬Ø

Ø ¬Ø ¬Ø

¬Ø ¬Ø ¬Ø

¬Ø Ø

Ø

Ø

¬Ø ¬Ø

¬Ø ¬Ø ¬Ø

¬Ø ¬Ø ¬Ø

Ø ¬Ø ¬Ø

Ø Ø ¬Ø

¬Ø ¬Ø ¬Ø

¬Ø ¬Ø ¬Ø

¬Ø ¬Ø ¬Ø

Fig. 2. The 9-IM matrices originally defined by Egenhofer for 2D
space [32].

Fig. 3. Topological constellations that are intuitively different result
in the same 9-IM matrix.

A◦ denotes the interior, ∂A the boundary and A− the195

exterior of the spatial object A (see Section 3). The 9-196

IM can also be applied to combinations of spatial objects197

with a different dimensionality [32]. Fig. 2 shows the 9-198

IM matrices of the eight topological predicates defined by199

Egenhofer and depicts examples for 2D regions.200

One drawback of the 9-IM is that some topological con-201

figurations that are intuitively different result in the same 9-202

IM matrix (Figure 3) while others that are intuitively iden-203

tical are treated as being different. The first problem is par-204

tially solved by the Dimensionally Extended 9-Intersection205

Model (DE-9IM) which also records the dimensionality of206

the intersection set [28].207

The DE-9IM forms the basis for the formal definitions of208

topological relationships in the OGC standard [24]. Here,209

3



F (false) is used in the matrices to denote an empty set, T210

(true) to denote an non-empty set, numbers may be used211

to define the dimensionality of the intersection set and, in212

addition, the wildcard (∗) may be used at certain places213

in the matrix that are not relevant for the particular pred-214

icate, thereby solving the second of the aforementioned215

problems. Using this extended set of symbols, the OGC de-216

fines the predicates contains, within, cross, disjoint, equals,217

intersect, touch and overlaps for arbitrary combinations of218

(simple) point, line and polygon objects in 2D space.219

An important pre-requisite for applying the 9-IM220

or its derivates is the formal specification of the inte-221

rior/boundary/exterior of spatial objects. In general, we222

can distinguish two different approaches to realize this:223

The first approach relies on algebraic topology using cellu-224

lar complexes [32] or simplicial complexes [33,34] to model225

spatial entities. This implies a complete partitioning of the226

entire space in a rigorously formal manner and accordingly227

calls for appropriate modeling tools, since conventional228

B-Rep modelers do not provide these capabilities.229

The second approach relies on point-set topology230

[30,35,11]: Here, interior, boundary and exterior are un-231

derstood as point sets. The boundary point set is formed232

by points whose neighborhood (a well-defined concept of233

point-set topology) contains both exterior and interior234

points. This concept can be easily applied to conventional235

B-Rep models [36]. Special care has to be taken in the case236

of dimensionally reduced entities in order to avoid that all237

points become boundary points.238

2.3. 3D-GIS239

As far as GIS is concerned, the main interest lies in the240

3D modeling of the ground surface, buildings and infras-241

tructure as well as the subsoil layers. The most important242

works in this area include [34,37,38] which report on the243

development of GeoToolkit, an object-oriented framework244

for efficiently storing and accessing 3D geographic and geo-245

logic data. The main disadvantage of using the framework246

for analyzing building models is the need to model all spa-247

tial entities according to the mathematical concept of sim-248

plicial complexes. The obligatory conversion of a bound-249

ary representation, as used in CAD tools, to a simplicial250

complex representation is expensive and, in some special251

cases, absolutely unfeasible. A more flexible, yet theoretic252

approach for applying algebraic topology on building mod-253

els is presented in [39].254

[40–43] provide concepts and data structures for storing255

3D city models in spatial databases and discuss the suit-256

ability of different geometry models for querying topolog-257

ical relationships. In general, GIS research follows the ap-258

proach of choosing geometry data structures that implic-259

itly contain topological relationships. Accordingly many of260

the proposed data structures rely on a simplicial decompo-261

sition of the space [33,32,44].262

However, as mentioned above, the existing building infor-263

1D

3D

Fig. 4. If 3D Line objects are defined as mappings from 1D intervals,
the notion of boundary can be preserved for the endpoints.

mation models use more general B-Rep models to describe264

geometry. For this reason, we pursue a different approach265

here: Instead of storing the topological relationships, we266

derive them on-the-fly from the position and shape of the267

geometric objects involved. This avoids redundancy (posi-268

tion and shape of the objects determine their topological269

relationship) while simultaneously supporting the use of270

conventional B-Rep approaches to describe the buildings’271

geometry.272

3. Formal specification of topological operators273

Since the definitions of topological operators found in274

literature are unsatisfactory for the intended use in the275

Building Model context, we have set up our own definitions.276

We use the pure 9-Intersection Model instead of the di-277

mensionally extended version, because the dimension op-278

erator cannot be realized by means of the octree imple-279

mentation technique presented in Section 4. In order to280

avoid an unmanageably large number of different topologi-281

cal predicates, we apply the clustering method, as proposed282

in [45], which makes it possible to place wildcards (*) at283

those places in the 9-IM matrix that are not decisive for284

assigning a predicate to a certain constellation.285

To be able to apply the 9-IM it is necessary to define the286

interior, the boundary and the exterior for each of the 4287

spatial types defined within the Spatial Query Language.288

These definitions have been given in [12,36] and are not re-289

peated here. In summary, the purpose of the definitions is290

to transfer the specification of the interior and exterior for291

each of the spatial types from the world of algebraic topol-292

ogy into the world of point-set topology. For example, we293

intended to define the endpoints of a Line element as its294

boundary, and all other points as belonging to its interior.295

Using the neighborhood concept from point-set topology in296

3D space would result in all points of a Line belong to the297

boundary. Accordingly we defined all Line objects as map-298

pings from 1D to 3D space, specified the boundary points in299

1D, and assigned “boundary” also to their mappings (Fig.300

4) .301

Figures 5 and 6 show the topological predicates pro-302

vided within our Spatial Query Language, present the cor-303

responding 9-IM matrices and illustrate their semantics for304

different combinations of types by means of pictograms.305

The given system of topological predicates satisfies the re-306

quirements of completeness and mutual exclusiveness, i.e.307

we assign to any topological constellation exactly one of308

the predicates. This makes it possible to introduce an ad-309
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Line

Surface

Body
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Line

Surface

Body

Ø Ø *

Ø Ø *

* * *

Op. A

Op. B

* Ø Ø

Ø * Ø

Ø Ø *

* *¬Ø

* * *

Ø Ø *

*¬Ø Ø

* * Ø

* * *

Point Line Surface Body

Point

Line

Surface

Body

Point

Line

Surface

Body

Fig. 5. The topological predicates provided by the Spatial Query Language (part 1).

ditional operator which returns the topological predicate310

for any given pair of spatial objects. This operator is called311

whichTopoPredicate.312

Note that using the pure 9-IM without the dimension op-313

erator does not allow for any distinction between an overlap314

and a cross situation, as proposed in [11]. Nor is it possi-315

ble to realize the proposed refinements of touch (meet and316

onBoundary).317

There are small distinctions between the definitions in318

[45] with respect to the clustering of predicates: The pred-319

icates coverBy and cover have not been adopted, because320

in the application domain considered here, it is normally321

irrelevant whether only the two operands’ interiors overlap322

or their boundaries as well. Accordingly, these two constel-323

lations are subsumed under within and contains, respec-324

tively. In addition, we use the designation touch instead325

of meet in order to achieve maximum compliance with the326

OGC standard.327

4. Octree-based implementation328

4.1. Octree representation329

Our implementation technique is based on the octree rep-330

resentation of the spatial objects involved in the topologi-331

cal query. The octree is a space-dividing, hierarchical tree332
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touch

*Ø ¬Ø

* * *

* * *

* *Ø

* ¬Ø *

* * *

* *Ø

¬Ø * *

* * *

Point Line Surface Body

Point

Line

Surface

Body

Op. A

Op. B

overlap

Point

Line

Surface

Body

*¬Ø ¬Ø

* * *

¬Ø * *

Fig. 6. The topological predicates provided by the Spatial Query Language (part 2).
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Fig. 7. Cross-section through an octree. White cells represent the
exterior, black cells the interior and gray cells the boundary of the
discretized object. Whereas black and white cells are branch nodes,
gray cells always have eight children.

data structure for the discretized representation of 3D vol-333

umetric geometry [46–49].334

Each node in the tree represents a cubic cell (an octant)335

and is either black, white or gray, symbolizing whether the336

octant lies completely inside, outside or on the boundary of337

the discretized object (Fig. 7). Whereas black and white oc-338

tants are branch nodes, and accordingly have no children,339

gray octants are interior nodes that always have eight chil-340

dren. The union of all child cells is equal to the volume of341

the parent cell, and the ratio of the child cell’s edge length342

to that of its father is always 1:2. The equivalent of the343

octree in 2D is called quadtree.344

In our implementation concept, each spatial object is rep-345

resented by an individual octree. There are several different346

approaches for creating an octree from the object’s bound-347

ary representation, most of which are based on a recursive348

algorithm that starts at the root octant and refines those349

cells that lie on the boundary of the original geometry, i.e.350

those that are colored gray.351

For our implementation we use a highly efficient cre-352

ation method developed by Mundani [50] that is based on353

processing the halfspaces formed by the object’s bound-354

ing faces. The most important advantage of Mundani’s ap-355

proach for our purposes is that it automatically marks in-356

ner cells as black without performing a laborious filling al-357

gorithm. As described in the next sections, the existence of358

black cells is an important prerequisite for the applicability359

of many rules that make it possible to abort the recursive360

algorithm at an early refinement level in many situations.361

To cover also dimensionally reduced entities with our al-362

gorithm, we have to introduce the fourth color black/white.363

Black/white cells represent areas where the exterior and364

the interior of the described object exist, but not its bound-365

ary (Fig. 8).366

In our approach the octree generation is not performed367

in advance, but coupled with the recursive algorithm pre-368

sented in the next section. Thus the octree is built up one369

level at a time and only at those places that are relevant for370

verifying or disproving the predicate under examination.371

This significantly speeds up the query processing.372

x

z

y

z

Fig. 8. Dimensionally reduced objects such as the illustrated disc are
discretized using the fourth color black/white that represents cells
which contain interior and exterior points, but no boundary points.

4.2. Overview373

For a better understanding, we first give an overview on374

the functioning of the algorithm before describing the de-375

tails. This subsection describes the algorithm implement-376

ing the whichTopoPredicate operator.377

Both spatial objects for which the topological relation-378

ship is to be determined are encoded in a separate oc-379

tree. Then, the recursive algorithm performs a synchronized380

breadth-first traversal of both octrees. On each level, pairs381

of octants are created with one octant originating from ob-382

ject A and one octant from object B, both representing the383

same sector of the 3D space.384

Each octant pair provides a color combination for the385

specific rules that can be applied. These rules may lead to386

filling a 9-IM working matrix that is maintained by the al-387

gorithm to keep track of the knowledge acquired about the388

topological constellation. There are 12 positive and 9 nega-389

tive rules altogether (Fig. 9, 10 and 11). A positive rule can390

be applied when a certain color combination occurs, and391

a negative rule if certain color combinations do not occur392

over an entire level. Positive rules lead to empty set entries393

in the matrix, negative rules to non-empty set entries.394

The rules are derived from the semantics of the colors.395

A white octant, for example, is part of the exterior of an396

operand, and a black octant is part of its interior. If a397

white octant of operand A occurs at the same place as a398

black octant of operand B, it follows that the intersection399

between the exterior of A and the interior of B is non-empty.400

The 9-IM working matrix is successively filled by apply-401

ing these rules for all octant pairs. Each time a new en-402

try is made, the matrix is compared with the matrices of403

the formal definitions (Section 3). If it completely complies404

with one of these matrices, the recursion is aborted and the405

algorithm returns the respective predicate. If there is any406

contradiction between the filled matrix and the matrix of407

a predicate, the respective predicate is precluded. If no un-408

equivocal decision is possible for any of the predicates, a409

further refinement is necessary, i.e. octant pairs of the next410

level are created.411
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A B

¬Ø

P01

P02

P04

P03

P05

P06

A B

¬Ø

P07

P08

P10

P09

P11

P12

Fig. 9. Positive Rules (Part 1). If the color combination on the left-hand side is detected, the 9IM-Matrix can be filled according to the
right-hand side. Combinations of mixed color cells (gray and/or checkered) never lead to the 9IM matrix being filled, since they do not allow
for a statement about the exact boundary position. For the same reason there is no color combination from which ∂A ∩ ∂B = ¬∅ could be
derived.

4.3. The recursive algorithm412

In a first step, we perform tests based on the bounding413

boxes of both operands for a fast decision in simple cases.414

These tests check preconditions that are necessary but not415

sufficient for assigning the topological predicate under in-416

vestigation. To fulfill the equal predicate, the bounding417

boxes of both operands have to be equal, to fulfill touch the418

bounding boxes may either touch each other or overlap, but419

are not allowed to be disjoint. To fulfill overlap, however,420

the bounding boxes of the operands also have to overlap.421

In order to satisfy contain, the bounding box of the first422

operand has to contain that of the second one, and in the423

case of within it is vice-versa.424

If the prerquisits test based on the bounding-boxes is425

successful, the octree-based algorithm for a detailed inves-426

tigation can commence. The principle of the algorithm is427

the successive refinement of the octrees at “critical” places428

and the continuous filling of a 9-IM working matrix which429

finally leads to the validation or falsification of the predi-430

cate under investigation.431

The algorithm is identical for all operators represent-432

ing topological predicates: disjoint, equal, within, contain,433

touch and overlap. The algorithm works recursively, equally434

to the algorithms presented for implementing metric and435

directional operators [15,14]. Figures 15 to 17 illustrate the436

functioning of the algorithm for different topological con-437

stellations.438

First, the main routine testTopoPredicate (Alg. 1) is439

called, passing as parameters the root octants of the440

operands, an integer value representing the predicate to be441

tested (predicate), and a 9-IM matrix occupied exclusively442

by wildcards (workingMatrix). The latter is successively443

filled with values during the recursion. The three possible444

values empty set, non-empty set and undefined are encoded445

by the integer values 0, 1 and −1, respectively.446

The core of the algorithm lies in the execution of rules.447

The occurrence of specific color combinations results in fill-448

ing the 9-IM working matrix with non-empty set symbols449

(positive rules, Fig. 9). On the other-hand, the absence of450

certain color combinations leads to one or more empty-set451

entries in the matrix (negative rules, Fig. 10 and 11).452

The appearance of a certain color combination is453

recorded in the field color combinations consisting of 16454

Boolean variables (Alg. 1, line 2). Positive rules are applied455

directly for each cell pair (line 5). Once this has been ac-456

complished, we check whether the resulting matrix already457

allows a validation or falsification of the predicate. If this458

is the case, the testTopoPredicate function returns true or459

false, respectively, the recursion is stopped and the main460

8
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N07
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Fig. 11. Negative Rules (2). If the color combination of the left-hand side do not occur in the entire domain, the 9-IM matrix can be filled
according to the right-hand side.

routine returns true or false as final result. The same hap-461

pens if it was possible to validate a different topological462

predicate from the one that was tested (line 12–16).463

On the other hand, negative rules are applied after all464

color combination of the current recursion level have been465

recorded (line 18). The existing negative rules depend on466

each other in a hierarchical manner (Fig. 12): If the prereq-467

uisites for applying a rule are not fulfilled, they automati-468

cally remain unfulfilled for its successors. Hence, the rules469

are tested in an appropriate order. If a rule is applicable, we470

test whether a final validation (line 21, 22) or falsification471

(line 24, 25) is possible by comparing the current matrix472

with the target matrix.473

If after execution of all applicable rules, the current oc-474

cupancy of the working matrix does not allow for validation475

or falsification of the predicate and the maximum refine-476

ment level has not been reached, child pairs are created us-477

ing the sub-routine createChildrenPairs (Alg. 4.3) (Alg. 1,478

line 43) and passed to the next level of recursion by calling479

testTopoPredicate (Alg. 1, line 45)480

4.4. The predicate hierarchy481

If the predicate under examination is neither proved nor482

disproved when reaching the maximum refinement level,483

the predicate hierarchy shown in Fig. 13 is applied, i.e. the484

algorithm returns the highest non-disproved predicate of485

the hierarchy. The order of the hierarchy is chosen in such486

a way that, if the actual topological constellation complies487

with predicate a, all predicates above predicate a are dis-488

proved during successive refinement. On the other hand,489

the predicates below a are not necessarily disproved. In the490

sense of a “positivistic” approach we assume that the high-491

est non-disproved predicate as proved.492

If both operands have the same dimensionality, contain493

and within are equivalent: For the validation of a “lower”494

predicate, both contain and within must be disproved. The495

equivalence of the predicates results from the fact that,496

when disproving equal, either contain or within is disproved497

at the same time.498

As discussed in detail later on, the application of the499

predicate hierarchy may result in the detection of an in-500

correct topological predicate, if the maximum refinement501

level is too low. However, the hierarchy is chosen in such a502

9



A B

N01

N02

N03

N04

N05

Fig. 10. Negative Rules (1). If the color combinations of the left-hand
side do not occur in the entire domain, the 9-IM matrix can be filled
according to the right-hand side.

N01

N08 N06 N07 N09

N02 N03 N04 N05

Fig. 12. Dependencies between the negative rules. If the preconditions
of a rule are not fulfilled, they remain unfulfilled for any of its
successors.

Body - Body
Surface - Surface

Line - Line

Line - Point
Surface - Point
Body - Point

equal

contain within

touch

overlap

disjoint

touch

within/contain

overlap

disjoint

Body - Surface
Body - Line

Surface - Line

touch

within/contain

disjoint

Fig. 13. The hierarchy of the topological predicates for different type
combinations. The algorithm returns the highest non-disproved pred-
icate. The order of the hierarchy results from the observation that
all predicates above a certain predicate a are disproved during ongo-
ing refinement if the actual topological constellation complies with
predicate a . This hierarchy makes a fuzzy handling of topological
relationships possible.

boolean testTopoPredicate
(OctantPair[ ] pairs, int predicate, int[ ] workingMatrix, int cur-

rentLevel)

1: currentLevel ← currentLevel + 1

2: int[16] color combinations
3: for all pairs do
4: add 1 to accordant position in color combinations
5: fill workingMatrix according to positive rules
6: if workingMatrix mismatches 9IM-matrices[predicate] then
7: return false
8: end if

9: if workingMatrix matches 9IM-matrices[predicate] then
10: return true
11: end if
12: for all predicates i �=predicate do
13: if workingMatrix matches 9IM-matrices[i] then
14: return false
15: end if
16: end for
17: end for
18: for all negativ rules do
19: if rule is applicable then

20: fill workingMatrix

21: if workingMatrix matches 9IM-matrices[predicate] then
22: return true
23: end if
24: if workingMatrix mismatches 9IM-matrices[predicate]

then
25: return false
26: end if
27: for all predicates i �=predicate do
28: if workingMatrix matches 9IM-matrices[i] then
29: return false
30: end if
31: end for
32: end if
33: end for
34: if currentLevel = maxLevel then
35: for all i < predicate do
36: if workingMatrix does not mismatch 9IM-matrices[i] then
37: return false
38: end if
39: end for
40: return true
41: else
42: for all pairs do
43: childrenPairs += createChildrenPairs(pair[i])
44: end for
45: return testTopoPredicate(childrenPairs, workingMatrix, cur-

rentLevel)

46: end if

Algorithm 1: The function testTopoPredicate determines
the occurrence of a specific topological situation by travers-
ing the octrees in breadth-first manner and simultaneously
filling the 9-IM working matrix. To realize the octree traver-
sal, the functions calls itself recursively.

way that these errors/misjudgements are acceptable, since503

they correlate with the intuitive human understanding of504

fuzziness. Fig. 14 illustrates constellations where the appli-505

cation of the predicate hierarchy results in the detection of506

an incorrect topological predicate.507

Consequently, the algorithm testTopoPredicate works508

as follows: If the predicate under examination is neither509

proved nor disproved when reaching the maximum refine-510

10



boolean createChildrenPairs(OctantPair pair)

1: if (pair.A.color = gray) or (pair.A.color = black/white) then
2: if (pair.B.color = gray) or (pair.B.color = black/white) then

3: for all A.children do
4: for all B.children do
5: create pair(A.child, B.child)
6: childrenPairs += pair
7: end for
8: end for

9: else // B is white or black
10: for all A.children do
11: create pair(A.child, B)
12: childrenPairs += pair
13: end for
14: end if
15: else // A is white or black
16: if (pair.B.color = gray) or (pair.B.color = black/white) then

17: for all A.children do
18: for all B.children do
19: create pair(A, B.child)
20: childrenPairs += pair
21: end for
22: end for
23: end if
24: end if
25: return childrenPairs

Algorithm 2: The subroutine createChildrenPairs gener-
ates child cell pairs, that are used for the tests on the next
recursion level.

erroneously
detected as
equal

within situationcontain Situation touch situation disjoint situationoverlap situation

erroneously
detected as
contain

overlap situationtouch situation disjoint situation

erroneously
detected as
touch

overlap situation disjoint situation

erroneously
detected as
overlap

disjoint situation

spatial resolution:

Fig. 14. Misjudgments caused by a resolution that is too rough in
the case of Surface–Surface constellations. The predicate erroneously
assigned to the depicted situation results directly from the chosen
predicate hierarchy.

ment level (Alg. 1, line 34), it checks whether all predicates511

which are higher in the hierarchy are disproved (line 35–512

39). If this is the case it returns true, if not, false (line513

37). For this purpose, the 9-IM matrices of the predicates514

are stored in the array in the order of the hierarchy. The515

special case of the predicates contain and within which are516

on the same level of the hierarchy is not described here.517

int whichTopoPredicate
(OctantPair[ ] pairs, int[ ] workingMatrix, int cur-

rentLevel)

1: currentLevel ← currentLevel + 1

2: int[16] color combinations
3: for all pairs do
4: add 1 to accordant position in color combinations
5: fill workingMatrix according to positive rules
6: for all predicates i do
7: if workingMatrix matches 9IM-matrices[i] then
8: return i

9: end if
10: end for
11: end for
12: for all negativ rules do
13: if rule is applicable then
14: fill workingMatrix
15: for all predicates i do
16: if workingMatrix matches 9IM-matrices[i] then
17: return i
18: end if
19: end for

20: end if
21: end for
22: if currentLevel = maxLevel then
23: for i = 0 to 5 do
24: if workingMatrix does not mismatch 9IM-matrices[i] then
25: return i
26: end if
27: end for
28: else
29: for all pairs do
30: childrenPairs += createChildrenPairs(pair[i])
31: end for
32: return whichTopoPredicate(childrenPairs, workingMatrix,

currentLevel) // recursive call
33: end if

Algorithm 3: The function whichTopoPredicate deter-
mines the topological situation for two spatial objects.

The algorithm whichTopoPredicate works in a similiar518

way (Alg. 4.4): It successively refines the octrees till either519

the 9-IM working matrix fully complies with one of the520

predicates, or the maximum refinement level is reached.521

In the latter case, the first non-disproved predicate of the522

hierarchy is returned.523

Using the “positivistic” approach, the requirements of524

logical consistency, mutual exclusiveness and complete cov-525

erage are met by the system of topological operators, since526

in any case exactly one topological predicate is detected for527

any topological constellation, regardless of whether the user528

applies the predicate-operators or whichTopoPredicate.529

The positivistic approach is especially important for530

topological constellations that can never be fully proved,531

even not at an arbitrary high resolution. Among them are532

the predicates touch and disjoint for Body-Body combi-533

nations. The reason is that, if the geometric objects under534

examination really comply with one of these topological535

situations, the algorithm will detect an overlapping of gray536

A cells and gray B cells at any refinement level (see Figs.537

16 and 17).538

So in the case of touch, we cannot apply rules that fill539

the 9-IM working matrix with A◦∩B◦ = ∅ which would be540
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necessary for the working matrix to fully comply with the541

touch predicate matrix. And in the case of equal it is not542

possible to apply any negative rule that would generate the543

required ∅ entries of the equal matrix.544

If we have a closer look at these issues we will find that545

touch “competes” with overlap and disjoint. A slight dis-546

placement of the objects would result in one of the other547

predicates being returned. However, while a real overlap548

or disjoint situation would result in fully provable working549

matrices at a certain refinement level, a real touch situation550

will not do so. At the same time, overlap can not be dis-551

proved in a real touch situation, since gray cells meet at any552

level. These observations resulted in introducing the pred-553

icate hierarchy that is based on the positivistic approach,554

assuming the most probable state: touch is returned if we555

reach the maximum level and neither overlap nor disjoint556

are fulfilled.557

A consequence of the positivistic approach is that po-558

tentially erroneous results have to be accepted. If the max-559

imum level is not chosen high enough and the final reso-560

lution is consequently too rough, two slightly overlapping561

objects might be classified as being in touch, for example.562

However, the overlap that is not detected by the algorithm563

has an upper limit that is directly related to the size of an564

octant at the maximum refinement level. Thus, the user565

can choose the appropriate accuracy by defining a corre-566

sponding refinement level. We can study a similar behavior567

of the algorithm assuming two objects that are “almost”568

equal, but in fact slightly overlap: If the maximum refine-569

ment level is not high enough these two objects are classi-570

fied as being equal.571

These “errors” can be seen as a disadvantage of our ap-572

proach, but we consider it to be its main advantage: The573

octree-based algorithm allows for a fuzzy handling of topo-574

logical relationships that complies to the way humans think575

about topological relationships. In many applications it576

is desirable that two almost equal geometric objects are577

treated as equal. The same is true for objects that slightly578

overlap or have a small gap between them - in many cases it579

is appropiate to classify them as touching. However, the al-580

gorithm prsented here also allows us to “take a closer look”581

at the topological situation by choosing a higher maximum582

refinement level and thus limiting the divergence of the ob-583

jects classified as being equal, or the gap / overlap of the584

objects classified as being in touch.585

Another implementation approach currently under ex-586

amination is to work with ternary data types returned by587

the topological operators, thus offering three different val-588

ues true, false and unknown. In this case, errors would589

be completely avoided and the interpretation of the result590

would be left to the users. This approach will be discussed591

in more detail in future publications.592

In any case, by using the octree-based implementation593

the user can balance the desired accuracy with the required594

computational effort by choosing a suitable maximum re-595

finement level.596

disjoint

true

N09

P03, P07
equal = false
contain = false
within = false
touch = *
overlap = *
disjoint = *

equal = false
contain = false
within = false
touch = *
overlap = *
disjoint = *

equal = false
contain = false
within = false
touch = false
overlap = false
disjoint = true

Fig. 15. 2D illustration of the examination of a disjoint constellation
of n-dimensional objects in n-dimensional space. The disjoint situ-
ation is correctly detected on level 4. If the chosen maximum refine-
ment level is lower, the algorithm will detect a touch constellation
by applying the predicate hierarchy. There are analogous examples
in 3D space for Body objects.

5. Query language implementation base:597

Object-relational vs. relational SQL598

We decided to base the declarative spatial query support599

on SQL, since it is one of the most widespread and pow-600

erful declarative query languages with strongly formalized601

foundations in relational algebra [51]. Many SQL dialects602

allow for an extension of the available operators by means603

of user-defined functions, which may subsequently be used604

within the WHERE part of an SQL statement.605

We compared two different versions of the standard: the606

purely relational version known as SQL-92 and the object-607

relational version known as SQL:1999 [52,53]. The latter en-608

ables an extension of the database type system in an object-609

oriented way, especially by providing abstract data types610

(ADTs) which may possess member functions (methods)611

[54–56]. By using an Object-Relational Database Manage-612

ment System (ORDBMS), spatial data types and spatial613

operators can be made directly available to the end-users,614

enabling them to formulate queries like615

616

SELECT *617

FROM IFCColumn col, IFCSlab slab3618

WHERE col.touch(slab3) AND slab3.id = ’Oid23089’619

620

to extract all columns that touch the slab whose ID is621
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overlap

true

equal = false
contain = false
within = false
touch = *
overlap = *
disjoint = *

equal = false
contain = false
within = false
touch = *
overlap = *
disjoint = *

equal = false
contain = false
within = false
touch = false
overlap = true
disjoint = false

P08, P09

P01, P03, P07

Fig. 16. 2D illustration of the examination of an overlap constella-
tion of n-dimensional objects in n-dimensional space. The overlap
situation is correctly detected on level 4. If the chosen maximum re-
finement level is lower, the algorithm will detect a touch constellation
by applying the predicate hierarchy. There are analogous examples
in 3D space for Body objects.

Oid23089.622

As can be seen in the example, spatial operators, such as623

touch, are implemented as methods of spatial data types624

and can be used in the WHERE part of an SQL state-625

ment. As opposed to purely object-oriented databases,626

these methods are stored and processed server-side, result-627

ing in dramatically reduced network traffic compared to a628

client-side solution.629

For a prototype implementation we used the commer-630

cially available ORDBMS Oracle 10g. For more detailed631

information on the integration of spatial operators in SQL632

using object-relational techniques, the reader should refer633

to [15,14].634

The most important advantage of using an object-635

relational approach is the strong type safety provided636

through the declaration of user-defined types. The declara-637

tion of the touch operator, for example, forces the operands638

to be of type SpatialObject or one of its sub-types Body,639

Surface, Line or Point. Thus, type errors may already be640

detected by the query engine during the interpretation of641

the SQL statement and a more specific error report can be642

generated for the user.643

As for the desired purpose of a declarative spatial query644

language for BIMs, traditional database functionalities645

such as concurrency control, rights management and per-646

sistency are not required, the utilization of an in-memory647

maximum refinement level reached
precludedequal, contain, within

true

P03, P07
equal = false
contain = false
within = false
touch = *
overlap = *
disjoint = *

equal = false
contain = false
within = false
touch = *
overlap = *
disjoint = *

equal = false
contain = false
within = false
touch = *
overlap = *
disjoint = *

touch

Fig. 17. 2D illustration of the examination of a touch constellation of
n-dimensional objects in n-dimensional space. Also with an arbitrary
high refinement, touch can not be fully validated: The existence
of gray-gray pairs may result in disjoint or overlap constellations
when refining further. For this reason, the predicate hierarchy is
introduced. Its application makes it possible to assign touch when
the maximum refinement level is reached and the predicates equal,
contain and within have been precluded.

database (IMDB) seems to be most appropriate. These648

systems which are normally completely embedded in the649

final application, usually provide SQL query and data650

manipulation functionality while avoiding the high over-651

head for hard-disk access. Unfortunately, there are no652

in-memory databases available today that provide the full653

range of the SQL:1999 standard, especially with respect654

to the possibility of defining new complex data types, also655

denoted as Abstract Data Types (ADT’s).656

So it is necessary to choose a semantically weaker way657

of defining the spatial operators: The operands are defined658

as strings representing the object’s IDs, and not as being659

of type SpatialObject. Nor are the operands not defined as660

member functions, but as global functions. The specimen661

query then reads:662

663

SELECT col.id664

FROM IFCColumn col, IFCSlab slab3665

WHERE touch(col.id, slab3.id) AND slab3.id = ’Oid23089’666

667

Because the syntactic differences are comparatively small668

on the one hand, and the query processing time is consid-669

erably reduced on the other hand, we decided to continue670
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Fig. 19. The scenarios “cubes meet in vertex”, “cubes meet at edge”,
“cubes meet on a face” for the theoretical performance tests.

our developments using an In-Memory Database accepting671

the loss of type-safety. For this purpose we chose the freely672

available, open-source database engine H2 which displays673

excellent performance and offers the required support for674

user-defined stored procedures [57].675

In both implementation approaches, the user-defined676

functions representing the topological operators are linked677

to the algorithms presented in Section 4 that perform the678

actual processing of the spatial operator.679

6. Software prototype680

To prove the feasibility of the developed concept we im-681

plemented a software prototype that offers spatial query682

functionality for building information models. It is capa-683

ble of reading-in IFC-VRML files generated by the IFC-684

StoreyView program developed by Karlsruhe Institute of685

Technology [58]. It stores all the building elements con-686

tained in the file in database tables, such that there is one687

table per found element type. It further offers the possibil-688

ity of composing SQL queries containing spatial predicates.689

After processing the query, the resulting set of building el-690

ements is highlighted in the 3D viewer. A screenshot of the691

prototype is shown in Fig. 18.692

7. Performance tests693

To test the performance of the octree-based implemen-694

tation of topological operators in combination with an in-695

memory SQL query engine we not only applied them to696

theoretical scenarios representing extreme cases, but also697

to real-world examples that show the runtime behavior un-698

der typical conditions.699

7.1. Theoretical scenarios700

For the theoretical scenarios we chose the operator touch701

and applied it on three different constellations: In the first702

scenario two cubes meet in a vertex (case 1), in the second703

scenario, these two cubes meet at an edge (case 2) and in704

the third one they meet on a face (case 3). The constella-705

tions are depicted in Fig. 19. In a fourth test, we chose the706

operator equal and applied it on two identical cubes (case707

4). All timings are in milliseconds.708

The rationale behind these choices is that they represent709

extreme cases, because the algorithm refines the octrees710

max. level vertex edge face equal

2 4 4 4 4

3 8 10 22 36

4 15 27 61 89

5 15 55 163 372

6 20 106 487 1158

7 21 150 1685 4421

8 27 219 5816 41641

9 27 354 - -

10 28 737 - -

11 34 1323 - -

12 36 2622 - -

13 37 5067 - -

14 42 15705 - -

Fig. 20. Performance measurement results for testing on touch for

the scenarios “cubes meet in vertex”, “cubes meet at edge”, “cubes

meet on a face” and for testing on equal for two identical cubes. All
timings are in milliseconds.

Fig. 21. Measurement results plotted logarithmically. In best-case
scenarios the algorithm shows linear behavior, in worst-case scenarios
it shows exponential behavior.

only at the significant places. For both touch and equal this711

is where the boundaries of the two objects meet, i.e. in case712

1 at one vertex, in case 2 at an entire edge, in case 3 on an713

entire face, and in case 4 on the entire surface of the cubes.714

The number of examined octants per level is consequently715

constant in case 1, twice as high between one level and the716

next level in case 2 and four times as high in cases 3 and 4.717

The runtime measurements (Fig.s 20 and 21) reflect this718

behavior. For case 1 we observer a linear behavior (O(n))719

w.r.p. to the maximum refinement level, and for cases 2,720

3 and 4 we observe an exponential behavior (O(nk)) with721

variable degrees of steepness.722

The tested algorithms are implemented in Java. All per-723

formance tests were run using JDK 1.6.0 02 on an Intel724

Pentium M 2.13 GHz machine with 1.5 GB installed RAM.725

7.2. Real-world performance tests726

Since the scope of our work is the development of a spa-727

tial query language for building information models we also728
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Fig. 18. Screenshot of the prototype application showing the dialog for composing spatial SQL queries and the 3D viewer highlighting the
result set.

Fig. 22. Specimen model of a building for the real-world test. It
contains 1180 entities.

tested the performance of our algorithms on a typical build-729

ing model applying typical spatial queries. The building730

model we used is shown in Fig. 22. It consists of 1180 en-731

tities including 426 walls, 108 columns, 7 slabs, 24 doors,732

288 windows and 13 spaces.733

The queries performed on this building model are shown734

in Alg. 4. Query 1 selects all columns that touch a cer-735

tain slab, whereas query 2 selects the walls that touch a736

certain space. Query 3 is used to find all columns within737

the same space and query 4 finds all overlapping building738

components. Query 5 finds all elements that have the same739

geometry and position but different IDs, i.e. it can be as-740

sumed that they have been doubled by mistake. In query 6741

we combine a topological predicate with a directional one742

[15] to find all columns directly on top of a certain slab.743

The maximum extension of the building model is 32.8 m,744

so a maximum refinement level of 8 corresponds to an ac-745

curacy of 7.28 cm and a maximum level of 9 corresponds746

to 0.11 cm. Accordingly, level 9 should normally suit the747

users’ precision requirements.748

Query 1

SELECT col.id

FROM IFCColumn col

WHERE TOUCH(col.id, ’Oid35219_IfcSlab’)

Query 2

SELECT w.id

FROM IFCWallStandardCase w

WHERE TOUCH(w.id, ’Oid0006_IfcSpace’)

Query 3

SELECT col.id

FROM IFCColumn col

WHERE CONTAIN( ’Oid0006_IfcSpace’, col.id)

Query 4

SELECT elem1.id, elem2.id

FROM IFCElement elem1, IFCElement elem2

WHERE elem1.id<>elem2.id AND OVERLAP(elem1.id, elem2.id)

Query 5

SELECT elem1.id, elem2.id

FROM IFCElement elem1, IFCElement elem2

WHERE elem1.id<>elem2.id AND EQUAL(elem1.id, elem2.id)

Query 6

SELECT col.id

FROM IFCColumn col, IFCSlab slab3

WHERE ABOVE_HS_RELAXED(col.id, slab3.id)

AND TOUCH (col.id, slab3.id)

AND slab3.id = ’Oid35219_IfcSlab

Algorithm 4: The queries used for real-world performance
tests.
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max.
level

query 1 query 2 query 3 query 4 query 5 query 6

8 162 603 3076 52407 3919 44

9 182 1059 5914 120729 5825 49

10 237 2126 - - 13266 73

Fig. 23. Performance measurement results for the real-world query
tests.

Figure 23 shows the results of the real-world performance749

tests. Evaluating the results it can be stated that in most750

cases we achieve an acceptable runtime behaviour up to751

level 9.752

8. Summary753

This paper has discussed the topological operators which754

have been made available in a 3D Spatial Query Lan-755

guage for Building Information Models. It has presented756

formal definitions of topological predicates using the 9-757

Intersection method. An octree-based implementation758

technique of topological operators has been introduced759

including a detailed discussion of its main advantage – the760

fuzzy handling of topological relationships. Moreover, a761

possible realization of the spatial query functionalities on762

the basis of relational and object-relational database man-763

agement systems has been described. Finally, we presented764

detailed runtime measurements for theoretical worst-case765

/ best-case scenarios and a real-world building model ex-766

ample. Although the exponential behavior of the algorithm767

is not optimal, the real-world example tests have shown768

acceptable performance.769

9. Future research work770

Our current efforts focus on developing an alternative771

implementation of the topological operators, which will be772

based directly on the boundary representation of both the773

reference and the target object and will involve traditional774

computational geometry approaches, such as ray-triangle775

intersection tests. We hope to use this approach to over-776

come the exponential behavior of octree-based algorithms.777

At the current phase of our project we only store IDs of778

the objects in the relations of the database. In the future, we779

intend to store the full set of information available in BIMs780

in database relations including attributes and relationships781

which will make it possible to employ such information as782

conditions in the WHERE part of a SQL query.783

Another promising research direction is the evaluation of784

an alternative query language as a basis for the extension by785

spatial operators. Possible candidates are XQuery, a query786

language for XML data [59], and SPARQL, a language for787

querying RDF ontologies developed in the context of the788

Semantic Web [60,61].789

Finally, we will place emphasis on demonstrating practi-790

cal applications of the spatial query language by developing791

use cases in the context of construction rule checking and792

partial model creation.793
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