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Abstract 7 

Teams of engineers visually inspect more than half a million bridges per year in the US and EU. There 8 

is clear evidence to suggest that they are not able to meet all bridge inspection guideline requirements 9 

due to a combination of the level of detail expected, the limited time available and the large area of 10 

bridge surfaces to be inspected. Methods have been proposed to address this problem through 11 

damage detection in visual data, yet the inspection load remains high. This paper proposes a method 12 

to tackle this problem by detecting (and disregarding) healthy concrete areas that comprise over 80-13 

90% of the total area. The originality of this work lies in the method’s slicing and merging to enable 14 

the sequential processing of high resolution bridge surface textures with a state of the art classifier to 15 

distinguish between healthy and potentially unhealthy surface texture. Morphological operators are 16 

then used to generate an outline mask to highlight the classification results in the surface texture. The 17 

training and validation set consists of 1,028 images taken from multiple Department of Transportation 18 

bridge inspection databases and data collection from ten highway bridges around Cambridge. The 19 

presented method achieves a search space reduction for an inspector of 90.1% with a risk of missing 20 

a defect patch of 8.2%. This work is of great significance for bridge inspectors as they are now able to 21 

spend more time on assessing potentially unhealthy surface regions instead of searching for these 22 

needles in a mainly healthy concrete surface haystack. 23 
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1. Introduction 25 

Bridges are the most critical and complex structures in a road network, both technically and 26 

strategically. Weight-limitations or closures have negative consequences on the economic success of 27 

a country as well as on the user satisfaction. Bridge inspections need to be carried out to know the 28 

bridge condition, to collect information about damages and to make appropriate operational or 29 

maintenance decisions (load limitations, maintenance needs or closure). A team of engineers inspect 30 

a bridge manually on site regularly (typically every two years a general, purely visual inspection, every 31 

five years a more detailed in-depth inspection from a touching distance including the use of tools) 32 

(The Highways Agency 2007). 33 

Bridge inspection guidelines require engineers to visually identify both small and large defects (e.g. 34 

down to 0.3 mm in width for cracks) on all bridge element surfaces (The Highways Agency 2007). Our 35 

datasets show that the concrete surface area of an average highway bridge taken around Cambridge 36 

is 2,440 square meters, equal the size of almost six basketball courts. Inspecting this takes more than 37 

20 hours if allowing for 30 seconds inspection time per square meter to identify potentially unhealthy 38 

areas, closely examine these areas, taking measurements and documenting the defects in writing and 39 

visually. Moreover, this is the pure inspection time, not accounting for time required to perform safety 40 

measures, walking and climbing to get into a solid inspection position or rest periods. In addition, 41 

there usually exists a serious issue of accessibility where some areas to be inspected are not easily 42 

accessible. Image timestamps of 399 inspections were analysed to learn about inspection duration. 43 

The time span between the first and last image allows a conclusion on the duration of the visual part 44 

of an inspection based on the assumption that an inspector regularly takes images during a visual 45 

inspection. The average time for a general inspection was 19 minutes and for an in-depth inspection 46 

72 minutes. It is therefore questionable whether an inspector is able to inspect the entire bridge 47 

surface with the required level-of-detail and from a distance from which all defect types can be 48 
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identified. Inspectors have to make a trade-off between inspection time and inspection distance. They 49 

do it in two ways: (1) Inspectors might look from a distance where they are unable to see small details 50 

or (2) Inspectors might skip some surface parts because it is too time-consuming to get into a position 51 

from where the surface is visible. As a result, bridge condition information is incomplete. 52 

Missing out small details leads to missing minor defects. Preventive maintenance, which means to 53 

maintain minor defects before they become major, can reduce costs by up to 65% (Kong et al. 2003). 54 

More importantly, skipping surface area completely bears the risk of missing major defects which can 55 

lead to major closings or a complete loss of structural integrity and fatal accidents (Xie and Levinson 56 

2011). 57 

1.1. State of practice 58 

Inspectors perform two tasks during an inspection: First, they identify which areas of a bridge are 59 

prone to and critical for defects. This is done empirically and based on a subjective structural 60 

interpretation; no defined rules exist. Typical areas are the ones close to a support (e.g. the connection 61 

between column and girder) or with maximal bending (e.g. middle of span).  Second, an inspector 62 

looks for potentially unhealthy spots in the critical areas. Only these potentially unhealthy spots are 63 

examined more closely by conducting four steps: take a close look to identify the defect type and 64 

possible cause; take measurements of the relevant defect properties; give a condition rating based on 65 

the measurements and the inspection guidelines and finally document findings in writing and 66 

figurative in a sketch or an image (Spencer 1996). This second step typically affects only a minor 67 

surface area; most of the surface is non-deficient concrete. 68 
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1.2. State of research 69 

Technologies for collecting the as-is raw data of a bridge exist: Laser scanning or Structure from 70 

Motion (SfM) can provide high-precision dense point cloud data with registered imagery. Methods for 71 

manual or automated as-is modelling exist (Hüthwohl et al. 2016; Lu and Brilakis 2017). High resolution 72 

imagery can be used for texturing elements. Textures are stored in common 2D image formats such 73 

as jpeg or png. UV mapping is the process of applying a flat, two-dimensional image onto a three-74 

dimensional shaped object (Murdock 2008). With these methods, a fully textured as-is digital 75 

representation from a real structure can be compiled such as the one shown in Figure 1. The textures 76 

include very small surface details from the real surface such as cracks, aggregate and spider nets. 77 

Hence, these models can be used to research, if they are sufficient for manual or automated defect 78 

detection. 79 

Any method, automated or manual, has to achieve at least the same inspection quality as the state of 80 

practice: a team of human inspectors on site. Two metrics define the level of inspection quality for the 81 

scope of this work: the risk of missing a defect and the ability to generalize over healthy and potentially 82 

unhealthy areas. 83 

Determining the performance of existing inspection schemes regarding the risk of missing a defect is 84 

difficult. No up-to-date study exists. Phares et al. (2004) did an investigative study to evaluate the 85 

performance of bridge inspectors. They found out that inspectors tend to miss documenting 46% of 86 

the defects. Authorities adopted inspection schemes since then. One of the adoptions was to change 87 

Figure 1: 3D as-is model of fully-textured RC highway bridge, deck view on the left, bottom view on the right 
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from a component inspection level to an element inspection level. A performance evaluation of the 88 

new scheme is missing. Hence, any automated inspection method has to have a considerably lower 89 

risk of missing a defect than the one determined by Phares et al. The second metric, generalization, is 90 

difficult to measure quantitatively for the scope of this work. Nevertheless, it is an absolute 91 

requirement for the evaluation. Human inspectors generalize well, as they are able to identify and 92 

examine suspicious areas based on their experience even if inspection guidelines do not list rare, 93 

untypical types of defects. 94 

1.2.1. Appearance of healthy and potentially unhealthy concrete 95 

A general definition of the appearance of potentially unhealthy or healthy concrete does not exist. 96 

Newly build reinforced concrete is approximately homogeneously coloured. The admixed aggregate 97 

and sand appear as small spots in different colours (depending on the mixture, white, shades of brown, 98 

almost black).  99 

Multiple influences immediately change the appearance of a concrete surface already during 100 

construction. For example, shrinkage during hardening and design loads plus gravity, traffic and 101 

environmental loads lead to initial capillary cracks in the concrete. These cracks are difficult to see 102 

with the naked eye and do not constitute a defect, hence are not to be considered as potentially 103 

unhealthy. Formwork marks, minor corroding metal pieces (e.g. nails left from construction) and 104 

differences in concrete texture are also common and occur frequently on concrete surfaces. 105 

Environmental influences such as rain, vegetation or dirt change the concrete surface texture over 106 

time. These influences vary depending on the location and exposure. Momentary environmental 107 

conditions during the data collection, such as strong sun or rain, have an additional effect on the image 108 

texture. Figure 2 shows multiple examples of such normal patterns: (a) dust and spider webs, (b) 109 

formwork marks, (c) water stains and (d) strong shadows. 110 

Potentially unhealthy areas are all areas relevant for an inspector to take a close look for the scope of 111 

this work. These are primarily concrete defects, but also include signs of vandalism, graffiti and 112 
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littering. Inspection manuals list typical examples of concrete defects. Huethwohl et al. (2017) 113 

analysed multiple inspection manuals from different continents. Spalls (e), cracks (f), rust stains (g), 114 

efflorescence (h), scaling and abrasion / wear are the most common ones and pictured in Figure 2. 115 

Methods for detecting potentially unhealthy / healthy concrete use a two-dimensional image as input. 116 

The three-dimensional shape is irrelevant for most considered defect classes, as long as the texture 117 

image is undistorted. Abrasion / wear is the only defect class that primarily affects the shape. Abrasion 118 

/ wear is excluded for the scope of this work as these defects are not visually detectable in 2D images 119 

and state of the art as-is models do not model such minor shape deformations. 120 

  121 
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 122 

Figure 2: Concrete texture examples: (a) dust, dirt and spider webs, (b) formwork marks, (c) water stains, (d) strong shadows, 

(e) spall, (f) crack, (g) rust stain, (h) efflorescence 
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1.2.2. Research on concrete defects 123 

The research community has shown interest in tackling the challenge of separating potentially 124 

unhealthy from healthy concrete, yet has not been able to entirely address the problem for bridges. 125 

General approaches directly address the problem of distinguishing potentially unhealthy and healthy 126 

areas in one step by using a single metric for all possible potentially unhealthy candidates. McRobbie  127 

et al. (2007) tested fifteen different feature descriptors such as entropy, standard deviation, mean 128 

value of area, quadtree decomposition and different edge detectors on a deteriorated bridge 129 

abutment wall, where the surface texture was reconstructed from multiple images. They used a grid-130 

based feature threshold for the classification based on the assumption that large variations in the 131 

feature descriptor imply potentially unhealthy areas. Yet, none of the metrics was able to reliably 132 

distinguish between the two classes. 133 

A different approach is to combine multiple single defect class detectors to a combined multi-134 

classifier. A considerable number of single class detectors exist, mostly for detecting cracks. These 135 

detectors, however, address a different problem and are out of scope of this work. Koch et al. (2015) 136 

have recently done a thorough review on this. They concluded that crack detector methods need 137 

improvement. They are prone to noisy data, changing lighting conditions, and still require a significant 138 

amount of user input. McRobbie et al. (2011) examined in addition to the afore mentioned fifteen 139 

separate detection metrics, if potentially unhealthy concrete areas can be detected by combining 140 

multiple sufficiently uncorrelated metrics. They found out, that this approach could slightly improve 141 

the detection results. Quantitative results are not given. There are two limitations why these 142 

combined methods cannot reliably solve the problem of identifying potentially unhealthy areas on 143 

bridge element texture. First, single class detectors detect only one single defect type by design. A 144 

combination of single class detectors is only able to detect the defects out of the combined single class 145 

detectors. Inspectors, however, have to detect potential defects even if they are not listed in the 146 

defect catalogue. Secondly, single class detectors use a dataset containing mostly samples of their 147 

specific target class for validation; their performance with images from other defect classes in unclear. 148 
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Change detection is the process of identifying differences in a set of multi-temporal datasets, primarily 149 

images. This field is well-studied in different disciplines such as remote sensing (Lu et al. 2004), 150 

surveillance (Collins et al. 2000) or medical diagnoses (Bosc et al. 2003). Multiple researchers have 151 

exploited this technique for civil infrastructure, mostly tunnels. The key idea is that an initial dataset 152 

represents a faultless structure. Changes to a second dataset, taken at a later point in time, 153 

automatically present a potential defect and hence are potentially unhealthy. The difficulty, however, 154 

is to find a difference metric that is robust to changes in lighting and imperfect registration. Guo et al. 155 

(2009) tested the image difference after an image registration and pre-processing step on images from 156 

a storm-water pipe segment. Based on the intensity difference, a threshold determines for each pixel 157 

if it has changed or not, hence if it is potentially unhealthy or healthy. The per-defect accuracy was 158 

84% with a false positive rate (FPR) of 21%. Stent et al. (2015) trained a convolutional neural network 159 

(CNN) to detect change in tunnel linings. Two registered images for comparison were loaded into 160 

separate input channels of the CNN. The training dataset comprised of real tunnel surface texture with 161 

artificially added defects. 84% of the changes were detected with a per pixel FPR of 10%. Change 162 

detection has three major disadvantages for the scope of automated bridge inspection: First, images 163 

need to be perfectly aligned down to a pixel level. This is already difficult for simple geometries such 164 

as tunnels, but even more so in the case of more complex structures such as bridges. Secondly, change 165 

detection is prone to major changes in lighting. Lighting can be controlled up to a certain degree 166 

indoors or inside a closed structure. Certainly it can not be controlled at a bridge with reasonable 167 

effort. Thirdly, one might miss a defect completely if relying on changes as the sole indication for 168 

potentially unhealthy areas. This happens if in one case an inspector misses a defect and marks an 169 

area as healthy. If it does not change until the next inspection cycle, it will still be considered healthy 170 

as it was already present and labeled as healthy during the last inspection. 171 

Additional sensors have been investigated regarding their possible use for bridge inspections. This 172 

study focuses on the data analysis rather than presenting technical details on the sensors. Matsumoto 173 

et al. (2012) used a thermal camera to identify internal defects on a bridge deck. A heatmap is 174 
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automatically generated based on the local temperature profile. Potentially unhealthy areas are 175 

highlighted based on a simple temperature gradient. Quantitative results are not given. Lerma et al. 176 

(Lerma et al. 2011) utilized a thermographic camera to detect moisture. Both studies are able to detect 177 

invisible sub-surface defects. But other crucial interest classes such as cracks are not detectable. 178 

Jahanshahi et al. (2013) used a depth sensor (Microsoft Kinect) to automatically detect pavement 179 

defects. Their approach is based on detecting major deviations from a fitted plane within the three-180 

dimensional depth data. As before, shape-based methods lack in completeness regarding different 181 

defect classes which do not involve significant change on the 3D shape. Valença et al. (2017) combined 182 

a digital camera and a laser scanner in order to utilise the precision of laser scanning with the high 183 

resolution of image processing. Reference points are used for orthorectifying the image which is then 184 

used for crack property extraction.  185 

Conservative image classification approaches typically use handcrafted features (edges, corners, 186 

gradient variations, etc.) and a simple classifier (threshold) to make a classification decision. This is 187 

based on the assumption that one understands how to detect specific things, such as cracks, based on 188 

assumptions and simplifications such as changes in contrast or colour. In fact, it is unknown how 189 

humans identify defects on a surface. Hand-crafted features are our best guess. Increase of 190 

performance of hand-crafted feature methods have stagnated in recent years (Jia et al. 2014) 191 

1.2.3. State-of-the-art classification / segmentation approach 192 

In contrast, deep learning has outperformed humans in classification tasks such as recognizing 193 

handwritten digits (Cireşan et al. 2012) and skin cancer classification (Esteva et al. 2017). An artificial 194 

neural network with multiple hidden layers is trained using an extensive, typically labelled dataset. 195 

The training is end to end, meaning that raw image pixel values form the input of the network and the 196 

output directly presents the desired output format. Training algorithms use gradient descent to 197 

converge towards a local minimum. Hidden layers form a hierarchical feature set and each layer 198 

models more complex data based on the predecessors. This way, relevant features for a specific 199 

classification task are learned automatically without the need of hand-crafted features. The Inception 200 
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Resnet network has outperformed previous state of the art models for image classification on the 201 

common academic image classification dataset ImageNet achieving 80.4% top-1 accuracy and 95.3% 202 

top-5 accuracy (Szegedy et al. 2016). The ImageNet dataset contains a wide range of categories such 203 

as animals, flowers, sports, vehicles and persons. Deep learning, however, is a relatively simple brute 204 

force approach, it requires an extensive dataset and it results in a black box. If and how it will converge 205 

and how it will come to a classification decision is unclear and a special focus of current computer 206 

science research. A rule of thumb is that the size of the training dataset and the number of variables 207 

in the network should be equal in size. The mentioned inception network roughly has 50 million 208 

parameters (Alex Alemi 2016). 209 

Fully convolutional deep neural networks (CNN) for semantic segmentation are networks that directly 210 

output a semantic map of an input image (Long et al. 2014). Each image pixel has a class assignment; 211 

clusters of neighbouring pixels represent a class instance. This has been popular for autonomous 212 

driving to locate asphalt, road signs, trees, pedestrians, etc. (Badrinarayanan et al. 2015). Semantic 213 

texton forests (STFs) can be used for semantic segmentation as done by Golparvar-Fard et al. (2015) 214 

for road scene segmentation or Radopoulou and Brilakis (2016) for road surface inspection, yet have 215 

been outperformed by CNNs regarding their classification accuracy. The input size to CNNs for images 216 

is, even with enormous computing power, still very limited. A typical input size is 512x512 pixels or 217 

0.26 megapixel (MP). A resolution of 0.1 mm2 per Pixel is needed for reliably detecting 0.3 mm wide 218 

cracks (Marks 1991). Following this, an element surface of only 1 m2 requires a resolution of 100 MP, 219 

more than 380 times the size of what is possible to be processed by a CNN today. In addition, a 220 

representative and labelled dataset sufficient in size for training a neural network to detect potentially 221 

unhealthy areas on concrete bridge elements does not exist. 222 

1.3. Gaps in Knowledge and Research Questions 223 

Hence, the research body does not present a method to reliably reduce the visual search space for a 224 

bridge inspection to potentially unhealthy regions of interest only. A new approach is needed that can 225 

separate potentially unhealthy from healthy concrete based on surface texture images to drastically 226 
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increase the inspection efficiency. This has to happen on a real life dataset with limited FPR. Existing 227 

work focuses on detecting a specific type of defect, works only for simple geometrical structures and 228 

limited environmental conditions or is technically not able to deal with the massive image resolution 229 

given by inspection requirements and is therefore not able to solve the problem. Deep learning, 230 

instead, has achieved promising results. Yet it has not been researched entirely on how to fully utilise 231 

it for the scope of bridge inspection. 232 

This work’s objective is to present a method that is capable of separating potentially unhealthy from 233 

healthy concrete by automatically assigning a class label (potentially unhealthy / healthy) to each 234 

location (patch or pixel). The significance of detecting healthy concrete derives from the fact that there 235 

are no effective defect detection methods findable in the body of knowledge. Defect methods could 236 

be more effective if a method is able to separate healthy concrete. In addition, disregarding healthy 237 

concrete can save time for both manual inspectors, as well as for automated defect detection. This 238 

results in the following research questions: (1) how can high resolution surface texture be split, such 239 

that it maintains all necessary details for defect detection but at the same time can be sequentially 240 

processed by a state-of-the-art image classifier; (2) which state-of-the-art classifier is suitable; (3) how 241 

can the results be merged to represent a meaningful representation to guide inspectors to areas of 242 

potentially unhealthy concrete; (4) by how much can this approach reduce the search space for an 243 

inspector; (5) what are the risks of this approach to miss a defect? 244 

The following chapter “Proposed solution” details the proposed method of splitting, classifying and 245 

merging the results. “Research Methodology and Results” presents the dataset, data sources, the label 246 

assignments and the experiments carried out in order to prove the performance. Finally, “Conclusion” 247 

summarizes and discusses the results, benefits and limitations of this presented work along with an 248 

interpretation and implication for both, practice and society. 249 
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2. Proposed Solution 250 

The proposed method automatically detects potentially unhealthy areas in bridge surface textures. A 251 

sliding window approach splits the surface texture into image patches. Then, a pre-trained Inception-252 

v3 network is used and fine-tuned on a domain-specific dataset to classify each image patch 253 

separately. The final step merges the classification results to a mask for indicating the different patch 254 

labels. Figure 3 depicts a flowchart of our method. 255 

Raw bridge inspection images contain a variety of unrelated image contents with irrelevant parts, such 256 

as sky, vegetation, different elements at different scale and perspectives. An increased complexity of 257 

Classification

Training

Sliding window

Classifier

Image merge

Texture image

Image patches

Patch labels

Segmented 

texture image

Labeled Training 

data

Pre-trained 

universal model

Fine-tuning

Concrete 

surface model

 

Figure 3: Proposed training and classification method for detecting potentially 

unhealthy and healthy concrete areas 
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image contents worsens training and classification quality. In addition, a finding in an unregistered 258 

image cannot be easily located on the 3D geometry, which is necessary for a subsequent assessment. 259 

For these reasons, a reconstructed surface texture, as in Figure 4, is used as input image. The following 260 

assumptions can be made by using the reconstructed surface texture:  (1) there is only relevant image 261 

content which is either potentially unhealthy or healthy; (2) background is uniformly coloured (black 262 

or white); (3) there are no or minor optical distortions; (4) each point of the surface texture represents 263 

the corresponding and nearly orthogonal view of that point; there are no or minor perspective 264 

distortions (as they have been compensated during surface reconstruction); (5) the surface area 265 

mapped by each pixel is constant throughout the image; there are no scale or resolution differences. 266 

Minor seams will occur, as the reconstruction process is not able to perfectly stitch the images and 267 

completely remove any radial distortions. However, these effects are assumed to be insignificant since 268 

both effects can be reduced by an improvement in image acquisition and, moreover, slight seams and 269 

distortion does not alter the overall appearance of a defect. 270 

A state-of-the-art classification method shall do the classification task. The GoogleNet Inception v3 271 

architecture, which is a convolutional neural network (CNN), is the second most accurate model on 272 

the ILSVRC 2012 image classification benchmark, a common academic image recognition dataset. Only 273 

the much deeper Inception ResNet-v2 model has achieved a slightly higher accuracy (+2.4%) but at 274 

the price of double the memory and double the computation costs (Alex Alemi 2016). 275 

The input of this classifier is not able to take images of arbitrary size. They are limited to 299x299 276 

pixels. A common approach would be to simply resize the surface texture. This works well for images 277 

where classification objects fill a considerable part of an image. The scenario is different for the scope 278 

of bridges. Cracks, for example, fill a very small portion of an image. A one meter long and one 279 

millimetre wide crack only fills a thousandth of a rather small, one square meter surface. Downscaling 280 

this image to a typical network input size would remove this defect completely. For this reason, this 281 

work proposes to use a sliding window approach. It converts the surface texture into a size applicable 282 
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as input for a classifier by retaining the original resolution and aspect ratio. Retaining the resolution is 283 

crucial particularly for bridge inspection. The sliding window is a fixed-size window that partially copies 284 

the source image � into a new image �, which represents one patch. It then slides by a defined offset 285 

� before it extracts the next patch. It iterates over both dimensions of the image and terminates as 286 

soon as the method has finished extracting patches from the entire input image. The image is 287 

extended over the edge in a mirrored manner to handle the edge area identically. Formula 1 288 

theoretically describes the patch extraction. � is the patch number, � the offset between two patches 289 

and �� the number of patches in the direction of the first dimension. 290 

 ���, 
, �� � �
��	���	��� ∙ � � �, �� ��⁄ � ∙ � � 
� ( 1 ) 291 

Figure 4: Reconstructed high-resolution surface texture of a bridge column, uncoiled 2D view on the left, 3D view on the 

right 
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The extracted image patches serve as input for the second step which is the classifier. This step is a 292 

binary classifier; the corresponding class labels are potentially unhealthy and healthy. Using semantic 293 

segmentation would result in a pixel-based classification. An inspector needs to see the classification 294 

result based on a potentially unhealthy area, not on a pixel. Having a pixel-based classification result 295 

would therefore require consolidating the classification results to a useful format later on. A patch-296 

based classification decision, instead, is superior as it simplifies this consolidation step and results can 297 

be directly presented to an inspector.  298 

The final step post-processes patch labels into a mask which outlines potentially unhealthy areas as 299 

areas of interest for an inspector. Patch regions are partly overlapping which can result in having 300 

different class labels for the same location in an image. Image locations with at least one potentially 301 

unhealthy label is marked as such. This is a conservative approach; missing out potentially unhealthy 302 

areas is crucial to the overall validation, whereas having a healthy area labelled as potentially 303 

unhealthy is less critical. A binary mask in a grayscale image represents the class labels. This process 304 

is demonstrated in Figure 5. A value of 0 represents the label healthy, 255 represents a potentially 305 

Sliding window position and classification result 

Resulting mask 

Healthy Potentially unhealthy 

Relevant for inspector Not relevant for inspector 

Window position 1 Window position 2 Window position 3 

Figure 5: Post-processing overlapping classification results to build masks of potentially unhealthy concrete. 
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unhealthy label. Potentially unhealthy areas in the texture files are framed to retain a maximum of 306 

the original surface texture. Binary morphology reduces the mask to the outline only as described in 307 

Formula 2 where � is the binary image showing the outlines; � is the binary mask and � the 308 

structuring element. First, the mask � is eroded using a standard 4-neighbour structuring element	� 309 

which is then inverted. Multiple eroding iterations determine the border width. Secondly, the 310 

intersection of the resulting inverted and eroded mask with the original mask � leads to the outline 311 

mask	� which is set to red in the output image. 312 

 � � � ∩	�⊝� ( 2 ) 313 

This study hypothesizes, that our presented slicing and merging algorithm in combination with a state-314 

of-the-art image classifier can outperform existing healthy concrete detectors. It is tested on a 315 

manually labelled dataset using the two performance metrics: The first one is the reduction of search 316 

space for an inspector in order to answer the question of how much of the surface texture can be 317 

skipped by an inspector without increasing the risk of missing a defect. This is equivalent to true 318 

negative rate (TNR) stated in Formula 3, where TN is the healthy concrete area that is correctly 319 

classified as such divided by the area that was correctly classified as negative (TN) plus the area that 320 

was falsely classified as positive (FP). 321 

 ��� � ��/��� �  �� ( 3 ) 322 

The second metric is the likelihood of missing a defect in order to find the risk of actually missing a 323 

defect. This is the false negative rate (FNR) which is calculated as stated in Formula 4. The falsely as 324 

negative classified area (FN) divided by the sum of correctly positive classified area (TP) and the area 325 

which is falsely classified as negative (FN). 326 

  �� �  �/��� �  �� ( 4 ) 327 
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3. Results and Discussion 328 

The assumption is that inspectors could spend more time per defect if they were able to focus on 329 

potentially unhealthy areas only. In general, it is the idea that complexity of the problem can be 330 

substantially alleviated if an inspector is guided in the decision where to look for defects. Inverting 331 

the problem by identifying areas that are obviously without problems does generally take much less 332 

effort than identifying problematic areas by taking a closer look. 333 

3.1. Dataset preparation 334 

Classification performance directly depends on the quality of a corresponding training dataset. Hence, 335 

its composition requires special care. A labelled dataset for the scope of this work is not publically 336 

available. Cambridge Bridge Inspection Dataset (Huethwohl 2017) is a newly composed dataset which 337 

is part of this work and is based on two data sources: The first one is from our own data collection. 338 

21,284 high resolution images (42 MP) from 10 RC highway bridges around Cambridge were collected 339 

for the scope of this work, out of which 17,124 images cover the main parts of the bridges (deck, 340 

columns, piers and abutment; 4,160 images from non-concrete side walls and basements were 341 

excluded). These images, however, do not contain a sufficient number and variety of defects as the 342 

bridges are in a good condition. Departments of Transportation (DoT) or their contractors maintain 343 

bridge management systems (BMS) which contain inspection and condition information, in particular 344 

defect images taken during inspections. Atkins, the U.S. Federal Highway Administration (FHWA) and 345 

the Georgia DoT have kindly granted access to 22,121 of their inspection images, which sums to 39,245 346 

raw image candidates. Still, image labels are missing for utilizing the image candidates for classifier 347 

training. Hence, images need to be manually labelled. Image content consists of three label types, out 348 

of which two are relevant to this work: Healthy areas (concrete in various colours and appearances), 349 

potentially unhealthy areas (defects, discolorations, etc.) plus background noise (sky, asphalt, 350 

vegetation, workers, cars, etc.). As many of the images are just single, random images from bridges, 351 

there is no way to use them for surface texture reconstruction. Nevertheless, they can be used for 352 

training and validation based only on the relevant parts of the images. The naïve approach is to label 353 
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each image separately and assigning a label on a pixel level. This labour-intensive task, however, would 354 

be unreasonably time consuming to achieve. Picking only a subset of images instead for manual 355 

labelling risks compiling a biased training set with only easy samples. To overcome this, Figure 6 356 

illustrates a newly established process for randomly extracting and manually labelling image patches. 357 

It starts with randomly selecting an image (uniformly distributed) from all candidates and then 358 

extracting a squared patch with a randomly selected window length (normal distributed, mean at 359 

window size and variance of a tenth of the window size) and at a randomly selected position (uniformly 360 

distributed). The classifier is trained to be independent of the size of the image area covered on the 361 

surface (surface resolution), although the input size of the network is invariable (with a pixel size of 362 

299x299). This is achieved by the fact that the patches of the training data cover a different surface 363 

area size. The patch is resized to the input size of the network and then manually assigned with a 364 

patch-based label following two decisions: The first decision is if the patch only contains concrete. If 365 

this is not the case, the patch is discarded and a new patch is drawn. If the patch, instead, contains 366 

concrete only, the second decision follows: to manually assign the relevant labels healthy and 367 

potentially unhealthy. Only the patch area is considered; surroundings of the image patch are not 368 

included for the labelling decision. At this point, one could criticize that a subjective labelling decision 369 

directly influences the classifier outcome. The key point is to conservatively assign the label. If in any 370 

doubt that a patch shows an area of concern, it gets the potentially unhealthy label. In addition, the 371 

labelling and the training is a repeatable process which can be analysed and optimized in more detail 372 

for the close decision patches. The dataset has 1,028 labelled and randomly picked patches out of 373 

which 896 build the training subset and 132 build the evaluation subset. Table  breaks down the 374 

number of images in regards to class labels, data sources and training / evaluation dataset. 375 

 376 

 377 
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Table 1: Break down of image patch numbers with respect to label and data source 378 

 Cambridge Data 

Collection 

DoT Inspection 

Data 

Total 

Potentially unhealthy Train: 70 

Eval:  11 

Total:  81 

Train:  206 

Eval:  50 

Total:  256 

Train:  276 

Eval:  61 

Total:  337 

Healthy Train: 473 

Eval:  54 

Total:  527 

Train: 147 

Eval:  17 

Total: 164 

Train:  620 

Eval:  71 

Total:  691 

Total Train:  543 

Eval:  65 

Total:  608 

Train:  353 

Eval:  67 

Total:  420 

Train:  896 

Eval:  132 

Total:  1028 

 379 
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Figure 6: Process to extract random patches and to manually assign image 

labels 
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The input layer of the neural network determines the input size in pixels of the image. Resizing the 380 

pixel input size of a trained network is not possible without losing the trained weights. The pre-trained 381 

network has an input size of 299x299 pixels, and hence, all patches in our dataset have a pixel size of 382 

299x299 pixels. 383 

3.2. Implementation and network training 384 

Gygax is a research platform developed at Cambridge that allows researchers to simultaneously access 385 

BIM, image, video, and/or point cloud data, as well as to load them in memory, visualize them and 386 

process them simultaneously (Huethwohl et al. 2017). The platform already supports textured as-is 387 

bridge models. Google’s open-source software library Tensorflow 1.2.1 provides strong machine 388 

learning functionality (Abadi et al. 2016). Tensorflow was integrated into Gygax by using 389 

TensorFlowSharp, which wraps the Tensorflow C API as a strongly-typed .NET API for the use from C# 390 

(Icaza et al. 2017). An implementation of the inception network along with a pre-trained model exists. 391 

Gradient descent Root Mean Square Propagation (RMSProp) trained the network for 300,000 steps or 392 

about 330 epochs after reducing and randomly initializing the output layer with a batch size of 32, an 393 

initial learning rate of 0.001 and a learning rate decay factor of 0.16. A change of the hyper-parameters 394 

was not tested as the moving average over the loss-function converged. Different hyper-parameter 395 

sets were not tested as these do have minor impact on the training quality for the scope of this work. 396 

They rather control the stability and speed of convergence.  397 
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Figure 7 shows the working system of the deep neural network. The network consists of multiple 398 

stacked inception modules. Each inception module consists of three or four parallel convolution 399 

operations with varying filter sizes and one max or average pooling step. The network roughly needs 400 

five billion multiply-adds per inference and has less than 25 million parameters. Our bridge inspection 401 

dataset is too small to train such a network from scratch for the stated purpose. Splitting the training 402 

into two phases based on transfer learning overcomes this; the key idea is that meaningful features in 403 

one feature space can be transferred to a different one. The first phase is a general training. An on 404 

1,000 classes and 1.2 million images pre-trained ImageNet model is used. This pre-trained network is 405 

publically available. The second stage is the fine-tuning. The number of labels is changed in the final 406 

classification layer to two and use the weights from the pre-trained model except for the modified 407 

final layer. This final layer is assigned with random weights and then fine-tune the network using our 408 

own dataset. Two alternative training strategies exist: Training a full network means to input one 409 

training sample into the network, then calculate the outcome based on current weights and back-410 

propagate the difference to the desired label. The back-propagation changes the weights based on 411 

the participation in the decision-making and the hyper-parameters (such as learning rate). This update 412 

happens through all layers of the network. It is computationally expensive and leads to the best 413 

possible accuracy. A less computationally expensive approach is to only update the newly initialized 414 

weights and to back propagate the training samples only through the last layer of the network. This 415 

strategy assumes that a new classification task can utilize relatively high abstracted features from 416 

Figure 7: GoogleNet Inception v3 network with the nodes highlighted for adjustment (Alex Alemi 2016) 
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some of the pre-trained model classes to describe new classes. In simple terms, this assumes that new 417 

classes are visually close to one of the pre-trained classes. The presented work follows the complete 418 

training and back-propagation through the whole network, as the goal is to find a reliable classification 419 

result rather than reducing computational costs. The training results in a concrete surface model that 420 

is able to label each image patch separately as potentially unhealthy or healthy concrete. 421 

Both, training and evaluation ran on a dual GPU system with two GeForce GTX 1070 and 8 GB of GPU 422 

memory each, an Intel Core i7 4 GHz CPU and 32 GB system memory. Execution of 300,000 steps took 423 

67 hours on this machine. 424 

3.3. Experiments 425 

Two experiments evaluated the performance of the presented method. First, stability of the 426 

classification result was determined by classifying the evaluation dataset only using the trained 427 

network and a bias. The outcome of the classification can be interpreted as a likelihood of the patch 428 

belonging to either the potentially unhealthy or the healthy class. This assignment is typically done 429 

based on the maximal class score. A tendency to classify a patch as potentially unhealthy in case of 430 

doubt is appropriate in order to minimizing the number of missed defects. The potentially unhealthy 431 

class is preferably selected if class scores are close. More precisely, the difference between the two 432 

classes is used as a control variable to understand the stability and balance between false negatives, 433 

which come at very high costs, and false positives which are annoying but tolerated. Figure 8 presents 434 

the results. The horizontal axis represents the difference threshold to determine the class assignment. 435 

The vertical axis represents the value of four different measures: 436 

Precision, as defined in Formula 5, is the fraction of samples classified as positive and actually being a 437 

positive sample. This measure alone is not sufficient as a classifier that classifies everything as negative 438 

(except one sample to avoid division by 0) would result in a high precision value and hence, would 439 

misleadingly be assessed as positive.  440 

 �!"#�$��� � ��/��� �  �� ( 5 ) 441 
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Therefore, recall was introduced which also considers the false negative classified samples. This in 442 

turn would lead to good results if all samples are classified as positive. It is the fraction of positive 443 

samples that actually were classified as positive as in Formula 6. 444 

 �"#%&& � ��/��� �  �� ( 6 ) 445 

Accuracy is a combined measure that takes TP, TN, FP, and FN into account. However, it depends on 446 

a balanced number of positive and negative samples. 447 

 '##(!%#) � ��� � ���/��� � �� �  � � 	 �� ( 7) 448 

The  * score in Formula 8 was introduced to overcome all stated limitations. It is the harmonic mean 449 

between precision and recall. 450 

  *	+#�!" � 2 ∙ �!"#�$��� ∙ �"#%&&/��!"#�$��� � �"#%&&� ( 8 ) 451 

The  * score in Figure 8 shows a steep rise and fall in the range of -1 to -0.8 and 0.8 to 1.0. In between, 452 

there is a stable plateau of around 0.8 with a slight increase and a peak of about 0.92 at a threshold 453 

value of 0.5 towards the tendency to label patches as potentially unhealthy. The maximum  * score 454 

of 0.90 was achieved at a bias of 0.61. This illustrates that the classifier is able to reliably distinguish 455 

between potentially unhealthy and healthy patches and is able to do this in a very stable and robust 456 

way (relatively independent from the threshold). Figure 9 gives examples of the classification results 457 

for a difference threshold of 0.5 for the group of true positives, true negatives, false positives and false 458 

negatives. The classifier is able to distinguish between the two classes over a variety of different defect 459 

types and concrete appearances. It even learns to distinguish between healthy lines arising from 460 

element crossings or different element sides and potentially unhealthy cracks. If looking at the false 461 

positives and false negatives, one can see that the transition between the two classes is fluid and 462 

cannot be established beyond doubt even for a human inspector.  463 
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 464 

Figure 8: Analysis of the classification stability with respect to a bias towards one class. 465 

A second experiment aimed at measuring the performance of the presented method versus the 466 

existing work in this field. McRobbie (2007) evaluated different metrics and metric combinations. 467 

Replicating the quadtree decomposition metric was not possible because it is not fully documented 468 

how the quadtree was built and which metric was included into the texture classification. The authors 469 

did not expect this to have a major impact on the classification results as it did not outperform the 470 

other metrics by far. Entropy was defined as in Formula 9 where - is the relative histogram counts of 471 

pixel values. 472 

 .�/!�-) � −∑ �-2 	 ∙ &�3	�-2��2  ( 9 ) 473 

Figure 10 shows the results in comparison. The use of the same bias presented in the first experiment 474 

and different thresholds for the measures StdDev, Mean, Entropy, Metrics Combined, and Flip a Coin 475 

allows to contrast TNR and FNR as a continuous curve. Consequently, it can be decided which FNR or 476 

likelihood of missing a defect is allowed. This then gives the necessary bias or threshold and the 477 

corresponding TNR or reduction of search space. The horizontal axis represents the false negative rate 478 
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(FNR), which in this scope is the likelihood of missing a defect patch.  The vertical axis represents the 479 

true negative rate (TNR) or the reduction of search space. This TNR is the decisive number to 480 

understand the potential of this method as it illustrates how much of an area can be skipped for a 481 

manual inspection. Out of the existing work, standard deviation and entropy worked best on the 482 

Cambridge Bridge Inspection Dataset. However, the newly presented method outperforms existing 483 

work considerably by achieving a reduction of search space of 90.1% at a risk of missing a defect patch 484 

of 8.2% at the maximal  * score determined in the first experiment. The actual risk of missing a defect 485 

is even lower if considering that a defect consists of multiple image patches. 486 

Finally, a demonstration qualitatively examines the accuracy on an example surface texture where 487 

unseen defect samples were added using the image editing software Gimp. The surface texture is from 488 

a bridge column and has a surface size of 10.15 square meters. The image representing the surface 489 

texture has a resolution of 5,485 x 10,888 pixels and is manually enriched with spalling, efflorescence 490 

and a crack. Figure 11a shows the texture with defects and in red the outlined classification results. 491 

An overlap of 5/6 was used to achieve a high spatial resolution regarding the classification results and 492 

to be independent of the defect location within a single patch. The optimal degree of overlap was not 493 

further investigated because only a few reconstructed surface textures were available. The method 494 

detects all three example defects correctly. Only three areas are misclassified as false positive. Out of 495 

these two are the top and bottom part of the column, where stones, some asphalt parts of the street 496 

and grass is present in the image. The third part is the label that is present on this column to identify 497 

the bridge (such labels are not yet part of the training or evaluation dataset. They could be added to 498 

the dataset. The label is actually painted on the column and serves as bridge mark). The four other 499 

false positives are small and insignificant; three arise from a change of texture appearance due to 500 

previous maintenance work, one arise from texture reconstruction artefacts. It should be pointed out 501 

that all three defects are correctly detected and no defect has been missed. In addition, the size, shape 502 

and location of all three defects was detected correctly. Figure 11b shows the classification result in 503 

form of a normalized heat map. It visualizes the stability of the detection as all defect areas are clearly 504 
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identifiable and differ considerably from the other texture. Figure 11c shows a close-up of the crack 505 

area, which is marked by the blue rectangle in Figure 11a. It is especially interesting to look at and 506 

compare the lines originated from concrete formwork and cracks. The presented method is able to 507 

distinguish between those two based on their unique appearance. Figure 11d illustrates that this does 508 

not depend on the absolute intensity change. It shows the cross-section intensity diagram for the 509 

formwork mark and the crack. The formwork mark has a greater footprint in the profile than the crack 510 

in both the absolute intensity value as well as in the spatial extent. Still, the trained model is able to 511 

distinguish and correctly classify both based on the different characteristics. Figure 11e shows the 3D 512 

view of the highlighted defects in our prototype implementation.  513 
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  526 

Figure 9: Example concrete patches, labels and classification results from Cambridge Bridge Dataset 
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 527 

Figure 10: Comparison of presented method vs. existing methods regarding their reduction of search space and the 528 

likelihood of missing a defect. 529 
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Figure 11: (a) Surface texture with manually added defect examples and overlaid classification results, (b) classification 

scores, (c) close-up comparison of a crack and formwork markings, (d) grey value intensity of a crack and formwork 

markings, (e) 3D view of as-is geometry with texture and defect highlight 
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4. Conclusion 537 

The current practice of manual visual bridge inspection suffers from limitations such as inefficiency 538 

and subjectivity. Multiple efforts have been made to automate this task by automatically detecting 539 

specific defect types, mostly cracks. However, a variety of defects must be detected simultaneously, 540 

and detecting a subset of defect types does not solve the problem. More importantly, defects can 541 

appear in many different forms, colours, shades and textures. The existing methods do not generalize 542 

well with respect to varying defect classes and/or concrete appearance. 543 

In this paper, the authors presented a method to automatically identify regions of interest in order to 544 

reduce the inspection space to areas which can then subsequently be inspected by a human engineer 545 

or by an automated defect classifier. This is done by inverting the problem from detecting potentially 546 

unhealthy concrete to detecting healthy concrete. A sliding window approach splits the surface 547 

texture in smaller chunks, such that it can be processed by a state-of-the-art classifier without losing 548 

small details such as cracks. A deep convolutional neural network is trained to detect healthy concrete. 549 

Classification results are merged to highlight potentially unhealthy areas directly on the element. This 550 

way, search space for inspectors is reduced to the areas which are not classified as healthy. 551 

This approach can reduce the surface area that an inspector has to inspect by 90.1% with having a risk 552 

of missing a defect patch of 8.2%. It is assumed that a reduction of surface area has a proportional 553 

influence on the inspection duration. The per-defect failure rate is even lower based on the 554 

assumption that a defect is depicted in multiple patches. A bias towards the potentially unhealthy 555 

class enables to determine how much risk is acceptable to the cost of limiting the search space 556 

reduction. The authors have shown that the presented method is able to outperform existing methods 557 

for detecting potentially unhealthy areas for the scope of bridge inspection. 558 

The contribution of this work is the process of slicing and merging high resolution bridge texture into 559 

patches, such that they can be processed with a state of the art image classifier. Our method has the 560 

benefit of not depending on multiple, hard to determine parameters and does not depend on 561 
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handmade features. The method works end-to-end, taking the raw image data as input and directly 562 

outputting surface texture with potentially unhealthy areas highlighted. As with all machine learning 563 

approaches, the limitation of this method is that it is hard to understand how the classifier comes to 564 

a decision. The relevant feature vectors are trained automatically and are difficult to interpret as a 565 

human. Consequently, the classification reliability highly depends on the quality of the training data. 566 

This is particularly challenging for the scope of this work as there is no distinct definition of what is 567 

considered as potentially unhealthy and what is not. Different inspectors would label patches 568 

differently. This, however, is a reasonable weakness as controversial patches can be labelled as 569 

suspicious to be on the safe side. Increasing the size and diversity of the training dataset (variety of 570 

inspectors, agencies and countries) would result in a more representative dataset.  571 

The presented method for automatically detecting potentially unhealthy areas can help to increase 572 

inspection efficiency by reducing the search space for a bridge inspector and guiding the inspector 573 

directly to the regions of interest. This way, the risk of missing a defect can be reduced. This will help 574 

to improve the overall quality of bridge condition information and hence will help to improve the cost-575 

to-benefit ratio for transportation maintenance operations. It is important, however, to emphasize 576 

that this method does not solve the overall problem. It is just one component in the complex process 577 

of bridge inspection which needs to be reviewed and adjusted, continually and methodically. Only this 578 

way the overall inspection data quality, integrity and efficiency can be improved and technological 579 

advances in the field of civil engineering and computer science can be utilized. This leads to a 580 

fundamental change in the operation principles of the inspectors. More accurate and up-to-date 581 

condition information can help eliminate bridge maintenance backlogs while enabling municipalities 582 

to better ascertain road network service quality. 583 

Multiple problems must be overcome in order to have a fully automated inspection solution. This is 584 

foremost the data collection and pre-processing task. An applicable technique to fully-automate or 585 

even semi-automate data collection of all relevant bridge element surfaces does not exist. This 586 
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concerns and includes multiple disciplines, such as the sensor hardware (how is sufficient surface 587 

resolution achieved), sensor registration and actuation (using a drone, robot, handheld device) and 588 

legislation (major restrictions exist to fly drones close to bridges). 589 

Data Access 590 

The Cambridge Bridge Inspection Dataset supporting the findings of this study is available at University 591 

of Cambridge research repository with the identifier doi:10.17863/CAM.13813 (Huethwohl 2017) 592 
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