

1

A SATELLITE NAVIGATION SYSTEM TO
IMPROVE THE MANAGEMENT OF

INTERMODAL DRAYAGE

Alejandro Escudero Santana. University of Seville, Spain. aescudero@esi.us.es
Jesús Muñuzuri Sanz. University of Seville, Spain. munuzuri@esi.us.es
Carlos Arango Pastrana. University of Seville, Spain. cap@esi.us.es
Luis Onieva Giménez. University of Seville, Spain. onieva@esi.us.es

ABSTRACT

The intermodal transport chain can become more efficient by means of a good organization of the
drayage movements. Drayage in intermodal container terminals involves the pick up or delivery of
containers at customer locations, and the main objective is normally the assignment of transportation
tasks to the different vehicles, often with the presence of time windows. The literature shows some
works on centralised drayage management, but most of them consider the problem only from a static
and deterministic perspective, whereas the work we present here incorporates the knowledge of the
real-time position of the vehicles, which permanently enables the planner to reassign tasks in case the
problem conditions change. This exact knowledge of position of the vehicles is possible thanks to a
geographic positioning system by satellite (GPS, Galileo, Glonass), and the results show that this
additional data can be used to dynamically improve the solution.

Keywords: Intermodal transport, drayage, real time assignment, stochastic transit time

INTRODUCTION

Road transport has been and continues to be prevalent for the movement of freight. However,
increasing road congestion and the necessity to find more sustainable means of transport have pushed
different governments to promote inter-modality as an alternative. However, for inter-modality to
become viable for trips shorter than 700 km, a cost reduction is necessary, and the interest focuses on
the road segment inherent to all the intermodal chains. These initial and final road trips, also called
drayage operations, represent 40% of the intermodal transport costs. There is therefore potential to
overcome this disadvantage and make intermodal transport more competitive through proper planning
of drayage operations (Spasovic and Morlok, 1993). The drayage problem (DP) can be considered a
multi-resource routing problem (MRRP), which involves the routing of multiple resources to perform
a series of tasks. MRRPs can also be modelled as pick up and delivery problems (PDP) with vehicle
capacity equal to one. A review of the general pickup and delivery problem (PDP) is presented in
Savelsbergh and Sol (1995).

2

An interesting work is shown in Ball et al (1983), transforming the problem of the allocation of trailers
for a chemical company into a vehicle routing problem (VRP). The origin and destination of a
movement are considered a single node that represents the entire movement with all the characteristics
of the movement (duration, origin, destination and time windows). De Meulemeester et al (1997) and
Bodin et al (2000) apply this transformation to a VRP with full load trailers. Following this path, the
number of references on centralised drayage management has increased significantly over the last
years, but most of them consider the problem only from a static and deterministic perspective. The
main objective is normally the assignment of transportation tasks to the different vehicles, often with
the presence of time windows (Wang and Regan, 2002). The first part of the work by Cheung and
Hang (2003) develops a deterministic model with time windows, which is then solved by means of the
discretization of time, and by incorporating the concept of fictitious tasks for the beginning and the
end of the day for the vehicle. Ileri et al (2006) cover a large number of task types, both simple and
combined, and of costs involved in drayage operations, and solve the problem with a column
generation method. Smilovik (2006) and Francis et al (2007) incorporate flexible tasks where either
only the origin or the destination is precisely known. Caris and Janssens (2009) propose a two-phase
insertion heuristic to construct an initial solution that is then improved with a local search heuristic. A
general revision of scientific contributions to the drayage problem can be found in Erera et al (2008).

Many works also include randomness in the generation of tasks (Bent and Van Hentenryck, 2004;
Bertsimas, 1992; Gendreau et al, 1995) or dynamism in their assignment (Bent and Van Hentenryck,
2004; Psaraftis, 1995; Wang et al, 2007). Cheung and Hang (2003) and Cheung et al (2005) do
consider the dynamic and stochastic characteristics of the drayage problem and solve it with a rolling
window heuristic, but this randomness only affects the duration of the task, and not the displacement
time between different tasks. It is uncommon to find randomness in trip times (Laporte et al, 1992),
which is particularly appropriate when the intermodal terminal requiring drayage operations is close to
a large urban centre.

Our work considers the real-time knowledge of the position of the vehicles, which permanently
enables the planner to dynamically reassign tasks. This exact knowledge of position of the vehicles is
possible thanks to a geographic positioning system by satellite (GPS, Galileo, Glonass), which can
provide real-time data for dynamic recalculations. An approach based on re-optimization is proposed,
where a snapshot of the state of each task and the position of each vehicle will be taken before
recalculating. A DP with stochastic transit times is then solved by means of an iterative optimization
algorithm, modifying if necessary the scheduling of the drayage fleet.

The paper is organized as follows. Section 2 is the problem definition, and a description of the real-
time optimization procedure is given in section 3. Section 4 presents an insertion heuristic to solve a
snapshot of the problem, and the results of a series of numerical experiments are shown in section 5.

PROBLEM DEFINITION

This paper discusses the drayage problem with time windows and stochastic transit times. This
problem seeks to optimise the routing and scheduling of vehicles where the tasks involve the pick up
or delivery of containers that need to be carried between an intermodal terminal and a set of customers
or vice versa. The intermodal terminal is open during a specified time window, and all the tasks, also

3

with time windows associated, are known in advance. However, the stochastic transit times make it
impossible to foresee the exact duration of the trips related to the completion of tasks. A glossary of
the notation used in this work is shown in the appendix.

This problem can be formulated in terms of a vehicle routing problem with time windows (VRPTW)
with full container loads. Assuming homogeneous container types and sizes, the problem is to find the
assignment of tasks to vehicles, in order to minimize the total cost of completing all the tasks. All
vehicles have to return to the terminal before the end of their depot windows, where the depot
window corresponds to the working day. A fixed vehicle cost is included to penalize the use of
additional vehicles, and travelling costs per unit of distance travelled are also considered. Also,
since transit times are stochastic there exists the possibility to arrive outside the time window, and the
corresponding penalty costs are applied. This penalty cost can be proportional to the waiting time,
with the cost per time unit equal to , or much higher, , if the delay results in missing the train or
ship. The total cost is the sum of fixed, travelling and penalty costs.

Since the procedure to solve the drayage problem is based on re-optimization, a snapshot of the real
situation of the problem is taken prior to each recalculation. In each re-optimization instant , a
graph is defined, , where represents the set of tasks and is the set of links between
tasks. The variable represents an instant in the day, the existing scenario at the point where the
problem solution is re-optimized, and this graph symbolizes the state of vehicles and tasks. Each task
is composed of an origin, a destination, service times in the origin and destination, the transit time
between origin and destination, the time windows at the origin and destination, and the penalty cost in
case the time window is missed. Tasks can be either delivery or pickup operations.

Let be a delivery task. These tasks involve picking up a container in the terminal (origin) and
delivering it at a customer location (destination). The distance between origin and destination is ,

and the transit time is . Service times apply both at the origin and destination, and , and the

time window is associated to the origin , with the destination time window permanently

open. This time window, shown in the upper side of Figure 1, is hard at the start to represent that a
delivery task can never start before the arrival of the train or vessel (red interval), and soft at the end to
represent that if the drayage driver is late the task can still be completed, but a given amount will have
to be paid for the time the container spends waiting at the terminal (yellow interval), per minute.

On the other hand, let be a pickup task, which consists of picking up a container at a customer
location (origin) and carrying it to the terminal (destination). The distance between origin and
destination and the transit time are and , respectively. The service time in the origin and

destination are and , and the time window is now associated to the destination. As

shown in the lower side of Figure 1, this time window is hard at the end, since, if the task is completed
after the established time window, the container misses its train or vessel, incurring in the
corresponding penalty cost (orange interval). However, the time window can be soft at the start, given
that, if the container is delivered in the terminal before the established time window, a waiting cost fee
(yellow interval) will be charged for the extra time the container spends in the terminal.

€

cv

€

ckm

€

cw

€

cl

€

time

€

Gtime = (T,A)

€

T A

€

time

id

it
O
is

D
is

],[O
i

O
i LE

wc

jd jt
O
js

D
js],[D

j
D
j LE

4

The set is defined as the set of links between the destination of each task and the origin of the other
tasks, where each link is characterized by a distance and a transit time . In our model the origin

and destination of a task are aggregated into a single node that represents the entire movement with all
the characteristics of the task (origin, destination, time windows, transit time,…), so the set is
asymmetric, that is, distance is generally different from distance .

Attention must be paid to the fact that, when re-optimizing, each vehicle in the fleet could be either in
the depot, in the middle of completing a task, travelling towards the origin of a task, or idle. To
account for this fact, the algorithm generates fictitious tasks to represent every vehicle state, and

each vehicle is assigned to a fictitious task before re-optimization. For example, if in a re-optimization
instant a vehicle is performing a task, its fictitious task is characterized by: an origin, which is the
current position of the vehicle; a destination, which is the destination of the task being performed; an
origin service time equal to zero and a destination service time equal to the one for the task being
performed; a time window at the origin, and another one at the destination,
which is the same destination time window of the task that is being performed. Since

, with being the current re-optimization instant, the new solution is
forced to go on with the task without pause. If, on the other hand, a vehicle is travelling towards the
origin of a task, its fictitious task is characterized by the same origin and destination, which
correspond to the current position of the vehicle, service times equal to zero and time windows that
force the truck to leave its current position after the recalculation. If and

, the vehicle will complete this fictitious task immediately after the
recalculation and be able to proceed to another task, which will be the same one it was travelling to
initially, or a different one.

Other fictitious tasks are also defined to determine the depot time window of every truck, . Their

origin and destination correspond to the depot position, their service times are 0, and their time
windows match the depot time window.

The set is therefore composed of four different sub-sets, which really represent only two kinds of
tasks, because fictitious tasks are only created to store vehicle information at the re-optimization
instant.

Here is Figure 1

Figure 1 – Time Windows.
Above: Delivery Task. The arrow means the arrival of the train or vessel to the terminal.

Below: Pick-Up Task. The arrow means the departure of the train or vessel from the terminal.
On both figures: The green interval corresponds to an open time window, the yellow interval is a soft penalty period, the

orange interval is a hard penalty period and the red interval is the impossible period.

A
ijd ijt

A
ijd

€

d ji

€

Tf
ini

€

[Ei
O ,Li

O] = [time,time]

€

[Ei
O ,Li

O] = [time,time]

€

time

€

[Ei
O ,Li

O] = [time,time]

€

[Ei
D ,Li

D] = [time,time]

end
fT

end
f

ini
f

PD TTTTT ÈÈÈ=

€

T

5

REAL-TIME VEHICLE ROUTING

We use a dynamic methodology to improve the solution iteratively. We run an optimization algorithm
at the beginning of the day fixing the expected values of the transit times, and obtain an initial
solution. However, since transit times are stochastic it is impossible to know beforehand the exact time
required to complete a task. Thus, every time that an event takes place the algorithm is run again
considering the updated data only for the remaining, pending tasks. A simplified scheme of the
process is represented in Figure 2.

Here is Figure 2

Figure 2 –Dynamism scheme

There are some options related to when this re-optimization search should be run:

1. Every fixed time.
2. When a task is accomplished.
3. When a vehicle is delayed of its expected position.

In this work, the re-optimization process is run both when a task is accomplished and every fixed time.
When this re-optimization takes place, a snapshot of the system is taken and the state of every vehicle
is verified, providing the system with information about the current position of the vehicles. This
information lets the system know if a vehicle is FREE, BUSY or ASSIGNED. A truck is busy if it is
performing a task in that moment; it is assigned if it is going to the origin of a task; and it is free if it is
already in the depot or going there. Furthermore, the system has information about the trucks that have
already been used and those that have not, USEDVEH and NONUSEDVEH; and about those that are
in the depot, DEPOTVEH. Once the state of the vehicles state is verified, the state of the tasks is also
updated, with three possible values: PENDING, IN PROCESS and FINISHED. A pending task is
defined as the task which has not begun to be performed; when a truck is carrying out a task, it is
considered a task in process; and finally, finished tasks are the ones that have already been completed.

After some time, given the stochastic nature of transit times, the operating scheduling program might
not be the best one anymore, and the re-optimization process allows the system to correct delays in the
execution of tasks, considering the new modified scenario. The new solution could change the
allocation of tasks to trucks, keeping in mind that the busy vehicles must finish their tasks in process
to be able to begin with a new task. This issue is solved with the definition of fictitious tasks, which
contain all the information about tasks in process, as explained above. As an example, let us consider
the case of two vehicles and six tasks, with the initial scheduling of vehicles as follows:

 VEH 1: Ini (Depot) à 1 à 2 à 4 à 6 à End (Depot)
 VEH 2: Ini (Depot) à 3 à 5 à End (Depot)

Vehicles start the day at the depot and they have to complete their allocated tasks and return to the
depot. Then, let us assume that, when the first re-optimization is due, the first vehicle is performing
the first task and the second one is still travelling towards the origin of the third task, which has not

6

begun yet. But the traffic conditions have changed, and the first vehicle is delayed to the extent that it
will be difficult for it to perform the second task on time. The re-optimization process might then
result in a new solution like this one:

 VEH 1: Ini (in 1) à 3 à 4 à 6 à End (Depot)
 VEH 2: Ini (-) à 2 à 5 à End (Depot)

Now, as the first vehicle was busy when the re-optimization was done, it must finish the task in
progress, and then go to the third task. The second vehicle, which was going to the third task, will
change its destination an go to the second task.

The pseudo-code of all this dynamic methodology can be written as follows:

Dynamic Methodology

1. If re-optimization event happens.
1.1. Yes, then go to 2.
1.2. No, then go to 7.

2. Read the position of the vehicle.
3. Check the task (PENDING, IN PROCESS, and FINISHED) and vehicle state (FREE,

BUSY, and ASSIGNED).
4. Update the initial fictitious tasks with the acquired information in 2 and 3.
5. Re-optimization (Assignment algorithm).
6. Update all the variables about the vehicle state (FREE, BUSY, ASSIGNED, USEDVEH,

NONUSEDVEH, and DEPOTVEH).
7. Go to 1.

The assignment algorithm, which is used to solve every re-optimization snapshot of the system, is an
adaptation of the insertion heuristic developed by Caris and Janssens (2009) to the real-time drayage
problem. Although the transit time is a stochastic variable, our algorithm uses its expected value (,
and) to obtain fast convergence. The idea is to solve the stochastic transit time problem through

iterative optimization, based on the knowledge of the position of the vehicle fleet. The necessary
changes to adapt this heuristic to a stochastic environment are explained in the next section.

REAL-TIME INSERTION HEURISTIC

In this work, we have adapted the insertion heuristic of Caris and Janssens (2009) to the real-time
drayage problem. Although the foundations are similar, there are important differences between both
approaches. While Caris and Janssens (2009) define time windows at the customers, we considered it
more appropriate to define time windows for the terminal. Also, they solve the problem from a static
and deterministic point of view, where all the vehicles start in the depot and their starting time
corresponds to the beginning of the day, while in our case the vehicle could be anywhere where the re-
optimization process starts, and the time could be any time, and if a vehicle is carrying out a task when
a re-optimization starts, it has to complete it before moving on to a new one. The fact that our
algorithm must satisfy these conditions forced us to introduce fictitious tasks.

€

ti

€

t j

€

tij

7

The heuristic procedure is based on the savings obtained through the merging of single pickup and
delivery tasks. If single tasks are completed individually, 50% of the journey is wasted in empty trips,
as shown in Figure 3a. However, the combination of delivery and pickup tasks may lead to a
significant reduction in the total distance travelled, as represented in Figure 3b. Given that in the real-
time drayage problem the assignment of tasks to vehicles is dynamic, vehicles could be anywhere,
which is why their position is regarded as a fictitious task that could be combined with real tasks
looking for cost savings. Nevertheless, in the case of fictitious tasks, savings will be obtained only if
they are merged with a pickup task (see Figure 3c).

Here is Figure 3

Figure 3 – Merging trips

The insertion heuristic is divided into two phases. In the first one, all the possible combinations
between tasks (including fictitious tasks) are analyzed, and the best combinations are selected. In the
second phase, the combined tasks are inserted into routes. The heuristic procedure thus finds an initial
solution, which is later improved by three local searches.

Pairing single tasks

As shown in Figure 3, the combination of two single tasks in merged tasks could represent large cost
savings. These pairs will be formed by a first initial fictitious or delivery task, , and a

second pick up or end fictitious task, . Any other combination of tasks entails no cost

savings.

It is necessary to consider that not all pairs of tasks can be combined into feasible merged tasks. On
one hand, due to the existence of time windows, and since the second task of the pair must be reached
after the completion of the first task, not all the pairs are possible. And on the other hand, the waiting
time between the two single tasks is limited to a maximum amount , and a pair is refused
if its minimum waiting time is higher than . This limit is related to the

inefficiency of large waiting times between tasks: if a vehicle must wait too long between the
completion of the first task in a pair and the beginning of the second task in the same pair, too much
time from the working day of this vehicle will be wasted, increasing the need for more vehicles in the
operating fleet. is defined as the minimal waiting time between the two tasks of pair

:

These two conditions limit the composition of feasible pairs. The corresponding equations are shown
below, the first one related to the time windows restriction, and the second one to the maximum
waiting time restriction.

MAXWAIT
ijMINWAIT MAXWAIT

€

MINWAITij

€

(i, j)

8

Once the feasible pairs are found, they are evaluated and ranked according to the savings in travel
distance generated, according to the expression . Caris and Janssens (2009) use the

saving in travel time but, since the transit time is random in our case, we chose distance instead.

The pairs of feasible tasks generated are then selected in descending order of the savings produced,
and all the pairs containing either of the tasks of the selected pair is deleted from the list. The process
of pairing tasks up is repeated until no feasible combination exists in the list, and the remaining tasks
are assigned to individual trips and form an imaginary pair with a dummy customer.

Every pair has an earliest and a latest start time, and . The earliest starting time is defined
as the earliest time a vehicle can start to complete a pair without unnecessary waiting between
tasks i and j, and the latest start time is the latest instant in which a vehicle could begin to complete the
pair , given that, if this pair is started later, then the tasks will not be reached on time.

The necessary time to complete a pair, , is the sum of travel times, service times and the minimum

waiting time. For this evaluation, the values of travel times are considered deterministic and average
values are used.

Route Construction

A route is created for each vehicle, composed of pairs of tasks, where the first pair of every route is the
one containing the initial fictitious task assigned to the corresponding vehicle. The other pairs are
assigned sequentially, with vehicles with lower costs used first and with pairs of tasks selected to be
inserted into routes in increasing order of their latest start time . A pair can be inserted into a route

 if two conditions are complied: the first condition is that vehicle must be able to begin to
complete the pair before , and the second condition establishes that vehicle must return to the

depot within its depot window.

D
jj

O
jij

D
ii

O
i

O
i LtststsEtime £++++++),max(

() MAXWAITtststsLtimeE j
O
jij

D
ii

O
i

O
i

D
j £++++++-),max(

ijji ddd -+

€

Eij

€

Lij ijE
),(ji

€

(i, j)

ï
î

ï
í

ì

£------
£------£------

>------
=

O
i

O
ii

D
iij

O
jj

D
j

O
i

O
i

O
ii

D
iij

O
jj

D
j

O
i

O
ii

D
iij

O
jj

D
j

O
i

O
ii

D
iij

O
jj

D
j

O
i

ij

EstststEE
LstststEEstststE

LstststEL
E

 if
 if
 if

()Oii
D
iij

O
jj

D
j

O
iij stststLLL ------= ,min

€

RSij

€

RSij = si
O + ti + si

D + tij + s j
O + t j + s j

D + MINWAITij

ijL
v

ijL v

ijv LRStime £),max(

9

The route service time is initially set to . If a pair can be inserted into a route of a

USEDVEH, the route is updated and its route service time is increased. A new vehicle will be used
otherwise. It is possible that no vehicle can serve the pair on time, even using the idle vehicles
remaining in the depot, in which case the pair will be assigned to the vehicle that can arrive to start the
pair with the smallest delay.

If a route only consists of a fictitious task after the construction procedure and is 0, this

means that the route is really unused, and the vehicle will be in the depot all time. If the route is only
composed by a fictitious task but is not 0, then the vehicle is performing a task, has not any

other one assigned, and will return to the depot afterwards.

Local Search Algorithm

Three local searches are proposed to improve the initial solution obtained by the aforementioned
heuristic: the CROSS, COMBINE and INSERT operators. The sequence in which these operators are
implemented is CROSS à COMBINE à INSERT. First, the CROSS operator is applied to find the
best combinations of pairs. Then, the COMBINE and INSERT operators try to reduce the number of
new vehicles to incorporate. These COMBINE and INSERTION operators must try to reduce only the
routes assigned to vehicles that have not been used yet, since, if the vehicle was used previously, the
fact of deleting its route will not result in any cost savings.

CROSS operator

Two pairs are selected, and . These pairs are crossed, resulting in two new pairs,
and , and the feasibility of these new pairs is checked. If both are feasible, the algorithm checks
whether the new pairs can be reinserted into the routes. Then two possible combinations are analyzed:

 inserted into the first route and into the second route; or inserted into the first
route and into the second route. If a combination is viable, this is added to the list of possible
CROSS movements. The improvement produced by a CROSS movement is:

where is the improvement due to the reduction of the number of necessary trucks. This

improvement is feasible if a resulting route only contains dummy tasks and its allocated vehicle has
never been used before, which means that it is registered in NONUSEDVEH.

The CROSS local search stops after a number of iterations without reduction in the total expected cost.

vij
O
iv TRSERStime £+),,max(

vRS fictitious
vRS

ijijvv RSERStimeRS +¬),,max(

fictitious
vRS

fictitious
vRS

),(hg),(ji),(jg
),(hi

),(jg),(hi),(hi
),(jg

ghijVR

10

COMBINE operator

The algorithm also checks whether the pairs served by two different vehicles can be combined into a
single route. The operator tries to combine the routes of the trucks that have not begun to work,
NOUSEDVEH, with other routes, in order to seek a reduction in the number of new trucks to be used.
Two routes can be combined if the last pair of the route to combine can be completed before the latest
starting time of the route it is combined with.

INSERT operator

This operator removes pairs from certain routes and reinserts them into other routes. Like the
COMBINE operator, the INSERT operator tries to reduce the number of new vehicles, and thus the
potential routes to remove and reinsert are the routes assigned to the vehicles that have not been used
yet.

TESTING AND RESULTS

Heuristics applicable to the standard VRPTW are compared by making use of the set of benchmark
problems presented in Solomon (1987) or other test sets. This problem, however, is different to these
standard benchmark problems because in the drayage problem the vehicle is either empty of fully
loaded, which calls for a new experimental design. Two problem characteristics are selected: the
dispersion of customers and the width of the customer time windows. For each characteristic we
selected a low and high level, and generated ten problems instances in each problem class, which
meant that a total forty instances were tested. Each test was composed of 30 tasks to complete, of
which 15 were delivery tasks and 15 pickup tasks, and the customers and depot were randomly
distributed in a 50x50 area or a 100x100 area. Time windows at customer locations were either narrow
or wide. Narrow time windows were randomly distributed between 60 and 120 minutes, whereas wide
time windows were distributed between 90 and 240 minutes. The cost per kilometre was 1, the fixed
cost per vehicle was 10, the waiting cost was 10 per hours, the cost of failing to complete a task was
100, and the MAXWAIT parameter was fixed to 30 minutes.

To simulate the stochastic transit time, the overall area was divided into 5x5 squares, resulting in one
hundred squares in the 50x50 area (see Figure 4) and four hundred squares in the 100x100 area. Each
square had a speed distribution assigned, , where the average speed in every square is known but
not the real-time speed. Since the transit time is stochastic, one hundred different speed patterns were
contemplated in every instance. Forty instances tested one hundred times each meant a total set of four
thousand test problems.

Here is Figure 4

Figure 4 – Example of simulated hinterland: 50x50 area.

Under these conditions of stochastic transit times, we compared the classical approach, which
schedules all the tasks at the beginning of the day, and our dynamic approach, which solves the

ss

11

problem through iterative optimization and the knowledge of the real-time position of the vehicles. We
chose the Caris and Janssens (2009) procedure as our benchmark reference so we could perfectly
assess the influence of real-time information and recalculations. We also selected this benchmark
algorithm due to its good properties regarding speed and solution quality, considering that the authors
compare their algorithm with an exact one, obtaining very satisfactory results. We want to quantify the
effects of incorporating real-time information, and so compared this algorithm with ours, which has
been adapted to a stochastic environment.

Table 1 presents an overview of the results. The problem class and the value of its characteristics are
shown in the first three columns. The fourth and fifth columns represent the average improvement and
the maximum improvements of the transportation cost with respect to the classical approach if the re-
optimizations are run every time a task is completed, and the last two columns show the average and
maximum improvements of the transportation cost if the re-optimizations are run every 15 minutes.
Our methodology shows improvements in all the problem classes, showing also some interesting
results, like the fact that the periodic re-optimization obtains better results on average. In general, our
methodology achieves better results when the width of the customer time windows is narrow, which is
very logical because narrow time windows are easier to be affected by delays over the planned
scheduling. Results for all the 40 problem instances are given in Table 2, where the results shown
contain the average of the 100 different speed patterns.

Table 1 – Results overview.

Problem Class Hinterland
Size

Width of time
windows

Average
Improvement

(%)

Maximum
Improvement

(%)

Average
Improvement

(%)

Maximum
improvement

(%)
Finished

Tasks Finished Tasks Fixed Time
15 minutes

Fixed Time
15 minutes

1 50 60-120 9.66 33.85 12.17 37.98
2 50 90-240 5.38 35.19 6.95 35.82
3 100 60-120 3.91 33.23 5.05 35.80
4 100 90-240 4.25 35.19 4.69 35.82

Table 2 – Results of the problem instances.

Problem
Class Instance

Cost of transportation Improvement (%)

No dynamism Finished
Tasks

Fixed Time
15 minutes Finished

Tasks

Fixed
Time

15 minutes
1 1 1483.09 1324.01 1284.18 10.73 13.41
1 2 1506.58 1381.14 1339.39 8.33 11.10
1 3 1512.88 1368.61 1313.00 9.54 13.21
1 4 1547.12 1371.37 1315.29 11.36 14.98
1 5 1514.00 1345.43 1325.48 11.13 12.45
1 6 1456.00 1310.23 1283.03 10.01 11.88
1 7 1441.70 1339.36 1294.49 7.10 10.21
1 8 1507.43 1331.23 1338.66 11.69 11.20
1 9 1470.03 1345.74 1296.31 8.46 11.82
1 10 1440.18 1320.47 1275.43 8.31 11.44
2 1 1224.14 1205.41 1199.71 1.53 2.00
2 2 1322.60 1201.96 1205.89 9.12 8.82
2 3 1326.42 1222.36 1200.91 7.85 9.46

12

2 4 1342.25 1254.93 1250.01 6.51 6.87
2 5 1236.23 1173.36 1174.77 5.09 4.97
2 6 1264.56 1203.53 1169.11 4.83 7.55
2 7 1268.37 1220.23 1208.77 3.79 4.70
2 8 1276.92 1198.72 1184.36 6.12 7.25
2 9 1383.90 1324.54 1261.60 4.29 8.84
2 10 1323.11 1260.34 1203.33 4.74 9.05
3 1 2222.83 2173.45 2127.17 2.22 4.30
3 2 2067.54 1974.52 1951.83 4.50 5.60
3 3 2046.83 1992.01 1947.94 2.68 4.83
3 4 2144.68 2037.35 2010.17 5.00 6.27
3 5 2043.62 1950.98 1961.45 4.53 4.02
3 6 2079.32 2068.11 1994.04 0.54 4.10
3 7 2045.35 1935.62 1940.83 5.36 5.11
3 8 2180.34 2028.55 2039.38 6.96 6.47
3 9 2051.66 1963.86 1954.52 4.28 4.73
3 10 2096.19 2033.80 1989.92 2.98 5.07
4 1 1961.68 1897.47 1891.05 3.27 3.60
4 2 1997.11 1895.86 1871.42 5.07 6.29
4 3 1957.24 1885.85 1888.88 3.65 3.49
4 4 2060.49 1963.98 1939.17 4.68 5.89
4 5 1947.93 1868.00 1859.89 0.41 4.52
4 6 2114.82 1984.98 1966.23 6.14 7.03
4 7 2032.95 1951.02 1950.49 4.03 4.06
4 8 2053.06 1974.39 1959.71 3.83 4.55
4 9 1973.83 1921.54 1931.05 2.65 2.17
4 10 1920.95 1821.75 1817.71 5.16 5.37

Table 3 and Table 4 show the average distance travelled and the average number of times that vehicles
arrive late to the origin of a task. The occasions in which the time windows are broken decrease using
the dynamic method, as shown in Table 3, but the overall distance travelled increases, as shown in
Table 4.

Table 3 – Average number of times when time windows are broken.

Problem
Class Instance

Late arrival in origin Early arrival in destination Late arrival in destination

No
dynamism

Finished
Tasks

Fixed
Time

15
minutes

No
dynamism

Finished
Tasks

Fixed
Time

15
minutes

No
dynamism

Finished
Tasks

Fixed
Time

15
minutes

1 1 2.5 0.1 0.0 1.4 1.2 0.9 2.6 0.9 0.4
1 2 2.6 0.2 0.0 0.6 0.7 0.5 2.8 1.2 0.9
1 3 2.3 0.2 0.0 1.4 1.0 0.9 2.9 1.2 0.8
1 4 3.3 0.2 0.0 0.6 0.5 0.4 3.2 1.0 0.6
1 5 2.7 0.1 0.0 1.8 1.4 1.2 2.9 0.9 0.8
1 6 2.2 0.0 0.0 2.0 1.7 1.4 2.3 0.7 0.5
1 7 2.2 0.2 0.0 1.3 1.2 0.8 2.2 0.8 0.5
1 8 3.0 0.2 0.0 1.4 1.3 1.0 2.8 0.9 0.7
1 9 2.5 0.2 0.0 1.5 1.4 1.2 2.5 0.8 0.7
1 10 1.9 0.1 0.0 1.5 1.4 0.9 2.2 0.8 0.4
2 1 0.7 0.2 0.0 1.5 1.3 1.4 1.2 0.5 0.5
2 2 1.8 0.1 0.0 0.6 0.6 0.4 2.1 0.6 0.7
2 3 1.7 0.0 0.0 0.7 0.5 0.3 2.2 0.7 0.6
2 4 1.8 0.0 0.0 0.7 0.6 0.6 2.3 0.9 0.9
2 5 1.2 0.0 0.0 1.0 1.0 1.0 1.3 0.5 0.4
2 6 1.3 0.0 0.0 1.1 0.8 0.8 1.6 0.7 0.4
2 7 1.0 0.0 0.0 1.3 1.0 0.7 1.6 0.7 0.7
2 8 1.4 0.0 0.0 0.9 0.8 0.6 1.7 0.5 0.4
2 9 2.0 0.1 0.0 0.8 0.6 0.6 2.7 1.2 1.0
2 10 1.7 0.0 0.0 1.4 0.8 0.7 2.1 1.0 0.7

13

3 1 2.8 0.7 0.2 0.9 0.6 0.6 3.6 1.7 1.6
3 2 2.2 0.0 0.1 2.2 1.6 1.0 2.2 0.9 0.6
3 3 2.1 0.1 0.0 1.3 0.9 0.8 2.0 0.7 0.6
3 4 2.4 0.2 0.1 1.4 1.3 1.1 2.9 1.0 1.0
3 5 2.4 0.1 0.0 1.0 0.6 0.5 2.0 0.7 0.7
3 6 1.9 0.3 0.1 1.3 1.1 1.0 2.6 1.2 0.8
3 7 2.1 0.2 0.0 1.2 0.7 0.6 2.3 0.8 0.6
3 8 2.6 0.3 0.2 1.0 0.6 0.4 3.6 1.3 1.2
3 9 1.8 0.1 0.1 1.3 1.3 0.8 2.4 0.8 0.6
3 10 2.0 0.5 0.1 0.6 0.6 0.6 2.8 1.0 1.0
4 1 1.5 0.0 0.0 0.8 0.7 0.6 1.8 0.6 0.6
4 2 1.4 0.2 0.0 1.0 0.9 0.9 2.4 0.9 0.6
4 3 1.5 0.2 0.0 0.8 0.6 0.4 2.0 0.9 0.7
4 4 2.0 0.2 0.2 1.1 0.8 0.5 3.0 1.1 0.8
4 5 1.4 0.1 0.0 1.2 1.2 0.7 2.0 0.6 0.6
4 6 2.4 0.2 0.1 0.6 0.6 0.4 3.5 1.3 1.1
4 7 1.9 0.2 0.0 0.6 0.5 0.3 2.8 0.9 0.8
4 8 1.7 0.4 0.1 0.6 0.5 0.6 3.0 1.1 0.8
4 9 1.8 0.1 0.0 1.3 1.0 0.8 2.2 0.9 0.9
4 10 1.3 0.1 0.0 2.1 1.6 1.1 1.6 0.6 0.5

Table 4 – Average distance travelled.

Problem
Class Instance

Late arrival in origin

No
dynamism

Finished
Tasks

Fixed
Time

15 minutes
1 1 1149.2 1168.8 1180.4
1 2 1149.2 1189.6 1186.3
1 3 1149.2 1186.0 1170.2
1 4 1149.2 1197.1 1181.6
1 5 1149.2 1188.1 1172.6
1 6 1149.2 1172.2 1163.8
1 7 1149.2 1195.1 1181.1
1 8 1149.2 1174.5 1195.5
1 9 1149.2 1196.5 1162.1
1 10 1149.2 1174.7 1166.3
2 1 1052.3 1092.5 1091.1
2 2 1052.3 1077.4 1075.8
2 3 1052.3 1089.8 1082.5
2 4 1052.3 1100.0 1095.5
2 5 1052.3 1066.3 1073.8
2 6 1052.3 1078.1 1070.2
2 7 1052.3 1087.1 1080.6
2 8 1052.3 1086.9 1079.9
2 9 1052.3 1133.9 1096.7
2 10 1052.3 1102.5 1068.8
3 1 1748.3 1916.5 1887.8
3 2 1748.3 1810.8 1820.1
3 3 1748.3 1844.5 1808.9
3 4 1748.3 1856.4 1831.5
3 5 1748.3 1805.2 1817.4
3 6 1723.2 1872.6 1836.4
3 7 1723.2 1779.9 1800.7
3 8 1723.2 1817.0 1844.5
3 9 1723.2 1804.6 1815.5
3 10 1723.2 1852.4 1816.6
4 1 1705.0 1766.0 1754.6
4 2 1679.9 1737.6 1739.0
4 3 1679.9 1726.5 1749.6
4 4 1679.9 1776.9 1782.1
4 5 1679.9 1732.4 1733.8

14

4 6 1679.9 1781.6 1777.3
4 7 1679.9 1785.0 1794.5
4 8 1679.9 1790.7 1803.2
4 9 1149.2 1168.8 1180.4
4 10 1149.2 1189.6 1186.3

A single run of the assignment algorithm takes between a few seconds and one minute depending on
the size of the problem on an Inter Core Duo 2,4GHz. So, the computational cost of that heuristic is
short enough for the problem. However, due to the re-optimization, the simulation of a whole day
usually takes between 1 and 10 minutes, but that time is not significant.

CONCLUSIONS

Through the adaptation of an algorithm to the dynamic drayage problem and the application to a series
of problem instances, we have shown in this paper the beneficial effects of incorporating the
knowledge of real-time vehicle locations in a drayage fleet. Although Caris and Janssens (2009)
developed a fast heuristic and achieved good results with a static and deterministic approach, our work
shows that this approach produces worse results than the dynamic procedure in 98% of the cases when
tested in a stochastic environment. Our results prove that the use of real-time information helps to
reduce operation costs an average 5-10%, also contributing to decrease the number of times that time
windows are broken. We have analyzed two dynamic methodologies: re-optimization every time a
task is completed or every fixed amount of time, with better results for the second option.

Further improvements of this methodology necessarily include the development of a faster algorithm
for the allocation of tasks to vehicles every time a re-optimization is run. For instance, Laporte et al
(1992) use an exact method to solve a vehicle routing problem with stochastic travel times, and the
results they obtain prove that an exact method is only suitable for instances with a small number of
tasks. Large computational times mean that the position of vehicles is likely to change significantly
between the beginning of the re-optimization process and the implementation of the results, perhaps
causing the new solution to be obsolete by the time it is implemented. Once the dynamic management
of drayage fleets has proved successful, it could further benefit from the introduction of procedures
based on insertion heuristics or other meta-heuristic approaches (Bell and McMuller, 2004).

APPENDIX

Nomenclature used in this work:

 Set of vehicles
 Set of tasks
 Set of delivery tasks
 Set of pick up tasks
 Set of initial fictitious tasks

 Set of final fictitious tasks
 Travelling cost per kilometre
 Fixed cost of vehicle

V
T
T D

T P

Tf
ini

Tf
end

cKm
cv v

15

 Waiting time cost per hour
 Cost of missing a train
 Distance of task
 Distance on arc connecting task with task
 Transit time of task
 Transit time on arc connecting task with task
 Expected transit time of task
 Expected transit time on arc connecting task with task
 Service time at the origin of task
 Service time at the destination of task
 Earliest start time of task
 Latest start time of task
 Earliest finish time of task
 Latest finish time of task
 Earliest start time of pair

 Latest start time of pair

 Total time to serve the pair
 Route service time of vehicle
 Improvement produced by cross of pairs and
 Improvement due to the reduction of the necessary number of vehicles by cross

of pairs and
 Maximum waiting time
 Minimal waiting time between tasks and

REFERENCES

Ball, M., Golden, B., Assad, A. & Bodin, L. (1983) Planning for truck fleet size in the presence of
common-carrier options. Decision Sciences, vol. 14, no. 1, pp. 103–120.

Bell, J.E. and McMuller, P.R. (2004) Ant colony optimization techniques for the vehicle routing
problem. Advanced Engineering Informatics, vol. 18, no. 1, pp. 41-48.

Bent, R. W. & Van Hentenryck, P. (2004). Scenario-Based Planning for Partially Dynamic Vehicle
Routing with Stochastic Customers. Operations Research, vol. 52, no. 6, p. 977.

Bertsimas, D. J. (1992). A vehicle routing problem with stochastic demand. Operations Research, vol.
40, no. 3, pp. 574-585.

Bodin, L., Mingozzi, A., Baldacci, R., & Ball, M. (2000). The Rollon–Rolloff Vehicle Routing
Problem. Transportation Science, vol. 34, no. 3, pp. 271-288.

Caris, A. & Janssens, G. K. (2009). A local search heuristic for the pre-and end-haulage of intermodal
container terminals. Computers and Operations Research, vol. 36, no. 10, pp. 2763-2772.

Cheung, R. K. & Hang, D. D. (2003). A time-window sliding procedure for driver-task assignment
with random service times. IIE Transactions, vol. 35, no. 5, pp. 433-444.

cw
cl
di i
dij i j

i
i j

ti i
tij i j
si
O i
si
D i
Ei
O i
Li
O i

Ei
D i
Li
D i
Eij (i, j)

Lij (i, j)

RSij (i, j)
RSv v

(i, j) (g,h)

(i, j) (g,h)
MAXWAIT
MINWAITij i j

16

Cheung, R. K., Hang, D. D., & Shi, N. (2005). A labeling method for dynamic driver-task assignment
with uncertain task durations. Operations Research Letters, vol. 33, no. 4, pp. 411-420.

De Meulemeester, L., Laporte, G., Louveaux, F. V., & Semet, F. (1997). Optimal sequencing of skip
collections and deliveries. Journal of the Operational Research Society, vol. 48, no. 1, pp. 57-
64.

Erera, A. L., Smilowitz, K. R. & P. Ioannou. Intermodal drayage routing and scheduling. In Intelligent
freight transportation, CRC Press. Taylor & Francis Group, 2008, pp. 171-188.

Francis, P., Zhang, G., & Smilowitz, K. (2007). Improved modeling and solution methods for the
multi-resource routing problem. European Journal of Operational Research, vol. 180, no. 3,
pp. 1045-1059.

Gendreau, M., Laporte, G., & Seguin, R. (1995). An exact algorithm for the vehicle routing problem
with stochastic demands and customers. Transportation Science, vol. 29, no. 2, pp. 143-155.

Ileri, Y., Bazaraa, M., Gifford, T., Nemhauser, G., Sokol, J., & Wikum, E. (2006). An optimization
approach for planning daily drayage operations. Central European Journal of Operations
Research, vol. 14, no. 2, pp. 141-156.

Laporte, G., Louveaux, F., & Mercure, H. (1992). The vehicle routing problem with stochastic travel
times. Transportation Science, vol. 26, no. 3, pp. 161-170.

Psaraftis, H. N. (1995). Dynamic vehicle routing: Status and prospects. Annals of Operations
Research, vol. 61, no. 1, pp. 143-164.

Savelsbergh, M. W. P. & Sol, M. (1995) The general pickup and delivery problem, Transportation
Science, vol. 29, no. 1, pp. 17-29.

Smilowitz, K. (2006). Multi-resource routing with flexible tasks: an application in drayage operations.
IIE Transactions, vol. 38, no. 7, pp. 577-590.

Solomon, M.M. (1987) Algorithm for the vehicle routing and scheduling problems with time windows
contraints. Operational Research, vol. 35, no. 2, pp. 254-65

Spasovic, L. N. & Morlok, E. K. (1993). Using marginal costs to evaluate drayage rates in rail-truck
intermodal service. Transportation Research Record, Vol. 1383, pp. 8-16.

Wang, J. Q., Tong, X. N., & Li, Z. M. (2007). An Improved Evolutionary Algorithm for Dynamic
Vehicle Routing Problem with Time Windows. In Computational Science – ICCS 2007.
Springer Berlin / Heidelberg, ed., pp. 1147-1154.

Wang, X. & Regan, A. C. (2002). Local truckload pickup and delivery with hard time window
constraints. Transportation Research Part B, vol. 36, no. 2, pp. 97-112.

